JP2005136255A - Abrasive composition - Google Patents

Abrasive composition Download PDF

Info

Publication number
JP2005136255A
JP2005136255A JP2003371706A JP2003371706A JP2005136255A JP 2005136255 A JP2005136255 A JP 2005136255A JP 2003371706 A JP2003371706 A JP 2003371706A JP 2003371706 A JP2003371706 A JP 2003371706A JP 2005136255 A JP2005136255 A JP 2005136255A
Authority
JP
Japan
Prior art keywords
weight
polishing
polishing composition
particle diameter
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003371706A
Other languages
Japanese (ja)
Inventor
Fumihiro Shiraishi
史広 白石
Michio Kimura
道生 木村
Toshihiko Ogawa
俊彦 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2003371706A priority Critical patent/JP2005136255A/en
Publication of JP2005136255A publication Critical patent/JP2005136255A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an abrasive composition that can reduce the erosion, caused when a wiring concentrating area is polished excessively as compared with a non-wiring area to ≤30 nm in an area having a narrow wiring width, during the course of a CMP process performed on a semiconductor device, having a copper film, a barrier layer composed of a tantalum compound, and an SiO<SB>2</SB>insulating layer. <P>SOLUTION: The abrasive composition is obtained by mixing colloidal silica having the association ratio of 1.5 and the mean particle diameter of primary particles of 20 nm, polymethyl methacrylate having a ratio of the weight-average particle diameter to the number-average particle diameter (weight-average molecular weight/number-average molecular weight) of 1.00-1.50 and the mean particle diameter of 30 nmm, oxalic acid, hydrogen peroxide, and benzotriazole as abrasives in ion-exchanged water filtered through a 0.5 μm cartridge filter and uniformly dispersing the abrasives in the water by agitating the water with a high-speed homogenizer. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、半導体、各種メモリーハードディスク用基板等の研磨に使用される研磨用組成物に関し、特に半導体のデバイスウエハーの表面平坦化加工に好適に用いられる研磨用組成物に関するものである。   The present invention relates to a polishing composition used for polishing semiconductors, various memory hard disk substrates and the like, and more particularly to a polishing composition suitably used for surface planarization of semiconductor device wafers.

エレクトロニクス業界の最近の著しい発展により、トランジスター、IC、LSI、超LSIと進化してきており、これら半導体素子に於ける回路の集積度が急激に増大するに伴って半導体デバイスのデザインルールは年々微細化が進み、デバイス製造プロセスでの焦点深度は浅くなり、パターン形成面の平坦性はますます厳しくなってきている。   Recent advances in the electronics industry have evolved into transistors, ICs, LSIs, and super LSIs. As the degree of integration of circuits in these semiconductor elements has increased rapidly, the design rules for semiconductor devices have become finer year by year. Accordingly, the depth of focus in the device manufacturing process has become shallow, and the flatness of the pattern forming surface has become increasingly severe.

一方で配線の微細化による配線抵抗の増大をカバーするために、配線材料としてアルミニウムやタングステンからより電気抵抗の小さな銅配線が検討されてきている。しかしながら銅を配線層や配線間の相互接続に用いる場合には、絶縁膜上に配線溝や孔を形成した後、スパッタリングやメッキによって銅膜を形成して不要な部分を化学的機械的研磨法(CMP)によって絶縁膜上の不要な銅が取り除かれる。   On the other hand, in order to cover the increase in wiring resistance due to the miniaturization of wiring, copper wiring having a smaller electrical resistance has been studied as a wiring material from aluminum or tungsten. However, when copper is used for interconnection between wiring layers and wirings, after forming wiring grooves and holes on the insulating film, a copper film is formed by sputtering or plating, and unnecessary portions are chemically and mechanically polished. (CMP) removes unnecessary copper on the insulating film.

かかるプロセスでは銅が絶縁膜中に拡散してデバイス特性を低下させるので、通常は銅の拡散防止のために絶縁膜上にバリア層としてタンタルやタンタルナイトライドの層を設けることが一般的になっている。   In such a process, copper diffuses into the insulating film and degrades the device characteristics. Therefore, it is common to provide a tantalum or tantalum nitride layer as a barrier layer on the insulating film to prevent copper diffusion. ing.

このようにして最上層に銅膜を形成させたデバイスの平坦化CMPプロセスにおいては、初めに不要な部分の銅膜を絶縁層上に形成されたタンタル化合物の表面層まで研磨し、次のステップでは絶縁膜上のタンタル化合物の層を研磨し、その後配線幅、配線の深さなどによってCu及びSiO2を最適な量だけ研磨する必要がある。このようなプロセスを図1に示したが、かかるプロセスにおけるCMP研磨では銅、タンタル化合物、SiO2などの異種材料に対して研磨レートに選択適性があることが必要である。 In the planarization CMP process of the device having the copper film formed as the uppermost layer in this manner, the unnecessary portion of the copper film is first polished to the surface layer of the tantalum compound formed on the insulating layer, and the next step Then, it is necessary to polish the tantalum compound layer on the insulating film, and then polish Cu and SiO 2 by optimum amounts depending on the wiring width, wiring depth, and the like. Although such a process is shown in FIG. 1, the CMP polishing in such a process requires that the polishing rate be selective with respect to different materials such as copper, a tantalum compound, and SiO 2 .

即ちステップ1では銅に対する研磨レートが高く、タンタル化合物に対してはほとんど研磨能力がない程度の選択性が必要である。さらにステップ2ではエロージョン、ディシングを抑えつつ、タンタル化合物に対する研磨レートが大きく、Cuに対する研磨レートが200〜500(Å/min)、SiO2に対する研磨レートが100〜500(Å/min)の間で最適な量だけ研磨できることが必要である。 That is, in Step 1, the polishing rate with respect to copper is high and the tantalum compound needs to be selective enough to have no polishing ability. Further, in step 2, while suppressing erosion and dishing, the polishing rate for the tantalum compound is large, the polishing rate for Cu is 200 to 500 (Å / min), and the polishing rate for SiO 2 is 100 to 500 (Å / min). It is necessary to be able to polish the optimum amount.

このプロセスを理想的には一つの研磨材で研磨できることが望まれるが、異種材料に対する研磨レートの選択比をプロセスの途中で変化させることはできないのでプロセスを2ステップに分けて異なる選択性を有する2つのスラリーでそれぞれのCMP工程を実施する。ステップ1ではタンタル化合物上の銅膜を完全に除去した状態で研磨を終了させる。ついでステップ2では、Ta層を完全に除去し、SiO2層及びCuを適量研磨除去して平坦化させる。 Ideally, this process can be polished with a single abrasive, but the selectivity of the polishing rate for different materials cannot be changed during the process, so the process is divided into two steps and has different selectivity. Each CMP step is performed with two slurries. In step 1, the polishing is completed with the copper film on the tantalum compound completely removed. Next, in step 2, the Ta layer is completely removed, and the SiO 2 layer and Cu are polished and removed in an appropriate amount to be planarized.

ステップ2に用いられる研磨用組成物に対しては、ステップ1で研磨された状態から主としてタンタル化合物を選択的に研磨するために必要な研磨レートは1000〜1100(Å/min.)程度であり、銅の研磨レートについては200〜500(Å/min.)、SiO2の研磨レートについては100〜500(Å/min.)程度が望ましいとされている。 For the polishing composition used in Step 2, the polishing rate necessary for selectively polishing the tantalum compound mainly from the state polished in Step 1 is about 1000 to 1100 (Å / min.). The copper polishing rate is preferably 200 to 500 (Å / min.), And the SiO 2 polishing rate is preferably about 100 to 500 (Å / min.).

このようなステップ2研磨用の研磨用組成物としては、コロイダルシリカ、過酸化水素、ベンゾトリアゾール、シュウ酸と水とを含有しKOHなどでpH2〜5に調整した研磨用組成物が特許文献1に示されている。しかし、この研磨用組成物は、タンタル化合物に対して銅の研磨レートが大きくなっているがその比が3程度であり、選択性が充分とは言えなかった。また、砥粒に有機粒子と無機粒子を併用した2ndステップ研磨用組成物が特許文献2に示されているが、過酸化水素、酢酸、KOH、マレイン酸塩などが配合された組成物であるがタンタル化合物と銅との研磨選択比が1.1程度、タンタル化合物とSiO2との研磨選択比が1.2程度であり、選択性が充分とは言えなかった As such a polishing composition for Step 2 polishing, a polishing composition containing colloidal silica, hydrogen peroxide, benzotriazole, oxalic acid and water and adjusted to pH 2 to 5 with KOH or the like is disclosed in Patent Document 1. Is shown in However, this polishing composition has a copper polishing rate larger than that of the tantalum compound, but the ratio is about 3 and the selectivity is not sufficient. Moreover, although the 2nd step polishing composition which used the organic particle and the inorganic particle together for the abrasive grain is shown by patent document 2, it is a composition by which hydrogen peroxide, an acetic acid, KOH, maleate, etc. were mix | blended. However, the selectivity of polishing between the tantalum compound and copper was about 1.1, and the selectivity of polishing between the tantalum compound and SiO 2 was about 1.2, indicating that the selectivity was not sufficient.

また、従来の研磨用組成物を用いた場合、配線幅が細い領域では、配線密集領域が無配線領域に比べて過剰に研磨され、無配線領域に比べ、配線密集領域の絶縁膜が薄くなってしまう現象であるエロージョン、或いはCu配線の中央が薄くなってしまう現象であるディッシングを起こしやすいという問題があった。
特開2001−247853号公報 特開2001−196336号公報
In addition, when the conventional polishing composition is used, in the region where the wiring width is narrow, the wiring dense region is polished excessively compared to the non-wiring region, and the insulating film in the wiring dense region becomes thinner than the non-wiring region. There is a problem that erosion, which is a phenomenon that occurs, or dishing, which is a phenomenon that the center of the Cu wiring becomes thin, is likely to occur.
JP 2001-247853 A JP 2001-196336 A

本発明は、銅膜、タンタル化合物のバリア層、SiO2の絶縁層を有する半導体デバイスのCMP加工プロセスにおいて、配線幅が細い領域において、配線密集領域が無配線領域比べて過剰に研磨され起こるエロージョンを30nm以下にすることのできる研磨用組成物を提供することにある。 The present invention relates to an erosion caused by excessive polishing of a wiring dense region in a narrow wiring width region compared to a non-wiring region in a CMP processing process of a semiconductor device having a copper film, a tantalum compound barrier layer, and an SiO 2 insulating layer. It is providing the polishing composition which can be 30 nm or less.

本発明は、
(A)研磨材、(B)有機酸、(C)酸化剤、(D)酸化防止剤、および(E)水を含有する研磨用組成物であって、(A)研磨材が、平均粒径1nm〜35nmの(メチルメタクリレート/ジビニルベンゼン)共重合体を主成分とし、重量平均粒子径と数平均粒子径の比(重量平均分子量/数平均分子量)が1.00〜1.50の範囲にある有機粒子と会合比が1.5以下で平均粒径が15nm〜25nmの範囲にあるフュームドシリカ、コロイダルシリカ、フュームドアルミナ、およびコロイダルアルミナのうち少なくとも1種類からなる無機粒子の混合物であり、有機粒子と無機粒子の重量配合比は95/5〜0/100の範囲にあり、研磨用組成物中の濃度が2〜10重量%であり、(B)有機酸の主成分がシュウ酸であり、研磨用組成物中の濃度が0.01〜1.0重量%であり、(C)酸化剤が過酸化水素であり、研磨用組成物中の濃度が0.05〜1.0重量%であり、(D)酸化防止剤がベンゾトリアゾールまたはその誘導体であり、研磨用組成物中の濃度が0.01〜1.0重量%であり、好ましくは、銅のウエットエッチングレートが5(Å/min)以下、エロージョン、ディッシングが30nm以下であることを特徴とする研磨用組成物である。
The present invention
A polishing composition comprising (A) an abrasive, (B) an organic acid, (C) an oxidant, (D) an antioxidant, and (E) water, wherein (A) the abrasive is an average particle The main component is a (methyl methacrylate / divinylbenzene) copolymer having a diameter of 1 nm to 35 nm, and the ratio of the weight average particle diameter to the number average particle diameter (weight average molecular weight / number average molecular weight) is in the range of 1.00 to 1.50. A mixture of inorganic particles composed of at least one of fumed silica, colloidal silica, fumed alumina, and colloidal alumina having an association ratio of 1.5 or less and an average particle size in the range of 15 nm to 25 nm. The weight ratio of organic particles to inorganic particles is in the range of 95/5 to 0/100, the concentration in the polishing composition is 2 to 10% by weight, and (B) the main component of the organic acid is Shu Acid and polishing set The concentration in the composition is 0.01 to 1.0% by weight, (C) the oxidizing agent is hydrogen peroxide, the concentration in the polishing composition is 0.05 to 1.0% by weight, (D) The antioxidant is benzotriazole or a derivative thereof, and the concentration in the polishing composition is 0.01 to 1.0% by weight. Preferably, the wet etching rate of copper is 5 (min / min). Hereinafter, the polishing composition is characterized in that erosion and dishing are 30 nm or less.

本発明によれば、会合比が1.5以下で平均粒径が15nm〜25nmのコロイダルシリカ等の無機粒子を用いた研磨用組成物の場合、エロージョンを前述のものの1/2以下にすることができ、重量平均粒子径と数平均粒子径の比(重量平均分子量/数平均分子量)が1.00〜1.50の範囲にある有機樹脂を混合させた研磨用組成物ではエロージョンをさらに1〜20%程度減らすことができる。   According to the present invention, in the case of a polishing composition using inorganic particles such as colloidal silica having an association ratio of 1.5 or less and an average particle size of 15 to 25 nm, the erosion should be 1/2 or less of the above-described one. In the polishing composition in which an organic resin having a ratio of the weight average particle diameter to the number average particle diameter (weight average molecular weight / number average molecular weight) in the range of 1.00 to 1.50 is mixed, the erosion is further increased by 1 It can be reduced by about 20%.

本発明はかかる上記の問題点を解決するために種々検討した結果、無機砥粒、有機酸、酸化剤、ベンゾトリアゾール化合物、及び水からなる研磨用組成物に特定の樹脂粒子からなる有機砥粒を用いることで、銅のウエットエッチングレートを5(Å/min)以下にし、配線幅が細い領域において、配線密集領域が無配線領域比べて過剰に研磨され起こるエロージョンを30nm以下にすることができることを見いだし、発明を完成するにいたったものである。  As a result of various investigations in order to solve the above-mentioned problems, the present invention results in an organic abrasive grain comprising a resin particle specific to a polishing composition comprising an inorganic abrasive grain, an organic acid, an oxidizing agent, a benzotriazole compound, and water. By using the copper, the wet etching rate of copper can be reduced to 5 () / min) or less, and the erosion caused by excessive polishing of the wiring dense region as compared with the non-wiring region can be reduced to 30 nm or less in the region where the wiring width is narrow. And found the invention.

本発明に用いられる研磨材は特定の平均粒径並びに特定の配合比の特定の樹脂からなる有機粒子と無機粒子混合物である。
本発明の有機粒子の平均粒径は1nm〜35nmの(メチルメタクリレート/ジビニルベンゼン)共重合体である。35nmを超えると銅膜の研磨レートが大きくなるので好ましくない。
The abrasive used in the present invention is a mixture of organic particles and inorganic particles made of a specific resin having a specific average particle size and a specific compounding ratio.
The organic particles of the present invention are (methyl methacrylate / divinylbenzene) copolymer having an average particle size of 1 nm to 35 nm. If it exceeds 35 nm, the polishing rate of the copper film increases, which is not preferable.

本発明の有機粒子は重量平均粒子径と数平均粒子径の比(重量平均分子量/数平均分子量)が1.00〜1.50の範囲にある。この範囲外であると有機粒子からなる砥粒が凝集を起こしスクラッチ等の原因となるので好ましくない。  The organic particles of the present invention have a ratio of weight average particle diameter to number average particle diameter (weight average molecular weight / number average molecular weight) in the range of 1.00 to 1.50. Outside this range, the abrasive grains made of organic particles cause aggregation and cause scratches and the like, which is not preferable.

有機粒子は、(メチルメタクリレート/ジビニルベンゼン)共重合体が主成分であれば特に限定されないが、好ましくは比較的安価で粒径の揃った粒子を生成する乳化重合によって製造されたものである。  The organic particles are not particularly limited as long as the (methyl methacrylate / divinylbenzene) copolymer is a main component, but are preferably produced by emulsion polymerization that generates particles having a uniform particle size at a relatively low cost.

本発明の無機粒子の会合比は1.5以下であることが好ましい。この範囲以外ではエロージョンが30nm以上となるので好ましくない。  The association ratio of the inorganic particles of the present invention is preferably 1.5 or less. Outside this range, erosion is 30 nm or more, which is not preferable.

本発明の無機粒子の平均粒径は15nm〜25nmの範囲にあることが好ましい。15nm未満では、SiO2膜を研磨する際の研磨速度が極端に低下するので好ましくなく、25nmを超えるとTa膜の研磨レートが小さくなってしまうので好ましくない。 The average particle size of the inorganic particles of the present invention is preferably in the range of 15 nm to 25 nm. If the thickness is less than 15 nm, the polishing rate at the time of polishing the SiO 2 film is extremely low, which is not preferable. If the thickness exceeds 25 nm, the Ta film polishing rate becomes low, which is not preferable.

無機粒子はフュームドシリカ、コロイダルシリカ、フュームドアルミナ、およびコロイダルアルミナのうち少なくとも1種類からなる無機粒子の混合物であり、
これらのものを単独或いは任意に組み合わせ用いることができる。組み合わせや比率などは特に限定されるものではない。
The inorganic particles are a mixture of inorganic particles composed of at least one of fumed silica, colloidal silica, fumed alumina, and colloidal alumina,
These can be used alone or in any combination. Combinations and ratios are not particularly limited.

有機粒子と無機粒子の重量配合比は95/25〜0/100の範囲にあることが好ましい。この範囲よりも有機粒子が多いとタンタル膜、SiO2膜を研磨する際の研磨速度が低下するので好ましくない。 The weight ratio of organic particles to inorganic particles is preferably in the range of 95/25 to 0/100. If there are more organic particles than this range, the polishing rate at the time of polishing the tantalum film and the SiO 2 film decreases, which is not preferable.

研磨材の研磨用組成物中の濃度は2〜10重量%であることが望ましい。研磨材の濃度が小さくなりすぎると機械的な研磨能力が減少し研磨レートが低下するので好ましくなく、濃度が高すぎると機械的研磨能力が増大してタンタル化合物、銅、SiO2の研磨の選択性が低下するので好ましくない。 The concentration of the abrasive in the polishing composition is desirably 2 to 10% by weight. If the concentration of the abrasive is too small, the mechanical polishing ability decreases and the polishing rate decreases, which is not preferable. If the concentration is too high, the mechanical polishing ability increases and selection of polishing of tantalum compound, copper, and SiO 2 This is not preferable because the properties are lowered.

本発明の研磨用組成物は有機酸を含有する。有機酸はシュウ酸であることが好ましい。研磨用組成物中の濃度は0.01〜1.0重量%であることが望ましい。0.01重量%未満であるとタンタル化合物膜の研磨レートが小さくなるために好ましくなく1.0重量%を超えると銅膜研磨レートが大きくなり制御できなくなるので好ましくない。   The polishing composition of the present invention contains an organic acid. The organic acid is preferably oxalic acid. The concentration in the polishing composition is preferably 0.01 to 1.0% by weight. If it is less than 0.01% by weight, the polishing rate of the tantalum compound film is not preferable because it is not preferable, and if it exceeds 1.0% by weight, the copper film polishing rate becomes large and cannot be controlled.

本発明の研磨用組成物は酸化剤を含有する。酸化剤としては過酸化水素が好ましい。過酸化水素はタンタル化合物膜に対して酸化作用を発揮し、イオン化を促進することによってタンタル化合物膜の研磨レートを高める働きがあるが、研磨用組成物中の濃度は0.05〜1.0重量%であることが望ましい。この範囲の濃度から高くなっても低くなり過ぎてもタンタル化合物膜の研磨レートが低下するので好ましくない。また、過酸化水素は銅膜に対しても酸化作用を発揮し、イオン化を促進することによって銅膜の研磨レートを高める働きがあるが、研磨用組成物中の濃度は0.05〜1.0重量%であることが望ましい。この範囲の濃度より高い場合は、銅膜に対する研磨レートが大きくなりすぎ、低い場合は、銅膜の研磨レートが極端に低下するので好ましくない。  The polishing composition of the present invention contains an oxidizing agent. Hydrogen peroxide is preferred as the oxidizing agent. Hydrogen peroxide exerts an oxidizing action on the tantalum compound film and works to increase the polishing rate of the tantalum compound film by promoting ionization, but the concentration in the polishing composition is 0.05 to 1.0. It is desirable to be weight percent. If the concentration in this range is too high or too low, the polishing rate of the tantalum compound film decreases, which is not preferable. In addition, hydrogen peroxide exerts an oxidizing action on the copper film and works to increase the polishing rate of the copper film by promoting ionization, but the concentration in the polishing composition is 0.05 to 1. It is desirable to be 0% by weight. When the concentration is higher than this range, the polishing rate for the copper film becomes too large, and when it is low, the polishing rate for the copper film is extremely lowered.

本発明の研磨用組成物は酸化防止剤としてベンゾトリアゾールまたはその誘導体を含有し、研磨用組成物中の濃度は0.01〜1.0重量%である。0.01重量%未満であると銅膜の研磨レートを抑える効果に乏しくなるので好ましくなく、1.0重量%を超えるとタンタル化合物膜の研磨レートが極端に減少するので好ましくない。   The polishing composition of the present invention contains benzotriazole or a derivative thereof as an antioxidant, and the concentration in the polishing composition is 0.01 to 1.0% by weight. If it is less than 0.01% by weight, the effect of suppressing the polishing rate of the copper film becomes poor, which is not preferable. If it exceeds 1.0% by weight, the polishing rate of the tantalum compound film extremely decreases, which is not preferable.

本発明の研磨用組成物の媒体は水であり、イオン性不純物や金属イオンを極力減らしたものであることが望ましい。   The medium of the polishing composition of the present invention is water, and it is desirable to reduce ionic impurities and metal ions as much as possible.

本発明の研磨用組成物は上記の各成分、研磨材、有機酸、酸化剤、酸化防止剤、を水に混合、溶解、分散させて製造する。過酸化水素は、研磨直前に前記の混合液に添加、混合するが予め混合しておくことも可能である。それらの混合方法は、任意の装置で行うことができる。例えば、翼式回転攪拌機、超音波分散機、ビーズミル分散機、ニーダー、ボールミルなどが適用可能である。   The polishing composition of the present invention is produced by mixing, dissolving, and dispersing each of the above components, abrasive, organic acid, oxidizing agent, and antioxidant in water. Hydrogen peroxide is added to and mixed with the above-mentioned liquid mixture immediately before polishing, but can also be mixed in advance. These mixing methods can be carried out in any apparatus. For example, a blade-type rotary stirrer, an ultrasonic disperser, a bead mill disperser, a kneader, a ball mill, and the like are applicable.

また上記成分以外に種々の研磨助剤を配合してもよい。このような研磨助剤の例としては、分散助剤、防錆剤、消泡剤、pH調整剤、防かび剤等が挙げられるが、これらはスラリーの分散貯蔵安定性、研磨速度の向上の目的で加えられる。分散助剤としてはヘキサメタリン酸ソーダ等が挙げられる。もちろん各種界面活性剤などを添加して分散性を向上させることができることは言うまでもない。pH調整剤としてはアンモニアなどの塩基性化合物や酢酸、塩酸、硝酸等の酸性化合物が挙げられる。消泡剤としては流動パラフィン、ジメチルシリコーンオイル、ステアリン酸モノ、ジグリセリド混合物、ソルビタンモノパルミチエート、等が挙げられる。   In addition to the above components, various polishing aids may be blended. Examples of such polishing aids include dispersion aids, rust inhibitors, antifoaming agents, pH adjusters, fungicides, etc., but these improve the dispersion storage stability of the slurry and the polishing rate. Added on purpose. Examples of the dispersion aid include sodium hexametaphosphate. Of course, it is needless to say that dispersibility can be improved by adding various surfactants. Examples of the pH adjuster include basic compounds such as ammonia and acidic compounds such as acetic acid, hydrochloric acid and nitric acid. Examples of the antifoaming agent include liquid paraffin, dimethyl silicone oil, stearic acid mono, diglyceride mixture, sorbitan monopalmitate, and the like.

本発明を実施例で具体的に説明する。
<実施例1>
研磨材として会合比が1.5で一次粒子の平均粒径が20nmであるコロイダルシリカと重量平均粒子径と数平均粒子径の比(重量平均分子量/数平均分子量)が1.00〜1.50の範囲にあり、平均粒径30nmの(メチルメタクリレート/ジビニルベンゼン)共重合体(メチルメタクリレート/ジビニルベンゼン:95/5mol%)、シュウ酸、過酸化水素、ベンゾトリアゾールが表1に示された濃度になるように0.5μmのカートリッジフィルターで濾過されたイオン交換水に混合し、高速ホモジナイザーで攪拌して均一に分散させて研磨用組成物を得た。
The present invention will be specifically described with reference to examples.
<Example 1>
Colloidal silica having an association ratio of 1.5 and an average primary particle diameter of 20 nm as an abrasive and a ratio of weight average particle diameter to number average particle diameter (weight average molecular weight / number average molecular weight) is 1.00 to 1. Table 1 shows (methyl methacrylate / divinylbenzene) copolymer (methyl methacrylate / divinylbenzene: 95/5 mol%), oxalic acid, hydrogen peroxide, and benzotriazole, having an average particle size of 30 nm. The mixture was mixed with ion-exchanged water filtered through a cartridge filter of 0.5 μm so as to have a concentration, and stirred and dispersed uniformly with a high-speed homogenizer to obtain a polishing composition.

<研磨評価>
被研磨物は8インチのシリコンウエハー上SiO2膜、タンタル化合物膜、銅膜のベタ膜を形成したものを用意し各膜の研磨レートを測定し、選択比を求めた。
<Polishing evaluation>
The object to be polished was prepared by forming a solid film of SiO 2 film, tantalum compound film and copper film on an 8-inch silicon wafer, and the polishing rate of each film was measured to obtain the selection ratio.

研磨は定盤径600mmの片面研磨機を用いた。研磨機の定盤にはロデール社製(米国)のポリウレタン製研磨パッドIC−1000/Suba400を専用の両面テープで張り付け、研磨用組成物(スラリー)を流しながら研磨した。荷重は3psi、定盤の回転数を70rpm、ウエハー回転数72rpm、研磨材組成物の流量を150ml/minとした。ウエットエッチングレートはCuウエハーをスラリー中に入れ、室温で10分間300rpmで攪拌した後の膜厚変化量から求めた。pHはpHメーターを用いて測定した。エロージョン、ディッシングは2ndステップ後の無配線部と配線部分の段差を表面粗さ計を用いて測定した。
上記平均粒子径は動的散乱粒子径測定機より求めた。
For polishing, a single-side polishing machine having a surface plate diameter of 600 mm was used. A polishing pad IC-1000 / Suba400 made by Rodel (USA) was attached to the surface plate of the polishing machine with a special double-sided tape, and polishing was performed while flowing the polishing composition (slurry). The load was 3 psi, the rotation speed of the surface plate was 70 rpm, the wafer rotation speed was 72 rpm, and the flow rate of the abrasive composition was 150 ml / min. The wet etching rate was determined from the amount of change in film thickness after placing a Cu wafer in the slurry and stirring at 300 rpm for 10 minutes at room temperature. The pH was measured using a pH meter. For erosion and dishing, the level difference between the non-wiring portion and the wiring portion after 2nd step was measured using a surface roughness meter.
The average particle size was determined from a dynamic scattering particle size measuring machine.

<実施例2〜4、比較例1〜5>
表1に示された配合によって実施例1と同様に研磨用組成物を調整し、研磨特性を評価した。
結果を表1に示した。
<Examples 2-4, Comparative Examples 1-5>
A polishing composition was prepared in the same manner as in Example 1 according to the formulation shown in Table 1, and the polishing characteristics were evaluated.
The results are shown in Table 1.

Figure 2005136255
Figure 2005136255

以上のように本発明によれば銅膜、タンタル膜を含む半導体デバイスのCMP加工プロセスにおいてタンタル化合物膜を優先的に研磨可能な研磨液組成物が得られ、半導体デバイスを効率的に製造することができ、産業上有用である。  As described above, according to the present invention, a polishing liquid composition capable of preferentially polishing a tantalum compound film in a CMP processing process of a semiconductor device including a copper film and a tantalum film is obtained, and the semiconductor device is efficiently manufactured. It is industrially useful.

銅膜を形成させたデバイスの研磨プロセスの模式図Schematic diagram of device polishing process with copper film

符号の説明Explanation of symbols

1 Cu
2 Ta
3 SiO2
1 Cu
2 Ta
3 SiO 2

Claims (3)

(A)研磨材、(B)有機酸、(C)酸化剤、(D)酸化防止剤、および(E)水を含有する研磨用組成物であって、(A)研磨材が、平均粒径1nm〜35nmの(メチルメタクリレート/ジビニルベンゼン)共重合体を主成分とし、重量平均粒子径と数平均粒子径の比(重量平均分子量/数平均分子量)が1.00〜1.50の範囲にある有機粒子と、会合比が1.5以下で平均粒径が15nm〜25nmの範囲にあるフュームドシリカ、コロイダルシリカ、フュームドアルミナ、およびコロイダルアルミナのうち少なくとも1種類からなる無機粒子との混合物であり、有機粒子と無機粒子との重量配合比は95/5〜0/100の範囲にあり、研磨用組成物中の濃度が2〜10重量%であり、(B)有機酸の主成分がシュウ酸であり、研磨用組成物中の濃度が0.01〜1.0重量%であり、(C)酸化剤が過酸化水素であり、研磨用組成物中の濃度が0.05〜1.0重量%であり、(D)酸化防止剤がベンゾトリアゾールまたはその誘導体であり、研磨用組成物中の濃度が0.01〜1.0重量%であることを特徴とする研磨用組成物。 A polishing composition comprising (A) an abrasive, (B) an organic acid, (C) an oxidant, (D) an antioxidant, and (E) water, wherein (A) the abrasive is an average particle The main component is a (methyl methacrylate / divinylbenzene) copolymer having a diameter of 1 nm to 35 nm, and the ratio of the weight average particle diameter to the number average particle diameter (weight average molecular weight / number average molecular weight) is in the range of 1.00 to 1.50. And inorganic particles composed of at least one of fumed silica, colloidal silica, fumed alumina, and colloidal alumina having an association ratio of 1.5 or less and an average particle size in the range of 15 to 25 nm. The mixture ratio of the organic particles and the inorganic particles is in the range of 95/5 to 0/100, the concentration in the polishing composition is 2 to 10% by weight, and (B) the main organic acid The ingredient is oxalic acid, The concentration in the polishing composition is 0.01 to 1.0% by weight, (C) the oxidizing agent is hydrogen peroxide, and the concentration in the polishing composition is 0.05 to 1.0% by weight. And (D) a polishing composition, wherein the antioxidant is benzotriazole or a derivative thereof, and the concentration in the polishing composition is 0.01 to 1.0% by weight. 銅のウエットエッチングレートが5(Å/min)以下である請求項1記載の研磨用組成物。 The polishing composition according to claim 1, wherein the wet etching rate of copper is 5 (min / min) or less. エロージョン及びディッシングが共に30nm以下である請求項1記載の研磨用組成物。 The polishing composition according to claim 1, wherein both erosion and dishing are 30 nm or less.
JP2003371706A 2003-10-31 2003-10-31 Abrasive composition Pending JP2005136255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003371706A JP2005136255A (en) 2003-10-31 2003-10-31 Abrasive composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003371706A JP2005136255A (en) 2003-10-31 2003-10-31 Abrasive composition

Publications (1)

Publication Number Publication Date
JP2005136255A true JP2005136255A (en) 2005-05-26

Family

ID=34648284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003371706A Pending JP2005136255A (en) 2003-10-31 2003-10-31 Abrasive composition

Country Status (1)

Country Link
JP (1) JP2005136255A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007000852A1 (en) * 2005-06-28 2007-01-04 Asahi Glass Company, Limited Abrasive and process for producing semiconductor integrated-circuit unit
JP2009124094A (en) * 2007-10-24 2009-06-04 Hitachi Chem Co Ltd Polishing solution for cmp

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007000852A1 (en) * 2005-06-28 2007-01-04 Asahi Glass Company, Limited Abrasive and process for producing semiconductor integrated-circuit unit
JP2009124094A (en) * 2007-10-24 2009-06-04 Hitachi Chem Co Ltd Polishing solution for cmp

Similar Documents

Publication Publication Date Title
JP2005136134A (en) Abrasive composition
JP2005136256A (en) Abrasive composition
JP2003218071A (en) Composition for polishing
JP2005082791A (en) Polishing composition
JP2003133266A (en) Polishing composition
JP2005136255A (en) Abrasive composition
JP2003238942A (en) Polishing composition
JP2004356326A (en) Polishing composition
JP2003336039A (en) Abrasive composition
JP2005019519A (en) Polishing composition
JP2003321671A (en) Composition for abrasive
JP2003197572A (en) Composition for polishing
JP2004311484A (en) Abrasive composition
JP2003100676A (en) Abrasive composition
JP3741435B2 (en) Polishing composition
JP2005311011A (en) Polishing composition
JP2004182834A (en) Polishing composition
JP2004107369A (en) Polishing composition
JP2004149655A (en) Polishing composition
JP2003100678A (en) Abrasive composition
JP2004107423A (en) Polishing composition
JP2005306977A (en) Polishing composition
JP2005136118A (en) Polishing composition
JP2003306666A (en) Polishing composition
JP2004149630A (en) Polishing composition