JP2005136118A - Polishing composition - Google Patents

Polishing composition Download PDF

Info

Publication number
JP2005136118A
JP2005136118A JP2003369859A JP2003369859A JP2005136118A JP 2005136118 A JP2005136118 A JP 2005136118A JP 2003369859 A JP2003369859 A JP 2003369859A JP 2003369859 A JP2003369859 A JP 2003369859A JP 2005136118 A JP2005136118 A JP 2005136118A
Authority
JP
Japan
Prior art keywords
polishing composition
polishing
copper
acid
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003369859A
Other languages
Japanese (ja)
Inventor
Michio Kimura
道生 木村
Toshihiko Ogawa
俊彦 小川
Fumihiro Shiraishi
史広 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2003369859A priority Critical patent/JP2005136118A/en
Publication of JP2005136118A publication Critical patent/JP2005136118A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polishing composition, in which there are the problems that, when a semiconductor device having a copper film and a tantalum compound is polished, a polish selection ratio of the copper and the tantalum compound is not sufficient, and, when a selection ratio to the copper is raised, a copper film of a wiring groove or hole is deleted excessively, the smoothness of the front surface of the copper film is spoiled, etc., and these problems are improved. <P>SOLUTION: The polishing composition is obtained by mixing colloidal silica having a mean particle size of 30 nm, a copolycondensate of PMMA having a mean particle size of 40 nm and divinylbenzene, a tartaric acid, a benzotriazol and a hydrogen peroxide with an ion exchange water filtered with a 0.5 μm cartridge filter to become a specific concentration, by agitating the mixture by a high speed homogenizer, and by dispersing it uniformly. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、半導体、各種メモリーハードディスク用基板等の研磨に使用される研磨用組成物に関し、特に半導体のデバイスウエハーの表面平坦化加工に好適に用いられる研磨用組成物に関するものである。   The present invention relates to a polishing composition used for polishing semiconductors, various memory hard disk substrates and the like, and more particularly to a polishing composition suitably used for surface planarization of semiconductor device wafers.

エレクトロニクス業界の最近の著しい発展により、トランジスター、IC、LSI、超LSIと進化してきており、これら半導体素子に於ける回路の集積度が急激に増大するに伴って半導体デバイスのデザインルールは年々微細化が進み、デバイス製造プロセスでの焦点深度は浅くなり、パターン形成面の平坦性はますます厳しくなってきている   Recent advances in the electronics industry have evolved into transistors, ICs, LSIs, and super LSIs. As the degree of integration of circuits in these semiconductor elements has increased rapidly, the design rules for semiconductor devices have become finer year by year. The depth of focus in the device manufacturing process has become shallower, and the flatness of the pattern formation surface has become increasingly severe

一方で配線の微細化による配線抵抗の増大をカバーするために、配線材料としてアルミニウムやタングステンからより電気抵抗の小さな銅配線が検討されてきている。しかしながら銅を配線層や配線間の相互接続に用いる場合には、絶縁膜上に配線溝や孔を形成した後、スパッタリングやメッキによって銅膜を形成して不要な部分を化学的機械的研磨法(CMP)によって絶縁膜上の不要な銅を取り除く必要がある。   On the other hand, in order to cover the increase in wiring resistance due to the miniaturization of wiring, copper wiring having a smaller electrical resistance has been studied as a wiring material from aluminum or tungsten. However, when copper is used for interconnection between wiring layers and wirings, after forming wiring grooves and holes on the insulating film, a copper film is formed by sputtering or plating, and unnecessary portions are chemically and mechanically polished. It is necessary to remove unnecessary copper on the insulating film by (CMP).

かかるプロセスでは銅が絶縁膜中に拡散してデバイス特性を低下させるので、通常は銅の拡散防止のために絶縁膜上にバリア層としてタンタルやタンタルナイトライドの層を設けることが一般的になっている。   In such a process, copper diffuses into the insulating film and degrades the device characteristics. Therefore, it is common to provide a tantalum or tantalum nitride layer as a barrier layer on the insulating film to prevent copper diffusion. ing.

このようにして最上層に銅膜を形成させたデバイスの平坦化CMPプロセスにおいては、初めに不要な部分の銅膜を絶縁層上に形成されたタンタル化合物の表面層まで研磨し、次のステップでは絶縁膜上のタンタル化合物の層を研磨しSiO2面が出たところで研磨が終了していなければならない。このようなプロセスを図1に示したが、かかるプロセスにおけるCMP研磨では銅、タンタル化合物、SiO2などの異種材料に対して研磨レートに選択性があることが必要である。 In the planarization CMP process of the device having the copper film formed as the uppermost layer in this manner, the unnecessary portion of the copper film is first polished to the surface layer of the tantalum compound formed on the insulating layer, and the next step Then, the tantalum compound layer on the insulating film must be polished and the polishing must be completed when the SiO 2 surface comes out. Such a process is shown in FIG. 1, and CMP polishing in such a process requires that the polishing rate be selective with respect to different materials such as copper, a tantalum compound, and SiO 2 .

即ちステップ1では銅に対する研磨レートが高く、タンタル化合物に対してはほとんど研磨能力がない程度の選択性が必要である。さらにステップ2ではタンタル化合物に対する研磨レートは大きいがSiO2に対する研磨レートが小さいほどSiO2の削りすぎを防止できるので好ましい。 That is, in Step 1, the polishing rate with respect to copper is high and the tantalum compound needs to be selective enough to have no polishing ability. Further, in step 2, the polishing rate for the tantalum compound is large, but the smaller the polishing rate for SiO 2 is, the more preferable it is because it is possible to prevent excessive polishing of SiO 2 .

このプロセスを理想的には一つの研磨材で研磨できることが望まれるが、異種材料に対する研磨レートの選択比をプロセスの途中で変化させることはできないのでプロセスを2ステップに分けて異なる選択性を有する2つのスラリーでそれぞれのCMP工程を実施する。通常溝や孔の銅膜の削りすぎ(ディッシング、リセス、エロージョン)を防ぐためにステップ1ではタンタル化合物上の銅膜は少し残した状態で研磨を終了させる。ついでステップ2ではSiO2層をストッパーとして残ったわずかな銅とタンタル化合物を研磨除去する。 Ideally, this process can be polished with a single abrasive, but the selectivity of the polishing rate for different materials cannot be changed during the process, so the process is divided into two steps and has different selectivity. Each CMP step is performed with two slurries. In order to prevent excessive etching (dishing, recessing, erosion) of the copper film in the normal groove or hole, the polishing is finished in step 1 with a little copper film on the tantalum compound left. In step 2, the remaining copper and tantalum compound are removed by polishing using the SiO 2 layer as a stopper.

ステップ1に用いられる研磨用組成物に対しては、ステップ2で修正できないような表面上の欠陥(スクラッチ)を発生させることなく銅膜に対してのみ大きい研磨レートを有することが必要である。   For the polishing composition used in Step 1, it is necessary to have a large polishing rate only for the copper film without causing surface defects (scratches) that cannot be corrected in Step 2.

このような銅膜用の研磨用組成物としては、アミノ酢酸およびアミド硫酸から選ばれる少なくとも1種類の有機酸と酸化剤と水とを含有する研磨用組成物が特許文献1に記載されている。この研磨用組成物は、銅に対して比較的大きな研磨レートが得られているが、これは酸化剤によってイオン化された銅が上記の有機酸とキレートを形成して機械的に研磨されやすくなったためと推定できる。
しかしながら前記研磨用組成物を用いて、銅膜およびタンタル化合物を有する半導体デバイスを研磨すると、銅とタンタル化合物の研磨選択比が充分でなかったり、銅に対する選択比を高めると配線溝や孔の銅膜が削られ過ぎたり、銅膜表面の平滑性が損なわれる等の問題があった。
特開平7−233485号公報
As such a polishing composition for a copper film, Patent Document 1 discloses a polishing composition containing at least one organic acid selected from aminoacetic acid and amidosulfuric acid, an oxidizing agent, and water. . This polishing composition has a relatively high polishing rate with respect to copper, and this is because copper ionized by an oxidizing agent forms a chelate with the above organic acid and is easily mechanically polished. It can be estimated that this is because
However, when polishing a semiconductor device having a copper film and a tantalum compound using the polishing composition, the polishing selectivity of copper and tantalum compound is not sufficient, or if the selectivity to copper is increased, the wiring trench and hole copper There have been problems such as excessive film shaving and loss of smoothness on the copper film surface.
JP-A-7-233485

本発明は、銅膜とタンタル化合物を有する半導体デバイスのCMP加工プロセスにおいて、銅の研磨レートは大きいがタンタル化合物の研磨レートが小さいという選択性の高い研磨用組成物を提供することにあり、更に銅膜表面の平滑性にも優れたCMP加工用の研磨用組成物である。 An object of the present invention is to provide a polishing composition having a high selectivity in which the polishing rate of copper is high but the polishing rate of tantalum compound is low in the CMP process of a semiconductor device having a copper film and a tantalum compound. It is a polishing composition for CMP processing excellent in smoothness of the copper film surface.

本発明は(A)コロイダルシリカ、(B)有機樹脂微粒子、(C)有機酸(D)ベンゾトリアゾール、(E)過酸化水素及び(F)水を含有する研磨用組成物であって、(A)コロイダルシリカの平均粒子径が10〜200nmの範囲であり、研磨用組成物中の濃度が0.1〜5重量%であり、(B)有機樹脂微粒子の平均粒子径が10〜200nmの範囲であり、研磨用組成物中の濃度が0.1〜5重量%であり、(C)有機酸がシュウ酸、コハク酸、リンゴ酸、酒石酸、クエン酸および乳酸の中から選択された少なくとも一つ以上のものであり、研磨用組成物中の濃度が0.01〜5重量%であり、(D)ベンゾトリアゾールの研磨用組成物中の濃度が0.0001〜0.5重量%であり、(E)過酸化水素の研磨用組成物中の濃度が0.01〜5重量%であることを特徴とする研磨用組成物である。   The present invention is a polishing composition containing (A) colloidal silica, (B) organic resin fine particles, (C) an organic acid (D) benzotriazole, (E) hydrogen peroxide and (F) water, A) The average particle diameter of colloidal silica is in the range of 10 to 200 nm, the concentration in the polishing composition is 0.1 to 5% by weight, and (B) the average particle diameter of the organic resin fine particles is 10 to 200 nm. The concentration in the polishing composition is 0.1 to 5% by weight, and (C) the organic acid is at least selected from oxalic acid, succinic acid, malic acid, tartaric acid, citric acid and lactic acid One or more, the concentration in the polishing composition is 0.01 to 5% by weight, and the concentration of (D) benzotriazole in the polishing composition is 0.0001 to 0.5% by weight. Yes, (E) The concentration of hydrogen peroxide in the polishing composition is 0 A polishing composition characterized by from 01 to 5 percent by weight.

本発明によれば銅膜、タンタル膜を含む半導体デバイスのCMP加工プロセスにおいて銅膜を優先的に研磨可能な研磨用組成物が得られ、半導体デバイスを効率的に製造することができる。   ADVANTAGE OF THE INVENTION According to this invention, the polishing composition which can grind | polish a copper film preferentially in the CMP processing process of the semiconductor device containing a copper film and a tantalum film is obtained, and a semiconductor device can be manufactured efficiently.

本発明はかかる上記の問題点を解決するために種々検討した結果、特定の研磨材、化合物、酸化剤および水を含有する研磨用組成物を用いることにより、銅膜に対する研磨レートが大きく、タンタル化合物に対する研磨レートが小さい、高い選択性を得ることができ銅膜表面の平滑性にも優れた結果が得られることを見いだし、発明を完成するに至ったものである。 As a result of various investigations to solve the above-mentioned problems, the present invention uses a polishing composition containing a specific abrasive, compound, oxidant and water, so that the polishing rate for a copper film is large and tantalum is used. The inventors have found that the polishing rate with respect to the compound is small, that high selectivity can be obtained, and that the smoothness of the copper film surface is excellent, and that the present invention has been completed.

本発明には研磨材としてコロイダルシリカを含む。コロイダルシリカは主に研磨レートを増加させる効果がある。コロイダルシリカの平均粒子径は10〜200nmの範囲であることが好ましい。10nmよりも小さいと研磨レート大きくなりにくいため好ましくなく、200nmを超えると被研磨物表面にスクラッチを発生しやすくなるため好ましくない。また、コロイダルシリカの研磨用組成物中の濃度は0.1〜5重量%の範囲であることが好ましい。0.1重量%未満では添加しても研磨レートを増加させる効果が小さいため好ましくなく、5重量%よりも多いと分散性が悪化し、凝集や沈降といった保存性悪化の原因となるため好ましくない。 The present invention includes colloidal silica as an abrasive. Colloidal silica is mainly effective in increasing the polishing rate. The average particle size of colloidal silica is preferably in the range of 10 to 200 nm. If it is smaller than 10 nm, it is not preferable because the polishing rate is difficult to increase. Moreover, it is preferable that the density | concentration in the polishing composition of colloidal silica is the range of 0.1-5 weight%. If it is less than 0.1% by weight, it is not preferable because the effect of increasing the polishing rate is small even if it is added. .

本発明に用いられる有機樹脂微粒子はタンタル化合物の研磨レートを小さくし、銅との選択性を大きくするために用いられる。有機樹脂微粒子は比較的柔らかい銅膜に対しては研磨材として働き、硬いタンタル化合物に対してはクッション材として働くためであると考えられる。有機高分子化合物の微粒子で有れば特に限定されないが、例えば、ビニルモノマーの乳化重合などによって得られる有機高分子化合物の微粒子やポリエステル、ポリアミド、ポリイミド、ポリベンゾオキサゾールなど重縮合によって得られる有機高分子化合物の微粒子およびフェノール樹脂、メラミン樹脂などの付加縮合によって得られる有機高分子化合物の微粒子をあげることができ、単独或いは任意に組み合わせて用いることができる。好ましくは比較的安価で粒径の揃った極性の低いビニル系高分子である。   The organic resin fine particles used in the present invention are used to reduce the polishing rate of the tantalum compound and increase the selectivity with copper. It is considered that the organic resin fine particles act as an abrasive for a relatively soft copper film and as a cushion material for a hard tantalum compound. It is not particularly limited as long as it is a fine particle of an organic polymer compound, but for example, an organic polymer compound obtained by polycondensation such as fine particles of an organic polymer compound obtained by emulsion polymerization of a vinyl monomer, polyester, polyamide, polyimide, polybenzoxazole or the like. Examples thereof include fine particles of molecular compounds and fine particles of organic polymer compounds obtained by addition condensation such as phenol resin and melamine resin, and these can be used alone or in any combination. A vinyl polymer having a relatively low price and a uniform particle size is preferred.

本発明の有機樹脂微粒子の平均粒径は10〜200nmの範囲であることが好ましい。10nmより小さいとタンタル化合物の研磨レートを小さくする効果が見られないので好ましくなく、200nmを越えると粒子の分散が困難になるので好ましくない。また、有機樹脂微粒子の研磨用組成物中の濃度は0.1〜5重量%であることが望ましい。濃度が0.1重量%未満では有機樹脂微粒子を添加しても効果が見られず、5重量%を越えると粒子の分散が困難になり、凝集や沈降等の不具合が起こりやすくなるので好ましくない。   The average particle diameter of the organic resin fine particles of the present invention is preferably in the range of 10 to 200 nm. If it is smaller than 10 nm, the effect of reducing the polishing rate of the tantalum compound is not seen, and this is not preferred, and if it exceeds 200 nm, it is difficult to disperse the particles. The concentration of the organic resin fine particles in the polishing composition is desirably 0.1 to 5% by weight. If the concentration is less than 0.1% by weight, no effect is seen even if organic resin fine particles are added, and if it exceeds 5% by weight, it becomes difficult to disperse the particles, and problems such as aggregation and sedimentation tend to occur. .

本発明の研磨用組成物は有機酸が含まれる。本発明における有機酸は銅とのキレートを形成し、銅の研磨レートを制御しやすくなるので好ましい。具体的な例を挙げるとシュウ酸、コハク酸、リンゴ酸、酒石酸、クエン酸および乳酸の中から選ばれた少なくとも一つの有機酸である。添加量については研磨組成物中、0.01〜5重量%の範囲で使用する。0.01重量%未満ではキレート形成効果が不十分であり、5重量%を越えると研磨レートが制御できなくなり過研磨になるので好ましくない。   The polishing composition of the present invention contains an organic acid. The organic acid in the present invention is preferable because it forms a chelate with copper and easily controls the polishing rate of copper. Specific examples include at least one organic acid selected from oxalic acid, succinic acid, malic acid, tartaric acid, citric acid and lactic acid. About addition amount, it uses in the range of 0.01 to 5 weight% in polishing composition. If it is less than 0.01% by weight, the chelate-forming effect is insufficient, and if it exceeds 5% by weight, the polishing rate cannot be controlled and overpolishing is not preferable.

本発明の研磨用組成物はベンゾトリアゾールを含有する。研磨用組成物中の濃度は0.0001〜0.5重量%であることが望ましい。0.0001重量%未満であると銅膜の研磨レートを十分に制御することができないため好ましくなく、0.5重量%を越えると銅膜の研磨レートが極端に低下するので好ましくない。 The polishing composition of the present invention contains benzotriazole. The concentration in the polishing composition is preferably 0.0001 to 0.5% by weight. If it is less than 0.0001% by weight, the polishing rate of the copper film cannot be controlled sufficiently, which is not preferable, and if it exceeds 0.5% by weight, the polishing rate of the copper film extremely decreases, which is not preferable.

本発明の研磨用組成物は過酸化水素を含有する。本発明における研磨用組成物において過酸化水素は酸化剤として作用しているものである。過酸化水素は銅膜に対して酸化作用を発揮し、イオン化を促進することによって銅膜の研磨レートを高める働きがあるが、研磨用組成物中の濃度は0.01〜5重量%であることが望ましい。この範囲の濃度から高くなっても低くなり過ぎても銅膜の研磨レートが低下するので好ましくない。   The polishing composition of the present invention contains hydrogen peroxide. In the polishing composition of the present invention, hydrogen peroxide acts as an oxidizing agent. Hydrogen peroxide exerts an oxidizing action on the copper film and works to increase the polishing rate of the copper film by promoting ionization, but the concentration in the polishing composition is 0.01 to 5% by weight. It is desirable. If the concentration in this range is too high or too low, the polishing rate of the copper film decreases, which is not preferable.

本発明の研磨用組成物の媒体は水であり、イオン性不純物や金属イオンを極力減らしたものであることが望ましい。   The medium of the polishing composition of the present invention is water, and it is desirable to reduce ionic impurities and metal ions as much as possible.

本発明の研磨用組成物は、前述の各成分であるコロイダルシリカ、有機樹脂微粒子、有機酸、ベンゾトリアゾールを水に混合、溶解、分散させて製造する。過酸化水素は、研磨直前に前記の混合液に添加、混合するが予め混合しておくことも可能である。混合方法は任意の装置で行うことができる。例えば、翼式回転攪拌機、超音波分散機、ビーズミル分散機、ニーダー、ボールミルなどが適用可能である。   The polishing composition of the present invention is produced by mixing, dissolving, and dispersing the above-described components, colloidal silica, organic resin fine particles, organic acid, and benzotriazole in water. Hydrogen peroxide is added to and mixed with the above-mentioned liquid mixture immediately before polishing, but can also be mixed in advance. The mixing method can be performed with any apparatus. For example, a blade-type rotary stirrer, an ultrasonic disperser, a bead mill disperser, a kneader, a ball mill, and the like are applicable.

また上記成分以外に種々の研磨助剤を配合してもよい。このような研磨助剤の例としては、分散剤、防錆剤、消泡剤、pH調整剤、防かび剤等が挙げられるが、これらはスラリーの分散貯蔵安定性、研磨レートの向上の目的で加えられる。ポリビニルアルコールなどの水溶性高分子などを添加して分散性を向上させることができることは言うまでもない。pH調整剤としてはアンモニアなどの塩基性化合物や酢酸、塩酸、硝酸等が挙げられる。消泡剤としては流動パラフィン、ジメチルシリコーンオイル、ステアリン酸グリセリド混合物、ソルビタンモノパルミチエート等が挙げられる。 In addition to the above components, various polishing aids may be blended. Examples of such polishing aids include dispersants, rust inhibitors, antifoaming agents, pH adjusters, fungicides, etc., and these are intended to improve the dispersion storage stability of the slurry and the polishing rate. Added in. Needless to say, the dispersibility can be improved by adding a water-soluble polymer such as polyvinyl alcohol. Examples of the pH adjuster include basic compounds such as ammonia, acetic acid, hydrochloric acid, nitric acid and the like. Examples of antifoaming agents include liquid paraffin, dimethyl silicone oil, stearic acid glyceride mixture, sorbitan monopalmitate and the like.

本発明を実施例で具体的に説明するが、本発明はこれらに限定されるものではない。
<実施例1>
平均粒径30nmのコロイダルシリカ、平均粒径40nmのポリメチルメタクリレート(PMMA)とジビニルベンゼンの共縮合物、過酸化水素、酒石酸、ベンゾトリアゾールが表1に示された濃度になるように0.5μmのカートリッジフィルターで濾過されたイオン交換水に混合し、高速ホモジナイザーで攪拌して均一に分散させて実施例1の研磨用組成物を得た。
The present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
<Example 1>
Colloidal silica with an average particle size of 30 nm, co-condensate of polymethyl methacrylate (PMMA) with an average particle size of 40 nm and divinylbenzene, hydrogen peroxide, tartaric acid, and benzotriazole so that the concentrations shown in Table 1 are 0.5 μm. Was mixed with ion-exchanged water filtered with a cartridge filter of No. 1 and stirred uniformly with a high-speed homogenizer to uniformly disperse to obtain the polishing composition of Example 1.

<研磨性評価>
被研磨物は8インチのシリコンウエハー上にスパッタリングで1500Åのタンタル(Ta)及び電解メッキで15000Åの銅を製膜したものを準備し、銅、Ta面を研磨した。
<Abrasiveness evaluation>
The object to be polished was prepared by forming a 1500-inch tantalum (Ta) film by sputtering on an 8-inch silicon wafer and 15000-thick copper film by electrolytic plating, and polishing the copper and Ta surfaces.

研磨は定盤径600mmの片面研磨機を用いた。研磨機の定盤にはロデール社製(米国)のポリウレタン製研磨パッドIC−1000/Suba400を専用の両面テープ張り付け、研磨用組成物(スラリー)を流しながら1分間銅、タンタル膜を研磨した。研磨条件としては加重を300g/cm2、定盤の回転数を40rpm、ウエハー回転数40rpm、研磨用組成物の流量を200ml/minとした。 For polishing, a single-side polishing machine having a surface plate diameter of 600 mm was used. A polyurethane polishing pad IC-1000 / Suba400 manufactured by Rodel (USA) was attached to the surface plate of the polishing machine, and a copper and tantalum film was polished for 1 minute while flowing the polishing composition (slurry). As polishing conditions, the load was 300 g / cm 2 , the rotation speed of the surface plate was 40 rpm, the rotation speed of the wafer was 40 rpm, and the flow rate of the polishing composition was 200 ml / min.

ウエハーを洗浄、乾燥後減少した膜厚を求めることにより研磨レート(Å/min)を求めた。タンタルの研磨レートに対する銅の研磨レートの比を選択比とした。また光学顕微鏡で研磨面を観察して研磨状態を調べ以下のランク分けをした。
◎:良好、○:一部にやや平滑不足があるが使用可能、△:平滑性良好なるも一部腐食、×:腐食発生
The polishing rate (Å / min) was determined by determining the film thickness that decreased after washing and drying the wafer. The ratio of the polishing rate of copper to the polishing rate of tantalum was taken as the selection ratio. Further, the polished surface was examined by observing the polished surface with an optical microscope, and the following ranking was performed.
◎: Good, ○: Partially slightly smooth but usable, △: Good smoothness but partial corrosion, ×: Corrosion occurred

<実施例2〜6、比較例1〜6>
コロイダルシリカA−B、有機樹脂微粒子A−B、過酸化水素、有機酸、ベンゾトリアゾールが表1に示された濃度になるように0.5μmのカートリッジフィルターで濾過されたイオン交換水に混合し、高速ホモジナイザーで攪拌して均一に分散させて実施例1と同様に研磨用組成物を調整し、実施例1と同様に研磨性評価を行った。
評価結果を表1に示した。
<Examples 2-6, Comparative Examples 1-6>
Colloidal silica AB, organic resin fine particles AB, hydrogen peroxide, organic acid, and benzotriazole were mixed with ion-exchanged water filtered through a 0.5 μm cartridge filter so as to have the concentrations shown in Table 1. The composition for polishing was prepared in the same manner as in Example 1 by stirring with a high-speed homogenizer and uniformly dispersed, and the polishing property was evaluated in the same manner as in Example 1.
The evaluation results are shown in Table 1.

Figure 2005136118
Figure 2005136118

本発明の研磨用組成物は、半導体のデバイスウエハーの表面平坦化加工に好適に用いられる。   The polishing composition of the present invention is suitably used for surface planarization of a semiconductor device wafer.

銅膜を形成させたデバイスの研磨プロセスの概略図Schematic of polishing process for devices with copper film

符号の説明Explanation of symbols

1 Cu
2 Ta
3 SiO2
1 Cu
2 Ta
3 SiO 2

Claims (1)

(A)コロイダルシリカ、(B)有機樹脂微粒子、(C)有機酸(D)ベンゾトリアゾール、(E)過酸化水素及び(F)水を含有する研磨用組成物であって、(A)コロイダルシリカの平均粒子径が10〜200nmの範囲であり、研磨用組成物中の濃度が0.1〜5重量%であり、(B)有機樹脂微粒子の平均粒子径が10〜200nmの範囲であり、研磨用組成物中の濃度が0.1〜5重量%であり、(C)有機酸がシュウ酸、コハク酸、リンゴ酸、酒石酸、クエン酸および乳酸の中から選択された少なくとも一つ以上のものであり、研磨用組成物中の濃度が0.01〜5重量%であり、(D)ベンゾトリアゾールの研磨用組成物中の濃度が0.0001〜0.5重量%であり、(E)過酸化水素の研磨用組成物中の濃度が0.01〜5重量%であることを特徴とする研磨用組成物。 A polishing composition containing (A) colloidal silica, (B) organic resin fine particles, (C) organic acid (D) benzotriazole, (E) hydrogen peroxide and (F) water, and (A) colloidal The average particle diameter of silica is in the range of 10 to 200 nm, the concentration in the polishing composition is 0.1 to 5% by weight, and the average particle diameter of the organic resin fine particles is in the range of 10 to 200 nm. The concentration in the polishing composition is 0.1 to 5% by weight, and (C) the organic acid is at least one selected from oxalic acid, succinic acid, malic acid, tartaric acid, citric acid and lactic acid The concentration in the polishing composition is 0.01 to 5% by weight, the concentration of (D) benzotriazole in the polishing composition is 0.0001 to 0.5% by weight, E) The concentration of hydrogen peroxide in the polishing composition is 0.01 to Polishing composition characterized by percentages by weight.
JP2003369859A 2003-10-30 2003-10-30 Polishing composition Withdrawn JP2005136118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003369859A JP2005136118A (en) 2003-10-30 2003-10-30 Polishing composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003369859A JP2005136118A (en) 2003-10-30 2003-10-30 Polishing composition

Publications (1)

Publication Number Publication Date
JP2005136118A true JP2005136118A (en) 2005-05-26

Family

ID=34647040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003369859A Withdrawn JP2005136118A (en) 2003-10-30 2003-10-30 Polishing composition

Country Status (1)

Country Link
JP (1) JP2005136118A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007048316A1 (en) * 2005-10-28 2007-05-03 Anji Microelectronics (Shanghai) Co., Ltd A chemical mechanical polishing paste for tantalum barrier layer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007048316A1 (en) * 2005-10-28 2007-05-03 Anji Microelectronics (Shanghai) Co., Ltd A chemical mechanical polishing paste for tantalum barrier layer

Similar Documents

Publication Publication Date Title
JP2003297779A (en) Composition for polishing and polishing method
JP2003286477A (en) Polishing composition and polishing method
JP2005082791A (en) Polishing composition
JP3732203B2 (en) Polishing composition
JP2003133266A (en) Polishing composition
JP2005136134A (en) Abrasive composition
JP2005136256A (en) Abrasive composition
JP2006210451A (en) Polishing composition
JP2003336039A (en) Abrasive composition
JP2005136118A (en) Polishing composition
JP3741435B2 (en) Polishing composition
JP2005311011A (en) Polishing composition
JP2003321671A (en) Composition for abrasive
JP2004281848A (en) Abrasive composition
JP2005132938A (en) Polishing composition
JP2003100676A (en) Abrasive composition
JP2003197572A (en) Composition for polishing
JP2005136255A (en) Abrasive composition
JP2004175904A (en) Polishing composition
JP2003306666A (en) Polishing composition
JP2003124158A (en) Polishing composition
JP2003100678A (en) Abrasive composition
JP2004067869A (en) Polishing composition
JP2003313541A (en) Polishing composition
JP2006041546A (en) Abrasive composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060404

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20061121