JP2004311484A - Abrasive composition - Google Patents

Abrasive composition Download PDF

Info

Publication number
JP2004311484A
JP2004311484A JP2003098920A JP2003098920A JP2004311484A JP 2004311484 A JP2004311484 A JP 2004311484A JP 2003098920 A JP2003098920 A JP 2003098920A JP 2003098920 A JP2003098920 A JP 2003098920A JP 2004311484 A JP2004311484 A JP 2004311484A
Authority
JP
Japan
Prior art keywords
polishing
polishing composition
concentration
sio
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003098920A
Other languages
Japanese (ja)
Inventor
Fumihiro Shiraishi
史広 白石
Michio Kimura
道生 木村
Toshihiko Ogawa
俊彦 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2003098920A priority Critical patent/JP2004311484A/en
Publication of JP2004311484A publication Critical patent/JP2004311484A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an abrasive composition that can polish a copper film, barrier layer composed of a tantalum compound, and SiO<SB>2</SB>insulating layer at almost equal polishing speeds in a CMP process performed on a semiconductor device having the copper film, barrier layer composed of the tantalum compound, and SiO<SB>2</SB>insulating layer and can improve dishing and flatness than the overpolishing method does. <P>SOLUTION: This abrasive composition is prepared by mixing primary particles of colloidal silica, oxalic acid, hydrogen peroxide, benzotriazole, quinaldinic acid, ethylenediamine, and histidine having the mean particle diameter of 30 nm in ion-exchanged water filtrated through a 0.5-μm cartridge filter as abrasive powder and uniformly scattering the particles in the water by agitating the water with a high-speed homogenizer. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、半導体、各種メモリーハードディスク用基板等の研磨に使用される研磨用組成物に関し、特に半導体のデバイスウエハーの表面平坦化加工に好適に用いられる研磨用組成物に関するものである。
【0002】
【従来の技術】
エレクトロニクス業界の最近の著しい発展により、トランジスター、IC、LSI、超LSIと進化してきており、これら半導体素子に於ける回路の集積度が急激に増大するに伴って半導体デバイスのデザインルールは年々微細化が進み、デバイス製造プロセスでの焦点深度は浅くなり、パターン形成面の平坦性はますます厳しくなってきている。
【0003】
一方で配線の微細化による配線抵抗の増大をカバーするために、配線材料としてアルミニウムやタングステンからより電気抵抗の小さな銅配線が検討されてきている。しかしながら銅を配線層や配線間の相互接続に用いる場合には、絶縁膜上に配線溝や孔を形成した後、スパッタリングやメッキによって銅膜を形成して不要な部分を化学的機械的研磨法(CMP)によって絶縁膜上の不要な銅が取り除かれる。
【0004】
かかるプロセスでは銅が絶縁膜中に拡散してデバイス特性を低下させるので、通常は銅の拡散防止のために絶縁膜上にバリア層としてタンタルやタンタルナイトライドの層を設けることが一般的になっている。
【0005】
このようにして最上層に銅膜を形成させたデバイスの平坦化CMPプロセスにおいては、初めに不要な部分の銅膜を絶縁層上に形成されたタンタル化合物の表面層まで研磨し、次のステップでは絶縁膜上のタンタル化合物の層を研磨しSiO面が出たところで研磨が終了していなければならない。このようなプロセスを図1に示したが、かかるプロセスにおけるCMP研磨では銅、タンタル化合物、SiOなどの異種材料に対して研磨レートに選択性があることが必要である。
【0006】
即ちステップ1では銅に対する研磨レートが高く、タンタル化合物に対してはほとんど研磨能力がない程度の選択性が必要である。さらにステップ2ではタンタル化合物、銅、SiOに対する研磨レートが同程度のものが好ましい。
【0007】
このプロセスを理想的には一つの研磨材で研磨できることが望まれるが、異種材料に対する研磨レートの選択比をプロセスの途中で変化させることはできないのでプロセスを2ステップに分けて異なる選択性を有する2つのスラリーでそれぞれのCMP工程を実施する。通常溝や孔の銅膜の削りすぎ(ディッシング、リセス、エロージョン)を防ぐためにステップ1ではタンタル化合物上の銅膜は少し残した状態で研磨を終了させる。ついでステップ2では銅、タンタル化合物、SiOを研磨除去する。
【0008】
ステップ2に用いられる研磨用組成物に対しては、ステップ1で研磨された状態から銅、タンタル化合物、SiOを研磨するために必要な研磨レートは500(Å/min.)程度が望ましいとされている。
【0009】
このようなステップ2研磨用の研磨用組成物としては、コロイダルシリカ、過酸化水素、ベンゾトリアゾール、シュウ酸、エチレンジアミンと水とを含有しなどでpH3〜6に調整した研磨用組成物が特許文献1に示されている。しかしこの研磨用組成物は、SiOに対しての研磨レートが小さくなっており、ステップ1においてアンダーポリッシュの状態にしておいた後のステップ2ではCu/Ta/SiOどれも同じ研磨レートが好ましいとされているので、ステップ2に用いるスラリーとしては不向きである。
【特許文献1】
特開平2001−89747号公報
【0010】
【発明が解決しようとする課題】
本発明の目的は、銅膜、タンタル化合物のバリア層、SiOの絶縁層を有する半導体デバイスのCMP加工プロセスにおいて、銅膜、タンタル化合物のバリア層、SiOの絶縁層の研磨速度がほぼ同程度であり、ディッシング、平坦性がオーバーポリシング法より改善される研磨用組成物を提供することにある。
【0011】
【課題を解決するための手段】
本発明は、
(A)研磨材、(B)有機酸、(C)酸化剤、(D)酸化防止剤、(E)腐食抑制剤および(F)水を含有する研磨用組成物であって、(A)研磨材が、平均粒径が15nm−30nmの範囲にあるフュームドシリカ、コロイダルシリカ、フュームドアルミナ、およびコロイダルアルミナのうち少なくとも1種類からなる無機粒子であり、研磨用組成物中の濃度が10〜20重量%であり、(B)有機酸の主成分がシュウ酸であり、研磨用組成物中の濃度が0.01〜1.0重量%であり、(C)酸化剤が過酸化水素であり、研磨用組成物中の濃度が0.03〜1.0重量%であり、(D)酸化防止剤がベンゾトリアゾールまたはその誘導体及びキナルジン酸であり、研磨組成物中の濃度がそれぞれ0.01〜1.0重量%であり、(E)腐食防止剤がエチレンジアミン又はその誘導体及びヒスチジンであり、研磨組成物中の濃度がそれぞれ0.01〜1.0重量%であることを特徴とする研磨用組成物である。
【0012】
本発明はかかる上記の問題点を解決するために種々検討した結果、無機砥粒、有機酸、過酸化水素、ベンゾトリアゾール化合物、キナルジン酸、エチレンジアミン誘導体、ヒスチジン及び水からなる研磨用組成物を用いることで、タンタル化合物、銅、SiOの研磨レートが同程度にできることを見いだし、発明を完成するに至ったものである。
【0013】
本発明に用いる無機粒子の平均粒径は15nm−30nmの範囲にあることが好ましい。15nm未満ではSiO膜を研磨する際の研磨速度が極端に低下するので好ましくなく、30nmを超えるとタンタル膜、SiO膜の研磨レートが小さくなってしまうので好ましくない。
【0014】
本発明に用いる無機粒子はフュームドシリカ、コロイダルシリカ、フュームドアルミナ、およびコロイダルアルミナのうち少なくとも1種類であり、これらのものを単独或いは任意に組み合わせ用いることができる。組み合わせや比率などは特に限定されるものではない。
【0015】
研磨材の研磨用組成物中の濃度は10〜20重量%であることが望ましい。研磨材の濃度が小さくなりすぎると機械的な研磨能力が減少し研磨レートが低下するので好ましくなく、濃度が高すぎると機械的研磨能力が増大してタンタル化合物、銅、SiOの研磨の選択性が低下するので好ましくない。
【0016】
本発明の研磨用組成物は有機酸を含有する。本発明に用いる有機酸の主成分はシュウ酸であることが好ましい。研磨用組成物中の濃度は0.01〜1.0重量%であることが望ましい。0.01重量%未満であるとタンタル化合物膜の研磨レートが小さくなるために好ましくなく1.0重量%を超えると銅膜研磨レートが大きくなり制御できなくなるので好ましくない。
【0017】
本発明の研磨用組成物は酸化剤を含有するが酸化剤としては過酸化水素が好ましい。過酸化水素はタンタル化合物膜に対して酸化作用を発揮し、イオン化を促進することによってタンタル化合物膜の研磨レートを高める働きがあるが、研磨用組成物中の濃度は0.03〜1.0重量%であることが望ましい。この範囲の濃度から高くなっても低くなり過ぎてもタンタル化合物膜の研磨レートが低下するので好ましくない。また、過酸化水素は銅膜に対しても酸化作用を発揮し、イオン化を促進することによって銅膜の研磨レートを高める働きがあるが、研磨用組成物中の濃度は0.03〜1.0重量%であることが望ましい。この範囲の濃度より高い場合は、銅膜に対する研磨レートが大きくなりすぎ、低い場合は、銅膜の研磨レートが低下するので好ましくない。
【0018】
本発明の研磨用組成物は酸化防止剤としてベンゾトリアゾールまたはその誘導体及びキナルジン酸を含有し、研磨組成物中の濃度はそれぞれ0.01〜1.0重量%である。ともに0.01重量%未満であると銅膜の研磨レートを抑える効果に乏しくなるので好ましくなく、1.0重量%を超えるとタンタル化合物膜の研磨レートが極端に減少するので好ましくない。
【0019】
本発明の研磨用組成物は腐食抑制剤としてエチレンジアミン又はその誘導体及びヒスチジンを含有する。研磨用組成物に腐食抑制剤を加えることにより、過剰な化学的作用による銅膜表面の腐食を防ぐことができる。研磨用組成物中の腐食抑制剤の濃度はそれぞれ0.01〜1.0重量%であることが望ましい。ともにこの範囲の濃度から高くなっても低くなりすぎても銅膜の腐食防止効果が不十分であり、研磨後の銅膜の表面状態が悪くなるので好ましくない。
【0020】
本発明の研磨用組成物の媒体は水であり、イオン性不純物や金属イオンを極力減らしたものであることが望ましい。
【0021】
本発明の研磨用組成物は上記の各成分、研磨材、有機酸、酸化剤、酸化防止剤、腐食抑制剤を水に混合、溶解、分散させて製造する。過酸化水素は、研磨直前に前記の混合液に添加、混合するが予め混合しておくことも可能である。それらの混合方法は、任意の装置で行うことができる。例えば、翼式回転攪拌機、超音波分散機、ビーズミル分散機、ニーダー、ボールミルなどが適用可能である。
【0022】
また上記成分以外に種々の研磨助剤を配合してもよい。このような研磨助剤の例としては、分散助剤、防錆剤、消泡剤、pH調整剤、防かび剤等が挙げられるが、これらはスラリーの分散貯蔵安定性、研磨速度の向上の目的で加えられる。分散助剤としてはヘキサメタリン酸ソーダ等が挙げられる。もちろん各種界面活性剤などを添加して分散性を向上させることができることは言うまでもない。pH調整剤としてはアンモニアなどの塩基性化合物や酢酸、塩酸、硝酸等の酸性化合物が挙げられる。消泡剤としては流動パラフィン、ジメチルシリコーンオイル、ステアリン酸モノ、ジグリセリド混合物、ソルビタンモノパルミチエート、等が挙げられる。
【0023】
【実施例】
本発明を実施例で具体的に説明する。
<実施例1>
研磨材として一次粒子の平均粒径が30nmであるコロイダルシリカ、シュウ酸、過酸化水素、ベンゾトリアゾール、キナルジン酸、エチエンジアミン、ヒスチジンが表1に示された濃度になるように0.5μmのカートリッジフィルターで濾過されたイオン交換水に混合し、高速ホモジナイザーで攪拌して均一に分散させて研磨用組成物を得た。
【0024】
<研磨評価>
被研磨物は8インチのシリコンウエハー上SiO膜、タンタル化合物膜、銅膜のベタ膜を形成したものを用意し各膜の研磨レートを測定し、選択比を求めた。
【0025】
研磨は定盤径600mmの片面研磨機を用いた。研磨機の定盤にはロデール社製(米国)のポリウレタン製研磨パッドIC−1000/Suba400を専用の両面テープで張り付け、研磨液組成物(スラリー)を流しながら研磨した。荷重は3psi、定盤の回転数を70rpm、ウエハー回転数72rpm、研磨材組成物の流量を150ml/minとした。
【0026】
<実施例2〜5、比較例1〜6>
表1に示された配合によって研磨組成物を調整し研磨特性を評価した。
結果を表1に示した。
【0027】
【表1】

Figure 2004311484
【0028】
【発明の効果】
以上のように本発明によれば銅膜、タンタル膜を含む半導体デバイスのCMP加工プロセスにおいてタンタル化合物膜を優先的に研磨可能な研磨液組成物が得られ、半導体デバイスを効率的に製造することができる。
【図面の簡単な説明】
【図1】銅膜を形成させたデバイスの研磨プロセスの模式図
【符号の説明】
1 Cu
2 Ta
3 SiO [0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a polishing composition used for polishing semiconductors, substrates for various memory hard disks, and the like, and more particularly to a polishing composition suitably used for flattening a surface of a semiconductor device wafer.
[0002]
[Prior art]
The recent remarkable development of the electronics industry has evolved into transistors, ICs, LSIs, and VLSIs. With the rapid increase in the degree of circuit integration in these semiconductor devices, the design rules for semiconductor devices have become smaller year by year. The depth of focus in the device manufacturing process has become shallower, and the flatness of the pattern formation surface has become increasingly severe.
[0003]
On the other hand, in order to cover an increase in wiring resistance due to miniaturization of wiring, copper wiring having lower electric resistance has been studied from aluminum and tungsten as wiring materials. However, when copper is used for wiring layers and interconnections between wiring, after forming wiring grooves and holes on the insulating film, a copper film is formed by sputtering or plating, and unnecessary parts are chemically and mechanically polished. Unnecessary copper on the insulating film is removed by the (CMP).
[0004]
In such a process, copper diffuses into the insulating film and deteriorates device characteristics. Therefore, it is common practice to provide a tantalum or tantalum nitride layer as a barrier layer on the insulating film to prevent copper diffusion. ing.
[0005]
In the planarization CMP process for a device in which a copper film is formed on the uppermost layer in this manner, an unnecessary portion of the copper film is first polished to a tantalum compound surface layer formed on an insulating layer, and the next step is performed. Then, the tantalum compound layer on the insulating film must be polished and the polishing must be completed when the SiO 2 surface comes out. FIG. 1 shows such a process. In the CMP polishing in such a process, it is necessary that the polishing rate has selectivity with respect to different materials such as copper, a tantalum compound, and SiO 2 .
[0006]
That is, in step 1, the polishing rate for copper is high and the selectivity is such that there is almost no polishing ability for the tantalum compound. Further, in Step 2, it is preferable that the polishing rates for the tantalum compound, copper, and SiO 2 are substantially the same.
[0007]
Ideally, this process should be able to be polished with a single abrasive, but since the selectivity of the polishing rate for different materials cannot be changed during the process, the process is divided into two steps and has different selectivities. Perform each CMP step with the two slurries. In order to prevent the copper film in the grooves and holes from being excessively ground (dishing, recess, erosion), the polishing is terminated in step 1 with the copper film on the tantalum compound being left slightly. Next, in step 2, the copper, the tantalum compound, and the SiO 2 are polished and removed.
[0008]
For the polishing composition used in step 2, the polishing rate required for polishing copper, a tantalum compound, and SiO 2 from the state polished in step 1 is preferably about 500 (Å / min.). Have been.
[0009]
As such a polishing composition for Step 2 polishing, a polishing composition adjusted to pH 3 to 6 by containing colloidal silica, hydrogen peroxide, benzotriazole, oxalic acid, ethylenediamine and water is disclosed in Patent Document 1. It is shown in FIG. However, this polishing composition has a low polishing rate for SiO 2 , and in Step 2 after being kept in an under-polished state in Step 1, the same polishing rate for Cu / Ta / SiO 2 is obtained. Since it is considered preferable, it is not suitable as a slurry used in step 2.
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2001-89747
[Problems to be solved by the invention]
An object of the present invention, copper, a barrier layer of tantalum compound, in a CMP process for a semiconductor device having an insulating layer of SiO 2, copper, a barrier layer of tantalum compound, the polishing rate of the SiO 2 insulating layer is substantially the same It is an object of the present invention to provide a polishing composition whose dishing and flatness are improved over the overpolishing method.
[0011]
[Means for Solving the Problems]
The present invention
A polishing composition comprising (A) an abrasive, (B) an organic acid, (C) an oxidizing agent, (D) an antioxidant, (E) a corrosion inhibitor, and (F) water, wherein (A) The abrasive is an inorganic particle composed of at least one of fumed silica, colloidal silica, fumed alumina, and colloidal alumina having an average particle diameter in a range of 15 nm to 30 nm, and has a concentration of 10% in the polishing composition. (B) the main component of the organic acid is oxalic acid, the concentration in the polishing composition is 0.01 to 1.0% by weight, and (C) the oxidizing agent is hydrogen peroxide. Wherein the concentration in the polishing composition is 0.03 to 1.0% by weight, (D) the antioxidant is benzotriazole or a derivative thereof and quinaldic acid, and the concentration in the polishing composition is 0, respectively. (E) rot. An inhibitor ethylene diamine or a derivative thereof and histidine, the polishing composition, wherein the concentration of the polishing composition are each 0.01 to 1.0% by weight.
[0012]
As a result of various studies to solve the above problems, the present invention uses a polishing composition comprising an inorganic abrasive, an organic acid, hydrogen peroxide, a benzotriazole compound, quinaldic acid, an ethylenediamine derivative, histidine and water. As a result, the inventors have found that the polishing rates of the tantalum compound, copper, and SiO 2 can be made substantially the same, and have completed the invention.
[0013]
The average particle size of the inorganic particles used in the present invention is preferably in the range of 15 nm to 30 nm. If the thickness is less than 15 nm, the polishing rate when polishing the SiO 2 film is extremely reduced, which is not preferable. If the thickness exceeds 30 nm, the polishing rates of the tantalum film and the SiO 2 film are undesirably reduced.
[0014]
The inorganic particles used in the present invention are at least one of fumed silica, colloidal silica, fumed alumina, and colloidal alumina, and these can be used alone or in any combination. The combination and ratio are not particularly limited.
[0015]
The concentration of the abrasive in the polishing composition is desirably 10 to 20% by weight. If the concentration of the abrasive is too low, the mechanical polishing ability decreases and the polishing rate decreases, which is not preferable. If the concentration is too high, the mechanical polishing ability increases and the polishing of the tantalum compound, copper, and SiO 2 is selected. It is not preferable because the property is lowered.
[0016]
The polishing composition of the present invention contains an organic acid. The main component of the organic acid used in the present invention is preferably oxalic acid. The concentration in the polishing composition is desirably 0.01 to 1.0% by weight. If the amount is less than 0.01% by weight, the polishing rate of the tantalum compound film is decreased. If the amount is more than 1.0% by weight, the polishing rate of the copper film becomes too large to control.
[0017]
The polishing composition of the present invention contains an oxidizing agent, and the oxidizing agent is preferably hydrogen peroxide. Hydrogen peroxide exerts an oxidizing effect on the tantalum compound film and has a function of increasing the polishing rate of the tantalum compound film by promoting ionization, but the concentration in the polishing composition is 0.03 to 1.0. % By weight. If the concentration is too high or too low, the polishing rate of the tantalum compound film is undesirably reduced. Hydrogen peroxide also exerts an oxidizing action on the copper film, and has a function of increasing the polishing rate of the copper film by promoting ionization. However, the concentration in the polishing composition is 0.03 to 1.0. It is desirably 0% by weight. When the concentration is higher than this range, the polishing rate for the copper film becomes too high, and when the concentration is lower, the polishing rate for the copper film decreases, which is not preferable.
[0018]
The polishing composition of the present invention contains benzotriazole or a derivative thereof and quinaldic acid as antioxidants, and the concentration in the polishing composition is 0.01 to 1.0% by weight. When both are less than 0.01% by weight, the effect of suppressing the polishing rate of the copper film is poor, and thus it is not preferable. When the amount exceeds 1.0% by weight, the polishing rate of the tantalum compound film is extremely reduced, which is not preferable.
[0019]
The polishing composition of the present invention contains ethylenediamine or a derivative thereof and histidine as a corrosion inhibitor. By adding a corrosion inhibitor to the polishing composition, corrosion of the copper film surface due to excessive chemical action can be prevented. The concentration of the corrosion inhibitor in the polishing composition is desirably 0.01 to 1.0% by weight. If the concentration is too high or too low from this range, the effect of preventing corrosion of the copper film is insufficient, and the surface state of the polished copper film is unfavorably deteriorated.
[0020]
The medium of the polishing composition of the present invention is water, and it is preferable that ionic impurities and metal ions are reduced as much as possible.
[0021]
The polishing composition of the present invention is produced by mixing, dissolving, and dispersing the above-described components, an abrasive, an organic acid, an oxidizing agent, an antioxidant, and a corrosion inhibitor in water. Hydrogen peroxide is added to and mixed with the above mixed solution immediately before polishing, but it is also possible to mix them in advance. These mixing methods can be performed with any device. For example, a blade-type rotary stirrer, an ultrasonic disperser, a bead mill disperser, a kneader, a ball mill and the like can be applied.
[0022]
In addition to the above components, various polishing aids may be blended. Examples of such polishing aids include dispersing aids, rust preventives, defoamers, pH adjusters, fungicides, and the like, which are used to improve the dispersion storage stability of the slurry and the polishing rate. Added for purpose. Examples of the dispersing aid include sodium hexametaphosphate. Of course, it is needless to say that the dispersibility can be improved by adding various surfactants and the like. Examples of the pH adjuster include basic compounds such as ammonia and acidic compounds such as acetic acid, hydrochloric acid, and nitric acid. Examples of the antifoaming agent include liquid paraffin, dimethyl silicone oil, monostearic acid, a mixture of diglycerides, and sorbitan monopalmitate.
[0023]
【Example】
The present invention will be specifically described with reference to examples.
<Example 1>
As an abrasive, colloidal silica having an average primary particle diameter of 30 nm, oxalic acid, hydrogen peroxide, benzotriazole, quinaldic acid, ethenediamine, histidine having a concentration of 0.5 μm so as to have a concentration shown in Table 1. The polishing composition was mixed with ion-exchanged water filtered through a cartridge filter and uniformly dispersed by stirring with a high-speed homogenizer to obtain a polishing composition.
[0024]
<Polishing evaluation>
The object to be polished was prepared by forming a solid film of an SiO 2 film, a tantalum compound film, and a copper film on an 8-inch silicon wafer, and the polishing rate of each film was measured to obtain a selectivity.
[0025]
Polishing was performed using a single-side polishing machine having a platen diameter of 600 mm. A polishing pad IC-1000 / Suba400 made by Rodale (USA) was adhered to a surface plate of the polishing machine with a special double-sided tape, and polished while flowing a polishing composition (slurry). The load was 3 psi, the number of revolutions of the platen was 70 rpm, the number of revolutions of the wafer was 72 rpm, and the flow rate of the abrasive composition was 150 ml / min.
[0026]
<Examples 2 to 5, Comparative Examples 1 to 6>
Polishing compositions were adjusted according to the formulations shown in Table 1 to evaluate polishing characteristics.
The results are shown in Table 1.
[0027]
[Table 1]
Figure 2004311484
[0028]
【The invention's effect】
As described above, according to the present invention, a polishing composition capable of preferentially polishing a tantalum compound film in a CMP processing process of a semiconductor device including a copper film and a tantalum film can be obtained, and a semiconductor device can be efficiently manufactured. Can be.
[Brief description of the drawings]
FIG. 1 is a schematic view of a polishing process of a device having a copper film formed thereon.
1 Cu
2 Ta
3 SiO 2

Claims (1)

(A)研磨材、(B)有機酸、(C)酸化剤、(D)酸化防止剤、(E)腐食抑制剤および(F)水を含有する研磨用組成物であって、(A)研磨材が、平均粒径が15nm−30nmの範囲にあるフュームドシリカ、コロイダルシリカ、フュームドアルミナ、およびコロイダルアルミナのうち少なくとも1種類からなる無機粒子であり、研磨用組成物中の濃度が10〜20重量%であり、(B)有機酸の主成分がシュウ酸であり、研磨用組成物中の濃度が0.01〜1.0重量%であり、(C)酸化剤が過酸化水素であり、研磨用組成物中の濃度が0.03〜1.0重量%であり、(D)酸化防止剤がベンゾトリアゾールまたはその誘導体及びキナルジン酸であり、研磨組成物中の濃度がそれぞれ0.01〜1.0重量%であり、(E)腐食防止剤がエチレンジアミン又はその誘導体及びヒスチジンであり、研磨組成物中の濃度がそれぞれ0.01〜1.0重量%であることを特徴とする研磨用組成物。A polishing composition comprising (A) an abrasive, (B) an organic acid, (C) an oxidizing agent, (D) an antioxidant, (E) a corrosion inhibitor, and (F) water, wherein (A) The abrasive is an inorganic particle composed of at least one of fumed silica, colloidal silica, fumed alumina, and colloidal alumina having an average particle size in a range of 15 nm to 30 nm, and has a concentration of 10% in the polishing composition. -20% by weight, (B) the main component of the organic acid is oxalic acid, the concentration in the polishing composition is 0.01-1.0% by weight, and (C) the oxidizing agent is hydrogen peroxide. Wherein the concentration in the polishing composition is 0.03 to 1.0% by weight, (D) the antioxidant is benzotriazole or a derivative thereof and quinaldic acid, and the concentration in the polishing composition is 0, respectively. (E) rot. Inhibitor is ethylene diamine or a derivative thereof, and histidine, the polishing composition, wherein the concentration of the polishing composition are each 0.01 to 1.0% by weight.
JP2003098920A 2003-04-02 2003-04-02 Abrasive composition Pending JP2004311484A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003098920A JP2004311484A (en) 2003-04-02 2003-04-02 Abrasive composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003098920A JP2004311484A (en) 2003-04-02 2003-04-02 Abrasive composition

Publications (1)

Publication Number Publication Date
JP2004311484A true JP2004311484A (en) 2004-11-04

Family

ID=33463523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003098920A Pending JP2004311484A (en) 2003-04-02 2003-04-02 Abrasive composition

Country Status (1)

Country Link
JP (1) JP2004311484A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2421244A (en) * 2004-11-30 2006-06-21 Kao Corp Polishing composition
US7765676B2 (en) * 2004-11-18 2010-08-03 Hitachi Global Storage Technologies Netherlands B.V. Method for patterning a magnetoresistive sensor
JP2011131346A (en) * 2009-12-25 2011-07-07 Kao Corp Polishing liquid composition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7765676B2 (en) * 2004-11-18 2010-08-03 Hitachi Global Storage Technologies Netherlands B.V. Method for patterning a magnetoresistive sensor
GB2421244A (en) * 2004-11-30 2006-06-21 Kao Corp Polishing composition
GB2421244B (en) * 2004-11-30 2009-03-18 Kao Corp Polishing composition
JP2011131346A (en) * 2009-12-25 2011-07-07 Kao Corp Polishing liquid composition

Similar Documents

Publication Publication Date Title
JP2004356326A (en) Polishing composition
JP2004311484A (en) Abrasive composition
JP2003218071A (en) Composition for polishing
JP2003133266A (en) Polishing composition
JP2003238942A (en) Polishing composition
JP2005136256A (en) Abrasive composition
JP2005136134A (en) Abrasive composition
JP2004356327A (en) Polishing composition
JP2004107369A (en) Polishing composition
JP2003336039A (en) Abrasive composition
JP2004182834A (en) Polishing composition
JP2004107423A (en) Polishing composition
JP2003197572A (en) Composition for polishing
JP2004281848A (en) Abrasive composition
JP2003100676A (en) Abrasive composition
JP2003321671A (en) Composition for abrasive
JP2004149655A (en) Polishing composition
JP2003100678A (en) Abrasive composition
JP2005019519A (en) Polishing composition
JP2004175904A (en) Polishing composition
JP2004099783A (en) Polishing composition
JP2005136255A (en) Abrasive composition
JP2004131619A (en) Composition for polishing
JP2004107368A (en) Polishing composition
JP2004143260A (en) Polishing composition