JP2005134159A - Metal touch portion detecting method for buried metal tube - Google Patents

Metal touch portion detecting method for buried metal tube Download PDF

Info

Publication number
JP2005134159A
JP2005134159A JP2003367897A JP2003367897A JP2005134159A JP 2005134159 A JP2005134159 A JP 2005134159A JP 2003367897 A JP2003367897 A JP 2003367897A JP 2003367897 A JP2003367897 A JP 2003367897A JP 2005134159 A JP2005134159 A JP 2005134159A
Authority
JP
Japan
Prior art keywords
metal
magnetic field
buried
signal current
touch part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003367897A
Other languages
Japanese (ja)
Other versions
JP4029118B2 (en
Inventor
Ryuji Koga
隆二 古賀
Nobuhiro Sasaki
信博 佐々木
Makoto Kawakami
川上  誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003367897A priority Critical patent/JP4029118B2/en
Publication of JP2005134159A publication Critical patent/JP2005134159A/en
Application granted granted Critical
Publication of JP4029118B2 publication Critical patent/JP4029118B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for locating a metal touch portion when a buried metal tube is in metal-touch with another metal tube buried in parallel therewith. <P>SOLUTION: This method is for detecting the metal touch portion of the buried metal tube with an anticorrosive coating with the other metal tube close-buried in parallel therewith. AC signals of different frequencies are applied to the buried metal tube and to the ground from both the sides of an objective zone of detection. The intensity of a magnetic field is measured by moving magnetometric sensors disposed on a ground surface to each of measurement points placed at prescribed intervals in the extension direction of the buried metal tube while scanning in the orthogonal direction. By signal-processing obtained data, changes in the intensity of the magnetic field are compared with each other at respective measurement points corresponding to the signals of different frequencies, thereby determining whether there is a metal touch portion, and its location. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、埋設金属管が他の金属管と素地金属が接触しているメタルタッチの存在とその位置を特定する方法に関するものであって、特に調査対象の埋設金属管に並行して近接埋設された他の金属管のメタルタッチ部を検出する方法に関する。   The present invention relates to a method for identifying the presence and position of a metal touch in which a buried metal pipe is in contact with another metal pipe and a base metal, and in particular, buried in parallel with a buried metal pipe to be investigated. The present invention relates to a method for detecting a metal touch portion of another metal tube.

防食被覆された埋設金属管が配管工事等によって他の金属管(埋設物)と接触して防食被覆を損傷して素地金属とメタルタッチすると、その部分から埋設金属管の腐食が進行する。また、電気防食された埋設金属管では設計された防食電流が維持できなく電気防食の作用効果が正常に発揮できなくなるような悪影響がある。このため、埋設金属管の良好なメンテナンスを行なう上からメタルタッチの存在およびその位置を特定して、もしメタルタッチが認められたら速やかに対策を講じる必要がある。
地中に埋設された金属管1のメタルタッチ位置3を特定する方法としては、図10のように、調査対象となる埋設金属管1に信号発信器6から信号電流を流し、埋設金属管1に流れる電流により周囲に発生する磁界を、探りコイルやホール素子等を利用した磁気センサ5を用いて検出し、検出信号の変化点をとらえてメタルタッチ位置3を特定する方法がある。(Nick J. Frost: “Electromagnetic techniques to monitor pipe line coatings”, 「PIPE LINE INDUSTRY」September 1988, p33-35)
この文献によると、埋設金属管1内を流れる電流Iによって埋設金属管1中心から距離rの場所では、(1)式からなる磁界B(T)が生じる。

Figure 2005134159
(1)
ここで、μは真空の透磁率(H/m)、μは媒質の比透磁率である。
磁界Bは、指向性を持つ磁気センサ5を用いて水平成分xの磁界強度Bxと鉛直成分zの磁界強度Bzとに分離して測定することが出来る。例えば、図10において磁気センサ5が埋設金属管の管軸方向と直交する方向にP1からP3まで地表面を走査すると、BxはP2の地点、すなわち埋設金属管1の直上で極大となり左右に離れるに従い減少する。また、Bz埋設金属管1の直上に接近するに従って減少し、直上で零となりその後極性が反転して埋設金属管から離れるに従って大きくなる。これらの結果から埋設金属管の位置を知ることが出来るためパイプロケータとしても用いられる。
上記測定手段を用いてメタルタッチ部を検出する場合、磁気センサ5を金属管1の直上の地表面を管軸方向に沿ってP2からP5に走査させると、図11に示すように他の金属管2が交差状にメタルタッチしている場所3の直上P7で信号電流の流入状態が変化するため磁界強度Bxが大きく変化するため、この点をメタルタッチ部3であると判定できる。 When the buried metal pipe with the anticorrosion coating comes into contact with another metal pipe (buried object) by piping work or the like and damages the anticorrosion coating and makes a metal touch with the base metal, corrosion of the buried metal pipe proceeds from that portion. In addition, a buried metal pipe that has been subjected to electrocorrosion has an adverse effect that the designed anticorrosion current cannot be maintained and the effect of electrocorrosion cannot be exhibited normally. For this reason, it is necessary to identify the presence and position of the metal touch from the viewpoint of good maintenance of the buried metal pipe, and to take immediate measures if the metal touch is recognized.
As a method of specifying the metal touch position 3 of the metal pipe 1 buried in the ground, as shown in FIG. 10, a signal current is passed from the signal transmitter 6 to the buried metal pipe 1 to be investigated, and the buried metal pipe 1 There is a method of detecting the magnetic field generated around by the current flowing through the magnetic sensor 5 using the magnetic sensor 5 using a probe coil, a Hall element, etc., and identifying the change point of the detection signal to identify the metal touch position 3. (Nick J. Frost: “Electromagnetic techniques to monitor pipe line coatings”, “PIPE LINE INDUSTRY” September 1988, p33-35)
According to this document, a magnetic field B (T) expressed by the equation (1) is generated at a distance r from the center of the buried metal tube 1 by the current I flowing through the buried metal tube 1.
Figure 2005134159
(1)
Here, μ 0 is the vacuum magnetic permeability (H / m), and μ S is the relative magnetic permeability of the medium.
The magnetic field B can be measured by separating the magnetic field strength Bx of the horizontal component x and the magnetic field strength Bz of the vertical component z using the magnetic sensor 5 having directivity. For example, in FIG. 10, when the magnetic sensor 5 scans the ground surface from P1 to P3 in a direction perpendicular to the tube axis direction of the buried metal tube, Bx becomes a maximum at the point P2, that is, directly above the buried metal tube 1, and moves left and right. It decreases according to. Moreover, it decreases as it approaches directly above the Bz buried metal tube 1, becomes zero immediately above, and then increases as the polarity reverses and moves away from the buried metal tube. Since the position of the buried metal pipe can be known from these results, it is also used as a pipe locator.
When the metal touch part is detected using the measuring means, when the magnetic sensor 5 scans the ground surface immediately above the metal tube 1 from P2 to P5 along the tube axis direction, another metal as shown in FIG. Since the inflow state of the signal current changes at the position P7 directly above the place 3 where the tube 2 is metal touching in an intersecting manner, the magnetic field strength Bx changes greatly, so that this point can be determined to be the metal touch part 3.

また、特開2001−215204号公報に埋設金属管のメタルタッチ調査法が開示されている。この調査法は図12に示すようにメタルタッチが疑われる区域を中心として埋設管1の上部に複数箇所に8〜10mm程度の孔3a〜3eを掘り、図13に示すようなケーシング101の先端に取付けたヒータ内蔵の先細電極102を有するピンターミナル103を埋設管1に接触させ加熱して塗覆装を溶解して電極を埋設管の金属素地に接触させ、埋設管1に直流電源104から一定電流をながしながら隣接するピンターミナル103間における電圧降下を計測してメタルタッチ位置を特定するものである。
また、複数のピンターミナル103を接続した埋設管の上流と下流に通電点を設け、交互に直流電流104を流してピンターミナル103間における電圧降下を計測すると精度よく他の金属管2メタルタッチの位置を特定することができるとしている。なお、調査後傷めた塗覆装の剥離部分は補修キャップを先細電極102のヒーターを利用して補修する。
「PIPE LINE INDUSTRY」September 1988, p33-35) 特開2001−215204号公報
Japanese Patent Laid-Open No. 2001-215204 discloses a metal touch investigation method for buried metal pipes. This investigation method digs holes 3a to 3e of about 8 to 10 mm at a plurality of locations above the buried pipe 1 around an area where metal touch is suspected as shown in FIG. 12, and the tip of the casing 101 as shown in FIG. A pin terminal 103 having a tapered electrode 102 with a built-in heater attached thereto is brought into contact with the buried pipe 1 and heated to dissolve the coating so that the electrode is brought into contact with the metal substrate of the buried pipe. The metal touch position is specified by measuring a voltage drop between adjacent pin terminals 103 while flowing a constant current.
In addition, by providing energization points upstream and downstream of the buried pipe to which a plurality of pin terminals 103 are connected, and measuring the voltage drop between the pin terminals 103 by alternately passing a direct current 104, the other metal pipes 2 of the metal touch The position can be specified. Note that the repaired cap is repaired by using the heater of the tapered electrode 102 at the peeling part of the coating covering damaged after the investigation.
“PIPE LINE INDUSTRY” September 1988, p33-35) JP 2001-215204 A

しかし、非特許文献1による方法では、図1に示すように調査対象の埋設金属管と、並行して近接埋設された他の金属管がメタルタッチしている場合、メタルタッチ部3の位置の特定は困難となる。なぜなら、前記のように磁気センサ5が埋設金属管の管軸方向と直交する方向にP1からP3まで地表面を走査すると、磁界強度は調査対象の埋設金属管1と他の金属管2から生じる磁界の合成されたものが検出され、両埋設管1,2の中間位置でBxの極大が現れ、Bzは極性が反転するのみでメタルタッチ3の存在による磁界強度Bの変化は表れない。
また、磁気センサ5を金属管1の直上の地表面を管軸方向に沿ってP2からP5に走査させた場合、埋設金属管1と他の金属管2に流れる合成電流Iの値は変わらないためメタルタッチ部3を検出できない。
また、特許文献1によるメタルタッチ調査法は、従来から行なわれている管内電流測定法を改良したものであるが、具体的に実施する場合には測定点のピンターミナル103を設ける場合、埋設金属管1の直上から10mm程度の孔3a〜3eを埋設金属管1の上面まで掘り下げ、孔内の土砂を排除して特殊な電極102を埋設金属管の金属素地に接触させるためあらかじめ埋設金属管1の正確な位置を求めておく必要があり、また、ピンターミナル103の設置作業が煩雑である。
また、ピンターミナル103は埋設金属管1の塗覆装を溶解して金属素地に特殊電極102を接触するため調査後に補修するにしても防食性能を劣化させる心配がある。また、埋設金属管1の塗覆装が硬質ポリエチレン被覆の場合は、塗覆装を融解して金属素地を露出させるには高い温度が必要となり溶融困難な課題もある。
However, in the method according to Non-Patent Document 1, when the buried metal pipe to be investigated and another metal pipe buried in parallel are in metal touch as shown in FIG. Identification becomes difficult. This is because when the magnetic sensor 5 scans the ground surface from P1 to P3 in a direction orthogonal to the tube axis direction of the buried metal tube as described above, the magnetic field strength is generated from the buried metal tube 1 to be investigated and the other metal tube 2. A combined magnetic field is detected, and a Bx maximum appears at an intermediate position between the buried pipes 1 and 2, and the polarity of Bz is reversed, and the change in the magnetic field strength B due to the presence of the metal touch 3 does not appear.
When the magnetic sensor 5 is scanned from P2 to P5 along the tube axis direction on the ground surface immediately above the metal tube 1, the value of the combined current I flowing through the buried metal tube 1 and the other metal tube 2 does not change. Therefore, the metal touch part 3 cannot be detected.
In addition, the metal touch investigation method according to Patent Document 1 is an improvement of the conventional method for measuring the in-tube current. However, in the case of concrete implementation, when the pin terminal 103 of the measurement point is provided, The buried metal tube 1 is previously embedded in order to dig down the holes 3a to 3e of about 10 mm from directly above the tube 1 to the upper surface of the buried metal tube 1 to remove the earth and sand in the hole and bring the special electrode 102 into contact with the metal substrate of the buried metal tube. It is necessary to obtain the exact position of the pin terminal 103, and the installation work of the pin terminal 103 is complicated.
Further, since the pin terminal 103 melts the coating of the buried metal tube 1 and contacts the special electrode 102 to the metal substrate, there is a concern that the anticorrosion performance is deteriorated even if the pin terminal 103 is repaired after the investigation. Moreover, when the coating of the buried metal pipe 1 is a hard polyethylene coating, a high temperature is required to melt the coating and expose the metal substrate, and there is a problem that it is difficult to melt.

本発明は、以下の構成を要旨とする。
(1)防食被覆された埋設金属管と、並行して近接埋設された他の金属管とのメタルタッチ部を検出する方法であって、検出対象区間の両側から埋設金属管と地中に対して第1信号電流と第2信号電流を印加し、地表面を走査する磁気センサを埋設金属管の延長方向の各測定箇所毎に管軸直交方向に走査させて磁界強度を測定し、得られたデータを信号処理して前記の第1信号電流と第2信号電流対応する各測定箇所の磁界強度の変化を比較してメタルタッチ部の有無およびメタルタッチ部位置を特定することを特徴とする埋設金属管のメタルタッチ部検出方法である。
(2)上記(1)の発明における埋設金属管に対して水平に並行する他の金属管のメタルタッチ部検出方法において、磁気センサを管軸直交方向の水平成分磁界を検出するように配置し、各測定箇所における管軸直交方向に走査させた時の磁界強度の測定データから第1信号電流と第2信号電流に対応する磁界強度の極大値の発生位置を比較し、メタルタッチ部の有無およびメタルタッチ部位置を特定する。
(3)上記(1)の発明における埋設金属管に対して水平に並行する他の金属管のメタルタッチ部検出方法において、磁気センサを鉛直成分磁界を検出するように配置し、各測定箇所の管軸直交方向に走査させた時磁界強度の測定データから第1信号電流と第2信号電流に対応する磁界強度の極小値の発生位置を比較し、メタルタッチ部の有無およびメタルタッチ部位置を特定する。
(4)上記(1)の発明における埋設金属管に対して上または下側に並行する他の金属管のメタルタッチ部検出方法において、磁気センサを管軸直交方向の水平成分磁界を検出する方向とし且つ所定間隔をおいた高さに2段配置し、各測定箇所における2段の磁気センサの管軸直交方向に走査させた時の磁界強度の極大値の測定データから第1信号電流と第2信号電流に対応する見掛上の埋設金属管の深さを演算し、その値を比較してメタルタッチ部の有無およびメタルタッチ部位置を特定する。
(5)上記(1)の発明における埋設金属管に対して斜め位置に並行する他の金属管のメタルタッチ部検出方法において、磁気センサを埋設金属管の管軸直交方向の水平成分磁界を検出する方向とし且つ所定間隔をおいた高さに2段配置し、各測定箇所におけるいずれかの段または両方の段の磁気センサの直交方向に走査させた時の磁界強度の測定データから第1信号電流と第2信号電流に対応する磁界強度の極大値の発生位置を求め、且つ2段の磁気センサの管軸直交方向に走査させた時の磁界強度の極大値の測定データから埋設金属管の深さを演算し、前記磁界強度の極大値の発生位置および埋設金属管の演算深さを比較してメタルタッチ部の有無およびメタルタッチ部位置を特定する。
(6)防食被覆された埋設金属管と、並行して近接埋設された他の金属管とのメタルタッチ部を検出する方法であって、検出対象区間の両側から埋設金属管と地中に対して第1信号電流と第2信号電流を印加し、地表面を走査する磁気センサを鉛直成分の磁界を検出するように配置し、第1信号電流に対応する鉛直方向成分の磁界強度の極小値の位置に沿って埋設金属管の延長方向に追跡しながら第2信号電流に対応する鉛直方向成分の磁界強度の変化を測定し、または第2信号電流に対応する鉛直方向成分の磁界強度の極小値の位置に沿って埋設金属管の延長方向に追跡しながら第1信号電流に対応する鉛直方向成分の磁界強度の変化を測定し、得られたデータを信号処理して前記の第2信号電流または第1信号電流対応する磁界強度の変化を比較してメタルタッチ部の有無およびメタルタッチ部位置を特定する。
(7)上記(1)〜(6)において、検出対象区間の両側から埋設金属管と地中に対して印加する第1信号電流と第2信号電流は、それぞれ異なる周波数の交流信号を同時に通電するのが望ましい。
(8)上記(1)〜(6)において、磁気センサによって得られたデータを信号処理して異なる周波数信号に対応する磁界強度を得る信号処理装置として、埋設金属管と地中に対して印加する信号周波数と同じ周波数の参照信号を使用するロックインアンプを使用するのが望ましい。
The gist of the present invention is as follows.
(1) A method of detecting a metal touch part between a buried metal pipe coated with anti-corrosion and another metal pipe buried in close proximity in parallel to the buried metal pipe and the ground from both sides of the detection target section. Obtained by measuring the magnetic field intensity by applying a first signal current and a second signal current and scanning a magnetic sensor that scans the ground surface in the direction perpendicular to the tube axis at each measurement point in the extension direction of the buried metal tube. The data processing is performed to compare the change in the magnetic field strength at each measurement location corresponding to the first signal current and the second signal current, and the presence / absence of the metal touch part and the position of the metal touch part are specified. It is a metal touch part detection method of a buried metal pipe.
(2) In the metal touch part detection method of another metal pipe parallel to the buried metal pipe in the invention of (1) above, the magnetic sensor is arranged to detect a horizontal component magnetic field in the direction perpendicular to the pipe axis. The position of occurrence of the maximum value of the magnetic field strength corresponding to the first signal current and the second signal current is compared from the measurement data of the magnetic field strength when scanned in the direction perpendicular to the tube axis at each measurement location, and the presence or absence of the metal touch portion And the metal touch part position is specified.
(3) In the metal touch part detection method of another metal pipe parallel to the buried metal pipe in the invention of (1) above, a magnetic sensor is arranged so as to detect a vertical component magnetic field, and Compare the occurrence position of the minimum value of the magnetic field intensity corresponding to the first signal current and the second signal current from the measurement data of the magnetic field intensity when scanned in the direction perpendicular to the tube axis, and the presence or absence of the metal touch part and the position of the metal touch part Is identified.
(4) In the metal touch part detection method of another metal pipe parallel to the upper or lower side with respect to the buried metal pipe in the invention of (1) above, the magnetic sensor detects the horizontal component magnetic field in the direction perpendicular to the pipe axis. The first signal current and the first signal current are obtained from the measurement data of the maximum value of the magnetic field intensity when two stages are arranged at a predetermined interval and scanned in the direction perpendicular to the tube axis of the two-stage magnetic sensor at each measurement point. The apparent depth of the buried metal pipe corresponding to the two-signal current is calculated, and the value is compared to specify the presence / absence of the metal touch part and the metal touch part position.
(5) In the metal touch detection method of another metal pipe parallel to the oblique position with respect to the buried metal pipe in the invention of (1) above, the magnetic sensor detects a horizontal component magnetic field in the direction perpendicular to the pipe axis of the buried metal pipe. The first signal is obtained from the measurement data of the magnetic field intensity when scanning in the orthogonal direction of one or both of the magnetic sensors at each measurement location. The position of occurrence of the maximum value of the magnetic field strength corresponding to the current and the second signal current is obtained, and from the measurement data of the maximum value of the magnetic field strength when scanned in the direction perpendicular to the tube axis of the two-stage magnetic sensor, The depth is calculated, the presence / absence of the metal touch part and the metal touch part position are specified by comparing the generation position of the maximum value of the magnetic field strength and the calculation depth of the buried metal pipe.
(6) A method of detecting a metal touch part between a buried metal pipe coated with anti-corrosion and another metal pipe buried in close proximity in parallel to the buried metal pipe and the ground from both sides of the detection target section. A magnetic sensor that applies the first signal current and the second signal current and scans the ground surface is arranged so as to detect the magnetic field of the vertical component, and the minimum value of the magnetic field strength of the vertical component corresponding to the first signal current The change in the magnetic field strength of the vertical component corresponding to the second signal current is measured while tracking the extending direction of the buried metal tube along the position of the position, or the magnetic field strength of the vertical component corresponding to the second signal current is minimized. The change in the magnetic field strength of the vertical component corresponding to the first signal current is measured while tracing the extension direction of the buried metal tube along the position of the value, and the obtained data is subjected to signal processing to obtain the second signal current. Or change in magnetic field intensity corresponding to the first signal current. Compared to identify the presence and metal touch portion position of the metal touch portion.
(7) In the above (1) to (6), the first signal current and the second signal current applied to the buried metal pipe and the ground from both sides of the detection target section are simultaneously energized with AC signals having different frequencies. It is desirable to do.
(8) In the above (1) to (6), the data obtained by the magnetic sensor is signal-processed to obtain a magnetic field intensity corresponding to a different frequency signal, and is applied to the buried metal tube and the ground. It is desirable to use a lock-in amplifier that uses a reference signal having the same frequency as the signal frequency to be transmitted.

本発明によれば、従来困難であった埋設金属管と並行して近接埋設された他の金属管とのメタルタッチ位置を地表面を走査する磁気センサによって埋設金属管を傷めることなく、しかも精度良く特定することが可能である。
即ち、本発明においては、調査対象となる埋設金属管の調査範囲の両側に第1信号発信器及び第2信号発信器を設置し、埋設金属管と地中間に2つの信号電流を通電する。この信号電流は2箇所の発信器の接地極から大地に流出し、大地から埋設金属管に流入し発信器に戻る閉ループを構成する。調査対象の埋設金属管と他の金属管にメタルタッチ部が存在すると、2つの信号電流によって両埋設管(埋設金属管と他の金属管)の周囲に生じる磁界強度が変化するため、この磁界強度の変化を埋設金属管の延長方向の各測定箇所毎に管軸直交方向に走査する磁気センサによって測定してメタルタッチ部の存在と位置を特定することができる。
埋設金属管に対して水平に並行する他の金属管のメタルタッチ部を検出するには、請求項2に示すように、磁気センサを管軸直交方向に走査して水平成分(x)の磁気強度を測定して第1信号電流と第2信号電流に対応する磁界強度の極小値の発生位置を比較し、メタルタッチ部の有無およびメタルタッチ部位置を特定する。
また、請求項3に示すように磁気センサを鉛直成分(z)の磁界を検出するように配置し第1信号電流と第2信号電流に対応する磁界強度の極小値の発生位置を比較し、メタルタッチ部の有無およびメタルタッチ部位置を特定してもよい。
また、調査対象の埋設金属管に対して上または下側に並行する他の金属管のメタルタッチ部を検出するには請求項4に示すように、磁気センサを管軸直交方向の水平成分磁界を検出する方向とし且つ所定間隔をおいた高さに2段配置し、各測定箇所における2段の磁気センサの管軸直交方向に走査させた時の磁界強度の極大値の測定データから第1信号電流と第2信号電流に対応する見掛上の埋設金属管の深さを演算し、その値を比較してメタルタッチ部の有無およびメタルタッチ部位置を特定する。
埋設金属管に対して斜め位置に並行する他の金属管のメタルタッチ部を検出するには、請求項5に示すように、磁気センサを埋設金属管の管軸直交方向の水平成分磁界を検出する方向とし且つ所定間隔をおいた高さに2段配置し、各測定箇所におけるいずれかの段または両方の段の磁気センサの直交方向に走査させた時の磁界強度の測定データから第1信号電流と第2信号電流に対応する磁界強度の極大値の発生位置を求め、且つ2段の磁気センサの管軸直交方向に走査させた時の磁界強度の極大値の測定データから埋設金属管の深さを演算し、前記磁界強度の極大値の発生位置および埋設金属管の演算深さを比較してメタルタッチ部の有無およびメタルタッチ部位置を特定することができる。
また、並行して近接埋設された他の金属管とのメタルタッチ部を検出する方法において、検出対象区間の両側から埋設金属管と地中に対して第1信号電流と第2信号電流を印加し、地表面を走査する磁気センサを鉛直成分の磁界を検出するように配置し、第1信号電流に対応する鉛直方向成分の磁界強度の極小値の位置に沿って埋設金属管の延長方向に追跡しながら第2信号電流に対応する鉛直方向成分の磁界強度の変化を測定し、または第2信号電流に対応する鉛直方向成分の磁界強度の極小値の位置に沿って埋設金属管の延長方向に追跡しながら第1信号電流に対応する鉛直方向成分の磁界強度の変化を測定し、得られたデータを信号処理して前記の第2信号電流または第1信号電流対応する磁界強度の変化を比較してメタルタッチ部の有無およびメタルタッチ部位置を特定する方法もある。
本発明においては上記の如く、メタルタッチ部が存在すると第1信号電流および第2信号電流に対応する磁界強度Bxの変化、即ち水平成分の磁界強度Bxの極大位置または鉛直成分の磁界強度Bzの零点位置の相対的なずれはメタルタッチ部を境として反転するためこの反転交差部をメタルタッチ部と特定することができる。(メタルタッチが無い場合は、第1信号電流および第2信号電流に対応する磁界強度のピーク位置または零点位置は変化しないため判定できる)
本発明では、メタルタッチ部の存在と位置を特定するため第1信号電流および第2信号電流の2つの信号電流を用いているため、磁界強度Bxの極大位置または鉛直成分の磁界強度Bzの零点位置の相対的なずれの変化がメタルタッチによるものか、埋設金属管の配管曲がりによるものか正確に判断できる。
According to the present invention, a magnetic sensor that scans the ground surface at a metal touch position with another metal pipe that is close to the buried metal pipe in parallel with the buried metal pipe, which has been difficult in the past, can be obtained without damaging the buried metal pipe. It is possible to identify well.
That is, in this invention, a 1st signal transmitter and a 2nd signal transmitter are installed in the both sides of the investigation range of the buried metal pipe used as investigation object, and two signal currents are supplied with electricity between the buried metal pipe and the ground. This signal current flows out from the grounding poles of two transmitters to the ground, forms a closed loop that flows from the ground into the buried metal pipe and returns to the transmitter. If a metal touch part exists in the buried metal pipe and other metal pipes to be investigated, the magnetic field strength generated around both buried pipes (buried metal pipe and other metal pipes) is changed by two signal currents. It is possible to determine the presence and position of the metal touch portion by measuring the change in strength by a magnetic sensor that scans in the direction perpendicular to the tube axis at each measurement location in the extending direction of the buried metal tube.
In order to detect the metal touch part of another metal pipe that is parallel to the buried metal pipe, the magnetic sensor is scanned in the direction perpendicular to the pipe axis, and the magnetic component of the horizontal component (x) is detected. The intensity is measured to compare the occurrence position of the minimum value of the magnetic field intensity corresponding to the first signal current and the second signal current, and the presence / absence of the metal touch part and the metal touch part position are specified.
According to a third aspect of the present invention, the magnetic sensor is disposed so as to detect the magnetic field of the vertical component (z), and the generation position of the minimum value of the magnetic field intensity corresponding to the first signal current and the second signal current is compared. The presence or absence of the metal touch part and the position of the metal touch part may be specified.
Further, in order to detect the metal touch part of another metal pipe parallel to the upper side or the lower side with respect to the buried metal pipe to be investigated, as shown in claim 4, the magnetic sensor has a horizontal component magnetic field in the direction perpendicular to the pipe axis. From the measurement data of the maximum value of the magnetic field strength when scanning in the direction perpendicular to the tube axis of the two-stage magnetic sensor at each measurement location. The apparent depth of the buried metal pipe corresponding to the signal current and the second signal current is calculated, and the value is compared to specify the presence / absence of the metal touch portion and the position of the metal touch portion.
In order to detect the metal touch part of another metal pipe parallel to the oblique position with respect to the buried metal pipe, as shown in claim 5, the magnetic sensor detects a horizontal component magnetic field in the direction perpendicular to the pipe axis of the buried metal pipe. The first signal is obtained from the measurement data of the magnetic field intensity when scanning in the orthogonal direction of one or both of the magnetic sensors at each measurement location. The position of occurrence of the maximum value of the magnetic field strength corresponding to the current and the second signal current is obtained, and from the measurement data of the maximum value of the magnetic field strength when scanned in the direction perpendicular to the tube axis of the two-stage magnetic sensor, The depth is calculated, the presence / absence of the metal touch part and the metal touch part position can be specified by comparing the generation position of the maximum value of the magnetic field intensity and the calculation depth of the buried metal pipe.
In addition, in the method of detecting a metal touch part with another metal pipe embedded in close proximity in parallel, a first signal current and a second signal current are applied to the embedded metal pipe and the ground from both sides of the detection target section. A magnetic sensor that scans the ground surface is arranged so as to detect the magnetic field of the vertical component, and extends in the extending direction of the buried metal tube along the position of the minimum value of the magnetic field strength of the vertical component corresponding to the first signal current. Measure the change in the magnetic field strength of the vertical component corresponding to the second signal current while tracking, or extend the buried metal tube along the position of the minimum value of the magnetic field strength of the vertical component corresponding to the second signal current The change in the magnetic field strength of the vertical component corresponding to the first signal current is measured while tracking, and the obtained data is subjected to signal processing to change the magnetic field strength corresponding to the second signal current or the first signal current. Compare the metal touch part There free and also a method for identifying a metal touch portion position.
In the present invention, as described above, when the metal touch portion exists, the change in the magnetic field strength Bx corresponding to the first signal current and the second signal current, that is, the maximum position of the horizontal magnetic field strength Bx or the vertical magnetic field strength Bz. Since the relative shift of the zero point position is reversed with the metal touch part as a boundary, the inverted intersection part can be specified as the metal touch part. (When there is no metal touch, the peak position or zero point position of the magnetic field intensity corresponding to the first signal current and the second signal current does not change, and can be determined)
In the present invention, since the two signal currents of the first signal current and the second signal current are used to specify the presence and position of the metal touch part, the maximum position of the magnetic field strength Bx or the zero point of the magnetic field strength Bz of the vertical component It is possible to accurately determine whether the change in the relative displacement of the position is due to the metal touch or the bending of the buried metal pipe.

以下、本発明に係る埋設金属管のメタルタッチ部検出方法について図面を参照して説明する。
図1は本発明の実施形態を示す一例であって、調査対象の埋設金属管1と並行して近接埋設された他の金属管2のメタルタッチ位置を検出する全体構成を示したものである。
調査対象となる埋設金属管1の調査範囲の両側には第1信号発信器6及び第2信号発信器8を設置し、埋設金属管1と地中間に信号電流Ia、Ibを通電する。この信号電流は発信器6,8の接地極7,9から大地に流出し、大地から埋設金属管1に流入し発信器6,8に戻る閉ループを構成する。この実施形態では、埋設金属管1に流れる信号電流Ia、Ibによって周りに発生する磁界の磁界強度を管軸と直交方向に地表面を走査する磁気センサ5によって測定し、埋設金属管1と並行して埋設された他の金属管2のメタルタッチ部3の存在とその位置を検出するものである。
Hereinafter, a method for detecting a metal touch part of a buried metal pipe according to the present invention will be described with reference to the drawings.
FIG. 1 is an example showing an embodiment of the present invention, and shows an overall configuration for detecting a metal touch position of another metal tube 2 that is embedded in parallel with the buried metal tube 1 to be investigated. .
The first signal transmitter 6 and the second signal transmitter 8 are installed on both sides of the investigation range of the buried metal pipe 1 to be investigated, and signal currents Ia and Ib are energized between the buried metal pipe 1 and the ground. This signal current flows out from the ground electrodes 7 and 9 of the transmitters 6 and 8 to the ground, forms a closed loop that flows from the ground into the buried metal tube 1 and returns to the transmitters 6 and 8. In this embodiment, the magnetic field strength of the magnetic field generated around the signal currents Ia and Ib flowing in the buried metal tube 1 is measured by the magnetic sensor 5 that scans the ground surface in the direction orthogonal to the tube axis, and is parallel to the buried metal tube 1. Thus, the presence and position of the metal touch part 3 of another metal tube 2 embedded in the metal pipe 2 are detected.

埋設金属管1に印加する信号電流Ia、Ibは調査範囲の両側に設置する第1信号発信器6及び第2信号発信器8から通電する。この信号電流は異なる周波数の交流電流を同時に通電するようにするのが望ましいが、同一周波数の交流電流をタイミングをずらして切替式によって通電するか、または一台の信号発信器を移動して2ヶ所から通電するようにしてもよい。
異周波数の交流電流を同時に通電するようにしたものは、磁気センサ5の測定は各測定箇所毎に1回で済み、同一条件における高精度の測定データを得ることができる利点がある。
なお、同一周波数の信号電流を切替式または移動して通電する場合は、第1信号発信器6側及び第2信号発信器8側から通電する度に磁気センサ5によって同一測定箇所で管軸直交方向の磁界強度を測定する必要がある。
The signal currents Ia and Ib applied to the buried metal pipe 1 are energized from the first signal transmitter 6 and the second signal transmitter 8 installed on both sides of the survey range. This signal current is preferably supplied with alternating currents of different frequencies at the same time. However, the alternating current of the same frequency may be supplied by switching the timing, or a single signal transmitter may be moved. You may make it energize from one place.
In the case where alternating currents of different frequencies are simultaneously applied, the magnetic sensor 5 needs to be measured only once for each measurement location, and there is an advantage that highly accurate measurement data under the same conditions can be obtained.
When the signal current of the same frequency is switched or moved and energized, the magnetic sensor 5 makes the tube axis orthogonal at the same measurement location each time the first signal transmitter 6 side and the second signal transmitter 8 side are energized. It is necessary to measure the magnetic field strength in the direction.

図1は第1信号発信器6及び第2信号発信器8に異なる周波数の交流電流Ia、Ibを使用した場合の実施例を示すものである。異なる2つの周波数の信号電流Ia、Ibを用いた場合は各周波数の信号電流に対応する磁界強度を分離する必要があるため、磁気センサ5の信号を処理する第1信号電流Iaに対応する信号を処理するための第1信号処理装置12と、第2信号電流Ibに対応する信号を処理するための第2信号処理装置13を備える。
この第1信号処理装置12および第2信号処理装置13は、参照信号発信器を備えたロックインアンプを使用するのが望ましい。ロックインアンプを使用した場合、磁気センサ5の出力を第1ロックインアンプと第2ロックインアンプに並列入力し、それぞれのロックインアンプの参照信号発信器の各周波数を第1信号発信器6及び第2信号発信器8の周波数に設定して、磁気センサから入力される磁界強度のデータから第1信号発信器6及び第2信号発信器8に対応した周波数成分のみの磁界強度を高精度に分離して表示装置14に出力することができる。
また、前記表示装置14には磁気センサ5の走査距離を表示するため、エンコーダー等の回転信号発生器を取付けた車輪11によって距離を演算する距離計測回路15を備える。
上記の磁気センサ5、信号処理装置(12,13)、距離計測回路15、表示装置等14は車輪付きの測定台車10に搭載され、埋設金属管1の延長方向の各測定箇所毎に管軸直交方向に走行させ磁界強度と走行距離を測定する。
図1の埋設金属管1上の直交方向に示す点線は磁気センサの測定走査線である
前記第1信号発振器6と第2信号発生器8で用いる交流電流IaIbの周波数は数十Hzから750Hzの周波数の範囲から選択した異なる周波数を用いる。但し、商用周波数の50Hzおよび60Hzの逓倍の周波数を使用するとノイズが重畳するため、この周波数の使用は避ける必要がある。
なお、使用する2つの周波数の差があまり小さいと、他方の周波数の信号を検出してしまうことがあるため使用する2つの信号電流Ia,Ibの周波数は数十Hz以上離れた周波数を使用する必要がある。例えば、第1信号発振器6の周波数を220Hzとし、第2信号発生器8の周波数を320Hzにすると好ましい結果が得られる。
FIG. 1 shows an embodiment in which alternating currents Ia and Ib having different frequencies are used for the first signal transmitter 6 and the second signal transmitter 8. When the signal currents Ia and Ib having two different frequencies are used, it is necessary to separate the magnetic field intensity corresponding to the signal current of each frequency. Therefore, the signal corresponding to the first signal current Ia that processes the signal of the magnetic sensor 5 The first signal processing device 12 for processing the signal and the second signal processing device 13 for processing the signal corresponding to the second signal current Ib.
The first signal processing device 12 and the second signal processing device 13 desirably use a lock-in amplifier provided with a reference signal transmitter. When a lock-in amplifier is used, the output of the magnetic sensor 5 is input in parallel to the first lock-in amplifier and the second lock-in amplifier, and each frequency of the reference signal transmitter of each lock-in amplifier is set to the first signal transmitter 6. And the frequency of the second signal transmitter 8 and the magnetic field strength of only the frequency component corresponding to the first signal transmitter 6 and the second signal transmitter 8 from the magnetic field strength data input from the magnetic sensor with high accuracy. Can be separated and output to the display device 14.
Further, the display device 14 includes a distance measuring circuit 15 for calculating a distance by a wheel 11 to which a rotation signal generator such as an encoder is attached in order to display a scanning distance of the magnetic sensor 5.
The magnetic sensor 5, the signal processing device (12, 13), the distance measuring circuit 15, the display device 14, etc. are mounted on a measuring carriage 10 with wheels, and a tube axis for each measuring point in the extending direction of the buried metal tube 1. Travel in the orthogonal direction and measure the magnetic field strength and travel distance.
The dotted line shown in the orthogonal direction on the buried metal tube 1 in FIG. 1 is the measurement scanning line of the magnetic sensor. The frequency of the alternating current IaIb used in the first signal oscillator 6 and the second signal generator 8 is several tens Hz to 750 Hz. Use different frequencies selected from a range of frequencies. However, if a frequency multiplied by 50 Hz and 60 Hz of the commercial frequency is used, noise is superposed, so the use of this frequency must be avoided.
Note that if the difference between the two frequencies used is too small, the signal of the other frequency may be detected. Therefore, the frequencies of the two signal currents Ia and Ib to be used are frequencies separated by several tens of Hz or more. There is a need. For example, when the frequency of the first signal oscillator 6 is 220 Hz and the frequency of the second signal generator 8 is 320 Hz, preferable results are obtained.

図2は調査対象範囲の両側に設置した第1信号発信器6及び第2信号発信器8から埋設金属管1に信号電流Ia,Ibを流した際に、近接する他の金属管2のメタルタッチ部3が存在する場合における各所の電流の大きさを示したものである。メタルタッチの位置3を境として第1信号発振器6側をA、第2信号発生器8側をBとすると、測定対象の埋設金属管1のA側には第1信号電流に対応する信号電流Ia1+Ia2+Ia3が第1信号発振器側に向かって流れ、第2信号電流に対応する信号電流Ib1が第2信号発生器側に向かって流れる。また、B側では第2信号電流に対応する信号電流Ib1+Ib2+Ib3が第2信号発生器側に向かって流れ第1信号電流に対応するIa1が第1信号発振器側に向かって流れる。
また、並行する他の金属管2のA側では第1及び第2信号電流に対応する信号電流Ia3、Ib3が、B側では同Ia2,Ib2がそれぞれメタルタッチ部3に向かって流れる。
本発明では、これらの信号電流によって両埋設管(埋設金属管1と他の金属管2)の周囲に生じる磁界強度の変化を埋設金属管1の延長方向の各測定箇所毎に管軸直交方向に走査する磁気センサ5によって測定してメタルタッチ部の存在と位置を特定するものである。
FIG. 2 shows the metal of another metal tube 2 in the vicinity when the signal currents Ia and Ib flow from the first signal transmitter 6 and the second signal transmitter 8 installed on both sides of the investigation target range to the buried metal tube 1. The magnitudes of currents at various places when the touch unit 3 is present are shown. Assuming that the first signal oscillator 6 side is A and the second signal generator 8 side is B at the metal touch position 3, the signal current corresponding to the first signal current is on the A side of the buried metal pipe 1 to be measured. Ia1 + Ia2 + Ia3 flows toward the first signal oscillator, and a signal current Ib1 corresponding to the second signal current flows toward the second signal generator. On the B side, a signal current Ib1 + Ib2 + Ib3 corresponding to the second signal current flows toward the second signal generator, and Ia1 corresponding to the first signal current flows toward the first signal oscillator.
Further, the signal currents Ia3 and Ib3 corresponding to the first and second signal currents flow toward the metal touch portion 3 on the A side of the other parallel metal pipe 2 and the Ia2 and Ib2 corresponding to the first and second signal currents, respectively.
In the present invention, the change in the magnetic field strength generated around both buried pipes (buried metal pipe 1 and other metal pipe 2) by these signal currents is perpendicular to the tube axis at each measurement point in the extending direction of the buried metal pipe 1. The presence and the position of the metal touch part are specified by measuring with the magnetic sensor 5 that scans at the same time.

なお、並行する他の金属管2がメタルタッチしていない場合は、調査対象の埋設金属管1には他の金属管2からの電流が流入しないため、A,B側のいずれにおいても第1信号発振器の信号電流Ia、第2信号発振器の信号電流Ibが流れるのみであり、埋設金属管1の周囲に生じる磁界強度に変化が表れない。このため、磁界強度の変化がない場合はメタルタッチが存在しないと判定することができる。   In addition, when the other metal pipes 2 in parallel are not in metal touch, the current from the other metal pipes 2 does not flow into the buried metal pipe 1 to be investigated. Only the signal current Ia of the signal oscillator and the signal current Ib of the second signal oscillator flow, and the magnetic field strength generated around the buried metal tube 1 does not change. For this reason, when there is no change in magnetic field strength, it can be determined that there is no metal touch.

(実施例1)
図3は請求項1〜3に係る発明の実施例であって、調査対象の埋設金属管1に水平に並行された他の金属管2がメタルタッチしているケースの検出方法を示すものである。調査対象の埋設金属管1とほぼ同じ土被り深さに他の金属管2が埋設される場合、途中にマンホール29等の障害物があると配管ルートが曲げられて隣接する埋設金属管1に接触してメタルタッチする場合がある。
メタルタッチの調査にあたっては、先ず調査対象区間の両端部の埋設金属管1と地中間に前述の第1信号発振器6及び第2信号発生器8を接続し、異なる周波数の信号電流を通電した状態で所定の検出方向に向けて配置した磁気センサ5を搭載した測定台車(図1に示す)を地表面の管軸直交方向に走査して距離計測回路のデータと共に磁界強度のデータを取得する。前記磁気センサ5の検出方向は埋設金属管の管軸直交方向の水平成分(x)、または鉛直成分(z)または水平・鉛直の両成分(x,z)とする。
上記測定作業は、図示しない測定台車10を測定箇所毎に移動し管軸直交方向に走査して行い、磁気センサ5によって(P1〜P3、P4〜P6)の地表面磁界強度のデータを走査距離データと共に取得する。なお、測定台車10で管軸直交方向を走査する範囲は、金属管2の土被りが深いほど大きくする必要があるが、概ね埋設金属管を中心として左右に2〜3m程度とすればよい。
(Example 1)
FIG. 3 is an embodiment of the invention according to claims 1 to 3 and shows a method of detecting a case where another metal pipe 2 parallel to the buried metal pipe 1 to be investigated is in metal touch. is there. When other metal pipes 2 are buried at the same depth as the buried metal pipe 1 to be investigated, if there is an obstacle such as a manhole 29 on the way, the piping route is bent and the adjacent buried metal pipe 1 There is a case where it touches and makes a metal touch.
In the metal touch investigation, first, the first signal oscillator 6 and the second signal generator 8 are connected to the buried metal pipe 1 and the ground between both ends of the investigation target section, and signal currents having different frequencies are energized. Then, a measurement carriage (shown in FIG. 1) equipped with a magnetic sensor 5 arranged in a predetermined detection direction is scanned in the direction perpendicular to the tube axis on the ground surface to acquire magnetic field strength data together with distance measurement circuit data. The detection direction of the magnetic sensor 5 is a horizontal component (x) in the direction perpendicular to the tube axis of the buried metal tube, or a vertical component (z) or both horizontal and vertical components (x, z).
The measurement operation is performed by moving the measurement carriage 10 (not shown) for each measurement location and scanning in the direction perpendicular to the tube axis, and the magnetic sensor 5 (P1-P3, P4-P6) data on the surface magnetic field strength is scanned. Get along with the data. The range in which the measurement carriage 10 scans in the direction perpendicular to the tube axis needs to be increased as the covering of the metal tube 2 is deeper, but it may be approximately 2 to 3 m on the left and right with the buried metal tube as the center.

図4は請求項2の発明に係る実施例であって、埋設金属管1の途中に並行する他の金属管2のメタルタッチ部部が存在する場合の或る測定箇所の磁界強度のデータを示したものであって、(a)は磁気センサ5を管軸直交の水平方向(x)に向けて測定して得られた第1信号電流に対応するB側の管軸直交方向の磁界強度変化および第2信号電流に対応するA側の管軸直交方向の磁界強度変化データである。(b)は第1信号電流に対応するA側の管軸直交方向の磁界強度変化および第2信号電流に対応するB側の管軸直交方向の磁界強度のデータである。
図の縦軸に示す磁界強度(Bxおよび後述のBz)は磁束密度:(×10−7T)である。
(a),(b)に示す磁界強度曲線の符号16は埋設金属管1を流れる信号電流から発生する磁界強度、17は他の金属管2を流れる信号電流から発生する磁界強度、18は16と17の合成磁界強度(Bx)であって、磁気センサ5で測定されるのは合成磁界強度(Bx)である。
FIG. 4 is an embodiment according to the invention of claim 2, and shows the magnetic field strength data at a certain measurement location when there is a metal touch part of another metal tube 2 parallel to the middle of the buried metal tube 1. (A) shows the magnetic field intensity in the direction perpendicular to the tube axis on the B side corresponding to the first signal current obtained by measuring the magnetic sensor 5 in the horizontal direction (x) perpendicular to the tube axis. This is magnetic field strength change data in the direction orthogonal to the tube axis on the A side corresponding to the change and the second signal current. (B) is data on the magnetic field strength change in the direction perpendicular to the tube axis on the A side corresponding to the first signal current and the magnetic field strength in the direction perpendicular to the tube axis on the B side corresponding to the second signal current.
The magnetic field intensity (Bx and Bz described later) shown on the vertical axis in the figure is the magnetic flux density: (× 10 −7 T).
Reference numerals 16 of the magnetic field strength curves shown in FIGS. 4A and 4B are the magnetic field strength generated from the signal current flowing through the buried metal tube 1, 17 is the magnetic field strength generated from the signal current flowing through the other metal tube 2, and 18 is 16 17 and the combined magnetic field strength (Bx) measured by the magnetic sensor 5.

図4(a),(b)によると、A側では第1信号電流に対応する合成磁界強度18(Bx)のピークは埋設金属管1の外側に出現し、第2信号電流に対応する合成磁界強度18(Bx)のピークは埋設金属管1と他の金属管2の間に出現している。また、B側では反対に第1信号電流に対応する合成磁界強度18(Bx)のピークは埋設金属管1と他の金属管2の間に出現し、第2信号電流に対応する合成磁界強度18(Bx)のピークは埋設金属管1の外側に出現している。   According to FIGS. 4A and 4B, on the A side, the peak of the combined magnetic field strength 18 (Bx) corresponding to the first signal current appears outside the buried metal tube 1, and the combined corresponding to the second signal current. The peak of the magnetic field strength 18 (Bx) appears between the buried metal tube 1 and the other metal tube 2. On the other hand, on the B side, the peak of the composite magnetic field strength 18 (Bx) corresponding to the first signal current appears between the buried metal tube 1 and the other metal tube 2, and the composite magnetic field strength corresponding to the second signal current. The 18 (Bx) peak appears outside the buried metal tube 1.

図5は請求項3に係る発明の実施例であって、(a)は磁気センサ5を鉛直方向(z)に向けて測定して得られた第1信号電流に対応するB側の管軸直交方向の磁界強度変化および第2信号電流に対応するA側の管軸直交方向の磁界強度変化データである。(b)は第1信号電流に対応するA側の管軸直交方向の磁界強度変化および第2信号電流に対応するB側の管軸直交方向の磁界強度のデータである。
管軸直交方向に走査した場合、鉛直方向の磁界強度Bzの絶対値は埋設金属管1および並行する他の金属管2に近づくにつれて減少し、埋設金属管の直上付近で零となり通過すると極性が反転する。図の符号16は埋設金属管1を流れる信号電流から発生する磁界強度、17は他の金属管2を流れる信号電流から発生する磁界強度を示したもので、磁気センサ5で測定されるのは16と17を合成した符号18で示される磁界強度(Bz)である。
FIG. 5 shows an embodiment of the invention according to claim 3, wherein (a) shows a B-side tube axis corresponding to a first signal current obtained by measuring the magnetic sensor 5 in the vertical direction (z). This is magnetic field strength change data in the direction orthogonal to the tube axis on the A side corresponding to the magnetic field strength change in the orthogonal direction and the second signal current. (B) is data on the magnetic field strength change in the direction perpendicular to the tube axis on the A side corresponding to the first signal current and the magnetic field strength in the direction perpendicular to the tube axis on the B side corresponding to the second signal current.
When scanning in the direction perpendicular to the tube axis, the absolute value of the magnetic field strength Bz in the vertical direction decreases as it approaches the buried metal tube 1 and the other metal tube 2 in parallel, and becomes zero near the buried metal tube and becomes polar when it passes. Invert. Reference numeral 16 in the figure indicates the magnetic field strength generated from the signal current flowing through the buried metal tube 1, and 17 indicates the magnetic field strength generated from the signal current flowing through the other metal tube 2, which is measured by the magnetic sensor 5. This is the magnetic field strength (Bz) indicated by reference numeral 18 that combines 16 and 17.

図5(a),(b)から、A側では第1信号電流に対応する合成磁界強度18(Bz)の零点は埋設金属管1の外側に出現し、第2信号電流に対応する合成磁界強度18(Bz)の零点は埋設金属管1と他の金属管2の間に出現している。また、B側では反対に第1信号電流に対応する合成磁界強度18(Bz)の零点は埋設金属管1と他の金属管2の間に出現し、第2信号電流に対応する合成磁界強度18(Bz)の零点は埋設金属管1の外側に出現している。   5A and 5B, on the A side, the zero point of the combined magnetic field strength 18 (Bz) corresponding to the first signal current appears outside the buried metal tube 1 and the combined magnetic field corresponding to the second signal current. A zero point of strength 18 (Bz) appears between the buried metal tube 1 and the other metal tube 2. On the contrary, on the B side, the zero point of the combined magnetic field strength 18 (Bz) corresponding to the first signal current appears between the buried metal tube 1 and the other metal tube 2, and the combined magnetic field strength corresponding to the second signal current. A zero point of 18 (Bz) appears outside the buried metal tube 1.

図6は埋設金属管1の延長方向の各測定箇所毎に管軸直交方向の磁界強度を測定した水平成分の磁界強度のデータより第1信号電流に対応する合成磁界強度Bxのピークを連ねた線19と、第2信号電流に対応する合成磁界強度Bxのピークを連ねた線20を示したものである。第1信号電流に対応する合成磁界強度Bxのピークを連ねた線19と、第2信号電流に対応する合成磁界強度Bxのピークを連ねた線20はメタルタッチ部3で交差するため、この点をメタルタッチ部3と特定することが出来る。
なお、鉛直成分の磁界強度強度(Bz)の零点についてもBxのピーク線19,20と同様に描かれ、メタルタッチ部3を特定することが出来る。
このようにメタルタッチ部3が存在すると第1信号電流および第2信号電流に対応する磁界強度Bxのピーク位置またはBzの零点位置が相対的にずれるためメタルタッチ部の有無を判定できる。メタルタッチが無い場合は、第1信号電流および第2信号電流に対応する磁界強度のピーク位置または零点位置は変化しない。そして、水平成分の磁界強度Bxのピーク位置または鉛直成分の磁界強度Bzの零点位置の相対的なずれはメタルタッチ部を境として反転するためこの反転交差部をメタルタッチ部と特定することができる。
なお、本発明において第1信号電流と第2信号電流の2つの信号電流を使用する理由は以下のとおりである。もし、一つの信号電流を使用した場合は磁界強度のピーク位置または零点位置が変化した場合、メタルタッチによるものか埋設金属管の配管曲がりによるものか判断できないが、第1信号電流と第2信号電流の2つの信号電流を使用すると前述のように2信号電流に対応する磁界強度(Bx)のピーク位置、または磁界強度強度Bzの零点位置の相対的なずれと反転交差からメタルタッチ部の存在と位置を特定することができる。なお、2信号電流に対応する磁界強度BxまたはBzが反転交差しない場合はメタルタッチ部が存在しないと判定できる。
FIG. 6 shows the peak of the combined magnetic field strength Bx corresponding to the first signal current from the horizontal component magnetic field strength data obtained by measuring the magnetic field strength in the direction perpendicular to the tube axis at each measurement location in the extending direction of the buried metal tube 1. The line 20 which connected the line 19 and the peak of the synthetic | combination magnetic field intensity | strength Bx corresponding to a 2nd signal current is shown. Since the line 19 connecting the peaks of the combined magnetic field intensity Bx corresponding to the first signal current and the line 20 connecting the peaks of the combined magnetic field intensity Bx corresponding to the second signal current intersect at the metal touch part 3, this point Can be identified as the metal touch part 3.
Note that the zero point of the vertical component magnetic field strength (Bz) is also drawn in the same manner as the peak lines 19 and 20 of Bx, and the metal touch part 3 can be specified.
Thus, if the metal touch part 3 exists, since the peak position of the magnetic field intensity Bx or the zero point position of Bz corresponding to the first signal current and the second signal current is relatively shifted, the presence or absence of the metal touch part can be determined. When there is no metal touch, the peak position or zero point position of the magnetic field intensity corresponding to the first signal current and the second signal current does not change. The relative shift between the peak position of the horizontal magnetic field strength Bx or the zero point position of the vertical magnetic field strength Bz is reversed with the metal touch portion as a boundary, so that this reversed intersection can be identified as the metal touch portion. .
The reason for using the two signal currents of the first signal current and the second signal current in the present invention is as follows. If a single signal current is used and the peak position or zero point position of the magnetic field strength changes, it cannot be determined whether it is due to a metal touch or a bent pipe of an embedded metal tube, but the first signal current and the second signal When two signal currents of current are used, the presence of the metal touch part is detected from the relative shift and the reversal of the peak position of the magnetic field strength (Bx) corresponding to the two signal currents or the zero point position of the magnetic field strength strength Bz as described above. And position can be specified. If the magnetic field strength Bx or Bz corresponding to the two signal currents does not invert and intersect, it can be determined that there is no metal touch part.

本発明を実施する場合、磁気センサ5を管軸直交の水平方向(x)または鉛直方向(z)に向けて管軸直交方向に走査してBxまたはBzのいずれかの磁界強度のデータを取得してメタルタッチ部を検出することができる。また、磁気センサを管軸直交の水平方向(x)と鉛直方向(z)に向けて2台同時に使用し、BxとBzの磁界強度の両データからメタルタッチ部を検出すると判定要因が増え検出確度を高めることが出来る。   When practicing the present invention, the magnetic sensor 5 is scanned in the direction perpendicular to the tube axis in the horizontal direction (x) or the vertical direction (z) perpendicular to the tube axis, and data on the magnetic field strength of either Bx or Bz is acquired. Thus, the metal touch portion can be detected. Also, if two magnetic sensors are used simultaneously in the horizontal direction (x) and vertical direction (z) perpendicular to the tube axis, and the metal touch part is detected from both Bx and Bz magnetic field strength data, the number of determination factors increases. Accuracy can be increased.

(実施例2)
次に、請求項4に係る発明、即ち測定対象の埋設金属管1の上または下方に並行して埋設された他の金属管2のメタルタッチ部を検出する方法について説明する。図7は埋設金属管1の下に並行して埋設された他の金属管2が、さらにその下方に交差する埋設管30等との干渉を避けるために配管ルートが曲げられて埋設金属管1に接触してメタルタッチしているケースである。
このようなケースにおけるメタルタッチ部の調査にあたっては、前記の実施例1と同様に調査対象区間の両端部の埋設金属管1と地中間に前述の第1信号発振器6及び第2信号発生器8を接続し、2ヶ所から第1信号電流と第2信号電流を通電した状態で所定の検出方向に向けて配置した磁気センサ5を搭載した測定台車10を地表面の管軸直交方向に走査して距離計のデータと共に磁界強度のデータを取得する。本発明において、実施例1と異なる点は直交水平成分(x)を検出する磁気センサ5、26を地表面上に所定間隔(dz)おいた高さに2段配置する。
そして、前記実施例1と同様に測定対象範囲にわたって埋設金属管1の延長方向の各測定箇所毎に管軸直交方向(P1〜P3、P4〜P6)に走査して第1信号電流および第2信号電流に対応する各測定箇所の2段の地表面磁界強度Bx1、Bx2のピーク値を取得する。
(Example 2)
Next, an invention according to claim 4, that is, a method for detecting a metal touch portion of another metal tube 2 embedded in parallel above or below the embedded metal tube 1 to be measured will be described. FIG. 7 shows that another metal pipe 2 buried in parallel under the buried metal pipe 1 is further bent in order to avoid interference with the buried pipe 30 or the like intersecting therebelow. It is a case that touches the metal and makes a metal touch.
In the investigation of the metal touch part in such a case, the first signal oscillator 6 and the second signal generator 8 described above are embedded between the buried metal pipe 1 at both ends of the investigation target section and the ground in the same manner as in the first embodiment. Are connected, and a measurement carriage 10 equipped with a magnetic sensor 5 arranged in a predetermined detection direction in a state where the first signal current and the second signal current are supplied from two places is scanned in a direction perpendicular to the tube axis on the ground surface. The magnetic field strength data is acquired together with the distance meter data. In the present invention, the difference from the first embodiment is that two magnetic sensors 5 and 26 for detecting the orthogonal horizontal component (x) are arranged on the ground surface at a height with a predetermined interval (dz).
And like the said Example 1, it scans to a pipe-axis orthogonal direction (P1-P3, P4-P6) for every measurement location of the extension direction of the buried metal pipe 1 over the measurement object range, and a 1st signal current and 2nd The peak values of the two-step ground magnetic field strengths Bx1 and Bx2 at each measurement location corresponding to the signal current are acquired.

メタルタッチ部がなく埋設金属管1のみに信号電流が流れている場合、鉛直方向の間隔dzに配置した2個の磁気センサ5、26で測定した磁界強度の水平方向成分Bx1,Bx2のピーク値から、金属管1の中心までの見掛距離zは(2)式から求めることができる。

Figure 2005134159
(2)
一方、他の金属管2とメタルタッチして電流が流れ込んでいる場合、他の金属管2からの信号電流の影響により、(2)式で得られる距離zは金属管1の中心までの真の距離zと異なった値を示す。 When there is no metal touch part and a signal current flows only in the buried metal tube 1, the peak values of the horizontal components Bx1 and Bx2 of the magnetic field intensity measured by the two magnetic sensors 5 and 26 arranged at the vertical interval dz from the apparent distance z 1 to the center of the metal tube 1 can be obtained from equation (2).
Figure 2005134159
(2)
On the other hand, when a current is flowing in by metal touch with another metal tube 2, the distance z 1 obtained by the expression (2) is reduced to the center of the metal tube 1 due to the influence of the signal current from the other metal tube 2. A value different from the true distance z 0 is shown.

例えば、調査対象の埋設金属管1と磁気センサ5との真の距離zが1(m)、他の金属管2と磁気センサ5との距離z2が1.5(m)、2個の磁気センサ5,26の間隔dzが0.5(m)の場合を考える。
このとき図2に示す信号電流において、B側では埋設金属管1を流れる第1信号電流をIa1=1A、他の金属管2を流れる第1信号電流Ia2=0.5A、A側では埋設金属管1を流れる第1信号電流を(Ia+Ia2+Ia3)=2A、他の金属管2を流れる第1信号電流Ia3=0.5Aとすると、
第1信号電流に対応する磁界強度をB側において測定すると、Ia1とIa2の電流の方向が同じであるため、磁気センサ5で測定される磁界Bx1のピーク値はBx1=2.67×10―7(T)となり、金属管1に遠い方の磁気センサ26で測定される磁界Bx2のピーク値はBx2=1.83×10―7(T)となる。従って、このBx1、Bx2の値を用いて、金属管1までの見掛距離z1aを求めると、

Figure 2005134159
(3)
となり真の距離1mより見掛け上大きく現れる。(電流符号は図2参照、以下同じ)
一方、第1信号電流に対応する磁界強度をA側において測定すると、(Ia1+Ia2+Ia3)とIa3の電流の方向が異なり、磁気センサ5で測定される磁界Bx1のピーク値はBx1=3.33×10-7(T)となり、金属管1に遠い方の磁気センサ26で測定される磁界Bx2のピーク値はBx2=2.17×10−7(T)となる。従って、このBx1、Bx2の値を用いて、金属管1までの距離z1aを求めると、
Figure 2005134159
(4)
となり実際の距離1mより小さく現れる。 For example, the true distance z 0 between the buried metal pipe 1 to be investigated and the magnetic sensor 5 is 1 (m), the distance z 2 between the other metal pipe 2 and the magnetic sensor 5 is 1.5 (m), and two pieces. Let us consider a case where the distance dz between the magnetic sensors 5 and 26 is 0.5 (m).
At this time, in the signal current shown in FIG. 2, the first signal current flowing through the buried metal tube 1 is Ia1 = 1A on the B side, the first signal current Ia2 = 0.5A flowing through the other metal tube 2, and the buried metal is on the A side. When the first signal current flowing through the tube 1 is (Ia + Ia2 + Ia3) = 2A, and the first signal current Ia3 flowing through the other metal tube 2 is 0.5A,
When the magnetic field intensity corresponding to the first signal current is measured on the B side, the current directions of Ia1 and Ia2 are the same, so the peak value of the magnetic field Bx1 measured by the magnetic sensor 5 is Bx1 = 2.67 × 10 − 7 (T), and the peak value of the magnetic field Bx2 measured by the magnetic sensor 26 far from the metal tube 1 is Bx2 = 1.83 × 10 −7 (T). Therefore, when the apparent distance z 1a to the metal tube 1 is obtained using the values of Bx1 and Bx2,
Figure 2005134159
(3)
It appears larger than the true distance of 1m. (Refer to FIG. 2 for the current sign, and the same applies hereinafter)
On the other hand, when the magnetic field intensity corresponding to the first signal current is measured on the A side, the current directions of (Ia1 + Ia2 + Ia3) and Ia3 are different, and the peak value of the magnetic field Bx1 measured by the magnetic sensor 5 is Bx1 = 3.33 × 10. −7 (T), and the peak value of the magnetic field Bx2 measured by the magnetic sensor 26 far from the metal tube 1 is Bx2 = 2.17 × 10 −7 (T). Therefore, when the distance z 1a to the metal tube 1 is obtained using the values of Bx1 and Bx2,
Figure 2005134159
(Four)
And appears smaller than the actual distance of 1 m.

上記の結果より、他の金属管2を流れる信号電流が第1信号電流Iaと同じ方向であるB側では、算定された磁気センサ5と埋設金属管1間の見掛距離z1aは真の距離より大きく現れ、電流が逆の方向であるA側では磁気センサ5と金属管1間の見掛距離z1aは小さく現れることがわかる。
同様に、第2信号電流Ibに対応するBxb1、Bxb2のピーク値から埋設金属管の見掛距離z1bを算定すると、A側では1.09(m)、B側では0.94(m)となり、第1信号電流に対応するものと逆の値となる。
From the above results, the apparent distance z 1a between the magnetic sensor 5 and the buried metal tube 1 is true on the B side where the signal current flowing through the other metal tube 2 is in the same direction as the first signal current Ia. It can be seen that the apparent distance z 1a between the magnetic sensor 5 and the metal tube 1 appears to be smaller on the side A where the current appears larger than the distance and the current is in the opposite direction.
Similarly, when the apparent distance z 1b of the buried metal tube is calculated from the peak values of Bxb1 and Bxb2 corresponding to the second signal current Ib, it is 1.09 (m) on the A side and 0.94 (m) on the B side. Thus, the value corresponds to the value corresponding to the first signal current.

図8は埋設金属管1の延長方向の各測定箇所毎に第1信号電流に対応する見掛距離z1aのプロット点を結んだ線27と、第2信号電流に対応する見掛距離z1bのプロット点を結んだ線28を示したものであり、交差点3(P7)がメタルタッチ部点であると特定することが出来る。 FIG. 8 shows a line 27 connecting plot points of the apparent distance z 1a corresponding to the first signal current at each measurement point in the extending direction of the buried metal tube 1, and an apparent distance z 1b corresponding to the second signal current. The line 28 connecting the plot points is shown, and the intersection 3 (P7) can be specified as the metal touch part point.

(実施例3)
請求項5の発明は、測定対象の埋設金属管1の斜め方向に並行して埋設された他の金属管2のメタルタッチ部を検出する方法である。この場合のメタルタッチ部3は実施例1および実施例2で述べた検出方法で検出することができるが、両者を併用して総合的に判断するのがよい。
即ち、磁気センサ5を直交水平成分(x)を検出する方向として、且つ地表面上に所定間隔おいた高さに2段配置して地表面上に間隔dzに配置した2個の磁気センサ5,26によって埋設金属管の延長方向の各測定箇所毎に管軸直交方向に走査して測定した磁界強Bx1,Bx2のピーク値から、第1信号電流および第2信号電流に対応する埋設金属管1の中心までの見掛距離zを求め、管軸方向にプロット点を結んだ線の交差点をメタルタッチ部部と特定する。
また、上記磁気センサ5,26のいずれか1個の磁界強度のピーク位置の交差点からメタルタッチ部を特定することができる。
さらに、鉛直方向(z)にも磁気センサ5を配置し、磁界強度の零点位置の変化からメタルタッチ部部を特定する方法を組合わせて、これらのデータを総合的に判断してメタルタッチ部を特定するようにすると検出確度をさらに高めることが出来る。
(Example 3)
The invention of claim 5 is a method for detecting a metal touch part of another metal tube 2 embedded in parallel to the oblique direction of the embedded metal tube 1 to be measured. The metal touch part 3 in this case can be detected by the detection method described in the first and second embodiments, but it is preferable to make a comprehensive judgment by using both.
That is, the two magnetic sensors 5 are arranged in two steps at a predetermined interval on the ground surface with the magnetic sensor 5 in the direction in which the orthogonal horizontal component (x) is detected and disposed at a distance dz on the ground surface. , 26 from the peak values of the magnetic field strengths Bx1 and Bx2 measured by scanning in the direction perpendicular to the tube axis at each measurement point in the extending direction of the buried metal tube, the buried metal tube corresponding to the first signal current and the second signal current The apparent distance z1 to the center of 1 is obtained, and the intersection of the lines connecting the plot points in the tube axis direction is specified as the metal touch part.
Further, the metal touch portion can be specified from the intersection of the peak positions of the magnetic field strength of any one of the magnetic sensors 5 and 26.
Further, the magnetic sensor 5 is arranged also in the vertical direction (z), and a method of specifying the metal touch part from the change of the zero point position of the magnetic field intensity is combined, and these data are comprehensively judged to determine the metal touch part. The detection accuracy can be further improved by specifying.

(実施例4)
次に、請求項6に係る発明の実施例について説明する。前記請求項1〜5の発明は磁気センサ5を埋設金属管1の管軸直交方向に走査させるものであったが、この発明では磁気センサ5を埋設金属管1の管軸方向に走査させる点が前述の請求項1〜5の発明と異なる。
本発明の測定装置の構成は図1に示すものと同様、調査対象となる埋設金属管1の調査範囲の両側に異なる2つの周波数の信号電流を印加する第1信号発信器6及び第2信号発信器8を設置し、埋設金属管1と地中間に信号電流を通電する。
磁界強度を測定する磁気センサ5、測定信号を処理する第1信号処理装置12と、第2信号発生器8および距離計測回路15を搭載した測定台車10は埋設金属管の管軸方向に移動するように配置する。前記磁気センサ5は鉛直成分(z)の磁界成分を検出するように配置し、距離計測用の回転信号発生器は車輪11の回転方向を管軸方向に合わせる。
Example 4
Next, an embodiment of the invention according to claim 6 will be described. In the inventions of the first to fifth aspects, the magnetic sensor 5 is scanned in the direction perpendicular to the tube axis of the buried metal tube 1. In this invention, the magnetic sensor 5 is scanned in the tube axis direction of the buried metal tube 1. Is different from the inventions of claims 1 to 5 described above.
The configuration of the measuring apparatus of the present invention is the same as that shown in FIG. 1. The first signal transmitter 6 and the second signal apply signal currents of two different frequencies to both sides of the investigation range of the buried metal pipe 1 to be investigated. A transmitter 8 is installed, and a signal current is applied to the buried metal pipe 1 and the ground.
The magnetic sensor 5 for measuring the magnetic field intensity, the first signal processing device 12 for processing the measurement signal, the measurement carriage 10 equipped with the second signal generator 8 and the distance measuring circuit 15 move in the tube axis direction of the buried metal pipe. Arrange as follows. The magnetic sensor 5 is arranged so as to detect the magnetic field component of the vertical component (z), and the rotation signal generator for distance measurement aligns the rotation direction of the wheel 11 with the tube axis direction.

上記の測定台車を用いてメタルタッチ部を検出する方法は、第1信号電流に対応する鉛直方向成分の磁界強度の極小値の位置に合うように磁気センサ5の位置調整をしながら、測定台車10を埋設金属管1の延長方向に移動し、第2信号電流に対応する鉛直方向成分(z)の磁界強度の変化を測定する。または第2信号電流に対応する鉛直方向成分(z)の磁界強度の極小値の位置に合うように磁気センサの位置調整をしながら、測定台車を金属管の延長方向に移動し、第1信号電流に対応する鉛直方向成分の磁界強度の変化を測定する。そして、得られたデータを信号処理して前記の第2信号電流または第1信号電流対応する磁界強度の変化を比較する。   The method of detecting the metal touch portion using the measurement carriage described above is performed by adjusting the position of the magnetic sensor 5 so as to match the position of the minimum value of the magnetic field intensity of the vertical component corresponding to the first signal current. 10 is moved in the extending direction of the buried metal tube 1, and the change in the magnetic field strength of the vertical component (z) corresponding to the second signal current is measured. Alternatively, while adjusting the position of the magnetic sensor so as to match the position of the minimum value of the magnetic field intensity of the vertical direction component (z) corresponding to the second signal current, the measurement carriage is moved in the extending direction of the metal tube, and the first signal The change in the magnetic field strength of the vertical component corresponding to the current is measured. Then, the obtained data is subjected to signal processing to compare the change in magnetic field intensity corresponding to the second signal current or the first signal current.

図10の点線24は前者の第2信号電流に対応する鉛直方向成分の磁界強度の管軸方向変化で、実線25は後者の第1信号電流に対応する鉛直方向成分の磁界強度の管軸方向変化である。
何れの場合も磁界強度の極性が反転する点3がメタルタッチ部であると特定することができる。
なお、管軸方向において磁界強度の極性が反転しない場合はメタルタッチ部が存在しないと判定する。
本発明を実施する場合、第1信号電流または第2信号電流に対応する鉛直方向成分の磁界強度の極小値の位置に合うように磁気センサの位置調整際、スタート地点で管軸直交方向に走査して極小点の位置を検知し、その後は極小点を見付けながら管軸方向にジグザグ移動するようにした方がよい。
The dotted line 24 in FIG. 10 is a change in the tube axis direction of the magnetic field strength of the vertical component corresponding to the former second signal current, and the solid line 25 is the tube axis direction of the magnetic field strength of the vertical component corresponding to the latter first signal current. It is a change.
In any case, the point 3 where the polarity of the magnetic field strength is reversed can be specified as the metal touch portion.
When the polarity of the magnetic field strength does not reverse in the tube axis direction, it is determined that there is no metal touch part.
When implementing the present invention, when adjusting the position of the magnetic sensor so as to match the position of the minimum value of the magnetic field strength of the vertical component corresponding to the first signal current or the second signal current, scanning is performed in the direction perpendicular to the tube axis at the start point. Then, it is better to detect the position of the minimum point, and then to move in a zigzag direction along the tube axis while finding the minimum point.

本発明に係る埋設金属管のメタルタッチ部検出方法の実施例の全体構成図。The whole block diagram of the Example of the metal touch part detection method of the buried metal pipe which concerns on this invention. 埋設金属管および並行する他の金属管に流れる電流。Current flowing in buried metal pipes and other parallel metal pipes. 調査対象の埋設金属管に近接して水平に並行する他の金属管が存在する実施例1のメタルタッチ部検出構成図。The metal touch part detection block diagram of Example 1 in which the other metal pipe which adjoins the buried metal pipe of investigation object, and exists in parallel horizontally exists. (a),(b) 実施例1における磁界強度の水平方向成分Bxの測定データを、横軸に管軸直交方向の走査距離をとって示した分布例。(A), (b) The example of distribution which showed the measurement data of the horizontal direction component Bx of the magnetic field intensity in Example 1 by taking the scanning distance of the pipe axis orthogonal direction on the horizontal axis. (a),(b) 実施例1における磁界強度の鉛直成分Bzの測定データを、横軸に管軸直交方向の走査距離をとって示した分布例。(A), (b) The example of distribution which showed the measurement data of the vertical component Bz of the magnetic field intensity in Example 1 by taking the scanning distance of the orthogonal direction of a pipe axis on the horizontal axis. 実施例1において、第1信号発信器と第2信号発信器の信号電流によって得られたBxのピーク位置およびBzの零点を結んだ平面図。In Example 1, the top view which tied the peak position of Bx obtained by the signal current of the 1st signal transmitter and the 2nd signal transmitter, and the zero point of Bz. 調査対象の埋設金属管に近接して下方に並行する他の金属管が存在する実施例2のメタルタッチ部検出構成図。The metal touch part detection block diagram of Example 2 in which the other metal pipe which adjoins the buried metal pipe of investigation object, and exists below exists. 実施例2において得られた第1信号電流に対応する見掛距離zおよび第2信号電流に対応する見掛距離zを結んだ断面図。Sectional view connecting apparent distance z 1 which corresponds to the apparent distance z 1 and the second signal current corresponding to the first signal current obtained in Example 2. 実施例4において管軸方向に磁気センサを移動して得られた、2信号電流に対応する鉛直成分の磁界強度の管軸方向変化。The change in the tube axis direction of the magnetic field intensity of the vertical component corresponding to the two signal currents obtained by moving the magnetic sensor in the tube axis direction in Example 4. 従来技術の例Example of conventional technology 従来技術の例Example of conventional technology 従来技術の例Example of conventional technology 従来技術の例Example of conventional technology

符号の説明Explanation of symbols

1 調査対象の埋設金属管
2 他の金属管
3 メタルタッチ部部
4 地盤
5 磁気センサ
6 第1信号発信器
7 対極
8 第2信号発信器
9 対極
10 測定台車
11 車輪
12 第1信号処理装置
13 第2信号処理装置
14 表示装置
15 距離計測回路
16 埋設金属管1を流れる信号電流から発生する磁界
17 他の金属管2を流れる信号電流から発生する磁界
18 16と17の合成磁界
19 第1信号電流に対応する合成磁界強度Bxのピークを連ねた線
20 第2信号電流に対応する合成磁界強度Bxのピークを連ねた線
21 第1信号電流から発生する磁界
22 第2信号電流から発生する磁界
23 第1信号電流から発生する磁界強度の絶対値が極小となる位置
24 第1信号電流から発生する磁界強度の絶対値が極小となる位置を金属管の延長方向に追跡したときに測定される第2信号電流からなる磁界
25 第2信号電流から発生する磁界強度の絶対値が極小となる位置を金属管の延長方向に追跡したときに測定される第1信号電流からなる磁界
26 実施例2の離隔zを算定する際に使用する金属管1から遠い方の磁気センサ
27 第1信号電流に対応する見掛距離zのプロット点を結んだ線
28 第2信号電流に対応する見掛距離zのプロット点を結んだ線
29 マンホール等の構造物
30 他埋設管等の構造物
DESCRIPTION OF SYMBOLS 1 Buried metal pipe of investigation object 2 Other metal pipe 3 Metal touch part 4 Ground 5 Magnetic sensor 6 1st signal transmitter 7 Counter electrode 8 2nd signal transmitter 9 Counter electrode
10 Measuring cart
11 wheels
12 First signal processor
13 Second signal processor
14 Display device
15 Distance measurement circuit
16 Magnetic field generated from the signal current flowing through the buried metal tube 1
17 Magnetic field generated from the signal current flowing through another metal tube 2
18 16 and 17 combined magnetic field
19 Line connecting peaks of the combined magnetic field strength Bx corresponding to the first signal current
20 Line connecting peaks of the combined magnetic field strength Bx corresponding to the second signal current
21 Magnetic field generated from the first signal current
22 Magnetic field generated from the second signal current
23 Position at which the absolute value of the magnetic field intensity generated from the first signal current is minimal
24 Magnetic field composed of the second signal current measured when the position where the absolute value of the magnetic field intensity generated from the first signal current is minimized is traced in the extending direction of the metal tube.
25 Magnetic field composed of the first signal current measured when the position where the absolute value of the magnetic field intensity generated from the second signal current is minimized is traced in the extending direction of the metal tube.
26 Magnetic sensor farther away from the metal tube 1 used in calculating the separation z 1 of Example 2
27 Line connecting plot points of apparent distance z 1 corresponding to the first signal current
28 Line connecting plot points of apparent distance z 1 corresponding to the second signal current
29 Manholes and other structures
30 Structures such as other buried pipes

Claims (8)

防食被覆された埋設金属管と、並行して近接埋設された他の金属管とのメタルタッチ部を検出する方法であって、検出対象区間の両側から埋設金属管と地中に対して第1信号電流と第2信号電流を印加し、地表面を走査する磁気センサを埋設金属管の延長方向の各測定箇所毎に管軸直交方向に走査させて磁界強度を測定し、得られたデータを信号処理して前記の第1信号電流と第2信号電流対応する各測定箇所の磁界強度の変化を比較してメタルタッチ部の有無およびメタルタッチ部位置を特定することを特徴とする埋設金属管のメタルタッチ部検出方法。 A method of detecting a metal touch part between a buried metal pipe coated with anticorrosion and another metal pipe buried in close proximity in parallel, which is the first to the buried metal pipe and the ground from both sides of the detection target section. Applying the signal current and the second signal current, the magnetic sensor that scans the ground surface is scanned in the direction perpendicular to the tube axis at each measurement point in the extension direction of the buried metal tube, and the magnetic field strength is measured. A buried metal tube characterized in that the presence or absence of a metal touch part and the position of the metal touch part are specified by performing signal processing and comparing changes in the magnetic field strength at each measurement location corresponding to the first signal current and the second signal current. Metal touch detection method. 埋設金属管に対して水平に並行する他の金属管のメタルタッチ部検出方法において、磁気センサを管軸直交方向の水平成分磁界を検出するように配置し、各測定箇所における管軸直交方向に走査させた時の磁界強度の測定データから第1信号電流と第2信号電流に対応する磁界強度の極大値の発生位置を比較し、メタルタッチ部の有無およびメタルタッチ部位置を特定することを特徴とする請求項1記載の埋設金属管のメタルタッチ部検出方法。 In the metal touch part detection method for other metal pipes parallel to the buried metal pipe, the magnetic sensor is arranged to detect the horizontal component magnetic field in the direction perpendicular to the pipe axis, and in the direction perpendicular to the pipe axis at each measurement location. Comparing the occurrence position of the maximum value of the magnetic field intensity corresponding to the first signal current and the second signal current from the measurement data of the magnetic field intensity at the time of scanning, and specifying the presence / absence of the metal touch part and the metal touch part position The method for detecting a metal touch part of an embedded metal pipe according to claim 1, wherein: 埋設金属管に対して水平に並行する他の金属管のメタルタッチ部検出方法において、磁気センサを鉛直成分磁界を検出するように配置し、各測定箇所の管軸直交方向に走査させた時磁界強度の測定データから第1信号電流と第2信号電流に対応する磁界強度の極小値の発生位置を比較し、メタルタッチ部の有無およびメタルタッチ部位置を特定することを特徴とする請求項1記載の埋設金属管のメタルタッチ部検出方法。 In the metal touch part detection method of other metal pipes that are parallel to the buried metal pipe, the magnetic sensor is arranged to detect the vertical component magnetic field, and when each of the measurement points is scanned in the direction perpendicular to the pipe axis , The presence / absence of a metal touch part and the position of the metal touch part are specified by comparing the occurrence positions of the minimum values of the magnetic field intensity corresponding to the first signal current and the second signal current from the measurement data of the magnetic field intensity. The metal touch part detection method of the buried metal pipe of 1. 埋設金属管に対して上または下側に並行する他の金属管のメタルタッチ部検出方法において、磁気センサを管軸直交方向の水平成分磁界を検出する方向とし且つ所定間隔をおいた高さに2段配置し、各測定箇所における2段の磁気センサの管軸直交方向に走査させた時の磁界強度の極大値の測定データから第1信号電流と第2信号電流に対応する見掛上の埋設金属管の深さを演算し、その値を比較してメタルタッチ部の有無およびメタルタッチ部位置を特定することを特徴とする請求項1記載の埋設金属管のメタルタッチ部検出方法。 In the metal touch part detection method of another metal pipe parallel to the upper or lower side with respect to the buried metal pipe, the magnetic sensor is set to a direction to detect a horizontal component magnetic field in the direction perpendicular to the pipe axis and at a predetermined interval. Apparent appearance corresponding to the first signal current and the second signal current from the measurement data of the maximum value of the magnetic field intensity when two stages are arranged and scanned in the direction perpendicular to the tube axis of the two-stage magnetic sensor at each measurement location. 2. The method for detecting a metal touch part of a buried metal pipe according to claim 1, wherein the depth of the buried metal pipe is calculated, and the value is compared to identify the presence / absence of the metal touch part and the position of the metal touch part. 埋設金属管に対して斜め位置に並行する他の金属管のメタルタッチ部検出方法において、磁気センサを埋設金属管の管軸直交方向の水平成分磁界を検出する方向とし且つ所定間隔をおいた高さに2段配置し、各測定箇所におけるいずれかの段または両方の段の磁気センサの直交方向に走査させた時の磁界強度の測定データから第1信号電流と第2信号電流に対応する磁界強度の極大値の発生位置を求め、且つ2段の磁気センサの管軸直交方向に走査させた時の磁界強度の極大値の測定データから埋設金属管の深さを演算し、前記磁界強度の極大値の発生位置および埋設金属管の演算深さを比較してメタルタッチ部の有無およびメタルタッチ部位置を特定することを特徴とする請求項1記載の埋設金属管のメタルタッチ部検出方法。 In a method for detecting a metal touch part of another metal pipe parallel to an oblique position with respect to the buried metal pipe, the magnetic sensor is set to a direction to detect a horizontal component magnetic field in a direction perpendicular to the pipe axis of the buried metal pipe, and has a predetermined interval. In addition, the magnetic field corresponding to the first signal current and the second signal current is measured from the measurement data of the magnetic field intensity when two stages are arranged and scanned in the orthogonal direction of one or both of the magnetic sensors at each measurement location. The position of occurrence of the maximum value of the strength is obtained, and the depth of the buried metal tube is calculated from the measurement data of the maximum value of the magnetic field strength when scanning in the direction perpendicular to the tube axis of the two-stage magnetic sensor. 2. The method of detecting a metal touch part in an embedded metal pipe according to claim 1, wherein the presence of the metal touch part and the position of the metal touch part are specified by comparing the generation position of the maximum value and the calculation depth of the embedded metal pipe. 防食被覆された埋設金属管と、並行して近接埋設された他の金属管とのメタルタッチ部を検出する方法であって、検出対象区間の両側から埋設金属管と地中に対して第1信号電流と第2信号電流を印加し、地表面を走査する磁気センサを鉛直成分の磁界を検出するように配置し、第1信号電流に対応する鉛直方向成分の磁界強度の極小値の位置に沿って埋設金属管の延長方向に追跡しながら第2信号電流に対応する鉛直方向成分の磁界強度の変化を測定し、または第2信号電流に対応する鉛直方向成分の磁界強度の極小値の位置に沿って埋設金属管の延長方向に追跡しながら第1信号電流に対応する鉛直方向成分の磁界強度の変化を測定し、得られたデータを信号処理して前記の第2信号電流または第1信号電流対応する磁界強度の変化を比較してメタルタッチ部の有無およびメタルタッチ部位置を特定することを特徴とする埋設金属管のメタルタッチ部検出方法。 A method of detecting a metal touch part between a buried metal pipe coated with anticorrosion and another metal pipe buried in close proximity in parallel, which is the first to the buried metal pipe and the ground from both sides of the detection target section. A magnetic sensor that applies a signal current and a second signal current and scans the ground surface is arranged so as to detect a vertical component magnetic field, and is positioned at the position of the minimum value of the magnetic field strength of the vertical component corresponding to the first signal current. Measure the change in the magnetic field strength of the vertical component corresponding to the second signal current while tracking the extension direction of the buried metal pipe along the position, or the position of the minimum value of the magnetic field strength of the vertical component corresponding to the second signal current The change in the magnetic field strength of the vertical component corresponding to the first signal current is measured while tracking the extension direction of the buried metal pipe along the first and second signals. Ratio of change in magnetic field strength corresponding to signal current Metal touch portion detection method of the buried metal tube and identifies the presence and metal touch portion position of the metal-touch portion is. 検出対象区間の両側から埋設金属管と地中に対して印加する第1信号電流と第2信号電流は、それぞれ異なる周波数の交流信号を同時に通電するようにしたことを特徴とする請求項1〜請求項6のいずれかに記載の埋設金属管のメタルタッチ部検出方法。 The first signal current and the second signal current applied to the buried metal pipe and the ground from both sides of the detection target section are configured to simultaneously pass alternating signals having different frequencies, respectively. The method for detecting a metal touch part of an embedded metal pipe according to claim 6. 磁気センサによって得られたデータを信号処理して異なる周波数信号に対応する磁界強度を得る信号処理装置として、埋設金属管と地中に対して印加する信号周波数と同じ周波数の参照信号を使用するロックインアンプを使用することを特徴とする請求項7記載の埋設金属管のメタルタッチ部検出方法。 A lock that uses a reference signal with the same frequency as the signal frequency applied to the buried metal pipe and the ground as a signal processing device that obtains magnetic field strength corresponding to different frequency signals by processing the data obtained by the magnetic sensor 8. The method for detecting a metal touch part of a buried metal pipe according to claim 7, wherein an in-amplifier is used.
JP2003367897A 2003-10-28 2003-10-28 Method for detecting metal touch part of buried metal pipe Expired - Lifetime JP4029118B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003367897A JP4029118B2 (en) 2003-10-28 2003-10-28 Method for detecting metal touch part of buried metal pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003367897A JP4029118B2 (en) 2003-10-28 2003-10-28 Method for detecting metal touch part of buried metal pipe

Publications (2)

Publication Number Publication Date
JP2005134159A true JP2005134159A (en) 2005-05-26
JP4029118B2 JP4029118B2 (en) 2008-01-09

Family

ID=34645765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003367897A Expired - Lifetime JP4029118B2 (en) 2003-10-28 2003-10-28 Method for detecting metal touch part of buried metal pipe

Country Status (1)

Country Link
JP (1) JP4029118B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180023677A (en) * 2016-08-26 2018-03-07 한국전력공사 Apparatus for calculating structure size

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5312221B2 (en) * 2009-06-23 2013-10-09 日鉄住金パイプライン&エンジニアリング株式会社 Metal touch detection device and metal touch detection method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6281557A (en) * 1985-10-07 1987-04-15 Tokyo Gas Co Ltd Apparatus for detecting flaw on piping
JPS6378063A (en) * 1986-09-20 1988-04-08 Osaka Gas Co Ltd Damage detecting method for body buried underground
JPS64481A (en) * 1986-06-26 1989-01-05 Nkk Corp Detection of damage of coated film
JPH10206390A (en) * 1997-01-22 1998-08-07 Kawasaki Steel Corp Method for detecting damage of covering of buried steel pipe
JP2000249685A (en) * 1999-02-26 2000-09-14 Nippon Boshoku Kogyo Kk Method for investigating damage position of anticorrosion coat of buried metallic pipe and apparatus therefor
JP2001215204A (en) * 2000-02-03 2001-08-10 Japan Steel & Tube Constr Co Ltd Method of examining metal touch for underground buried pipe

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6281557A (en) * 1985-10-07 1987-04-15 Tokyo Gas Co Ltd Apparatus for detecting flaw on piping
JPS64481A (en) * 1986-06-26 1989-01-05 Nkk Corp Detection of damage of coated film
JPS6378063A (en) * 1986-09-20 1988-04-08 Osaka Gas Co Ltd Damage detecting method for body buried underground
JPH10206390A (en) * 1997-01-22 1998-08-07 Kawasaki Steel Corp Method for detecting damage of covering of buried steel pipe
JP2000249685A (en) * 1999-02-26 2000-09-14 Nippon Boshoku Kogyo Kk Method for investigating damage position of anticorrosion coat of buried metallic pipe and apparatus therefor
JP2001215204A (en) * 2000-02-03 2001-08-10 Japan Steel & Tube Constr Co Ltd Method of examining metal touch for underground buried pipe

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180023677A (en) * 2016-08-26 2018-03-07 한국전력공사 Apparatus for calculating structure size
KR102098437B1 (en) 2016-08-26 2020-05-26 한국전력공사 Apparatus for calculating structure size

Also Published As

Publication number Publication date
JP4029118B2 (en) 2008-01-09

Similar Documents

Publication Publication Date Title
US5828219A (en) Method of detecting faults in the insulation layer of an insulated concealed conductor
KR102295246B1 (en) Buried-metal detection method, and detection device therefor
JP2526578B2 (en) Coating film damage detection method
US5650725A (en) Magnetic imager and method
US4947132A (en) Method for detecting thickness variations in the wall of a tubular body which conducts electricity
JP2008032575A (en) Eddy current measuring probe and flaw detection device using it
JPH01481A (en) Paint film damage detection method
JP5192706B2 (en) Ground fault point search device and ground fault point search method using the same
JP4029118B2 (en) Method for detecting metal touch part of buried metal pipe
JP5146360B2 (en) Method and apparatus for detecting rust in steel structures
JP4044303B2 (en) Corrosion protection coating damage detection method for buried metal pipes using two kinds of frequency signals
JP2005091191A (en) Method of detecting defective part in coating of embedded metal pipe
JP2011191288A (en) Method and device for estimating current density of damaged coating portion of underground pipe, and method and device for controlling electric protection
JP2002022695A (en) Method for detecting coating film damage position of embedded coated piping
JP3167654B2 (en) Method and apparatus for locating corrosion protection coating on buried metal pipes
JP2013096958A (en) Method and apparatus for estimating potential of coating defect part of underground pipe, and method and apparatus for electric protection management
JP2000249685A (en) Method for investigating damage position of anticorrosion coat of buried metallic pipe and apparatus therefor
JPS59108954A (en) Damage position detection for cover applied on buried piping
JP2000249687A (en) Method for investigating damage position of anticorrosion coat of buried metallic pipe and apparatus therefor
JP5211276B2 (en) Electromagnetic induction voltage prediction method
JPH03152411A (en) Detecting device for signal current of buried pipe and depth of burying
JP2001255304A (en) Method for detecting damage position of coating film of embedded coated piping
JP3451348B2 (en) Method for detecting paint film damage on buried coated steel pipe
JP3169754B2 (en) Method and apparatus for monitoring damage degree of coated steel pipe
JP2000249686A (en) Method for investigating damage position of anticorrosion coat of buried metallic pipe and apparatus therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060804

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070717

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070717

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070808

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4029118

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term