JP2005132691A - Ceramic-made tray - Google Patents

Ceramic-made tray Download PDF

Info

Publication number
JP2005132691A
JP2005132691A JP2003371909A JP2003371909A JP2005132691A JP 2005132691 A JP2005132691 A JP 2005132691A JP 2003371909 A JP2003371909 A JP 2003371909A JP 2003371909 A JP2003371909 A JP 2003371909A JP 2005132691 A JP2005132691 A JP 2005132691A
Authority
JP
Japan
Prior art keywords
tray
ceramic
sintered body
insulator
ceramic sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003371909A
Other languages
Japanese (ja)
Other versions
JP4453068B2 (en
Inventor
Shigeyuki Hamayoshi
繁幸 濱吉
Shingo Nogami
信悟 野上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2003371909A priority Critical patent/JP4453068B2/en
Publication of JP2005132691A publication Critical patent/JP2005132691A/en
Application granted granted Critical
Publication of JP4453068B2 publication Critical patent/JP4453068B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Furnace Charging Or Discharging (AREA)
  • Spark Plugs (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ceramic-made tray which can prevent deformation and breakage by enhancing soaking with small temperature fluctuation of the tray, and excellent in heat resistance. <P>SOLUTION: This tray is one for setting an insulator in the heating process of manufacturing a spark plug, and the tray is made of a ceramic sintered material which has a thermal conductivity at ambient temperature of not smaller than 30 W/(m×K). The ceramic sintered material has four-point bending strength at ambient temperature of not smaller than 600 MPa, Young's modulus of not smaller than 200 GPa, and relative density of not smaller than 97%. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、スパークプラグを製造する際の加熱工程で碍子をセットするのに用いるトレイに関する。   The present invention relates to a tray used for setting an insulator in a heating process in manufacturing a spark plug.

内燃機関用のスパークプラグとして、中心電極と接地電極との間で火花を発生させるとともに、ステムと中心電極との間に電気抵抗部を有するものが使用されている。このスパークプラグの製造方法は、例えば特許文献1および特許文献2に記載されている。すなわち、セラミックス製の碍子に粉末状の抵抗材を充填し、この抵抗材が充填された複数本の碍子をトレイにセットする。そして、トレイを連続炉内に搬送し碍子を加熱する。その後、碍子を炉から取り出して、碍子をトレイにセットした状態で加熱温度より低い温度でステムを加圧して、碍子にステムを押し込んだ後、ハウジングを碍子に固定させるものである。   As a spark plug for an internal combustion engine, a spark plug that generates a spark between a center electrode and a ground electrode and has an electric resistance portion between the stem and the center electrode is used. This spark plug manufacturing method is described in, for example, Patent Document 1 and Patent Document 2. In other words, a ceramic insulator is filled with a powdered resistance material, and a plurality of insulators filled with the resistance material are set on a tray. And a tray is conveyed in a continuous furnace and an insulator is heated. Thereafter, the insulator is taken out from the furnace, the stem is pressed at a temperature lower than the heating temperature in a state where the insulator is set on the tray, the stem is pushed into the insulator, and then the housing is fixed to the insulator.

特許文献1には、絶縁体の軸方向に形成された貫通孔に対し、その一方の端部側に端子金具が固定され、同じく他方の端部側に中心電極が固定されるとともに、該貫通孔内において端子金具と中心電極との間に、それらを電気的に接合するための、主にガラスと導電性材料との混合物からなる焼結導電材料部が形成されたスパークプラグの製造方法であって、前記絶縁体の貫通孔に対し、その一方の端部側に端子金具が配置され、同じく他方の端部側に中心電極が配置されるとともに、貫通孔内において端子金具と中心電極との間に、焼結導電材料部の原料粉末の充填層が形成された組立体を製造する組立体製造工程と、原料粉末の充填層が、絶縁体の軸線方向において中心電極側から軟化し始めるように組立体を加熱する加熱工程と、その加熱された組立体に対し、貫通孔に対する中心電極の位置は固定して、端子金具を貫通孔の軸方向において中心電極に近づく方向に加圧することにより、貫通孔内の原料粉末の充填層を中心電極と端子金具との間でプレスするプレス工程とを含むスパークプラグの製造方法が記載されている。   In Patent Document 1, a terminal fitting is fixed to one end side of a through hole formed in the axial direction of an insulator, and a center electrode is fixed to the other end side. A spark plug manufacturing method in which a sintered conductive material portion mainly composed of a mixture of glass and a conductive material is formed between a terminal fitting and a center electrode in a hole to electrically connect them. A terminal fitting is disposed on one end side of the through hole of the insulator, and a center electrode is disposed on the other end side, and the terminal fitting and the center electrode are disposed in the through hole. The assembly manufacturing process for manufacturing the assembly in which the packed layer of the raw material powder of the sintered conductive material part is formed, and the packed layer of the raw material powder starts to soften from the center electrode side in the axial direction of the insulator Heating process for heating the assembly, and so on For the heated assembly, the position of the center electrode with respect to the through hole is fixed, and the terminal fitting is pressed in a direction approaching the center electrode in the axial direction of the through hole, whereby the packed layer of the raw material powder in the through hole is formed. A spark plug manufacturing method including a pressing step of pressing between a center electrode and a terminal fitting is described.

また、特許文献1の図3および図5には、セラミックスまたは金属からなる方形板状のもので、複数の組立体保持用貫通孔がマトリックス状に形成されて、組立体を中心電極が下側となるように立てた状態で保持するセッタが記載されている。   3 and 5 of Patent Document 1 are rectangular plate-like materials made of ceramics or metal, and a plurality of assembly holding through holes are formed in a matrix shape. A setter that is held in a standing state is described.

特許文献2には、中心電極と接地電極との間で火花を発生させるとともに、端子部がステムと中心電極との間に電気抵抗部を有するスパークプラグの製造方法であって、中心電極およびステムが組み付けられる碍子に、粉末状の抵抗材を充填する抵抗体充填工程と、抵抗体が充填された複数本の碍子を炉内で加熱する加熱工程と、加熱工程を終えた複数本の碍子が略均一に冷却されるように、複数本の碍子を炉から出して、ステムを碍子に押し込む押し込み工程とを備えるスパークプラグの製造方法が記載されている。   Patent Document 2 discloses a spark plug manufacturing method in which a spark is generated between a center electrode and a ground electrode, and a terminal portion has an electric resistance portion between the stem and the center electrode, the center electrode and the stem A resistor filling step of filling a powdered resistance material into the insulator, a heating step of heating a plurality of insulators filled with the resistor in a furnace, and a plurality of insulators after the heating step A spark plug manufacturing method including a step of pushing a plurality of insulators out of a furnace and pushing a stem into the insulator so as to be cooled substantially uniformly is described.

また、特許文献2の図3には、抵抗材が充填された複数本の碍子を装着した金属製のトレイが記載されている。   FIG. 3 of Patent Document 2 describes a metal tray equipped with a plurality of insulators filled with a resistance material.

特開平11−251033号公報JP-A-11-251033 特開2002−198156号公報JP 2002-1981156 A

従来、スパークプラグを製造する際の加熱工程で碍子をセットするトレイ(セッタとも呼ばれる)として、SCH21材などの耐熱鋼からなるトレイが広く使用されている。しかしながら、耐熱鋼製のトレイは、熱伝導率が約17W/(m・K)と低いため、連続炉で碍子を加熱した場合、トレイ自体の温度がばらついて、碍子を均一に加熱することが困難となりプラグの品質に悪影響を及ぼす問題があった。また、耐熱鋼は熱容量が大きいので、碍子を均熱化するまでの時間が長くかかり加熱処理サイクルが延びるという欠点があった。   Conventionally, a tray made of heat-resistant steel such as SCH21 material has been widely used as a tray (also called a setter) for setting an insulator in a heating process when manufacturing a spark plug. However, since the heat-resistant steel tray has a low thermal conductivity of about 17 W / (m · K), when the insulator is heated in a continuous furnace, the temperature of the tray itself varies, and the insulator can be heated uniformly. There was a problem that became difficult and adversely affected the quality of the plug. In addition, since heat-resistant steel has a large heat capacity, it takes a long time until the insulator is soaked, resulting in a disadvantage that the heat treatment cycle is extended.

また、耐熱鋼製のトレイは繰り返しの熱サイクルにより変形しやすく、またトレイ表面に酸化スケールを発生する問題があった。さらに、比重が大きく重量が嵩み作業性に劣るという欠点があった。   In addition, the heat-resistant steel tray is easily deformed by repeated heat cycles, and there is a problem that oxide scale is generated on the tray surface. Furthermore, there is a drawback that the specific gravity is large and the weight is bulky and the workability is inferior.

一方、特許文献1に記載されているようにセラミックス製のトレイも開示されている。しかしながら、従来のセラミックス製トレイは、トレイ自体の温度がばらついて均熱性に劣り、またステムを碍子に押し込むプレス加圧に対して変形や破壊を生じるという問題があった。   On the other hand, as described in Patent Document 1, a ceramic tray is also disclosed. However, the conventional ceramic tray has a problem that the temperature of the tray itself varies and is inferior in heat uniformity, and deformation or breakage occurs due to press pressurizing the stem into the insulator.

したがって、本発明は、変形や破壊を防ぎ、トレイ自体の温度のばらつきが少ない均熱性を高めた、耐熱性に優れたセラミックス製トレイを提供することを課題とする。   Accordingly, an object of the present invention is to provide a ceramic tray excellent in heat resistance that prevents deformation and breakage, and has improved heat uniformity with little variation in temperature of the tray itself.

すなわち、本発明のセラミックス製トレイは、スパークプラグを製造する際の加熱工程で碍子をセットするのに用いるトレイであって、トレイがセラミックス焼結体で形成され、該セラミックス焼結体の常温における熱伝導率が30W/(m・K)以上であることを特徴とする。   That is, the ceramic tray of the present invention is a tray used for setting an insulator in a heating process when manufacturing a spark plug, and the tray is formed of a ceramic sintered body. The thermal conductivity is 30 W / (m · K) or more.

また、本発明において、セラミックス焼結体の常温における4点曲げ強度が600MPa以上であることを特徴とする。また、セラミックス焼結体のヤング率が200GPa以上であることを特徴とする。また、セラミックス焼結体の相対密度が97%以上であることを特徴とする。また、セラミックス焼結体が窒化ケイ素セラミックス焼結体であることを特徴とする。   In the present invention, the ceramic sintered body has a four-point bending strength at room temperature of 600 MPa or more. The ceramic sintered body has a Young's modulus of 200 GPa or more. Moreover, the relative density of the ceramic sintered body is 97% or more. The ceramic sintered body is a silicon nitride ceramic sintered body.

本発明は、トレイをセラミックスで形成することにより、耐熱性に優れ、耐熱鋼に比べて約半分の重量にでき、繰返し熱サイクルによる変形を防止できる。本発明の最大の特徴はセラミックス自体の熱伝導率を30W/(m・K)以上に高めることにより、加熱炉内へ搬送されたトレイの温度ばらつきが小さくなり、碍子を均一に加熱させることができ製品品質を向上させ得る。また、熱伝導率を高めることにより、昇温速度が速くなり加熱処理サイクルを短縮でき、生産効率が上がり、省エネルギーにも寄与できる。セラミックスの熱伝導率は50W/(m・K)以上がより好ましい。   In the present invention, by forming the tray with ceramics, it has excellent heat resistance, can be about half the weight of heat resistant steel, and can prevent deformation due to repeated thermal cycles. The greatest feature of the present invention is that by increasing the thermal conductivity of the ceramic itself to 30 W / (m · K) or more, the temperature variation of the tray conveyed into the heating furnace is reduced, and the insulator is heated uniformly. Product quality can be improved. Further, by increasing the thermal conductivity, the rate of temperature rise can be increased, the heat treatment cycle can be shortened, the production efficiency can be increased, and energy saving can be achieved. The thermal conductivity of the ceramic is more preferably 50 W / (m · K) or more.

また、セラミックス焼結体の常温における4点曲げ強度が600MPa以上(より好ましくは4点曲げ強度が800MPa以上)、ヤング率が200GPa以上(より好ましくはヤング率が280GPa以上)とすることにより、ステムを碍子に押し込むプレス加圧に対して変形や破壊を防止できる。また、セラミックスの機械的特性を十分に発揮させるためには、緻密質焼結体であることが必要であり、相対密度が97%以上であることが望ましい。より望ましくは相対密度が99%以上である。   The ceramic sintered body has a 4-point bending strength at room temperature of 600 MPa or more (more preferably a 4-point bending strength of 800 MPa or more) and a Young's modulus of 200 GPa or more (more preferably a Young's modulus of 280 GPa or more). Can be prevented from being deformed or broken against press-pressing. Moreover, in order to fully exhibit the mechanical characteristics of ceramics, it is necessary to be a dense sintered body, and the relative density is desirably 97% or more. More desirably, the relative density is 99% or more.

セラミックスとしては窒化ケイ素、アルミナ、炭化ケイ素が挙げられるが、なかでも靭性が高く、高温特性に優れる窒化ケイ素が望ましい。窒化ケイ素焼結体の場合、含有量を制御することにより熱伝導率を30W/(m・K)に到達することができる。好ましくは焼結体中に不純物として存在するアルミニウムおよび酸素の含有量を低減することにより、つまり焼結体中のアルミニウムの含有量を0.2重量%以下、酸素の含有量を5.0重量%以下とすることにより、常温における熱伝導率を向上することができる。   Examples of the ceramic include silicon nitride, alumina, and silicon carbide. Among them, silicon nitride is preferable because of high toughness and excellent high-temperature characteristics. In the case of a silicon nitride sintered body, the thermal conductivity can reach 30 W / (m · K) by controlling the content. Preferably, by reducing the contents of aluminum and oxygen present as impurities in the sintered body, that is, the aluminum content in the sintered body is 0.2% by weight or less and the oxygen content is 5.0% by weight. By setting it as% or less, the thermal conductivity at room temperature can be improved.

図1に本発明のセラミックス製トレイの一例を示す。図1(a)は平面図、図1(b)は縦断面図を示す。図1において、セラミックス製トレイ1は、方形板状であり、碍子3を挿入装着する貫通孔2が複数個穿孔されている。複数本の碍子3をトレイ1の貫通孔2に挿入セットした後、トレイ1を連続炉内に搬送し碍子3を加熱する。   FIG. 1 shows an example of a ceramic tray of the present invention. 1A is a plan view, and FIG. 1B is a longitudinal sectional view. In FIG. 1, a ceramic tray 1 has a rectangular plate shape, and a plurality of through holes 2 into which an insulator 3 is inserted and mounted are perforated. After a plurality of insulators 3 are inserted and set in the through holes 2 of the tray 1, the tray 1 is conveyed into a continuous furnace and the insulator 3 is heated.

本発明のセラミックス製トレイは次のように作製した。まず、焼結助剤として、平均粒径0.2μmの酸化マグネシウム粉末3.0重量%、平均粒径0.3μmの酸化イットリウム粉末3.0重量%を平均粒径0.5μmの窒化ケイ素粉末に添加し、適量の分散剤を加えエタノール中で粉砕、混合した。次いで、真空乾燥後、篩を通して造粒した後、ゴム型に充填し、静水圧により冷間静水圧プレス(CIP)を行うことにより成形体を作製した。この成形体を1700〜2000℃の窒素ガス雰囲気中で所定時間焼成し、窒化ケイ素セラミックス焼結体からなるセラミックス製トレイを得た。   The ceramic tray of the present invention was produced as follows. First, as a sintering aid, 3.0% by weight of magnesium oxide powder having an average particle size of 0.2 μm, 3.0% by weight of yttrium oxide powder having an average particle size of 0.3 μm, and silicon nitride powder having an average particle size of 0.5 μm Then, an appropriate amount of a dispersant was added, and the mixture was pulverized and mixed in ethanol. Next, after vacuum drying, the mixture was granulated through a sieve, filled in a rubber mold, and then subjected to cold isostatic pressing (CIP) with hydrostatic pressure to produce a molded body. This formed body was fired for a predetermined time in a nitrogen gas atmosphere at 1700 to 2000 ° C. to obtain a ceramic tray made of a silicon nitride ceramic sintered body.

また、前記本発明の窒化ケイ素セラミックス焼結体から、直径10mm×厚さ3mmの熱伝導率および密度測定用の試験片、縦3mm×横4mm×長さ40mmの4点曲げ試験片、12mm×1mm×60mmのヤング率測定用試験片を採取した。熱伝導率はレーザーフラッシュ法JIS R1611に準拠して常温での比熱および熱拡散率を測定し熱伝導率を算出した。密度はアルキメデス法より窒化ケイ素焼結体の真密度を配合組成から求め、測定値を真密度で除することにより相対密度を求めた。4点曲げ強度は常温にてJIS R1601に準拠して測定を行った。ヤング率は歪ゲージ法により試験速度1mm/分で測定した。   Further, from the silicon nitride ceramic sintered body of the present invention, a test piece for measuring thermal conductivity and density having a diameter of 10 mm × thickness of 3 mm, a four-point bending test piece of length 3 mm × width 4 mm × length 40 mm, 12 mm × A test piece for measuring Young's modulus of 1 mm × 60 mm was collected. The thermal conductivity was calculated by measuring the specific heat and thermal diffusivity at room temperature in accordance with the laser flash method JIS R1611. For the density, the true density of the silicon nitride sintered body was determined from the blend composition by the Archimedes method, and the relative density was determined by dividing the measured value by the true density. The 4-point bending strength was measured according to JIS R1601 at room temperature. Young's modulus was measured by a strain gauge method at a test speed of 1 mm / min.

本発明のセラミックス製トレイを形成する窒化ケイ素焼結体は、常温における熱伝導率が65W/(m・K)、常温における4点曲げ強度が900MPa、相対密度が99.6%、ヤング率が290GPa以上であった。また、窒化ケイ素焼結体中のアルミニウムの含有量は0.02重量%、酸素の含有量は0.5重量%であった。   The silicon nitride sintered body forming the ceramic tray of the present invention has a thermal conductivity of 65 W / (m · K) at room temperature, a 4-point bending strength at room temperature of 900 MPa, a relative density of 99.6%, and a Young's modulus. It was 290 GPa or more. The aluminum content in the sintered silicon nitride was 0.02% by weight, and the oxygen content was 0.5% by weight.

本発明例として窒化ケイ素焼結体からなるトレイと、比較例としてSCH21の耐熱鋼からなるトレイを用いて、両トレイを加熱炉に装入した際の経過時間に対する温度変化を調べた。その結果を図2に示す。窒化ケイ素製トレイが加熱炉へ搬送の後、16分間でトレイ全体が均熱に達したのに対し、耐熱鋼では22分間の加熱が必要であった。   Using a tray made of a silicon nitride sintered body as an example of the present invention and a tray made of heat-resistant steel of SCH 21 as a comparative example, the temperature change with respect to the elapsed time when both trays were charged into a heating furnace was examined. The result is shown in FIG. After the silicon nitride tray was transported to the heating furnace, the entire tray reached a soaking temperature in 16 minutes, whereas the heat resistant steel required heating for 22 minutes.

本発明のセラミックス製トレイによれば、高い熱伝導率を有するため、従来の耐熱鋼における問題点を解決することができ、さらに製品品質の向上、加熱処理サイクルタイムの短縮による生産効率の向上をはかることができる。   According to the ceramic tray of the present invention, since it has a high thermal conductivity, it can solve the problems in conventional heat-resistant steel, and further improve the product quality and the production efficiency by shortening the heat treatment cycle time. Can measure.

本発明のセラミックス製トレイの一例を示す。An example of the ceramic tray of the present invention is shown. トレイを加熱炉に装入した際の経過時間に対する温度変化を示す。The temperature change with respect to the elapsed time at the time of charging a tray into a heating furnace is shown.

符号の説明Explanation of symbols

1 トレイ、 2 貫通孔、 3 碍子   1 tray, 2 through-holes, 3 insulators

Claims (5)

スパークプラグを製造する際の加熱工程で碍子をセットするのに用いるトレイであって、トレイがセラミックス焼結体で形成され、該セラミックス焼結体の常温における熱伝導率が30W/(m・K)以上であることを特徴とするセラミックス製トレイ。 A tray used for setting an insulator in a heating process when manufacturing a spark plug, the tray being formed of a ceramic sintered body, and the thermal conductivity of the ceramic sintered body at room temperature being 30 W / (m · K). A ceramic tray characterized by the above. 前記セラミックス焼結体の常温における4点曲げ強度が600MPa以上であることを特徴とする請求項1に記載のセラミックス製トレイ。 2. The ceramic tray according to claim 1, wherein the ceramic sintered body has a four-point bending strength at room temperature of 600 MPa or more. 前記セラミックス焼結体のヤング率が200GPa以上であることを特徴とする請求項1または2に記載のセラミックス製トレイ。 The ceramic tray according to claim 1 or 2, wherein the ceramic sintered body has a Young's modulus of 200 GPa or more. 前記セラミックス焼結体の相対密度が97%以上であることを特徴とする請求項1〜3のいずれかに記載のセラミックス製トレイ。 The ceramic tray according to any one of claims 1 to 3, wherein a relative density of the ceramic sintered body is 97% or more. 前記セラミックス焼結体が、窒化ケイ素セラミックス焼結体であることを特徴とする請求項1〜4のいずれかに記載のセラミックス製トレイ。 5. The ceramic tray according to claim 1, wherein the ceramic sintered body is a silicon nitride ceramic sintered body.
JP2003371909A 2003-10-31 2003-10-31 Ceramic tray Expired - Fee Related JP4453068B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003371909A JP4453068B2 (en) 2003-10-31 2003-10-31 Ceramic tray

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003371909A JP4453068B2 (en) 2003-10-31 2003-10-31 Ceramic tray

Publications (2)

Publication Number Publication Date
JP2005132691A true JP2005132691A (en) 2005-05-26
JP4453068B2 JP4453068B2 (en) 2010-04-21

Family

ID=34648427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003371909A Expired - Fee Related JP4453068B2 (en) 2003-10-31 2003-10-31 Ceramic tray

Country Status (1)

Country Link
JP (1) JP4453068B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006310129A (en) * 2005-04-28 2006-11-09 Denso Corp Device and method for manufacturing spark plug
JP2012084549A (en) * 2012-02-01 2012-04-26 Ngk Spark Plug Co Ltd Method for manufacturing insulator for spark plug, firing container, and method for manufacturing spark plug
JP7431642B2 (en) 2019-04-05 2024-02-15 京セラ株式会社 Ceramic tray, heat treatment method using the same, and heat treatment equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006310129A (en) * 2005-04-28 2006-11-09 Denso Corp Device and method for manufacturing spark plug
US7261609B2 (en) 2005-04-28 2007-08-28 Denso Corporation Spark plug manufacturing apparatus and method of manufacturing spark plug
JP2012084549A (en) * 2012-02-01 2012-04-26 Ngk Spark Plug Co Ltd Method for manufacturing insulator for spark plug, firing container, and method for manufacturing spark plug
JP7431642B2 (en) 2019-04-05 2024-02-15 京セラ株式会社 Ceramic tray, heat treatment method using the same, and heat treatment equipment

Also Published As

Publication number Publication date
JP4453068B2 (en) 2010-04-21

Similar Documents

Publication Publication Date Title
US10309650B2 (en) Ceramic heater
US8471179B2 (en) Ceramic heater
CN110577399B (en) Multi-field coupling flash sintering system based on induction heating
JP2014228239A (en) Heat treatment vessel
WO1997028409A1 (en) Electric furnace
US7020952B2 (en) Method for producing a glow plug
DK1295353T3 (en) Process for producing an electrode with temperature resistant conductivity
CN107046739A (en) High-power silicon nitride ceramics heating plate and its interior hard outer soft preparation method
CN107673761A (en) A kind of preparation method of big specification compact silicon carbide ceramic plate
KR102067144B1 (en) Method for preparing silicon nitride sintered body, silicon nitride sintered body and heat radiation substrate using the same
JP4453068B2 (en) Ceramic tray
CN113582186A (en) Heating element and preparation method thereof
JP4018998B2 (en) Ceramic heater and glow plug
JP6421525B2 (en) Method for producing thermal spray molded body
JP4803651B2 (en) Method for manufacturing ceramic heater and method for manufacturing glow plug
CN106145954A (en) The preparation method of re-crystallized silicon carbide refractory slab
JP4153840B2 (en) Ceramic heater
JP3752336B2 (en) Ceramic heating device
JP2001284039A (en) Manufacturing method of simple furnace and sintered body
JP5002087B2 (en) CHROMIA SINTERED BODY AND ITS MANUFACTURING METHOD
JP3604128B2 (en) Displacement control type pressure sintering apparatus and pressure sintering method using the same
JP4053277B2 (en) Electric furnace
JP4597352B2 (en) Ceramic heater
JP2002286397A (en) Heat transfer tube for heat exchanger
JPH0697631B2 (en) Ceramic heater and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4453068

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140212

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees