JP3752336B2 - Ceramic heating device - Google Patents

Ceramic heating device Download PDF

Info

Publication number
JP3752336B2
JP3752336B2 JP01567497A JP1567497A JP3752336B2 JP 3752336 B2 JP3752336 B2 JP 3752336B2 JP 01567497 A JP01567497 A JP 01567497A JP 1567497 A JP1567497 A JP 1567497A JP 3752336 B2 JP3752336 B2 JP 3752336B2
Authority
JP
Japan
Prior art keywords
mold
heating
ceramic
microwave
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01567497A
Other languages
Japanese (ja)
Other versions
JPH10212168A (en
Inventor
健一 田島
他三郎 佐治
雨叢 王
博 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP01567497A priority Critical patent/JP3752336B2/en
Publication of JPH10212168A publication Critical patent/JPH10212168A/en
Application granted granted Critical
Publication of JP3752336B2 publication Critical patent/JP3752336B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Furnace Details (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、セラミック脱脂炉やセラミック焼成炉等の加熱装置に関し、特に加熱をマイクロ波の照射により行う加熱装置の改良に係わるものである。
【0002】
【従来技術】
従来より、セラミックスは、機械的、電気的、熱的特性に優れ、非常に幅広い分野で使用されている。これらセラミックスのほとんどは、セラミック粉末を所定形状に成形した後、これを所望により加熱脱脂した後、さらに加熱焼成して作製されている。
【0003】
セラミックスの焼結には、通常、黒鉛、金属等に通電するかまたは誘導加熱された発熱部からの輻射熱を利用する電気炉が一般に使用されている。電気炉を用いて焼結させて所望の特性を得るには、セラミック成形体を内外均一に加熱焼結させることが必要である。このように内外均一に加熱するには、昇温速度を遅くする必要があり、試料の大きさによっては保持時間を長時間要し、効率の悪い焼成方法であった。
【0004】
そこで、均一で短時間加熱が可能な加熱方法として、マイクロ波を照射する方法が特公昭58−23349号、特開平3−257072号、特開平6−87663号等に提案されている。
【0005】
このマイクロ波加熱装置によれば、マイクロ波を照射することで加熱焼結することで、従来の電気炉に比較して焼成温度を低く設定でき、しかも焼成時間を短縮することができる上、内外均一に焼結できるために特性も向上するという利点を有する。
【0006】
【発明が解決しようとする課題】
しかしながら、マイクロ波加熱による焼結では、焼成温度が低いことにより組織が微細となるために微小な気孔が成長しやすく、その結果、気孔サイズが大きくなりやすく理論密度比95%以上の緻密な焼結体の作製が従来のマイクロ波加熱装置では困難であった。そこで、特開昭60−221367号、特開昭62−255898号には、マイクロ波加熱装置内にピストンを用いた加圧装置を設け、試料を加圧焼結させる方法が提案されている。
【0007】
この加熱装置の試料はモールド内に収納されるが、このモールドには、マイクロ波透過性のよい、言い換えれば、誘電損失の小さいBN(ボロンナイトライド)、Al2 3 (アルミナ)が使用されている。
【0008】
しかしながら、上記のモールド材料は、1000℃以上の温度での強度が低く、例えば、アルミナ、窒化ケイ素などの焼成温度が1500℃以上の焼結体を作製することができなかった。
【0009】
従って、本発明の目的は、マイクロ波による加熱と同時に一軸加圧を行うことができるとともに、アルミナや窒化ケイ素などの焼成時の高温での加熱が可能なセラミック加熱装置を提供することを目的とするものである。
【0010】
【課題を解決するための手段】
そこで、本発明者らは、上記の問題に対して検討を重ねた結果、モールドに高温で強度が高く、かつ誘電損失の小さい窒化ケイ素質焼結体を用いることにより、上記の目的が達成されることを見いだし、本発明に至った。
【0011】
即ち、本発明のセラミック加熱装置は、モールド内に収納されたセラミック試料に、一軸加圧を付加するとともにマイクロ波を照射して加熱するためのセラミック加熱装置であって、前記モールドを、Al量が酸化物換算で2重量%以下であり、1400℃における抗折強度が300MPa以上、測定周波数10GHzにおける誘電損失が5×10−4以下の窒化ケイ素質焼結体により形成したことを特徴とするものである。
【0012】
【発明の実施の形態】
本発明のセラミック加熱装置の概略配置図を図1に示した。図1によれば、加熱装置Aは、マイクロ波を遮蔽可能な材質からなるチャンバー1内において、筒状のモールド2が設置され、その筒内に一対のパンチ棒3、4が挿入され、そのパンチ棒3、4間に、一対のスペーサ5、6を介してセラミック粉末などのセラミック試料7が配置される。そして、上側のパンチ棒3は、ラム8を介して油圧シリンダー9と連結されており、この油圧シリンダー9からの圧力が、ラム8、パンチ棒3およびスペーサ5を介して、セラミック試料7に一軸の圧力が印加される。
【0013】
また、チャンバー1の一部には、マイクロ波導入窓10およびマイクロ波導入路11が形成され、マイクロ波発振器(図示せず)からのマイクロ波を導入窓10およびマイクロ波導入路11を経由してチャンバー1内に導入し、セラミック試料7に照射することによりセラミック試料が加熱処理される。なお、マイクロ波照射による加熱温度は、下側パンチ棒4に挿入された熱電対12によって測定される。
【0014】
かかる構造の加熱装置によれば、チャンバー1内に導入されたマイクロ波は、少なくともモールド2を通過してセラミック試料に到達するため、モールド2はマイクロ波の通過特性が優れると同時に、セラミック試料が加熱処理される温度において高強度であることが要求される。
【0015】
そこで、本発明では、上記マイクロ波加熱装置において、モールド2を1400℃のJISR1601による4点曲げ抗折強度が300MPa以上、特に400MPa以上、測定周波数10GHzにおける誘電損失が5×10-4以下、特に2×10-4以下の低損失の窒化ケイ素質焼結体により形成するものである。この高温強度が300MPaよりも低いと、アルミナや窒化ケイ素等の焼結体の製造にあたり、1000℃以上の高温条件下でモールド自体が高圧の機械的圧力に耐えることができず、また、誘電損失が5×10-4を越えると、マイクロ波やモールドを通過する際のマイクロ波の損失が大きくなり、マイクロ波出力に対する加熱効率が悪くなり、しかもマイクロ波が通過する時の損失が大きくなり、モールド自体自体のもつ耐熱衝撃特性以上の急激な熱衝撃が加わりモールドが破損してしまう。
【0016】
また、この窒化ケイ素質焼結体は、マイクロ波通過時の急激な温度変化に対して耐久性を有することが必要であり、耐熱衝撃臨界温度が500℃以上、特に700℃以上であることが望ましい。これは上記臨界温度が500℃よりも小さいと、マイクロ波が通過する際にモールドが急激に温度上昇し、内外で生じた急激な温度差に耐えきれず、クラック等が発生しやすくなり加熱装置の信頼性を損ねてしまうためである。
【0017】
さらに、この窒化ケイ素質焼結体としては、誘電損失を上記の範囲に設定する上で相対密度が98%以上、99%以上の高密度体からなることが望ましく、また室温での取扱いの点から、JISR1601による室温における4点曲げ強度が700MPa以上、特に800MPa以上であることが望ましい。
【0018】
また、図1の加熱装置においては、スペーサ5、6は、セラミック試料7とパンチ棒3、4との直接的な接触によりセラミック試料7に対して悪影響を及ぼさないように配置されたものであり、このスペーサ5、6も、上記と同様な特性を有する窒化ケイ素質焼結体によって形成することが望ましい。
【0019】
このような特性を有する窒化ケイ素質焼結体としては、例えば、窒化ケイ素に対して、希土類元素酸化物を1〜5モル%、特に2〜4モル%の割合で含むものである。希土類酸化物としては、Y,Dy,Er,Yb,Tm,Lu,Scの群から選ばれる少なくとも1種、特にYb,Tm,Luが好適に使用される。特に、Al量は焼結体の誘電損失を増大させる性質を有することから、Al量が酸化物換算で最大で2重量%、望ましくは1重量%以下、さらに望ましくは0.5重量%以下に抑制することが必要である。Al量が2重量%より多いと、10GHzにおける誘電損失が5×10-4より大きくなり、マイクロ波導入窓での損失が大きくなってしまう。また、希土類元素酸化物は、焼結体の緻密化に必要な成分であり、1モル%より少ないと緻密化不足で相対密度98%以上の高密度に焼結できず、5モル%を越えると強度が低下するとともに誘電損失が増大する傾向にある。
【0020】
また、焼結体における全酸素量から希土類元素酸化物またはAl酸化物中に含まれる酸素分を除く不純物的酸素量が5〜15モル%であることが望ましい。この不純物的酸素量が5モル%より少ないと焼結性が悪くなり、15モル%より多いと誘電損失が大きくなる傾向にある。
【0021】
かかる窒化ケイ素質焼結体は、例えば、α型またはβ型の平均粒径が0.5〜2μmの窒化ケイ素粉末に、希土類元素酸化物粉末を1〜5モル%、特に2〜4モル%の割合で添加する。また、焼結体中の不純物的酸素量を上記の範囲に調整のためにSiO2 粉末を添加する場合もある。
【0022】
このようにして調合された混合粉末は、ボールミル等により十分混合した後、所望の成形手段、例えば、金型プレス,冷間静水圧プレス,押出し成形等によりモールド形状に成形する。
【0023】
この時、成形体中には、Al量が酸化物換算で2重量%となるように調整することが必要である。Alは、原料粉末中の不純物の他、ボールミルなどのボール等から混入する場合があり、Al量が2重量%を越えないように高純度原料を用いたり、用いるボールをAl量の少ないものを用いるのがよい。
【0024】
次に、この成形体を窒素含有雰囲気中で1800〜2000℃の温度で焼成する。焼成方法としては、常圧焼成、窒素ガス加圧焼成(GPS法)、ホットプレス法(HP法)、熱間静水圧焼成法(HIP法)などが挙げられるが、これらの中でも高緻密体が作製できるGPS法、HP法が高強度化、低誘電損失化のためには有利である。
【0025】
次に、本発明のマイクロ波によるセラミック加熱装置について、モールドの材質を変えて加熱試験を行った。用いたモールドの材質としては、表1のものを使用した。各モールド材質の焼成条件は表1に示した。
【0026】
尚、モールドとしては、いずれも内径50mm、外径100mm、深さ100mmの大きさのものを取り付けた。また、各モールド材質の焼結体のアルキメデス法による密度測定により相対密度を算出し、さらにJISR1601に準じて室温及び1400℃の4点曲げ強度、3×4×35mmの試験片の水中急冷による耐熱衝撃臨界温度を測定した。さらに、測定周波数10GHzでの誘電損失を測定し、表1に示した。
【0027】
そして、表1の材質からなるモールド内にY2 3 およびAl2 3 をそれぞれ5重量%添加した窒化ケイ素質混合粉末を充填し、モールドと同一材質からなる直径50mm、長さ30mmのシリンダーを介して、ピストンにより200〜400kg/cm2 の一軸加圧を行いながら、窒素ガス中でマイクロ波出力1〜10KW、周波数28GHzのマイクロ波をモールドを通して照射した。
【0028】
そして、昇温速度15〜50℃/minで加熱温度1700℃まで加熱して15分間保持した後、200℃まで2時間で冷却した。なお、加熱温度はW−WRe熱電対により測定した。これを1サイクルとして最高20サイクル加熱を行い、モールド部材の耐久性について評価した。その結果を表1に示した。
【0029】
【表1】

Figure 0003752336
【0030】
表1の結果によれば、モールドを従来のアルミナ焼結体から形成した試料No.14、15、また、BN焼結体から形成した試料No.16では、焼成温度1700℃、一軸圧150〜200kg/cm2 でモールドが変形またはクラックが生じ運転不能となった。
【0031】
これに対して、本発明に基づく低損失、高強度の窒化ケイ素質焼結体によりモールドを形成すると高温、高一軸圧下で加熱を行ってもクラック等の発生のないものであったが、1400℃強度が300MPaより低い場合(試料No.11)、2サイクルでモールドの変形が生じ、また、強度が低くまた誘電損失が5×10-4よりも大きい場合(試料No.12、13)、1700℃、1500℃の温度でそれぞれモールドに変形が生じた。
【0032】
【発明の効果】
以上詳述した通り、本発明のセラミック加熱装置によれば、高一軸加圧の高温下でマイクロ波の照射により加熱した場合においても、マイクロ波により加熱効率を低下やモールドの破損がなく、耐久性を高めることができる結果、窒化珪素、アルミナ、窒化アルミニウム等をマイクロ波によって高温高圧下で加熱焼成することができる。
【図面の簡単な説明】
【図1】本発明のセラミック加熱装置の概略配置図である。
【符号の説明】
1 チャンバー
2 モールド
3,4 パンチ棒
5,6 スペーサ
7 セラミック試料
8 ラム
9 油圧シリンダ−
10 マイクロ波導入窓
11 マイクロ波導入路
12 熱電対
A 加熱装置[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heating apparatus such as a ceramic degreasing furnace or a ceramic firing furnace, and particularly relates to an improvement of a heating apparatus that performs heating by microwave irradiation.
[0002]
[Prior art]
Conventionally, ceramics are excellent in mechanical, electrical, and thermal properties, and are used in a wide range of fields. Most of these ceramics are produced by forming a ceramic powder into a predetermined shape, heating and degreasing the ceramic powder as desired, and further heating and firing.
[0003]
For the sintering of ceramics, an electric furnace is generally used that utilizes radiant heat from a heat generating portion that is energized or induction-heated to graphite, metal, or the like. In order to obtain desired characteristics by sintering using an electric furnace, it is necessary to heat and sinter the ceramic compact uniformly. Thus, in order to uniformly heat the inside and outside, it is necessary to slow the temperature increase rate, and depending on the size of the sample, a holding time is required for a long time, which is an inefficient firing method.
[0004]
Therefore, as a heating method that can be heated uniformly and for a short time, a method of irradiating microwaves has been proposed in Japanese Patent Publication Nos. 58-23349, 3-257072, and 6-87663.
[0005]
According to this microwave heating apparatus, by heating and sintering by irradiating with microwaves, the firing temperature can be set lower than that of a conventional electric furnace, and the firing time can be shortened. Since it can be uniformly sintered, it has the advantage of improved characteristics.
[0006]
[Problems to be solved by the invention]
However, in the sintering by microwave heating, since the structure becomes fine due to the low firing temperature, minute pores are likely to grow. As a result, the pore size is likely to be large, and the dense sintering with a theoretical density ratio of 95% or more is easy. It was difficult to produce a bonded body with a conventional microwave heating apparatus. In view of this, Japanese Patent Application Laid-Open Nos. 60-221367 and 62-255898 propose a method in which a pressure device using a piston is provided in a microwave heating device, and the sample is pressure-sintered.
[0007]
The sample of this heating device is housed in a mold, and this mold uses BN (boron nitride) and Al 2 O 3 (alumina), which have good microwave transmission, in other words, low dielectric loss. ing.
[0008]
However, the mold material has a low strength at a temperature of 1000 ° C. or higher, and for example, a sintered body having a firing temperature of 1500 ° C. or higher such as alumina and silicon nitride cannot be produced.
[0009]
Accordingly, an object of the present invention is to provide a ceramic heating apparatus capable of performing uniaxial pressing simultaneously with heating by microwaves and capable of heating at a high temperature during firing of alumina, silicon nitride or the like. To do.
[0010]
[Means for Solving the Problems]
Therefore, as a result of repeated studies on the above problems, the present inventors have achieved the above object by using a silicon nitride sintered body having high strength at high temperature and low dielectric loss for the mold. As a result, the present invention has been achieved.
[0011]
That is, the ceramic heating device of the present invention, a ceramic sample housed in the mold, a ceramic heating device for heating by microwave irradiation with the addition of uniaxial pressing, the mold, Al amount 2% by weight or less in terms of oxide, characterized by being formed of a silicon nitride sintered body having a bending strength at 1400 ° C. of 300 MPa or more and a dielectric loss of 5 × 10 −4 or less at a measurement frequency of 10 GHz. Is.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
A schematic layout of the ceramic heating device of the present invention is shown in FIG. According to FIG. 1, the heating device A has a cylindrical mold 2 installed in a chamber 1 made of a material capable of shielding microwaves, and a pair of punch bars 3 and 4 are inserted into the cylinder. A ceramic sample 7 such as ceramic powder is disposed between the punch bars 3 and 4 via a pair of spacers 5 and 6. The upper punch rod 3 is connected to a hydraulic cylinder 9 via a ram 8, and the pressure from the hydraulic cylinder 9 is uniaxially applied to the ceramic sample 7 via the ram 8, the punch rod 3 and the spacer 5. Is applied.
[0013]
In addition, a microwave introduction window 10 and a microwave introduction path 11 are formed in a part of the chamber 1, and a microwave from a microwave oscillator (not shown) passes through the introduction window 10 and the microwave introduction path 11. Then, the ceramic sample is heated by being introduced into the chamber 1 and irradiating the ceramic sample 7. In addition, the heating temperature by microwave irradiation is measured by the thermocouple 12 inserted in the lower punch rod 4.
[0014]
According to the heating apparatus having such a structure, the microwave introduced into the chamber 1 passes through at least the mold 2 and reaches the ceramic sample. Therefore, the mold 2 has excellent microwave transmission characteristics, and at the same time, the ceramic sample It is required to have high strength at the temperature at which heat treatment is performed.
[0015]
Therefore, in the present invention, in the above microwave heating apparatus, the mold 2 has a 4-point bending strength according to JISR1601 at 1400 ° C. of 300 MPa or more, particularly 400 MPa or more, and a dielectric loss of 5 × 10 −4 or less, particularly at a measurement frequency of 10 GHz. It is formed from a silicon nitride sintered body with a low loss of 2 × 10 −4 or less. If the high-temperature strength is lower than 300 MPa, the mold itself cannot withstand high mechanical pressure under high-temperature conditions of 1000 ° C. or higher in the production of sintered bodies such as alumina and silicon nitride, and dielectric loss. If it exceeds 5 × 10 −4 , the loss of the microwave when passing through the microwave or the mold increases, the heating efficiency for the microwave output is deteriorated, and the loss when the microwave passes is increased, The mold is damaged due to a sudden thermal shock that exceeds the thermal shock characteristics of the mold itself.
[0016]
Further, the silicon nitride sintered body needs to have durability against a rapid temperature change at the time of passing microwaves, and has a thermal shock critical temperature of 500 ° C. or higher, particularly 700 ° C. or higher. desirable. This is because if the critical temperature is lower than 500 ° C., the temperature of the mold rises rapidly when microwaves pass through, and it is difficult to withstand the sudden temperature difference generated inside and outside, and cracks are likely to occur. This is because the reliability of the system is impaired.
[0017]
Further, the silicon nitride sintered body is preferably a high-density body having a relative density of 98% or more and 99% or more for setting the dielectric loss in the above range, and is also handled at room temperature. Therefore, it is desirable that the 4-point bending strength at room temperature according to JIS R1601 is 700 MPa or more, particularly 800 MPa or more.
[0018]
In the heating apparatus of FIG. 1, the spacers 5 and 6 are arranged so as not to adversely affect the ceramic sample 7 due to direct contact between the ceramic sample 7 and the punch bars 3 and 4. The spacers 5 and 6 are preferably formed of a silicon nitride sintered body having the same characteristics as described above.
[0019]
As a silicon nitride sintered body having such characteristics, for example, a rare earth element oxide is contained at a ratio of 1 to 5 mol%, particularly 2 to 4 mol% with respect to silicon nitride. As the rare earth oxide, at least one selected from the group of Y, Dy, Er, Yb, Tm, Lu, and Sc, particularly Yb, Tm, and Lu is preferably used. In particular, since the amount of Al has the property of increasing the dielectric loss of the sintered body, the amount of Al is 2% by weight at maximum in terms of oxide, desirably 1% by weight or less, more desirably 0.5% by weight or less. It is necessary to suppress. If the Al content is more than 2% by weight, the dielectric loss at 10 GHz becomes larger than 5 × 10 −4 , and the loss at the microwave introduction window becomes large. The rare earth element oxide is a component necessary for densification of the sintered body, and if it is less than 1 mol%, it cannot be sintered to a high density of 98% or more due to insufficient densification, and exceeds 5 mol%. As the strength decreases, the dielectric loss tends to increase.
[0020]
Moreover, it is desirable that the amount of impurity oxygen excluding oxygen contained in the rare earth element oxide or Al oxide is 5 to 15 mol% from the total oxygen amount in the sintered body. When the impurity oxygen content is less than 5 mol%, the sinterability is deteriorated, and when it is more than 15 mol%, the dielectric loss tends to increase.
[0021]
Such a silicon nitride sintered body is, for example, 1 to 5 mol%, particularly 2 to 4 mol% of rare earth element oxide powder in silicon nitride powder having an α-type or β-type average particle size of 0.5 to 2 μm. Add at a rate of In addition, SiO 2 powder may be added to adjust the amount of impurity oxygen in the sintered body to the above range.
[0022]
The mixed powder thus prepared is sufficiently mixed by a ball mill or the like and then formed into a mold shape by a desired forming means such as a die press, cold isostatic pressing, extrusion molding or the like.
[0023]
At this time, it is necessary to adjust so that the amount of Al in the molded body is 2% by weight in terms of oxide. In addition to impurities in the raw material powder, Al may be mixed from balls such as ball mills. Use high-purity raw materials so that the amount of Al does not exceed 2% by weight, or use balls with a small amount of Al. It is good to use.
[0024]
Next, this molded body is fired at a temperature of 1800 to 2000 ° C. in a nitrogen-containing atmosphere. Examples of the firing method include normal pressure firing, nitrogen gas pressure firing (GPS method), hot press method (HP method), hot isostatic firing method (HIP method), and among these, a high-density body is used. The GPS method and the HP method that can be produced are advantageous for increasing the strength and reducing the dielectric loss.
[0025]
Next, with respect to the ceramic heating apparatus using microwaves of the present invention, a heating test was performed by changing the material of the mold. As the material of the mold used, those in Table 1 were used. The firing conditions for each mold material are shown in Table 1.
[0026]
As the mold, a mold having an inner diameter of 50 mm, an outer diameter of 100 mm, and a depth of 100 mm was attached. Moreover, the relative density is calculated by measuring the density of the sintered body of each mold material by the Archimedes method, and further, the four-point bending strength at room temperature and 1400 ° C. according to JISR1601, and the heat resistance by quenching the test piece of 3 × 4 × 35 mm in water. The impact critical temperature was measured. Furthermore, dielectric loss at a measurement frequency of 10 GHz was measured and shown in Table 1.
[0027]
Then, a silicon nitride mixed powder in which 5% by weight of Y 2 O 3 and Al 2 O 3 are respectively added to the mold made of the material shown in Table 1 is filled, and a cylinder made of the same material as the mold and having a diameter of 50 mm and a length of 30 mm. Then, microwaves with a microwave output of 1 to 10 kW and a frequency of 28 GHz were irradiated through a mold in nitrogen gas while uniaxially pressing 200 to 400 kg / cm 2 with a piston.
[0028]
And after heating to heating temperature 1700 degreeC with the temperature increase rate of 15-50 degreeC / min and hold | maintaining for 15 minutes, it cooled to 200 degreeC in 2 hours. The heating temperature was measured with a W-WRe thermocouple. This was regarded as one cycle, and heating was performed for up to 20 cycles, and the durability of the mold member was evaluated. The results are shown in Table 1.
[0029]
[Table 1]
Figure 0003752336
[0030]
According to the results in Table 1, in samples No. 14 and 15 in which the mold was formed from a conventional alumina sintered body, and in sample No. 16 formed from a BN sintered body, the firing temperature was 1700 ° C. and the uniaxial pressure was 150 to 150 ° C. The mold was deformed or cracked at 200 kg / cm 2 , and operation was impossible.
[0031]
On the other hand, when a mold is formed from a low-loss, high-strength silicon nitride sintered body according to the present invention, cracks and the like are not generated even when heating is performed under high temperature and high uniaxial pressure. When the strength at 300 ° C. is lower than 300 MPa (sample No. 11), deformation of the mold occurs in two cycles, and when the strength is low and the dielectric loss is higher than 5 × 10 −4 (sample No. 12, 13), The molds were deformed at temperatures of 1700 ° C. and 1500 ° C., respectively.
[0032]
【The invention's effect】
As described in detail above, according to the ceramic heating device of the present invention, even when heated by microwave irradiation under high uniaxial pressure, there is no reduction in heating efficiency or damage to the mold due to microwaves, and durability. As a result of improving the properties, silicon nitride, alumina, aluminum nitride, or the like can be heated and fired with microwaves under high temperature and high pressure.
[Brief description of the drawings]
FIG. 1 is a schematic arrangement view of a ceramic heating device of the present invention.
[Explanation of symbols]
1 Chamber 2 Mold 3, 4 Punch rod 5, 6 Spacer 7 Ceramic sample 8 Ram 9 Hydraulic cylinder
10 Microwave introduction window 11 Microwave introduction path 12 Thermocouple A Heating device

Claims (1)

モールド内に収納されたセラミック試料に、一軸加圧を付加するとともにマイクロ波を照射して加熱するためのセラミック加熱装置であって、前記モールドを、Al量が酸化物換算で2重量%以下であり、1400℃における抗折強度が300MPa以上、測定周波数10GHzにおける誘電損失が5×10−4以下の窒化ケイ素質焼結体により形成したことを特徴とするセラミック加熱装置。A ceramic heating apparatus for heating a ceramic sample accommodated in a mold by applying uniaxial pressure and irradiating with microwaves, wherein the mold has an Al amount of 2% by weight or less in terms of oxide. There, the ceramic heating device, characterized in that the bending strength at 1400 ° C. or more 300 MPa, dielectric loss at a measuring frequency 10GHz is formed by 5 × 10 -4 or less of the silicon nitride sintered body.
JP01567497A 1997-01-29 1997-01-29 Ceramic heating device Expired - Fee Related JP3752336B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01567497A JP3752336B2 (en) 1997-01-29 1997-01-29 Ceramic heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01567497A JP3752336B2 (en) 1997-01-29 1997-01-29 Ceramic heating device

Publications (2)

Publication Number Publication Date
JPH10212168A JPH10212168A (en) 1998-08-11
JP3752336B2 true JP3752336B2 (en) 2006-03-08

Family

ID=11895305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01567497A Expired - Fee Related JP3752336B2 (en) 1997-01-29 1997-01-29 Ceramic heating device

Country Status (1)

Country Link
JP (1) JP3752336B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020184192A1 (en) * 2019-03-14 2020-09-17 国立大学法人東北大学 Method for forming nitride coating

Also Published As

Publication number Publication date
JPH10212168A (en) 1998-08-11

Similar Documents

Publication Publication Date Title
CA1261887A (en) Dense molded bodies of polycrystalline aluminum nitride and process for preparation without use of sintering aids
Shen et al. Conversion from nano-to micron-sized structures: experimental observations
CA2009760A1 (en) Isostatic pressing with microwave heating and method for same
US20110260368A1 (en) Method for manufacturing ceramic components
EP1943069B1 (en) Uniaxial pressing and heating apparatus
Li et al. Pressureless sintering and high-temperature strength of SiC-AlN ceramics
JP3752336B2 (en) Ceramic heating device
JPH0563430B2 (en)
Cheng et al. Development of translucent aluminum nitride (AIN) using microwave sintering process
Tiegs et al. Cost‐effective sintered reaction‐bonded silicon nitride for structural ceramics
CN112898031A (en) High-thermal-conductivity high-toughness silicon nitride ceramic material containing rare earth elements and preparation method thereof
JP3299118B2 (en) Ceramic heating equipment
Abe Sintering process of Y 2 O 3-added Si 3 N 4
Dé et al. Effect of green microstructure and processing variables on the microwave sintering of alumina
JP4859267B2 (en) Aluminum nitride sintered body and manufacturing method thereof
Huang et al. Spark‐plasma‐sintering consolidation of SiC‐whisker‐reinforced mullite composites
JP4453068B2 (en) Ceramic tray
JP3604128B2 (en) Displacement control type pressure sintering apparatus and pressure sintering method using the same
KR20000023762A (en) Method for producing moulded bodies from a composite ceramic material structure
JP2664759B2 (en) Ceramic composite material and method for producing the same
JP3929335B2 (en) Aluminum nitride sintered body and method for producing the same
KR101003559B1 (en) Hybrid hot press apparatus
JP3805962B2 (en) Method for producing nitride sintered body
Unlu et al. Processing and mechanical characterisation of monolithic silicon carbide ceramic consolidated by spark plasma sintering (SPS)
Evans et al. Densification Technology

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051212

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081216

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121216

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121216

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131216

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees