JP2005132647A - Manufacturing method of rod-like ceramic body - Google Patents

Manufacturing method of rod-like ceramic body Download PDF

Info

Publication number
JP2005132647A
JP2005132647A JP2003368014A JP2003368014A JP2005132647A JP 2005132647 A JP2005132647 A JP 2005132647A JP 2003368014 A JP2003368014 A JP 2003368014A JP 2003368014 A JP2003368014 A JP 2003368014A JP 2005132647 A JP2005132647 A JP 2005132647A
Authority
JP
Japan
Prior art keywords
rod
ceramic
groove
firing
shaped ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003368014A
Other languages
Japanese (ja)
Inventor
Takayuki Tadenuma
隆之 蓼沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003368014A priority Critical patent/JP2005132647A/en
Publication of JP2005132647A publication Critical patent/JP2005132647A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mechanical Coupling Of Light Guides (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a firing tool which reduces cracks and amount of warpage at degreasing of a molded product obtained using a resin binder. <P>SOLUTION: Uniform degreasing of the rod-like ceramic molded product is realized by using the grooved firing tool made of a porous ceramic having a porosity of 65-75% . <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、真直度の良い棒状セラミック焼結体を得るために必要な棒状セラミックス体の製造方法に関する。   The present invention relates to a method for manufacturing a rod-shaped ceramic body necessary for obtaining a rod-shaped ceramic sintered body with good straightness.

近年、通信における情報量の増大に伴い、光ファイバを用いた光通信が使用されている。この光通信において、光ファイバ同士の接続、あるいは光ファイバと各種光素子との接続には光コネクタが用いられている。   In recent years, optical communication using an optical fiber has been used with an increase in the amount of information in communication. In this optical communication, an optical connector is used to connect optical fibers or connect an optical fiber and various optical elements.

例えば、光ファイバ同士を接続するコネクタの場合、フェルールに形成された貫通孔に光ファイバの端部を保持し、一対のフェルールをスリーブの両端から挿入して、内部で凸球面状に加工した端面同士を当接させるようにした構造となっている。   For example, in the case of a connector for connecting optical fibers, the end face of the optical fiber is processed into a convex spherical shape by holding the end of the optical fiber in a through hole formed in the ferrule and inserting a pair of ferrules from both ends of the sleeve It has a structure in which they are brought into contact with each other.

上記フェルールやスリーブの材質としてはセラミック、金属、プラスチック、ガラス等、さまざまなものが試作されてきたが、現在は大半がセラミック製となっている。その理由は、セラミックは加工精度が高いため、内径、外径の公差を1μm以下と高精度にすることができ、またセラミックは摩擦係数が低いため光ファイバの挿入性に優れ、剛性が高く熱膨張係数が低いことから外部応力や温度変化に対して安定であり、耐食性にも優れているためである。   Various materials such as ceramic, metal, plastic, and glass have been made as materials for the ferrule and sleeve, but most of them are made of ceramic at present. The reason for this is that ceramic has high processing accuracy, so the tolerance of the inner and outer diameters can be as high as 1 μm or less, and ceramic has a low coefficient of friction, so it has excellent optical fiber insertability, high rigidity, and high heat. This is because the expansion coefficient is low, so that it is stable against external stress and temperature change, and has excellent corrosion resistance.

さらに、セラミックとしては、近年、アルミナからジルコニアに大半が置き代わりつつある。このジルコニア焼結体は、ヤング率がアルミナの約半分と低いため、2個のフェルールの先端面同士を当接する際に、小さな応力で密着性を高めることができ、また強度、靱性が高いことから信頼性を向上することができる(特許文献1)。   Further, in recent years, the majority of ceramics is being replaced by zirconia from alumina. This zirconia sintered body has a low Young's modulus, which is about half that of alumina, so that when the tip surfaces of two ferrules are brought into contact with each other, the adhesion can be increased with a small stress, and the strength and toughness must be high. Therefore, reliability can be improved (Patent Document 1).

このようなジルコニア焼結体は例えば押出成型法で棒状のジルコニア成形体を製作し、これを、脱脂、焼成することによって製作される。この焼成工程において、ジルコニア成形体はセラミック平板に複数の溝を設けた焼成用冶具上に載置されて脱脂される。   Such a zirconia sintered body is manufactured, for example, by manufacturing a rod-shaped zirconia molded body by an extrusion molding method, and degreasing and firing the rod-shaped zirconia molded body. In this firing step, the zirconia compact is placed on a firing jig provided with a plurality of grooves on a ceramic flat plate and degreased.

従来は焼成用治具の材料としては、従来から、耐火レンガと呼ばれる低純度アルミナが用いられていた。これは、この材料が炉壁材としても用いられる程耐熱性が高く、その結果耐久性に優れているためである。   Conventionally, low-purity alumina called refractory bricks has been used as a material for firing jigs. This is because the heat resistance is so high that this material is used also as a furnace wall material, and as a result, it is excellent in durability.

この低純度アルミナを用いた焼成用冶具は、溝が設けられたプレス金型に低純度アルミナ原料粉末を充填し、プレス成形し、これを焼成して製作されていた。
特公平8−30775号公報
This firing jig using low-purity alumina was manufactured by filling a press mold provided with grooves with low-purity alumina raw material powder, press-molding, and firing the powder.
Japanese Patent Publication No. 8-30775

しかしながら、上記樹脂バインダを用いた成形体は、脱脂時に、クラックが発生しやすいという難点がある。このクラックは、どんなに微小であっても存在すれば、欠陥製品となってしまうため、脱脂工程は、最重要工程ともいえる。クラック発生のプロセスとしては、樹脂バインダのガスが、均一に成形体から抜けないため、成形体に歪が生じ、耐えられなくなったときに、クラックが発生するものである。従来の治具の材質は、通気性の悪い耐火レンガであり、治具と成形体の接地面では、ガスの逃げ道が塞がれているため、ここを起点としてクラックが発生しやすかった。   However, the molded body using the resin binder has a drawback that cracks are likely to occur during degreasing. If this crack exists even if it is minute, it becomes a defective product, so the degreasing process can be said to be the most important process. As a crack generation process, since the resin binder gas does not escape from the molded body uniformly, the molded body is distorted and cannot be tolerated. The material of the conventional jig is a refractory brick with poor air permeability. Since the gas escape path is blocked on the grounding surface of the jig and the molded body, cracks are likely to occur from this point.

また、溝の上に成形体を設置して脱脂することにより、治具との当接面と、露出面での脱脂しやすさに違いが生じて、脱脂体が曲がってしまうという不具合も生じていた。そのため、焼結体が曲がることを考慮して、加工代を多くとらなければならなかった。   In addition, by installing the molded body on the groove and degreasing, there is a problem that the degreasing body is bent due to a difference in the degreasing ease between the contact surface with the jig and the exposed surface. It was. Therefore, in consideration of the bending of the sintered body, a large machining cost has to be taken.

そこで本発明は、上記問題点に鑑みてなされたものであり、樹脂バインダを用いて成形された棒状セラミックス成形体を、気孔率が65〜75%の多孔質セラミックスから成るセラミック焼成用冶具に設置した後、焼成により上記樹脂バインダを脱脂することで棒状セラミックス体を形成することを特徴とする。   Therefore, the present invention has been made in view of the above problems, and a rod-shaped ceramic molded body formed using a resin binder is installed in a ceramic firing jig made of porous ceramic having a porosity of 65 to 75%. Then, the resin binder is degreased by firing to form a rod-shaped ceramic body.

また、上記焼成用治具は、平面が長方形状の板状体からなり、その長手方向全域に複数の溝を設けたものであることを特徴とする。   In addition, the firing jig is characterized in that the plane is made of a rectangular plate-like body, and a plurality of grooves are provided in the entire longitudinal direction.

更に上記溝長さに対する溝長手方向の真直度の比が6×10−4以下であることを特徴とする。 Furthermore, the ratio of the straightness in the groove longitudinal direction to the groove length is 6 × 10 −4 or less.

すなわち、治具材質を通気性の良い物にすることで、当接面での脱脂性を向上させ、成形体を均一に脱脂させることができる。   That is, by making the jig material good in air permeability, the degreasing property on the contact surface can be improved and the molded body can be degreased uniformly.

本発明の構成によれば棒状セラミックス焼結体を製造するのに際し、気孔率が65〜75%の焼成用冶具にて樹脂バインダを脱脂するために、棒状セラミックス成形体の焼成用冶具との当接面から樹脂バインダ等が気孔を通じて抜けやすくなり、これにより、通気性が向上し、焼成用冶具との棒状セラミック成形体の当接面及び露出面での脱脂しやすさが同程度となり、成形体を均一に脱脂することができる。この結果、クラックの発生が無く、真直度が向上した棒状セラミックス体を得ることができる。 According to the configuration of the present invention, when manufacturing a rod-shaped ceramic sintered body, the resin binder is degreased by a firing jig having a porosity of 65 to 75%. Resin binders can be easily removed from the contact surface through the pores, which improves air permeability and makes the contact surface and exposed surface of the rod-shaped ceramic molded body with the firing jig easier to degrease and form. The body can be degreased uniformly. As a result, it is possible to obtain a rod-shaped ceramic body with no cracks and improved straightness.

本発明の実施の最良の形態を説明する。   The best mode for carrying out the present invention will be described.

本発明の棒状セラミックスの製造方法は、樹脂バインダを用いて成形された棒状セラミックス成形体を、気孔率が65〜75%の多孔質セラミックスから成るセラミック焼成用冶具に設置した後、焼成により上記樹脂バインダを脱脂することで棒状セラミックス体を形成している。   According to the method for producing a rod-shaped ceramic of the present invention, a rod-shaped ceramic molded body formed by using a resin binder is placed on a ceramic firing jig made of porous ceramic having a porosity of 65 to 75%, and then the above resin is fired. A rod-shaped ceramic body is formed by degreasing the binder.

本発明の製造方法に用いられる棒状セラミックス成形体は、セラミック粉末、バインダ樹脂から主に構成される。   The rod-shaped ceramic molded body used in the production method of the present invention is mainly composed of ceramic powder and a binder resin.

セラミック粉末としては、ジルコニア、アルミナが用いられ、バインダ樹脂としては、ベンゼン系、エステル系等が用いられる。   As the ceramic powder, zirconia or alumina is used, and as the binder resin, benzene, ester, or the like is used.

セラミック焼成用治具を製造するには、例えば、ベンゼン系樹脂を主原料にアルミナ質等のセラミックス耐火性粉末と水とを混合し、更に発泡させるため、親水性ウレタンポリマー等の添加剤を混ぜる。この比率は、耐火性粉末と添加剤の合計量を100重量部としたとき、添加剤が好ましくは5〜15重量部になるよう添加する。混合して得られたスラリーを型内で反応させ、発泡、硬化させる。これを、脱脂、焼成し、焼成冶具の材料である板状体のセラミック平板が出来上がる。   To manufacture a ceramic firing jig, for example, a ceramic refractory powder such as alumina and water are mixed with benzene resin as a main raw material, and further an additive such as a hydrophilic urethane polymer is mixed for foaming. . This ratio is added so that the additive is preferably 5 to 15 parts by weight when the total amount of the refractory powder and the additive is 100 parts by weight. The slurry obtained by mixing is reacted in a mold and foamed and cured. This is degreased and fired, and a plate-like ceramic flat plate as a material for the firing jig is completed.

次いで、これを、図2に示す、平面研削盤で、複数の溝加工を施す。詳細には、上記作成のセラミック平板1を、ベッド3に固定し、溝1aに合うダイヤ工具2を回転させながら、コラム4に沿って下降させ、長手方向に溝を掘っていく。以上により図1に示す焼成用冶具1が完成する。   Next, this is subjected to a plurality of grooves with a surface grinder shown in FIG. In detail, the ceramic flat plate 1 produced as described above is fixed to the bed 3 and lowered along the column 4 while rotating the diamond tool 2 that fits the groove 1a, and a groove is dug in the longitudinal direction. Thus, the firing jig 1 shown in FIG. 1 is completed.

ここで、焼成用冶具1の気孔率の評価について述べる。JIS R 2614−1985に示すように、焼成用冶具の真比重d0と、そのかさ比重dにより求める。これにより、気孔率Pは、次の式により算出される。   Here, the evaluation of the porosity of the firing jig 1 will be described. As shown in JIS R 2614-1985, the true specific gravity d0 of the firing jig and the bulk specific gravity d thereof are obtained. Thereby, the porosity P is calculated by the following formula.

P=(1−d/d0)×100
本特許の重要なパラメータである気孔率Pは、原料混合時の親水性ウレタンポリマーの添加量に影響する。この添加量を15重量部以上添加すれば、気孔率が75%以上となり、樹脂バインダが抜けやすくより脱脂時の成形体クラック発生率は低下し、また、そりに対しても効果的になるものの、密度低下により冶具自体の耐久性も、低下するため、限度を15重量部までが好ましい。また、添加量5重量部未満では、冶具の気孔率が65%以下となり、本発明の最大の利点である、脱脂時の通気性向上に効果が得られないため、下限を5重量部とした。
P = (1-d / d0) × 100
The porosity P, which is an important parameter of this patent, affects the amount of hydrophilic urethane polymer added when mixing raw materials. If this addition amount is 15 parts by weight or more, the porosity becomes 75% or more, the resin binder is easily removed, the rate of occurrence of cracks in the molded product during degreasing is reduced, and it is also effective against warping. In addition, since the durability of the jig itself is lowered due to the decrease in density, the limit is preferably up to 15 parts by weight. In addition, when the addition amount is less than 5 parts by weight, the porosity of the jig is 65% or less, and the maximum advantage of the present invention, which is not effective in improving the air permeability during degreasing, the lower limit is set to 5 parts by weight. .

一般に多用されているSCコネクタ用フェルールは外径2.5mm、長さ10.5mmであるため、加工前のジルコニア焼結体としては長さ15mm、そり量15μm以下であることが望ましいとされている。即ち、ジルコニア焼結体の長さに対するそりの比は1×10以下である必要がある。 Since the ferrule for SC connector which is generally used has an outer diameter of 2.5 mm and a length of 10.5 mm, it is desirable that the zirconia sintered body before processing has a length of 15 mm and a warp amount of 15 μm or less. Yes. That is, the ratio of the warp to the length of the zirconia sintered body needs to be 1 × 10 C or less.

上述のように、ジルコニア焼結体のそりは焼成用冶具の溝長手方向の真直度に依存する。しかし同時に、ジルコニア乾燥体の密度バラツキや、焼成炉内の温度不均一性によっても、そりは大きくなる。従って、これらの影響を考慮すると、焼成用冶具の溝長さに対する溝長手方向の真直度の比は1×10−3よりも小さくなくてはならず、種々の実験の結果、この比を6×10−4以下とすれば良いことを見出した。即ち、焼成用冶具の溝長さLに対する溝長手方向の真直度Sの比S/Lが6×10−4を越えると、焼結体のそりが大きくなってしまうのである。尚、この比のさらに好ましい範囲は、4.9×10−4以下である。 As described above, the warpage of the zirconia sintered body depends on the straightness in the groove longitudinal direction of the firing jig. At the same time, however, the warpage increases due to the density variation of the dried zirconia and the temperature non-uniformity in the firing furnace. Therefore, in consideration of these influences, the ratio of the straightness of the groove longitudinal direction to the groove length of the firing jig must be smaller than 1 × 10 −3 , and as a result of various experiments, this ratio is 6 It has been found that it may be set to x10 −4 or less. That is, when the ratio S / L of the straightness S in the longitudinal direction of the groove to the groove length L of the firing jig exceeds 6 × 10 −4 , the warp of the sintered body becomes large. A more preferable range of this ratio is 4.9 × 10 −4 or less.

ここで、棒状セラミック焼結体のそりの評価について述べる。そりを持った棒状セラミック焼結体を定盤上に乗せると、定盤と棒状セラミック焼結体の間に隙間ができる。棒状セラミック焼結体を回転させると、あるところでこの隙間が最大になる。この最大隙間を「そり」と定義する。この最大隙間は、隙間に隙間ゲージを挿入して測定される。   Here, the evaluation of the warpage of the rod-shaped ceramic sintered body will be described. When a rod-shaped ceramic sintered body having a warp is placed on the surface plate, a gap is formed between the surface plate and the rod-shaped ceramic sintered body. When the rod-shaped ceramic sintered body is rotated, this gap is maximized at a certain point. This maximum gap is defined as “sledge”. This maximum gap is measured by inserting a gap gauge into the gap.

また、焼成用冶具の溝長手方向の真直度は以下のように評価する。先ず触針を溝1aに当てて長手方向に移動させる。その時の触針の振れを記録し、最大と最小の差を真直度とする。この時、表面の粗さに起因した、短周期の振れは考慮に入れず、全体的なうねりによる長周期の振れのみを評価する。そして本発明では、溝1aの長さに対する長手方向の真直度の比を6×10−4以下とした。 Further, the straightness of the firing jig in the longitudinal direction of the groove is evaluated as follows. First, the stylus is applied to the groove 1a and moved in the longitudinal direction. Record the deflection of the stylus at that time, and use the difference between the maximum and minimum values as straightness. At this time, the short-period vibration due to the roughness of the surface is not taken into consideration, and only the long-period vibration due to the overall waviness is evaluated. In the present invention, the ratio of the straightness in the longitudinal direction to the length of the groove 1a is set to 6 × 10 −4 or less.

このような溝長手方向の真直度の良好な焼成用冶具を用いると、焼成された棒状ジルコニア焼結体のそりが小さく、ジルコニア焼結体の長さに対するそりの比は1×10−3以下となり、その後のフェルール製作工程で加工性に悪影響を及ぼすことがなくなる。 When such a firing jig having a good straightness in the longitudinal direction of the groove is used, warpage of the fired rod-shaped zirconia sintered body is small, and the ratio of warpage to the length of the zirconia sintered body is 1 × 10 −3 or less. Thus, there is no adverse effect on workability in the subsequent ferrule manufacturing process.

また、ここでの溝1aの角度は、大きすぎると溝側面の挟持性が弱まり、小さすぎると必要な溝幅を得るために溝が深くなりすぎて焼成用冶具の強度、あるいは焼成耐久性に悪影響を与えることから、45°から100°が好ましい。また溝1aの幅はセラミック平板1の表面において、棒状セラミック乾燥体の直径の0.8〜1.1倍が好ましい。これは、溝1aの幅は、広ければ広いほど棒状セラミック乾燥体を容易に、且つ安定に載置することが出来るが、その分加工に多大な工数を要するという事情による。   In addition, if the angle of the groove 1a is too large, the pinching property of the groove side surface is weakened. If it is too small, the groove becomes too deep to obtain the required groove width, which increases the strength of the firing jig or the firing durability. In view of adverse effects, 45 ° to 100 ° is preferable. The width of the groove 1a is preferably 0.8 to 1.1 times the diameter of the rod-shaped ceramic dried body on the surface of the ceramic flat plate 1. This is because, as the width of the groove 1a is wider, the rod-shaped ceramic dried body can be easily and stably placed, but the processing requires much manpower.

上記の加工方法で溝1aを形成することにより、本発明の焼成用冶具が得られる。   By forming the groove 1a by the above processing method, the firing jig of the present invention is obtained.

尚、本発明による焼成用冶具は、光通信用セラミック部品にて説明してきたが、これに限ることなく、そりの少ない焼結体が要求される棒状セラミック部品全般に広く使用することが出来る。   The firing jig according to the present invention has been described with reference to ceramic parts for optical communication, but is not limited thereto, and can be widely used for all rod-shaped ceramic parts that require a sintered body with less warpage.

以下に、本発明の実施例を述べる。平均粒径0.6μmのアルミナ粉末80重量部に対し、50重量部の水を添加し、湿式混合してスラリーを得た。このスラリーに、15重量部の親水性ウレタンポリマーを添加し、この混合物を、所定寸法の型内に注入し、発泡及び硬化させ、これを、脱脂、焼成することで、縦200mm、横200mm、厚さ10mmの平板形状の試験体1を得た。また、親水性ウレタンポリマーの添加量を20%、5%、1%にしたものを、試験体2、3、4とした。   Examples of the present invention will be described below. 50 parts by weight of water was added to 80 parts by weight of alumina powder having an average particle size of 0.6 μm and wet-mixed to obtain a slurry. To this slurry, 15 parts by weight of a hydrophilic urethane polymer is added, and the mixture is poured into a mold having a predetermined size, foamed and cured, and this is degreased and fired to obtain a length of 200 mm, a width of 200 mm, A flat plate-shaped test body 1 having a thickness of 10 mm was obtained. Moreover, what added the amount of hydrophilic urethane polymer to 20%, 5%, and 1% was made into the test bodies 2, 3, and 4. FIG.

更に比較例として、アルミナ粉末86重量部、シリカ粉末13重量部の混合粉体を用意し、プレス成形、及びバッチ炉による焼成で上記形状アルミナセラミック平板を製作した。   Further, as a comparative example, a mixed powder of 86 parts by weight of alumina powder and 13 parts by weight of silica powder was prepared, and the above-mentioned shaped alumina ceramic flat plate was manufactured by press molding and firing by a batch furnace.

またこれらとは別に、1辺が10mmの立方体を、試験体1、2、3、4それぞれの材質の焼結体で作成し、それぞれの気孔率を調べた。このときの真比重は、ヘリウム比重計(島図製作所製MULTIVOLUME PYCNOMETER 1305)、重量は、重量計(モトローラ型METTLER AT250)で計測した。その値を表1に示す。

Figure 2005132647
Separately from these, cubes having a side of 10 mm were prepared from sintered bodies of the materials of the test bodies 1, 2, 3, and 4, and the respective porosities were examined. At this time, the true specific gravity was measured with a helium hydrometer (MULTIVOLME PYCNOMETER 1305, manufactured by Shimazu Seisakusho), and the weight was measured with a weigh scale (Motorola type METTLER AT250). The values are shown in Table 1.
Figure 2005132647

これらの平板試験体1、2、3、4を、平面研削盤とダイヤ工具で図1に示すように溝を持つ形状に加工し、本実験では、溝幅3.2mm、溝深さ2.8mmの溝を26本形成した。このとき、溝長さLに対する溝長手方向の真直度Sの比が6×10-4になるように加工を施した。   These flat plate test bodies 1, 2, 3, 4 are machined into a shape having grooves as shown in FIG. 1 using a surface grinder and a diamond tool. In this experiment, a groove width of 3.2 mm and a groove depth of 2. Twenty-six grooves of 8 mm were formed. At this time, processing was performed so that the ratio of the straightness S in the groove longitudinal direction to the groove length L was 6 × 10 −4.

これら焼成用冶具に、実際に棒状セラミック成形体を設置し、クラック、ソリそして、耐久性の比較を行った。使用した棒状セラミック成形体は、樹脂バインダとジルコニア粉末の混合物を、押し出し成形にて、外形3.50mmの棒状に成形したものを用いる。これを、長さ180mmに切断し、各焼成冶具の溝全てに設置した。押し出し成形機によって作成した成形体の、そり量は、ほぼ同じとし、更に、サンプル数を増やすことで、より正確性を増すことにする。   A rod-shaped ceramic compact was actually installed on these firing jigs, and cracks, warps, and durability were compared. The rod-shaped ceramic molded body used is a mixture of a resin binder and zirconia powder formed into a rod shape having an outer shape of 3.50 mm by extrusion molding. This was cut into a length of 180 mm and installed in all the grooves of each firing jig. The amount of warpage of the molded body produced by the extrusion molding machine is almost the same, and the accuracy is further increased by increasing the number of samples.

脱脂条件は、10℃/時間で350℃まで昇温し、次に100℃/時間で450℃まで昇温した後、1時間保持し、自然冷却するプログラムを組み、バッチ式の炉にて脱脂実験を行った。   The degreasing conditions are as follows: the temperature is raised to 350 ° C. at 10 ° C./hour, then raised to 450 ° C. at 100 ° C./hour, and held for 1 hour, and a program for natural cooling is set up and degreasing in a batch furnace The experiment was conducted.

脱脂を行った後、棒状セラミック乾燥体のクラック発生率を調べる。発生率は、棒状セラミック乾燥体26本を目視にて観察し、乾燥体1本当たりのクラックの発生数を算出したものである。この結果を表1に示す。これより、親水性ウレタンポリマーが、5%以上のものには、クラックの発生が認められなかった。つまり、気孔率65%以上の焼成冶具は、脱脂時通気性がよく、理想的な脱ガスが行われているということがわかる。

Figure 2005132647
After degreasing, the crack generation rate of the rod-shaped ceramic dried body is examined. The occurrence rate is obtained by visually observing 26 rod-shaped ceramic dried bodies and calculating the number of cracks generated per dried body. The results are shown in Table 1. Thus, no crack was observed in the case where the hydrophilic urethane polymer was 5% or more. That is, it can be seen that the firing jig having a porosity of 65% or more has good air permeability during degreasing and ideal degassing is performed.
Figure 2005132647

また、そり量については、各冶具から、10本抜き取り、前述した測定方法により測定し、長さに対する比を求めた。それらを比較した結果、表3のようになった。この結果から、従来のセッタにくらべ格段に、そり量が減少していることがわかる。これも、理想的な脱ガスが行われた効果である。

Figure 2005132647
Moreover, about the amount of curvature, ten pieces were extracted from each jig and measured by the measurement method described above to obtain a ratio to the length. As a result of comparison, they are as shown in Table 3. From this result, it can be seen that the amount of warpage is significantly reduced as compared with the conventional setter. This is also an effect of ideal degassing.
Figure 2005132647

次に、焼成用冶具の耐久試験を行った。昇温速度400℃/時間で、500℃まで昇温し、冷却速度500℃/時間での冷却という冷熱サイクルに供し、何回目の冷熱サイクルで、ソリ量が、発生するかを調べた。30回の冷熱サイクルで割れが発生しなかった場合は、割れが発生しなかった旨を表示した。結果は、表4に示す。やはり、従来冶具は、緻密なため割れは発生しなかった。本発明の焼成用冶具は、親水性ウレタンポリマーの添加量が20重量部のものが、割れが発生していた。やはり、気孔率が高すぎるものは、耐久性に問題があることがわかった。しかし、15重量部以下のものは、割れが発生していないため、使用に耐えられると思われる。   Next, a durability test of the firing jig was performed. The temperature was raised to 500 ° C. at a rate of temperature increase of 400 ° C./hour, and subjected to a cooling cycle of cooling at a cooling rate of 500 ° C./hour, and the number of cooling cycles in which the amount of warping occurred was examined. When cracks did not occur after 30 cooling cycles, the fact that no cracks occurred was displayed. The results are shown in Table 4. Again, conventional jigs were dense and did not crack. In the firing jig of the present invention, cracks occurred when the amount of the hydrophilic urethane polymer added was 20 parts by weight. After all, it was found that those with too high porosity had a problem with durability. However, those having a weight of 15 parts by weight or less are considered to be able to withstand use because cracks are not generated.

以上により、気孔率75%〜65%の多孔質セラミックスを用いたV溝焼成冶具をもちいることにより、樹脂バインダを用いたセラミック成形体の脱脂が精度良くできることが分かった。   From the above, it was found that the ceramic molded body using the resin binder can be degreased with high accuracy by using the V-groove firing jig using the porous ceramics having a porosity of 75% to 65%.

多孔質セラミック焼成冶具を示す斜視図である。It is a perspective view which shows a porous ceramic baking jig. 平面研削盤を示す図である。It is a figure which shows a surface grinder.

符号の説明Explanation of symbols

1・・・セラミック平板
1a・・溝
2・・・ダイヤ工具
3・・・ベッド
4・・・コラム
DESCRIPTION OF SYMBOLS 1 ... Ceramic flat plate 1a .. Groove 2 ... Diamond tool 3 ... Bed 4 ... Column

Claims (3)

樹脂バインダを用いて成形された棒状セラミックス成形体を、気孔率が65〜75%の多孔質セラミックスから成るセラミック焼成用冶具に設置した後、焼成により上記樹脂バインダを脱脂することで棒状セラミックス体を形成することを特徴とする棒状セラミックス体の製造方法。 A rod-shaped ceramic body formed by using a resin binder is placed on a ceramic firing jig made of porous ceramic having a porosity of 65 to 75%, and then the resin binder is degreased by firing to form a rod-shaped ceramic body. A method for producing a rod-shaped ceramic body, characterized by comprising: 上記焼成用治具は、平面が長方形状の板状体からなり、その長手方向全域に複数の溝を設けたものであることを特徴とする棒状セラミックス体の製造方法。 The method for producing a rod-shaped ceramic body, wherein the firing jig is a plate-shaped body having a rectangular plane and provided with a plurality of grooves in the entire longitudinal direction. 上記溝長さに対する溝長手方向の真直度の比が6×10−4以下であることを特徴とする請求項2に記載の棒状セラミックス体の製造方法。 3. The method for manufacturing a rod-shaped ceramic body according to claim 2, wherein a ratio of straightness in the groove longitudinal direction to the groove length is 6 × 10 −4 or less.
JP2003368014A 2003-10-28 2003-10-28 Manufacturing method of rod-like ceramic body Pending JP2005132647A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003368014A JP2005132647A (en) 2003-10-28 2003-10-28 Manufacturing method of rod-like ceramic body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003368014A JP2005132647A (en) 2003-10-28 2003-10-28 Manufacturing method of rod-like ceramic body

Publications (1)

Publication Number Publication Date
JP2005132647A true JP2005132647A (en) 2005-05-26

Family

ID=34645847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003368014A Pending JP2005132647A (en) 2003-10-28 2003-10-28 Manufacturing method of rod-like ceramic body

Country Status (1)

Country Link
JP (1) JP2005132647A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103464747A (en) * 2013-08-26 2013-12-25 苏州米莫金属科技有限公司 Novel degreasing furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103464747A (en) * 2013-08-26 2013-12-25 苏州米莫金属科技有限公司 Novel degreasing furnace

Similar Documents

Publication Publication Date Title
CN102753494B (en) The idle compacting of cigarette for optical fiber outer cladding
JP2014514230A (en) Method for producing a composite material comprising a ceramic matrix
EP4393896A1 (en) Fiber-reinforced silicious module and preparation method
JP2005132647A (en) Manufacturing method of rod-like ceramic body
JP2003104776A (en) Production method for ceramic sintered compact
JP4499928B2 (en) Immersion member for molten metal plating bath and manufacturing method
WO2006120936A1 (en) Manufacturing method of setter for sintering/firing
JP5240722B2 (en) Ceramic ferrule and its manufacturing method
JP2004256361A (en) Firing tool, and its producing method
JP2003073710A (en) Holder for baking, manufacturing method therefor, and method for manufacturing ceramic parts for optical communication therewith
JP2005179156A (en) Method for manufacturing sintered ceramic compact and connector for optical communication
JP2002072012A (en) Manufacturing method for optical fiber ferrule and optical fiber ferrule formed by the method
JP4618992B2 (en) Molding method of ceramic powder
CN111238891B (en) Preparation method of internal defects of reaction sintered silicon carbide ceramic
JPH07248432A (en) Capillary for optical connector
JP5066149B2 (en) Method for firing ceramic molded body
JP2003004978A (en) Optical fiber ferrule and its manufacturing method
JP2002182068A (en) Quartz glass ferrule and method for manufacturing the same
JP7054254B2 (en) Manufacturing method of preform for optical fiber
JPS61170709A (en) Optical fiber connector
JP2003221275A (en) Method for manufacturing sintered body of ceramics
JP4726427B2 (en) Ceramic molded body extrusion molding machine and extrusion molding method
JP2006177650A (en) Jig for firing ceramic
JP2003073164A (en) Method of manufacturing ceramic sintered compact
JP5199091B2 (en) SiC sintered body and manufacturing method thereof