JP5199091B2 - SiC sintered body and manufacturing method thereof - Google Patents

SiC sintered body and manufacturing method thereof Download PDF

Info

Publication number
JP5199091B2
JP5199091B2 JP2008528807A JP2008528807A JP5199091B2 JP 5199091 B2 JP5199091 B2 JP 5199091B2 JP 2008528807 A JP2008528807 A JP 2008528807A JP 2008528807 A JP2008528807 A JP 2008528807A JP 5199091 B2 JP5199091 B2 JP 5199091B2
Authority
JP
Japan
Prior art keywords
sic
sintered body
porosity
fired
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008528807A
Other languages
Japanese (ja)
Other versions
JPWO2008018401A1 (en
Inventor
朝郎 永留
一彦 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2008528807A priority Critical patent/JP5199091B2/en
Publication of JPWO2008018401A1 publication Critical patent/JPWO2008018401A1/en
Application granted granted Critical
Publication of JP5199091B2 publication Critical patent/JP5199091B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/575Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by pressure sintering
    • C04B35/5755Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by pressure sintering obtained by gas pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63424Polyacrylates; Polymethacrylates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63492Natural resins, e.g. rosin
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/636Polysaccharides or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/636Polysaccharides or derivatives thereof
    • C04B35/6365Cellulose or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5472Bimodal, multi-modal or multi-fraction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/963Surface properties, e.g. surface roughness

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Products (AREA)
  • Furnace Charging Or Discharging (AREA)

Description

本発明は、陶磁器、タイル、電子部品等の被焼成物を焼成するために用いるSiC質焼結体及びその製造方法に関する。   The present invention relates to a SiC-based sintered body used for firing an object to be fired, such as ceramics, tiles, and electronic parts, and a method for manufacturing the same.

SiCとSiを構成成分として含むSi−SiC焼結体(SiC質焼結体ともいう。)は、工業的に優れた耐熱性及び耐火度を備えており、陶磁器、タイル、電子部品等の被焼成物の焼成用棚板などとして用いるものである。
Si−SiC焼結体は、主に、SiC粒子にカーボン(C)微粉末と有機バインダーとを添加し、これを流し込み成形、押出成形、プレス成形等により成形した後、Si雰囲気中で焼成して製造される。
A Si-SiC sintered body (also referred to as a SiC-based sintered body) containing SiC and Si as constituent components has industrially excellent heat resistance and fire resistance, and is covered with ceramics, tiles, electronic parts, and the like. It is used as a shelf board for firing fired products.
The Si-SiC sintered body is mainly formed by adding carbon (C) fine powder and an organic binder to SiC particles, and then molding them by casting, extrusion molding, press molding, etc., and then firing in an Si atmosphere. Manufactured.

前記製造方法の内、プレス成形は、量産化、工業化には最適なものであるが、成形時に層状の剥離が生じやすく、また、保形成が低いため取扱い時に破損が生じるという問題があった。
この問題を解決するために、下記特許文献1に記載されているSiC質焼結体が開発されている。
Among the above production methods, press molding is optimal for mass production and industrialization, but there has been a problem that layer peeling easily occurs during molding, and breakage occurs during handling due to low retention.
In order to solve this problem, a SiC-based sintered body described in Patent Document 1 below has been developed.

特許第2968882号公報Japanese Patent No. 2968882

しかし、上記特許文献1に記載のSiC質焼結体は、プレス成形した際、表面にプレス圧力が集中して平滑となり、被焼成物の脱バインダーが十分に行うことができず、均一組成の被焼成物を得ることができないという問題があった。   However, when the SiC sintered body described in Patent Document 1 is press-molded, the press pressure concentrates on the surface and becomes smooth, and the binder to be fired cannot be sufficiently removed. There was a problem that a product to be fired could not be obtained.

本発明は、上記課題に鑑み、被焼成物の脱バインダーに優れ、均一組成の被焼成物を得ることができるSiC質焼結体及びその製造方法を提供せんとするものである。   In view of the above-mentioned problems, the present invention is to provide a SiC sintered body that is excellent in debinding of a fired product and can obtain a fired product having a uniform composition, and a method for producing the same.

本発明の焼成板用SiC質焼結体は、少なくともSiCとSiとを構成成分として含む焼成板用SiC質焼結体であって、前記焼結体の平均面粗さが5μm〜100μmであり、表面に窒化ケイ素結晶を有することを特徴とする。
この表面粗さとすることにより、前記焼結体上に載せた被焼成物のバインダーが抜けやすくなるため、脱バインダーに優れたものとなり、また、均一組成の被焼成物を得ることができるものとなる。
The SiC sintered body for fired plate according to the present invention is an SiC sintered body for fired plate containing at least SiC and Si as constituent components, and the average surface roughness of the sintered body is 5 μm to 100 μm. And having a silicon nitride crystal on the surface .
By making this surface roughness, the binder of the fired product placed on the sintered body is easily removed, so that it is excellent in debinding, and a fired product with a uniform composition can be obtained. Become.

本発明は、少なくともSiCとSiとを構成成分として含む焼成板用SiC質焼結体であって、前記焼結体の表面気孔率が0.3%以上である焼成板用SiC質焼結体とすることもできる。
この表面気孔率とすることによっても、前記焼結体上に載せた被焼成物のバインダーが抜けやすくなるため、脱バインダーに優れたものとなり、また、均一組成の被焼成物を得ることができるものとなる。
The present invention, at least the SiC and Si a SiC sintered material for baking plates containing as a constituent component, said sintered body sintered plate for SiC sintered material surface porosity of 0.3% or more It can also be.
Even with this surface porosity, since the binder of the fired product placed on the sintered body is easily removed, the binder is excellent in debinding, and a fired product having a uniform composition can be obtained. It will be a thing.

本発明は、上記特徴を合わせて、前記焼結体の平均面粗さが5μm〜100μmであり、かつ、前記焼結体の表面気孔率が0.3%以上である焼成板用SiC質焼結体とすることもできる。 The present invention, together the above characteristics, the sintered average surface roughness of the sintered body is 5 m to 100 m, and the sintered surface porosity of the sintered body is sintered plate for SiC sintered at least 0.3% It can also be a ligation.

上記焼結体において、表面気孔率は、内部気孔率よりも大であるのが好ましく、表面気孔率と内部気孔率の比率(表面気孔率/内部気効率)が1.3以上であるのがより好ましい。
このようにすることにより、内部に巣のない焼結体となり、強度的に優れたものとなる。
In the sintered body, the surface porosity is preferably larger than the internal porosity, and the ratio of the surface porosity to the internal porosity (surface porosity / internal porosity) is 1.3 or more. More preferred.
By doing in this way, it becomes a sintered body without a nest inside and becomes excellent in strength.

上記焼結体の製造方法としては、SiC粉体、黒鉛粉、有機バインダー及び水を含有してなる成形用原料を成形した後、焼結し、冷却する焼成板用SiC質焼結体の製造方法であって、焼結工程に窒素ガスを導入する製造方法を挙げることができる。
成形後に窒素ガスを導入して焼結することにより、窒素ガスは、焼結体の表面からSiを取り去ることができるため、表面を適度な粗さにすることができる。
As the method for producing the sintered body, the production of a SiC-based sintered body for a fired plate that is sintered and cooled after forming a forming raw material containing SiC powder, graphite powder, an organic binder and water. It is a method, Comprising: The manufacturing method which introduce | transduces nitrogen gas to a sintering process can be mentioned.
When nitrogen gas is introduced and sintered after molding, the nitrogen gas can remove Si from the surface of the sintered body, so that the surface can be appropriately roughened.

上記製造方法において、窒素ガスの圧力は0.1MPa〜1.0MPaとし、焼成温度は1500℃〜2500℃、焼成温度保持時間は8時間以上とし、昇温速度は120℃/hr以上とするのが好ましい。   In the above production method, the pressure of the nitrogen gas is 0.1 MPa to 1.0 MPa, the firing temperature is 1500 ° C. to 2500 ° C., the firing temperature holding time is 8 hours or more, and the heating rate is 120 ° C./hr or more. Is preferred.

なお、本発明でいう表面気孔率は、厚さに対して約30%の両表面からの深さの気孔率をいい、内部気孔率は、それ以外の中心部の気孔率をいう。例えば、厚さを10mmとした場合、表面気孔率は、両表面から3mm深さまでの気孔率であり、内部気孔率は、表面から3mm〜7mmまでの深さの気孔率である。   In addition, the surface porosity as used in the field of this invention means the porosity of the depth from both surfaces of about 30% with respect to thickness, and an internal porosity means the porosity of other center part. For example, when the thickness is 10 mm, the surface porosity is a porosity of 3 mm depth from both surfaces, and the internal porosity is a porosity of a depth of 3 mm to 7 mm from the surface.

以下、本発明の好適な実施形態を説明する。
本発明は、SiCとSiとを構成成分として含むSiC質焼結体の表面を粗くしたものであり、平均面粗さでは5μm〜100μm、表面気孔率では0.3%以上となるようにする。もちろん、これら平均面粗さと表面気孔率との両方の範囲を満たすSiC質焼結体としてもよい。
本発明のSiC質焼結体は、SiC粉末と、黒鉛粉と、有機バインダーと、水又は有機溶剤とを混合した成形用原料を成形した後、焼結して製造することができる。
Hereinafter, preferred embodiments of the present invention will be described.
In the present invention, the surface of a SiC sintered body containing SiC and Si as constituent components is roughened so that the average surface roughness is 5 μm to 100 μm and the surface porosity is 0.3% or more. . Of course, it is good also as a SiC sintered compact which satisfy | fills the range of both of these average surface roughness and surface porosity.
The SiC sintered body of the present invention can be manufactured by molding a molding raw material in which SiC powder, graphite powder, an organic binder, and water or an organic solvent are mixed and then sintering.

SiC粉末は、SiC微粒として平均粒径30μm〜85μm、好ましくは55μm〜75μmのものを用いることができる。また、粒径の異なるものを混合して用いてもよい。粒径の異なるものを使用する場合には、SiC微粒に平均粒径が1μm〜10μm、好ましくは2μm〜8μmのSiC微粉を用いることができる。   As the SiC powder, SiC fine particles having an average particle diameter of 30 μm to 85 μm, preferably 55 μm to 75 μm can be used. Moreover, you may mix and use what differs in a particle size. When using particles having different particle diameters, SiC fine particles having an average particle diameter of 1 μm to 10 μm, preferably 2 μm to 8 μm, can be used as the SiC fine particles.

黒鉛粉は、平均粒径3.0μm〜8.5μm、好ましくは5.5μm〜7.5μmのものを用いることができる。黒鉛粉は、SiC粉末に対して1重量%〜15重量%、好ましくは3重量%〜10重量%含有させる。   The graphite powder having an average particle size of 3.0 μm to 8.5 μm, preferably 5.5 μm to 7.5 μm can be used. The graphite powder is contained in an amount of 1 to 15% by weight, preferably 3 to 10% by weight, based on the SiC powder.

水又は有機溶剤は、後述するプレス成形の場合には、SiC粉末に対して1重量%〜6重量%含有させるのが好ましく、また、後述する鋳込み成形の場合には、SiC粉末に対して10重量%〜20重量%含有させるのが好ましい。   In the case of press molding to be described later, water or an organic solvent is preferably contained in an amount of 1 to 6% by weight with respect to the SiC powder. It is preferable to make it contain 20% by weight to 20% by weight.

有機バインダーは、リグニンスルホン酸系有機バインダーや多糖類系有機バインダー、アクリル系有機バインダーを用いることができ、SiC粉末に対して1重量%〜5重量%、好ましくは2重量%〜2.5重量%含有させる。   As the organic binder, a lignin sulfonic acid organic binder, a polysaccharide organic binder, or an acrylic organic binder can be used, and 1 wt% to 5 wt%, preferably 2 wt% to 2.5 wt% with respect to the SiC powder. % Content.

SiC粉末と、黒鉛粉と、有機バインダーと、水又は有機溶剤とを配合し、これを混合して成形用原料とすることができる。混合は、ボールミル、フレットミル等の粉砕機を用いて行うことができる。
この際、黒鉛の凝集粒子の90重量%以上が解砕されるまで解砕する。なお、ここで解砕度は、解砕前の原料を20mm×20mmの成形型に適量入れ、プレス成形したときにプレス面にある黒鉛凝集粉の数を拡大鏡で測定し、また解砕後の原料も同様に数を測定し、これらの比を求めて計算することができる。
SiC powder, graphite powder, an organic binder, and water or an organic solvent can be blended and mixed to obtain a raw material for molding. The mixing can be performed using a pulverizer such as a ball mill or a fret mill.
At this time, 90% by weight or more of the aggregated graphite particles are crushed. Here, the degree of crushing is determined by placing an appropriate amount of raw material before crushing into a 20 mm × 20 mm mold, measuring the number of graphite agglomerated powder on the press surface with a magnifying glass when press molding, and after crushing Similarly, the number of the raw materials can be measured by calculating the ratio of these numbers.

成形方法としては、流し込み(鋳込み)成形、押出成形、プレス成形などがあり、これらを用いて成形体を作成することができる。なかでも、プレス成形が好ましく、油圧プレスや振動プレスがよい。   Examples of the molding method include casting (casting) molding, extrusion molding, press molding, and the like, and a molded body can be created using these. Of these, press molding is preferable, and a hydraulic press and a vibration press are preferable.

上記成形体を以下のように焼成することにより、本発明のSiC質焼結体を製造することができる。   The SiC sintered body of the present invention can be manufactured by firing the molded body as follows.

焼成は、金属シリコン雰囲気、かつ、アルゴン(Ar)ガス雰囲気下において、焼成温度1500℃〜2500℃、好ましくは1800℃〜1950℃で行う。なお、ここで金属シリコン雰囲気とは、例えば、焼成炉内に金属シリコン貯まりを有し、溶融した該金属シリコンが毛細管現象により成形体に吸収されるような状況を形成していることをいう。
その後、窒素(N2)ガスを、シリコンの融点である1400℃以上での焼成時に導入する。これにより、SiC質焼結体表面にSiN(窒化ケイ素)の針状結晶による凹凸を形成することができ、安全性に優れ、電子部品等の被焼成物の脱バインダー性に優れたSiC質焼結体を得ることができる。窒素ガスの導入は、SiC質焼結体への金属シリコンの吸収を妨げないため、焼成工程の最後に行うのが好ましい。
焼成直後にSiNのウィスカーが多く生成している場合、サンドブラストで除去するのが好ましい。
この焼成の際、窒素(N2)ガスの圧力は、0.1MPa〜1.0MPaとするのが好ましく、より好ましくは0.4MPa〜0.9MPaとする。
Firing is performed at a firing temperature of 1500 ° C. to 2500 ° C., preferably 1800 ° C. to 1950 ° C. in a metal silicon atmosphere and an argon (Ar) gas atmosphere. Here, the metal silicon atmosphere means that, for example, a metal silicon reservoir is provided in a firing furnace, and the melted metal silicon is formed to be absorbed by the formed body by capillary action.
Thereafter, nitrogen (N 2 ) gas is introduced during firing at 1400 ° C. or higher, which is the melting point of silicon. Thereby, it is possible to form irregularities due to SiN (silicon nitride) needle-like crystals on the surface of the SiC sintered body, which is excellent in safety and excellent in debinding of a sintered object such as an electronic component. A ligation can be obtained. The introduction of nitrogen gas is preferably performed at the end of the firing step because it does not impede the absorption of metallic silicon into the SiC sintered body.
When many SiN whiskers are formed immediately after firing, it is preferably removed by sandblasting.
In the firing, the pressure of nitrogen (N 2 ) gas is preferably 0.1 MPa to 1.0 MPa, more preferably 0.4 MPa to 0.9 MPa.

成形体を略矩形板状とした場合は、成形体を立てて、つまりいずれかの側端面を下面として焼成するのが、反り防止の観点から好ましい。この際、各成形体の間隔を2mm以上、好ましくは5mm以上とするのがよく、これによりSiの浸み出しによる各成形体同士の付着を防止できる。   When the molded body has a substantially rectangular plate shape, it is preferable that the molded body is erected, that is, fired with one of the side end faces as the lower surface from the viewpoint of preventing warpage. At this time, the interval between the molded bodies is set to 2 mm or more, preferably 5 mm or more, whereby adhesion of the molded bodies due to leaching of Si can be prevented.

上記焼結体において、表面気孔率は、内部気孔率よりも大であるのがよい。特に表面気孔率と内部気孔率との比率(表面気孔率/内部気孔率)は、1.3以上であるのがよく、より好ましくは2.0以上、さらに好ましくは5.0以上である。これにより、被焼成物の反応性に優れたSiC質焼結体となる。   In the sintered body, the surface porosity is preferably larger than the internal porosity. In particular, the ratio between the surface porosity and the internal porosity (surface porosity / internal porosity) is preferably 1.3 or more, more preferably 2.0 or more, and still more preferably 5.0 or more. Thereby, it becomes the SiC sintered compact excellent in the reactivity of a to-be-fired thing.

本発明のSiC質焼結体は、平均面粗さを5μm〜100μm、或いは表面気孔率を0.3%以上として表面に適度の粗さを有するため、前記焼結体上に載せた被焼成物のバインダーが抜けやすくなり、被焼成物が前記焼結体に融着することがない。また、被焼成物は、バインダーが充分に抜け、均一な組織となる。   Since the SiC sintered body of the present invention has an appropriate surface roughness with an average surface roughness of 5 μm to 100 μm, or a surface porosity of 0.3% or more, it is fired on the sintered body. The binder of the product is easily removed, and the fired product is not fused to the sintered body. In addition, the material to be fired has a uniform structure because the binder is sufficiently removed.

以下、本発明の実施例を説明する。ただし、本発明はこれに限定されるものではない。
なお、下記実施例及び比較例において、平均面粗さは、JIS−B0601に従い、場所を変更して5点測定し、その平均を求めた。また、表面気孔率又は内部気孔率は、JIS−R1634に記載の煮沸法に従い、場所を変更して4点測定し、その平均を求めた。
Examples of the present invention will be described below. However, the present invention is not limited to this.
In the following examples and comparative examples, the average surface roughness was measured at five points in accordance with JIS-B0601, and the average was obtained. Further, the surface porosity or the internal porosity was measured at four points by changing the location according to the boiling method described in JIS-R1634, and the average was obtained.

(実施例1)
平均粒径70μmのSiC微粒97重量%と、平均粒径6μmの黒鉛粉3重量%とからなる粉体100重量部に対して、リグニンスルホン酸系有機バインダー2重量部、多糖類系有機バインダー2.5重量部及び水4.5重量部を配合し、成形用原料とした。この成形用原料を、金型に入れ、振動プレスし、350mm×300mm×6mmの成形体を得た。
得られた成形体を、下部にシリコン貯まりを有する焼成炉の中に入れ、Arガス雰囲気下(804.1kPa(8.2kg/cm2))で室温から700℃まで3.5時間(昇温速度約200℃/hr)で昇温し、700℃で1時間保持した後、700℃から1880℃まで8時間(昇温速度約150℃)で昇温し、1880℃の焼成温度を11.5時間保持した。その後、窒素ガスを導入し、窒素ガス雰囲気下(804.1kPa(8.2kg/cm2))で0.5時間、1880℃で焼成し、SiC質焼結体を得た。
得られた焼結体の物性は、平均面粗さ9.8μm、表面気孔率0.5%であった。また、比率(表面気孔率/内部気孔率)は5.5であった。強度の指標である曲げ強さは185MPaであった。
Example 1
2 parts by weight of a lignin sulfonic acid organic binder and 2 parts of a polysaccharide organic binder with respect to 100 parts by weight of a powder composed of 97% by weight of SiC particles having an average particle diameter of 70 μm and 3% by weight of graphite powder having an average particle diameter of 6 μm .5 parts by weight and 4.5 parts by weight of water were blended to obtain a raw material for molding. This raw material for molding was put into a mold and subjected to vibration pressing to obtain a molded body of 350 mm × 300 mm × 6 mm.
The obtained molded body was placed in a firing furnace having a silicon reservoir in the lower part, and the temperature was raised from room temperature to 700 ° C. for 3.5 hours in an Ar gas atmosphere (804.1 kPa (8.2 kg / cm 2 )). The temperature was raised at a rate of about 200 ° C./hr) and held at 700 ° C. for 1 hour, and then raised from 700 ° C. to 1880 ° C. for 8 hours (temperature rise rate of about 150 ° C.). Hold for 5 hours. After that, nitrogen gas was introduced and fired at 1880 ° C. for 0.5 hour in a nitrogen gas atmosphere (804.1 kPa (8.2 kg / cm 2 )) to obtain a SiC sintered body.
The obtained sintered compact had an average surface roughness of 9.8 μm and a surface porosity of 0.5%. The ratio (surface porosity / internal porosity) was 5.5. The bending strength, which is an index of strength, was 185 MPa.

(実施例2)
平均粒径55μmのSiC微粒79重量%と、平均粒径3μmのSiC微粉19重量%と、平均粒径6μmの黒鉛粉2重量%とからなる粉体100重量部に対して、アクリル系有機バインダー1.2重量部及び水17重量部を配合し、これをボールミルで湿式粉砕して成形用原料を得た。この成形用原料を、石膏型で鋳込み、250mm×120mm×6mmの成形体を得た。
得られた成形体を、下部にシリコン貯まりを有する焼成炉の中に入れ、Arガス雰囲気下(804.1kPa(8.2kg/cm2))で室温から700℃まで3.5時間(昇温速度約200℃/hr)で昇温し、700℃で1時間保持した後、700℃から1880℃まで8時間(昇温速度約150℃)で昇温し、1880℃の焼成温度を11.5時間保持した。その後、窒素ガスを導入し、窒素ガス雰囲気下(804.1kPa(8.2kg/cm2))で0.5時間、1880℃で焼成し、SiC質焼結体を得た。
得られた焼結体の物性は、平均面粗さ6.9μm、表面気孔率0.4%であった。また、比率(表面気孔率/内部気孔率)は2.0であった。強度の指標である曲げ強さは250MPaであった。
(Example 2)
An acrylic organic binder with respect to 100 parts by weight of powder composed of 79% by weight of SiC fine particles having an average particle size of 55 μm, 19% by weight of SiC fine particles having an average particle size of 3 μm, and 2% by weight of graphite powder having an average particle size of 6 μm 1.2 parts by weight and 17 parts by weight of water were blended, and this was wet pulverized by a ball mill to obtain a forming raw material. This forming raw material was cast with a plaster mold to obtain a molded body of 250 mm × 120 mm × 6 mm.
The obtained molded body was placed in a firing furnace having a silicon reservoir in the lower part, and the temperature was raised from room temperature to 700 ° C. for 3.5 hours in an Ar gas atmosphere (804.1 kPa (8.2 kg / cm 2 )). The temperature was raised at a rate of about 200 ° C./hr) and held at 700 ° C. for 1 hour, and then raised from 700 ° C. to 1880 ° C. for 8 hours (temperature rise rate of about 150 ° C.). Hold for 5 hours. After that, nitrogen gas was introduced and fired at 1880 ° C. for 0.5 hour in a nitrogen gas atmosphere (804.1 kPa (8.2 kg / cm 2 )) to obtain a SiC sintered body.
The physical properties of the obtained sintered body were an average surface roughness of 6.9 μm and a surface porosity of 0.4%. The ratio (surface porosity / internal porosity) was 2.0. The bending strength, which is an index of strength, was 250 MPa.

(比較例1)
平均粒径1.0μmのSiC微粉50重量%と、平均粒径25μmのSiC微粒50重量%とからなる粉体100重量部に対し、平均粒径0.1μmの黒鉛粉1.0重量部、有機バインダー(メチルセルロース)0.1重量部及び水3.0重量部で配合し、これをボールミルで粉砕して成形用原料を得た。この成形用原料を、金型に入れ、300kg/cm2で油圧プレスし、200mm×30mm×10mmの成形体を得た。
得られた成形体を、焼成時に窒素ガスを導入しない以外は、実施例1と同様にし、SiC質焼結体を得た。
得られた焼結体の物性は、平均面粗さ3.7μm、表面気孔率0.15%であった。また、比率(表面気孔率/内部気孔率)は0.83であった。
(Comparative Example 1)
For 100 parts by weight of powder composed of 50% by weight of SiC fine powder having an average particle diameter of 1.0 μm and 50% by weight of SiC fine particles having an average particle diameter of 25 μm, 1.0 part by weight of graphite powder having an average particle diameter of 0.1 μm, An organic binder (methylcellulose) was blended in 0.1 part by weight and water in 3.0 part by weight, and this was pulverized by a ball mill to obtain a molding material. This forming raw material was put in a mold and hydraulically pressed at 300 kg / cm 2 to obtain a molded body of 200 mm × 30 mm × 10 mm.
The obtained compact was obtained in the same manner as in Example 1 except that nitrogen gas was not introduced during firing to obtain a SiC sintered body.
The physical properties of the obtained sintered body were an average surface roughness of 3.7 μm and a surface porosity of 0.15%. The ratio (surface porosity / internal porosity) was 0.83.

(評価)
上記実施例1,2及び比較例1を用いて、下記融着性を評価した。
(Evaluation)
Using the above Examples 1 and 2 and Comparative Example 1, the following fusing properties were evaluated.

(融着性)
材質カオリンからなる被焼成物を、実施例1,2又は比較例1のSiC質焼結体上に置き、1200℃で12時間焼成し、被焼成物がSiC質焼結体に融着しているかを確認した。
(Fusability)
A material to be fired made of kaolin is placed on the SiC sintered body of Examples 1 and 2 or Comparative Example 1 and fired at 1200 ° C. for 12 hours. The material to be fired is fused to the SiC sintered body. I checked.

(結果)
上記実施例1,2及び比較例1のSiC質焼結体を、各6枚用いて上記評価を行った。○は「融着なし」、△は「少し融着あり」、×は「融着しており、取り出せない、或いは被焼成物が破損」として評価した。
その結果を表1に示す。
(result)
The above evaluation was performed using six SiC sintered bodies of Examples 1 and 2 and Comparative Example 1 each. ○ is evaluated as “no fusion”, Δ is “a little fusion”, and × is “fusing and cannot be taken out or the object to be fired is damaged”.
The results are shown in Table 1.

Figure 0005199091
Figure 0005199091

Claims (7)

少なくともSiCとSiとを構成成分として含む焼成板用SiC質焼結体であって、前記焼結体の平均面粗さが5μm〜100μmであり、表面に窒化ケイ素結晶を有する焼成板用SiC質焼結体。A SiC sintered body for firing plate which comprises an at least SiC and Si, wherein the sintering average surface roughness of the sintered body Ri 5μm~100μm der, SiC for firing plate having a surface silicon nitride crystal Sintered material. 少なくともSiCとSiとを構成成分として含む焼成板用SiC質焼結体であって、前記焼結体の表面気孔率が0.3%以上であり、表面に窒化ケイ素結晶を有する焼成板用SiC質焼結体。At least the SiC and Si a SiC sintered material for baking plates containing as a constituent component, wherein the surface porosity of the sintered body Ri der least 0.3%, for firing plate having a surface silicon nitride crystal SiC sintered body. 少なくともSiCとSiとを構成成分として含む焼成板用SiC質焼結体であって、前記焼結体の平均面粗さが5μm〜100μmであり、かつ、前記焼結体の表面気孔率が0.3%以上であり、表面に窒化ケイ素結晶を有する焼成板用SiC質焼結体。SiC sintered body for fired plate containing at least SiC and Si as constituent components, wherein the sintered body has an average surface roughness of 5 μm to 100 μm, and the surface porosity of the sintered body is 0 der .3% or more is, the firing plate for SiC sintered material having a surface to silicon nitride crystal. 表面気孔率は、内部気孔率よりも大である請求項2又は3に記載の焼成板用SiC質焼結体。The SiC sintered body for a fired plate according to claim 2 or 3, wherein the surface porosity is larger than the internal porosity. 表面気孔率と内部気孔率の比率(表面気孔率/内部気孔率)が1.3以上である請求項4に記載の焼成板用SiC質焼結体。The SiC-based sintered body for fired plate according to claim 4, wherein a ratio of surface porosity to internal porosity (surface porosity / internal porosity) is 1.3 or more. SiC粉体、黒鉛粉、有機バインダー及び水を含有してなる成形用原料を成形した後、焼結し、冷却する焼成板用SiC質焼結体の製造方法であって、焼結工程に窒素ガスを導入する焼成板用SiC質焼結体の製造方法。SiC powder, graphite powder, after forming the molding material comprising the organic binder and water, sintering, a method for producing a sintered plate for SiC sintered body to be cooled, nitrogen sintering A method for producing a SiC sintered body for a fired plate into which a gas is introduced. 窒素ガスの圧力が0.1MPa〜1.0MPaである請求項6に記載の焼成板用SiC質焼結体の製造方法。The method for producing a SiC sintered body for a fired plate according to claim 6 , wherein the pressure of the nitrogen gas is 0.1 MPa to 1.0 MPa.
JP2008528807A 2006-08-09 2007-08-06 SiC sintered body and manufacturing method thereof Active JP5199091B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008528807A JP5199091B2 (en) 2006-08-09 2007-08-06 SiC sintered body and manufacturing method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006216387 2006-08-09
JP2006216387 2006-08-09
PCT/JP2007/065343 WO2008018401A1 (en) 2006-08-09 2007-08-06 SiC-BASED SINTERED PRODUCT, AND METHOD FOR PRODUCTION THEREOF
JP2008528807A JP5199091B2 (en) 2006-08-09 2007-08-06 SiC sintered body and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPWO2008018401A1 JPWO2008018401A1 (en) 2009-12-24
JP5199091B2 true JP5199091B2 (en) 2013-05-15

Family

ID=39032931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008528807A Active JP5199091B2 (en) 2006-08-09 2007-08-06 SiC sintered body and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP5199091B2 (en)
WO (1) WO2008018401A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6036372A (en) * 1983-07-29 1985-02-25 ヘキスト・セラムテック・アクチェンゲゼルシャフト Manufacture of formed body consisting of silicon-penetrated and reaction-bonded silicon carbide
JP2002274946A (en) * 2001-03-22 2002-09-25 Ngk Insulators Ltd Silicon carbide heat treating tool
WO2003035577A1 (en) * 2001-10-22 2003-05-01 National Institute Of Advanced Industrial Science And Technology Silicon carbide based porous structure and method for manufacture thereof
JP2005298310A (en) * 2004-04-16 2005-10-27 Ngk Insulators Ltd Manufacturing method of ceramic composite material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3506721B2 (en) * 1992-11-19 2004-03-15 日本碍子株式会社 Sporing resistant sintered body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6036372A (en) * 1983-07-29 1985-02-25 ヘキスト・セラムテック・アクチェンゲゼルシャフト Manufacture of formed body consisting of silicon-penetrated and reaction-bonded silicon carbide
JP2002274946A (en) * 2001-03-22 2002-09-25 Ngk Insulators Ltd Silicon carbide heat treating tool
WO2003035577A1 (en) * 2001-10-22 2003-05-01 National Institute Of Advanced Industrial Science And Technology Silicon carbide based porous structure and method for manufacture thereof
JP2005298310A (en) * 2004-04-16 2005-10-27 Ngk Insulators Ltd Manufacturing method of ceramic composite material

Also Published As

Publication number Publication date
JPWO2008018401A1 (en) 2009-12-24
WO2008018401A1 (en) 2008-02-14

Similar Documents

Publication Publication Date Title
EP1940532B1 (en) Filter device for molten metal filtration and method for producing such filters
CN1662286B (en) Fiber reinforced filter for molten metal filtration and method for producing such filters
HUE027172T2 (en) Use of a sintered refractory material based on silicon carbide with a silicon nitride binder
JP4704111B2 (en) Oxide bonded silicon carbide material
EP1840101B1 (en) Fused siliceous refractory and production method thereof
US3993495A (en) Porous ceramic articles and method for making same
CN103951394A (en) High-temperature thermal shock resistant aluminum oxide ceramic burning loading plate and preparation process thereof
EP2222616B1 (en) Refractory product having a doped sialon matrix
KR20160033232A (en) Batch for producing a carbon-bonded or resin-bonded shaped fire-resistant product, a method for producing such a product, a product of said type, and a use of magnesia spinel zirconium oxide
US20050035055A1 (en) Filter for molten metal filtration and method for producing such filters
JP5199091B2 (en) SiC sintered body and manufacturing method thereof
JP4399579B2 (en) Castable molded product and method for producing the same
CN106986619B (en) High-temperature nano unfired sliding plate and processing technology thereof
JP2010202472A (en) Ceramic fired body and method of manufacturing the same
JP2000351679A (en) Production of silicon carbide-based porous form and the resultant silicon carbide-based porous form
JP3142359B2 (en) Press molding method
JP2968882B2 (en) SiC-based sintered body and method of firing the same
JP5093639B2 (en) Method for producing carbon / ceramic composite material
JP6366976B2 (en) Heat treatment member made of porous ceramics
JP3942288B2 (en) Method for producing setter material for firing ceramics
JP2508511B2 (en) Alumina composite
JP5108311B2 (en) Oxide-bonded silicon carbide sintered body and manufacturing method thereof
CN114315329A (en) Corundum silicon carbide composite brick for hazardous waste rotary kiln and preparation method thereof
KR20210065254A (en) Porous carbon and fabrication for the same
JP2024514249A (en) Method of forming featured ceramic articles, e.g. ceramic mirror blanks

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100723

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5199091

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250