JP4618992B2 - Molding method of ceramic powder - Google Patents

Molding method of ceramic powder Download PDF

Info

Publication number
JP4618992B2
JP4618992B2 JP2003334428A JP2003334428A JP4618992B2 JP 4618992 B2 JP4618992 B2 JP 4618992B2 JP 2003334428 A JP2003334428 A JP 2003334428A JP 2003334428 A JP2003334428 A JP 2003334428A JP 4618992 B2 JP4618992 B2 JP 4618992B2
Authority
JP
Japan
Prior art keywords
mold
molded body
cylindrical molded
temperature
pin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003334428A
Other languages
Japanese (ja)
Other versions
JP2004338363A (en
Inventor
高義 諸岡
弘樹 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003334428A priority Critical patent/JP4618992B2/en
Publication of JP2004338363A publication Critical patent/JP2004338363A/en
Application granted granted Critical
Publication of JP4618992B2 publication Critical patent/JP4618992B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、ミクロン単位の高い寸法精度が要求されるセラミックス焼結体の製造に関するものである。   The present invention relates to the manufacture of a ceramic sintered body that requires high dimensional accuracy in units of microns.

近年、セラミックス焼結体は、高強度、耐磨耗性、高剛性、低熱膨張性、耐熱性、高硬度などの特性を利用して、機械材料として工作機械部品、測定装置、エンジン、送風機、軸受け、工具、潤滑剤、もしくは光通信用部品等に用いられてきている。また化学的な安定性を利用して化学装置や断熱性あるいは伝熱性を利用した機器への応用も図られてきている。   In recent years, ceramic sintered bodies have been used as machine materials, machine tool parts, measuring devices, engines, blowers, etc. using properties such as high strength, wear resistance, high rigidity, low thermal expansion, heat resistance, and high hardness. It has been used for bearings, tools, lubricants, optical communication parts, and the like. In addition, chemical stability has been applied to chemical devices and equipment using heat insulation or heat transfer.

この中で、精密機械や精密測定器のように、常温環境下で使用される精密機器の重要要素部品にセラミックス焼結体が採用されるようになってきた。その背景には、半導体に代表される電子部品の超精密化、微細化が急速に進み、それらを製造する加工機や測定器にサブミクロンもしくはそれ以下の精度が要求されるようになってきたからである。これら精密機器の構造用部材として従来は、ステンレス、アルミ系合金、防錆処理した鉄系材料及び石材が使われてきた。   Among these, ceramic sintered bodies have come to be used as important element parts of precision instruments used in normal temperature environments such as precision machines and precision measuring instruments. In the background, electronic parts typified by semiconductors are rapidly becoming extremely precise and miniaturized, and processing machines and measuring instruments that manufacture them are required to have submicron or lower precision. It is. Conventionally, stainless steel, aluminum-based alloys, rust-proof iron-based materials and stone materials have been used as structural members for these precision instruments.

しかし、加工精度がμm以下を要求する超精密や超微細加工分野においては、構造体の自重による変形や温度、湿度変化による微小な変形も問題になるほど要求仕様が厳しく、しかも能率化のために機械の高速化、軽量化の要求も高い。   However, in the ultra-precision and ultra-fine processing fields that require machining accuracy of μm or less, the required specifications are so strict that deformation due to the weight of the structure and minute deformation due to temperature and humidity changes become problematic, and for efficiency There are also high demands for faster and lighter machines.

このような、高性能の品質要求にたいし、従来の材料では様々な問題点が指摘され、セラミックス焼結体が使われ始めている。   In order to meet such high-performance quality requirements, various problems have been pointed out with conventional materials, and ceramic sintered bodies have begun to be used.

また、近年通信における情報量の増大に伴い、光ファイバを用いた光通信が使用されている。この光通信において、光ファイバ同士の接続、あるいは光ファイバと各種光素子との接続には光コネクタが用いられている。   In recent years, optical communication using an optical fiber is used with an increase in the amount of information in communication. In this optical communication, an optical connector is used to connect optical fibers or connect an optical fiber and various optical elements.

例えば、光ファイバ同士を接続するコネクタの場合、図7及び図8に示すフェルール1に形成された貫通孔1aに光ファイバ3の端部を保持し、一対のフェルール1をスリーブ4の両端から挿入して、内部で凸球面状に加工した先端面1d同士を当接させるようにした構造となっている。   For example, in the case of a connector for connecting optical fibers, the end of the optical fiber 3 is held in the through hole 1a formed in the ferrule 1 shown in FIGS. 7 and 8, and the pair of ferrules 1 are inserted from both ends of the sleeve 4. Thus, the tip surfaces 1d processed into a convex spherical shape are brought into contact with each other.

上記フェルール1の材質としてはセラミックス焼結体、金属、プラスチック、ガラス等、さまざまなものが試作されてきたが、現在は大半がセラミックス製となっている。その理由は、セラミックスは加工精度を高く加工することが出来るため、内径、外径の公差を1μm以下と高精度にすることができ、またセラミックス焼結体は摩擦係数が低いため光ファイバの挿入性に優れ、剛性が高く熱膨張係数が低いことから外部応力や温度変化に対して安定であり、耐食性にも優れているためである。   Various materials such as ceramic sintered bodies, metals, plastics, and glasses have been made as materials for the ferrule 1, but most of them are made of ceramics at present. The reason for this is that ceramics can be machined with high machining accuracy, so the tolerance of the inner and outer diameters can be as high as 1 μm or less, and the sintered ceramics have a low coefficient of friction so that optical fibers can be inserted. This is because of its excellent properties, high rigidity, and low thermal expansion coefficient, it is stable against external stress and temperature change, and has excellent corrosion resistance.

フェルールの製品として要求される寸法精度の概要として図7に示すように、外周1cの円筒度、真円度及び貫通孔1aの真円度、同芯度が各μm単位の要求寸法公差となる。   As shown in FIG. 7 as an outline of the dimensional accuracy required as a ferrule product, the cylindricity and roundness of the outer periphery 1c and the roundness and concentricity of the through-hole 1a are the required dimensional tolerances in units of μm. .

又、形状は内径部のC面1bのコーン加工やPC面1dの加工が必要である。従来の押出成形製造方法では、押出成形金型に原料を流し込む状態から円柱状に連続成形していくが、金型の面粗さや流し角の調整で寸法精度にばらつきが出てくる事と異形形状を加工修正する目的で、機械による仕上げ研磨や研削といった加工をする必要がある。   Further, the shape needs to be processed into a cone on the C surface 1b and a PC surface 1d. In the conventional extrusion molding manufacturing method, the raw material is poured into the extrusion mold continuously from the cylindrical shape, but the dimensional accuracy varies due to the adjustment of the surface roughness and flow angle of the mold. In order to modify the shape, it is necessary to perform processing such as finish polishing or grinding by a machine.

上記フェルールの製造方法は、図9に示すように出発原料の不純物を除去して安定化剤や焼結助剤等を混合して、バインダーを添加した成形前原料を、セラミックス焼結体の特定個所が所望の寸法になるように平均的な収縮率に基づき成形金型を選定して、押出成形、乾燥、焼成をおこない、必要な部分を研削や研磨等の機械仕上げ加工を行って検査することで製品化していた。   As shown in FIG. 9, the ferrule manufacturing method removes impurities from starting materials, mixes stabilizers and sintering aids, etc., and specifies a raw material before molding with a binder as a ceramic sintered body. Select a molding die based on the average shrinkage so that the part has the desired dimensions, perform extrusion molding, drying and firing, and inspect the necessary parts by performing mechanical finishing such as grinding and polishing. It was commercialized.

更に、図10に示すようにセラミックス粉体を所定の形状に成形する方法は、出発原料にバインダー樹脂を混合し成形前原料を形成する工程と、この混合物を押出成形し筒状成形体を形成する工程と、この成形体を金型に供給する工程と、この金型を加熱し前記成形体に第2のプレス成形をする工程からなるセラミックス成形方法がある(特許文献1参照)。
特開2001−145909号公報
Furthermore, as shown in FIG. 10, the ceramic powder is molded into a predetermined shape by mixing a binder resin with a starting material to form a pre-molding raw material, and extruding the mixture to form a cylindrical molded body. There is a ceramic forming method comprising a step of performing, a step of supplying the formed body to a mold, and a step of heating the mold and subjecting the formed body to second press forming (see Patent Document 1).
JP 2001-145909 A

上記の従来の製造方法において、押出成形は、精度良く連続した成形ができることで製品コストを低減できるものの特殊な形状を成形することが出来ないというデメリットをもっており研削や研磨といった仕上げ機械加工で異形形状を作ることが、必要不可欠であった。   In the above-mentioned conventional manufacturing method, extrusion molding has the disadvantage that it can reduce the product cost by being able to perform continuous molding with high accuracy, but it cannot form a special shape, and has an irregular shape by finishing machining such as grinding and polishing. It was indispensable to make.

また、超高精度といえるμm単位以下の寸法公差が必要な部品では、連続押出成形時のばらつきから仕上げ研磨といった機械加工が必要不可欠であった。   In addition, for parts that require a dimensional tolerance of μm or less, which can be said to be ultra-high accuracy, machining such as finish polishing is indispensable due to variations during continuous extrusion molding.

セラミックス焼結体が所望寸法に対して、削り代のない場合は使用できなくなるので廃棄処分をしなければならず、廃棄処分をしたくないために大半の製造ロットで削り代が残るように平均的な収縮率を削り代の多い側へシフトして製造していた。   Since the ceramic sintered body can not be used if there is no cutting allowance for the desired size, it must be disposed of, and since it does not want to be disposed of, the cutting allowance remains in most production lots. The shrinkage rate was shifted to the side with a lot of cutting allowance.

そのために、削り代が多くなり、研削や研磨等で所望の寸法に仕上げなければならず、多大な作業時間を要しており、これら製造コストを増大させる要因となっていた。   For this reason, the machining allowance is increased, and it has to be finished to a desired dimension by grinding or polishing, which requires a lot of work time, which increases the manufacturing cost.

また、特許文献1によれば、金型を成形可能な高い温度に加熱してプレス成形した後、冷却した金型から成形体を取り出すが、その際前記成形体は冷却により成形体が収縮して離型され、金型と成形体が同時に収縮するので、金型からの転写性が悪く、外径、内径の寸法精度がμm単位に納めることが難しいという問題があった。   Further, according to Patent Document 1, the mold is taken out from the cooled mold after the mold is heated to a high temperature at which the mold can be molded and press-molded. Since the mold and the molded body shrink at the same time, there is a problem that transferability from the mold is poor and it is difficult to keep the dimensional accuracy of the outer diameter and inner diameter in μm units.

上記の問題に鑑み本発明は、セラミックス粉末に焼結助剤と樹脂バインダーを添加した成形前原料を押し出し成形にて、第1セラミックス円筒成形体を作製する1次成形工程と、前記第1セラミックス円筒成形体を金型に装填し、圧縮しながら徐冷して第2セラミックス円筒成形体を作製する2次成形工程と、を備え、前記2次成形工程における前記金型は、前記円筒成形体が挿入される貫通孔を有する円筒形状の上金型と、凸形状の下面を有して前記貫通孔に挿入されるピンと、凹形状の上面を有してこの上面が前記貫通孔の貫通方向の延長線上に位置するように前記上金型の下端面に当接される下金型との3つの部材からなる構成をなしており、前記下金型の表面温度は、前記上金型の表面温度と同じ温度、若しくは、前記上金型の表面温度よりも高い温度であって、温度差が30℃以下となる温度で維持されていることを特徴とするものである。 In view of the above problems, the present invention provides a primary molding step of producing a first ceramic cylindrical molded body by extruding a raw material before molding obtained by adding a sintering aid and a resin binder to ceramic powder, and the first ceramics. A secondary molding step of charging the cylindrical molded body into a mold and gradually cooling it while compressing to produce a second ceramic cylindrical molded body, wherein the mold in the secondary molding step is the cylindrical molded body A cylindrical upper mold having a through-hole into which is inserted, a pin having a convex lower surface and a pin inserted into the through-hole, and a concave upper surface, the upper surface being the through-direction of the through-hole The lower mold has a structure composed of three members such that the lower mold is in contact with the lower end surface of the upper mold, and the surface temperature of the lower mold is that of the upper mold. the surface temperature and the same temperature, or the surface of the upper mold A higher temperature than degrees, and is characterized in that it is maintained at a temperature at which the temperature difference is 30 ° C. or less.

また、円筒成形体の温度を30℃〜150℃として内周部にピンを圧入し、円筒体温度を30℃未満まで徐冷しながら、2次成形することを特徴とする。   Further, the temperature of the cylindrical molded body is 30 ° C. to 150 ° C., a pin is press-fitted into the inner peripheral portion, and secondary molding is performed while the cylindrical body temperature is gradually cooled to less than 30 ° C.

さらに、ピンが円筒断面であり、その長手方向全てにおける円筒度、真円度が3μm以下であることを特徴とする。   Further, the pin has a cylindrical cross section, and the cylindricity and roundness in all the longitudinal directions thereof are 3 μm or less.

また、前記2次成形における前記金型が上金型と下金型の2段構造であって前記上金型よりも前記下金型の表面温度のほうが0℃〜30℃高く維持されていることを特徴とする。   Further, the mold in the secondary molding has a two-stage structure of an upper mold and a lower mold, and the surface temperature of the lower mold is maintained higher by 0 ° C. to 30 ° C. than the upper mold. It is characterized by that.

本発明は、圧縮成形することにより、金型からの転写性が図られ、2次成形体で内径、外径の寸法精度がμm単位に収めることができる。   According to the present invention, the transferability from the mold is achieved by compression molding, and the dimensional accuracy of the inner diameter and the outer diameter can be kept in units of μm in the secondary molded body.

また、成形体でいくら精度が向上しても、焼成させると精度が低下する可能性
心量が3μm以下で、V溝式に加工して成形体を横置きにするので、セッタに習って焼成するため、焼結体においてもソリ、変形がなくでき、寸法精度をだすための研削、研磨等と言った加工をする必要がなく、最低限度程度の加工だけで、信頼性の高い製品が提供できる。
In addition, no matter how much accuracy the molded body improves, the possibility that accuracy will decrease when fired is 3 μm or less. Since the molded body is placed horizontally by processing into a V-groove type, firing according to the setter Therefore, there is no warping or deformation in the sintered body, and there is no need for processing such as grinding or polishing to increase dimensional accuracy, and a highly reliable product can be provided with minimal processing. it can.

即ち、本発明は焼成後の追加加工無き状態で、内外径の寸法精度を向上できるので、大幅な加工時間が削減できる。   That is, the present invention can improve the dimensional accuracy of the inner and outer diameters without any additional processing after firing, so that a significant processing time can be reduced.

本発明によれば、セラミックス粉末に焼結助剤と樹脂バインダーを添加した成形前原料を押出成形にて円筒成形体とした1次成形と、該円筒成形体を加熱した金型に装填し、圧縮しながら徐冷して2次成形を行った後、焼成することを特徴とするセラミックス粉末の成形方法を用いることにより、製品を加工することなく精度をだすことができ、さらに機械仕上げ加工を無くすことで製品作製時間が大幅に削減され、コストの低減を実現できた。 According to the present invention, primary molding in which a raw material before molding obtained by adding a sintering aid and a resin binder to ceramic powder is formed into a cylindrical molded body by extrusion molding, and the cylindrical molded body is loaded into a heated mold, By using a ceramic powder molding method characterized by performing secondary molding after slow cooling while compressing, it is possible to achieve accuracy without processing the product, and to perform machine finishing. By eliminating it, the production time of the product was greatly reduced and the cost could be reduced.

図1は、本発明におけるセラミックス粉末の成形方法を示す製造方法である。   FIG. 1 is a manufacturing method showing a method for forming ceramic powder according to the present invention.

まず、出発原料に樹脂バインダ−を添加させた成形前原料を押し出し成形にて、セラミックス円筒成形体を作製する。このとき、セラミックス円筒成形体の内外径の寸法は、金型の寸法により決まるが、セラミックス円筒成形体の寸法は、予め2次成形する際の収縮、焼成収縮をかみして決める。   First, a ceramic cylindrical molded body is manufactured by extruding a raw material before molding obtained by adding a resin binder to a starting material. At this time, the dimensions of the inner and outer diameters of the ceramic cylindrical molded body are determined by the dimensions of the mold, but the dimensions of the ceramic cylindrical molded body are determined in advance by taking into account the shrinkage and firing shrinkage during secondary molding.

また、本発明は、温度をかけて軟化させ、一定の形状に保持させながら、冷却させる方式であるが、バインダ−に樹脂を使用しているので、軟化温度範囲が広く自由に形状を変化させる事ができ、且つ軟化温度範囲以下にすれば形状はそのまま保つことができる。   In addition, the present invention is a system in which the temperature is softened and cooled while being held in a certain shape, but since the resin is used for the binder, the softening temperature range is wide and the shape can be freely changed. If the temperature is within the softening temperature range, the shape can be kept as it is.

前記バインダーは、加熱されることにより溶融してセラミックス粉末を流動させる作用を有するものであれば特に限定はされないが、各種高分子樹脂、各種界面活性剤、パラフインなどから一種以上混合しても問題はない。   The binder is not particularly limited as long as it has an action of melting and flowing the ceramic powder by being heated, but there is a problem even if one or more of various binders such as various polymer resins, various surfactants, and paraffin are mixed. There is no.

さらに、本発明は、バインダ−に樹脂系を使用しているが、水系使用しても軟化温度範囲はことなるが、本発明と同様な効果を得ることができる。 Furthermore, although the present invention uses a resin system for the binder, the same effect as the present invention can be obtained even if an aqueous system is used, although the softening temperature range is different.

本発明は、1次成形する際に使用する押出成形機は、2段式且つ均熱方式な為、成形体は、均一な密度になっている。   In the present invention, since the extrusion molding machine used for the primary molding is a two-stage type and a soaking system, the molded body has a uniform density.

次に所定の寸法にカットした後、金型を加熱し圧縮成形を行う。このとき、セラミックス円筒成形体の温度は、30℃〜150℃の温度範囲になっており、該セラミックス円筒成形体の温度を保ちながら内周部にピンを圧力挿入させ、さらに成形体温度を30℃未満に徐冷しながら圧力をかけてセラミックス2次成形体を作製する。   Next, after cutting to a predetermined dimension, the mold is heated to perform compression molding. At this time, the temperature of the ceramic cylindrical molded body is in the temperature range of 30 ° C. to 150 ° C., and while maintaining the temperature of the ceramic cylindrical molded body, a pin is pressure inserted into the inner peripheral portion, and the molded body temperature is set to 30 ° C. A ceramic secondary compact is produced by applying pressure while gradually cooling to below ℃.

また、セラミックス2次成形体の内外径の寸法精度は、ピン及び金型の精度によって決まるが、本発明は、ピン及び金型の精度は長手方向全てにおいて、円筒度、真円度、同芯度が3μm以下になっており、上記圧縮成形することにより、転写性が図れているためセラミックス2次成形体の内外径の寸法精度がμm単位に収めることができる。   In addition, although the dimensional accuracy of the inner and outer diameters of the ceramic secondary molded body is determined by the accuracy of the pin and the mold, the accuracy of the pin and the mold is cylindricity, roundness, concentricity in all longitudinal directions. The degree is 3 μm or less, and the transferability is achieved by the above compression molding, so that the dimensional accuracy of the inner and outer diameters of the ceramic secondary molded body can be kept in μm units.

前記、セラミックス2次成形体を偏心量3μm以下のV式セッタにのせ、脱バイ・焼成を行って、セラミックス焼結体を作製、外周ラップ加工にてバリを除去して製品化する。   The ceramic secondary compact is placed on a V-type setter with an eccentricity of 3 μm or less, de-bucked and fired to produce a ceramic sintered body, and burrs are removed by outer peripheral lapping to produce a product.

図2(a)(b)は、上記製造方法の押出成形による成形体を金型に装填し、圧縮成形するまでの工程の詳細を図示したものである。   2 (a) and 2 (b) illustrate the details of the process from loading the molded body by extrusion molding in the above manufacturing method into a mold and compression molding.

図2(a)は、一般的の押出成形機の構造を示す図である。   Fig.2 (a) is a figure which shows the structure of a general extrusion molding machine.

前記の様に形成された成形前原料5を、投入口6から投入押成形機30の混錬部7で混錬脱泡し、スクリュー8にて押し出し、圧縮成形による成形時の収縮とセラミックス焼結体の特定個所が所望の寸法になるように平均的な収縮率に基づき選定された成形金型9aで連続した円筒成形体10を押出成形する。   The raw material 5 before molding formed as described above is kneaded and defoamed from the charging port 6 by the kneading section 7 of the charging press molding machine 30, extruded by the screw 8, and shrinkage at the time of molding by compression molding and ceramic firing. A continuous cylindrical molded body 10 is extruded by a molding die 9a selected based on an average shrinkage rate so that a specific portion of the bonded body has a desired dimension.

また、予め成形金型9aにはコアピン9bが具備しており、成形金型9aとコアピン9bは、圧縮成形による成形時の収縮とセラミックス焼結体の特定個所が所望の寸法になるような収縮率に基づいて寸法を決めている。また、2次成形で、最終的に焼成収縮率をかみして、寸法をきめるため、コアピン9bの外径は、所望寸法より3倍程度大きい。   Further, the molding die 9a is preliminarily provided with a core pin 9b, and the molding die 9a and the core pin 9b are shrunk at the time of molding by compression molding and a specific portion of the ceramic sintered body has a desired dimension. The dimensions are determined based on the rate. In addition, in the secondary molding, the outer diameter of the core pin 9b is about three times larger than the desired dimension in order to determine the dimensions by finally determining the firing shrinkage rate.

さらに、本発明においては、円筒成形体10の均一な密度を有するため、混錬ゾーンA、混錬ゾーンBを具備しており、成形前原料5が均一に加熱でき且つ、真空引きしながら混錬して円筒成形体10を作製している。このときの長手方向の長さは、600mm程度であるが、定寸カットして円筒成形体10を作製する。   Furthermore, in the present invention, since the cylindrical molded body 10 has a uniform density, it has a kneading zone A and a kneading zone B, so that the raw material 5 before molding can be heated uniformly and mixed while evacuating. The cylindrical molded body 10 is produced by smelting. At this time, the length in the longitudinal direction is about 600 mm, but the cylindrical molded body 10 is produced by cutting a fixed size.

なお、本発明においては、混錬ゾーンを2箇所としているが、2箇所以上でも問題ない。   In the present invention, there are two kneading zones, but there is no problem with two or more.

さらに、円筒成形体10の加熱温度領域は、30℃〜150℃までとするが、本発明においては、温度は100℃前後が好ましい。これは、バインダ−の種類もしくは比率によって温度が決まるが30℃以下であると、成形前原料5が軟化温度以下なため流動せず、金型9aまで供給できず、また150℃以上だと金型9aまで供給できるが、軟化しすぎて金型9a及びコアピン9bの形状に習うことができないためである。   Furthermore, although the heating temperature area | region of the cylindrical molded object 10 shall be 30 to 150 degreeC, in this invention, about 100 degreeC is preferable for temperature. This is because the temperature is determined by the type or ratio of the binder, but if it is 30 ° C. or less, the pre-molding raw material 5 does not flow because it is below the softening temperature, and cannot be supplied to the mold 9a. This is because the mold 9a can be supplied but is too soft to learn from the shapes of the mold 9a and the core pin 9b.

図2(b)は、セラミックス2次成形を図示したものである。   FIG. 2B illustrates ceramic secondary forming.

前記により得られた円筒成形体10を2次成形である圧縮成形の金型50に装填し、この金型50は特殊な形状と収縮率に見合う寸法精度で下金型13、上金型12、ピン15が設計されていることから、最終完成品の収縮率に見合う寸法精度と形状で円筒成形体10を製造できる。   The cylindrical molded body 10 obtained as described above is loaded into a compression molding die 50 which is a secondary molding, and this die 50 has a special shape and a dimensional accuracy suitable for the shrinkage rate, and a lower die 13 and an upper die 12. Since the pin 15 is designed, the cylindrical molded body 10 can be manufactured with a dimensional accuracy and shape commensurate with the shrinkage rate of the final finished product.

また、下金型13、上金型12、ピン15を円筒成形体10が軟化する温度領域まで加熱し、コアピン15に具備しているC面15aと下金型13に具備しているPC面13aにならうよう圧力をかける。さらに、円筒成形体10の外径においても、同様、上金型12の内径にならって形成される。このとき、円筒成形体10の内周部に空気だまりが発生することを防止するため、真空引き16にて空気を逃がす。   Further, the lower die 13, the upper die 12, and the pin 15 are heated to a temperature region where the cylindrical molded body 10 is softened, and the C surface 15 a provided in the core pin 15 and the PC surface provided in the lower die 13. Apply pressure to follow 13a. Further, the outer diameter of the cylindrical molded body 10 is similarly formed in accordance with the inner diameter of the upper mold 12. At this time, in order to prevent air accumulation from occurring in the inner peripheral portion of the cylindrical molded body 10, air is released by the vacuuming 16.

圧力をかけたと同時に、下金型13、上金型12、ピン15への加熱が停止して、自然放熱での徐冷を開始する。   At the same time as the pressure is applied, heating to the lower mold 13, the upper mold 12, and the pin 15 is stopped, and gradual cooling with natural heat dissipation is started.

ここで、さらに成形の精度を向上させる必要がある場合、徐々に加熱温度を下げても良いし、あるいは、タクト向上などの必要がある場合、本発明の効果を損なわない範囲で、空冷や水冷などの強制冷却による制御をしてもよい。   Here, when it is necessary to further improve the molding accuracy, the heating temperature may be gradually decreased, or when there is a need for tact improvement or the like, air cooling or water cooling may be performed within a range not impairing the effects of the present invention. Control by forced cooling such as may be performed.

このとき、徐冷されながら圧力がかかっており、円筒成形体10は圧縮されながら下金型13、上金型12、ピン15の形状にならって形成される。   At this time, pressure is applied while being gradually cooled, and the cylindrical molded body 10 is formed in the shape of the lower mold 13, the upper mold 12, and the pins 15 while being compressed.

以降、乾燥と焼成を加えることでセラミックス焼結体を完成させる。   Thereafter, drying and firing are performed to complete the ceramic sintered body.

この段階で既に、完成体の形状と寸法精度を有しており、従来は必要な形状や寸法修正を研削や研磨等の機械仕上げ加工を行って検査することで製品化していたが、その機械仕上げ加工の工程は、大部分が不要となり、圧縮成形時の微細なバリ等について、一般的な外周ラップ加工等で除去する等の簡易的な加工だけで製品を完成させることができ、非常に低コストで製造することができる。   At this stage, it already has the shape and dimensional accuracy of the finished product. Conventionally, it has been commercialized by inspecting the necessary shape and dimensional correction by performing mechanical finishing such as grinding and polishing. Most of the finishing process is unnecessary, and it is possible to complete the product by simple processing such as removal of fine burrs at the time of compression molding by general peripheral lapping, etc. It can be manufactured at low cost.

ここで、本発明の圧縮成形について、図3(a)(b)(c)を用いて説明する。   Here, the compression molding of this invention is demonstrated using Fig.3 (a) (b) (c).

図3(a)は定寸カットされてある円筒成形体10を予め30℃〜150℃に加熱されている上金型12の中に挿入させる。このとき、円筒成形体10の温度は、上金型12及び下金型13の熱伝導により、5秒保持するだけで30℃〜150℃にまで均熱状態になる。円筒成形体10の好ましい温度は、バインダ−の種類もしくは量によってことなるが、本発明においては、例えば上金型12、下金型13を120℃で5秒加熱し、円筒成形体10を予め100℃に予備加熱してある。   In FIG. 3A, the cylindrical molded body 10 that has been cut to a predetermined size is inserted into an upper mold 12 that has been heated to 30 ° C. to 150 ° C. in advance. At this time, the temperature of the cylindrical molded body 10 is soaked to 30 ° C. to 150 ° C. only by holding for 5 seconds due to the heat conduction of the upper mold 12 and the lower mold 13. The preferable temperature of the cylindrical molded body 10 varies depending on the type or amount of the binder. In the present invention, for example, the upper mold 12 and the lower mold 13 are heated at 120 ° C. for 5 seconds, and the cylindrical molded body 10 is preliminarily formed. Preheated to 100 ° C.

本発明は、円筒成形体10を予備加熱しているので、容易に5秒で100℃の均熱状態までできる。また、本発明は、事前に予備加熱してあるが予備加熱しないでも、上金型12、下金型13の加熱温度、加熱時間を調整するだけで本発明と同様な効果を得ることができる。   In the present invention, since the cylindrical molded body 10 is preheated, it can easily reach a soaking state of 100 ° C. in 5 seconds. In addition, the present invention is preheated in advance, but even if it is not preheated, the same effect as the present invention can be obtained only by adjusting the heating temperature and heating time of the upper mold 12 and the lower mold 13. .

次に図3(b)は、上金型12の内周にならうように、ピン15を先端部15bから挿入させていくが、円筒成形体10の内周部が先端部15bの外径より大きい為、容易に挿入できる。これは、予め1次成形の時に内径を3倍大きくしているためである。また、ピン15はC面15aを具備しており、さらにピン15は同芯度、真円度、円筒度が3μm以下と精度がよい。   Next, in FIG. 3B, the pin 15 is inserted from the tip portion 15b so as to follow the inner periphery of the upper mold 12, but the inner peripheral portion of the cylindrical molded body 10 is the outer diameter of the tip portion 15b. Because it is larger, it can be inserted easily. This is because the inner diameter is increased three times in advance during the primary molding. Further, the pin 15 has a C surface 15a, and the pin 15 has a high accuracy with concentricity, roundness, and cylindricity of 3 μm or less.

ピン15を挿入させていく際に、円筒成形体10の内周部中に空気だまりが発生するため、真空引き16により空気だまりをひくことができるようになっている。   When the pin 15 is inserted, an air pool is generated in the inner peripheral portion of the cylindrical molded body 10, so that the air pool can be drawn by the vacuuming 16.

図3(c)は、円筒成形体10が軟化しているため、ピン15に100N〜500Nの圧力をかけるだけで、ピン15及びC面15aと下金型13a、上金型12の内周部に転写できる。しかしながら、このまま冷却するだけでは、円筒成形体10は、疎密化となり、金型50の形状がうまく転写されない。そのため、100N〜500Nの圧力をかけるが、本発明に使用した圧力は、100Nで5s加圧させ、その後、30sかけて同圧力を保持しながら冷却させていく方法をとれば、転写できる。   FIG. 3 (c) shows that the cylindrical molded body 10 is soft, so that the pin 15 and the C surface 15a, the lower mold 13a, and the inner periphery of the upper mold 12 can be obtained simply by applying a pressure of 100N to 500N to the pin 15. Can be transferred to the part. However, if the cooling is performed as it is, the cylindrical molded body 10 becomes dense and the shape of the mold 50 is not transferred well. Therefore, although a pressure of 100N to 500N is applied, the pressure used in the present invention can be transferred by applying a method of pressurizing for 5 s at 100 N and then cooling while maintaining the same pressure for 30 s.

なぜなら、円筒成形体10が軟化してピン15の圧力により、一旦は金型50に転写できるが、そのまま冷却させると、円筒成形体10自体の熱膨張や収縮で微量に動き戻るので、圧力を保持しながら冷却させれば、微量にもどることを防いでで形状変形もしくは、転写性の低下が見られない。つまり、円筒成形体10自体の軟化温度を利用して、圧力を保持しながら冷却することで、金型50への転写性が図られ、さらに金型50からの離型性に優れ、金型50から取り出すとき無理な負荷がかからず、円筒成形体10自体にキズ、カケ、変形がなく取り出すことができる。   This is because the cylindrical molded body 10 is softened and can be transferred to the mold 50 once by the pressure of the pin 15, but when cooled as it is, the cylindrical molded body 10 itself moves back by a small amount due to thermal expansion and contraction, so the pressure is reduced. If it is cooled while being held, it is prevented from returning to a very small amount, and no shape deformation or deterioration in transferability is observed. That is, by using the softening temperature of the cylindrical molded body 10 itself and cooling it while maintaining the pressure, transferability to the mold 50 is achieved, and furthermore, the mold release from the mold 50 is excellent. When taking out from 50, an excessive load is not applied and the cylindrical molded body 10 itself can be taken out without being scratched, chipped or deformed.

圧力はバインダ−種類もしくは量によって範囲が異なるが、本発明においては、100N〜500Nの圧力で、その中でも100Nが好ましい。   The range of the pressure varies depending on the kind or amount of the binder, but in the present invention, the pressure is 100N to 500N, and among them, 100N is preferable.

その後、下金型13を上金型12から外して、寸法精度が優れた円筒成形体10が作製できる。   Thereafter, the lower mold 13 is removed from the upper mold 12, and the cylindrical molded body 10 with excellent dimensional accuracy can be produced.

円筒成形体10は、前記方法により下金型13、上金型12、ピン15の転写性が図られており、コーン15a、PC面13a、円筒成形体10の内外径全てにおいて転写されてできる。   The cylindrical molded body 10 has transferability of the lower mold 13, the upper mold 12, and the pin 15 by the above-described method, and can be transferred on all the inner and outer diameters of the cone 15 a, the PC surface 13 a, and the cylindrical molded body 10. .

また、図4は、本発明の金型の加熱方式を示す断面図である。   FIG. 4 is a cross-sectional view showing the heating method of the mold of the present invention.

本発明の円筒成形体10を装填する金型50は、上金型12と下金型13からなる2段式構造である。特に下金型13はPC面13aを具備しているが、C面15aからPC面13aまで長手方向の長さがあるのでピン15からの圧力が下金型13まで伝わり難い。 A mold 50 for loading the cylindrical molded body 10 of the present invention has a two-stage structure including an upper mold 12 and a lower mold 13. In particular, the lower mold 13 has a PC surface 13a . However, since there is a length in the longitudinal direction from the C surface 15a to the PC surface 13a , the pressure from the pin 15 is not easily transmitted to the lower mold 13.

そのため、本発明においては、上金型12より下金型13の温度を0℃〜30℃高くすると圧力転写が良好であり、好ましくは15℃高くすることが好ましい。   Therefore, in the present invention, when the temperature of the lower mold 13 is higher by 0 ° C. to 30 ° C. than the upper mold 12, the pressure transfer is good, and preferably 15 ° C. is increased.

ここで、温度差を0℃未満にすれば、上述からPC面13aの転写性が悪くなり、さらに、円筒成形体10の円筒度も悪くなる。温度差30℃より大きくすると、下金型13の真空ポンプ16及び金型50の隙間から円筒成形体10が軟化して溶け出し、バリとして残留してしまう。 Here, if the temperature difference is less than 0 ° C., the transferability of the PC surface 13a is deteriorated as described above, and the cylindricity of the cylindrical molded body 10 is also deteriorated. When the temperature difference is larger than 30 ° C., the cylindrical molded body 10 is softened and melted from the gap between the vacuum pump 16 of the lower mold 13 and the mold 50 and remains as burrs.

また、本発明は、図5(a)に示すように上金型12の内周円筒度及び外周円筒度、内周真円度、外周真円度が3μm以下であり、さらに、図5(b)に示す下金型13の内周円筒度、内周真円度が3μm以下であり、また、図5(c)に示すようにピン15、先端部15bの円筒度、ピン15、先端部15bの真円度が3μm以下であり、またピン15及び15bの同芯度が3μm以下なため転写性が図られれば、円筒成形体10の内外径の円筒度、真円度、同芯度が3μm以下にできる。   Further, according to the present invention, as shown in FIG. 5 (a), the inner and outer cylinders of the upper mold 12 have inner and outer cylinders, inner and outer circularities of 3 μm or less, and FIG. The inner die cylindricity and inner circumference roundness of the lower die 13 shown in b) are 3 μm or less, and the cylindricity of the pin 15 and the tip 15b, the pin 15 and the tip as shown in FIG. If the roundness of the portion 15b is 3 μm or less and the concentricity of the pins 15 and 15b is 3 μm or less, if the transfer property is achieved, the cylindricality, roundness, concentricity of the inner and outer diameters of the cylindrical molded body 10 The degree can be 3 μm or less.

なお、真円度とは円形形体の幾何学的に正しい円からの狂いの大きさであり、円筒度とは直線形体の幾何学的に正しい直線からの狂いの大きさを意味する。いずれもJIS−B0621に規定されている。   The roundness is a magnitude of deviation from a geometrically correct circle of a circular shape, and the cylindricity means a magnitude of deviation from a geometrically correct straight line of a linear shape. Both are defined in JIS-B0621.

その後、2次成形による圧縮成形にて得られた成形体10が脱バインダ−、本焼成し製品化する。   Thereafter, the molded body 10 obtained by the compression molding by the secondary molding is debindered and subjected to main firing to produce a product.

このとき、脱バインダ−、本焼成時に使用するセッタは図6(a)に示すように成形体10を横にしてV溝におく。   At this time, the binder used for the binder removal and the main firing is placed in the V-groove with the molded body 10 sideways as shown in FIG.

V溝式だと、円筒成形体10の接触部が2接線なので、セッタ20の輻射熱のみで脱バインダ−、焼成されるので、変形が少ない。これは、接触部が大きければ、セッタ20の熱伝導が片側しか伝わらないので、均等なバインダ−のガス化できず変形の少ない焼結体を得ることができない。そのためV溝式にし、より接触部を小さくして、輻射熱だけで脱バインダ−、焼成を行えば、片側だけではなく成形体10全てにおいて均等なガス化でき変形の少ない焼結体を得ることができる。   In the case of the V-groove type, since the contact portion of the cylindrical molded body 10 is two tangent lines, the binder is burned and fired only by the radiant heat of the setter 20, so that deformation is small. This is because if the contact portion is large, the heat conduction of the setter 20 is transmitted only on one side, so that a uniform binder cannot be gasified and a sintered body with little deformation cannot be obtained. Therefore, if the V-groove type is used, the contact portion is made smaller, and the binder is removed and fired only by radiant heat, a sintered body with less deformation can be obtained evenly on all the molded bodies 10 instead of only one side. it can.

また、一般的にジルコニアでは、焼成のピーク温度は1300℃〜1500℃であり、アルミナは、ジルコニアよりも100℃高い温度で焼成されており、脱バイに関しては、バインダ−の種類によってかわるが一般的に300℃〜500℃である。   In general, in zirconia, the firing peak temperature is 1300 ° C. to 1500 ° C., and alumina is fired at a temperature 100 ° C. higher than that of zirconia, and de-bye varies depending on the type of binder. It is 300 to 500 degreeC.

さらに、V溝式セッタ20の長手方向の偏心量は3μm以下であるため、成形体10のソリにおいても、全く発生しない。   Furthermore, since the amount of eccentricity in the longitudinal direction of the V-groove setter 20 is 3 μm or less, it does not occur at all in the warp of the molded body 10.

ここで、セッタ20の偏心量とは、図6(b)に示すセッタ20の長手方向のことをいう。   Here, the eccentric amount of the setter 20 refers to the longitudinal direction of the setter 20 shown in FIG.

本発明に使用されているセッタ20は、高純度アルミナを使用しており、繰り返し使用しても、偏心量は3μm以下と変わらない。これは、一般的にアルミナは、1550℃〜焼結が始まり1700℃で完全焼結するため、1550℃以下では、軟性をおびない。そのため、本発明の円筒成形体10においては、完全焼結が1400℃なので、アルミナが軟性をおびなく、変形が生じない。しかしながら、不純物があると、焼結助剤の役割をはたしてしまし、低い温度で軟性をおびてしまい、変形してしまうが、上記内容から高純度アルミナは変形が生じない。   The setter 20 used in the present invention uses high-purity alumina, and even when it is used repeatedly, the amount of eccentricity remains 3 μm or less. This is because alumina generally starts sintering at 1550 ° C. to complete sintering at 1700 ° C., and therefore does not exhibit flexibility at 1550 ° C. or lower. Therefore, in the cylindrical molded body 10 of the present invention, since complete sintering is 1400 ° C., alumina is not soft and does not deform. However, if there is an impurity, it plays the role of a sintering aid and becomes soft and deforms at a low temperature, but high purity alumina does not deform from the above contents.

このように、本発明は、押出成形にて得られた均一な密度の円筒成形体10自体の温度特性を利用して、定寸カットし、圧縮成形をして、高精度な金型に100%転写されることにより、円筒成形体10の円筒度、真円度を3μm以下に仕上げることができる。また高精度な金型50に100%転写されていない場合、円筒成形体10の寸法精度がμm単位まで収めることができない。さらに、焼成においても、高精度なセッタ20を使用することにより、焼成による変形、ソリがない、なお且つ、円筒度、真円度、偏心量を3μm以下の焼結体フェルールができる。   As described above, the present invention uses a temperature characteristic of the cylindrical molded body 10 having a uniform density obtained by extrusion molding, and cuts the size and compresses it into a highly accurate mold. % Transfer makes it possible to finish the cylindrical shape and the roundness of the cylindrical molded body 10 to 3 μm or less. Further, when 100% is not transferred to the high-precision mold 50, the dimensional accuracy of the cylindrical molded body 10 cannot be reduced to the μm unit. Further, also in firing, a sintered ferrule having no deformation or warping due to firing and having a cylindricity, roundness, and eccentricity of 3 μm or less can be obtained by using a high-precision setter 20.

本発明は、出発原料にジルコニアを使用しているが、出発原料にアルミナ、金属等を使用しても、本発明と同様な効果を得ることができる。   In the present invention, zirconia is used as a starting material, but the same effect as in the present invention can be obtained even if alumina, metal, or the like is used as a starting material.

本発明は、光ファイバー同士を接続するための光コネクタ用フェル−ルの製造方法に適用することができるが、上記フェルールは、レーザダイオードやフォトダイオード等の光素子と光ファイバを接続する光モジュールに用いることもできる。   The present invention can be applied to a method for manufacturing a ferrule for an optical connector for connecting optical fibers to each other. The ferrule described above is applied to an optical module that connects an optical element such as a laser diode or a photodiode and an optical fiber. It can also be used.

また、本発明におけるセラミックス焼結体は、上述した光ファイバ同士、又は光ファイバと各種光素子との接続に用いるさまざまな部材に適用することができ、上述したフェルールに限らない。例えば、光ファイバ同士を完全に接続するために用いるスプライサや、光モジュールに用いるダミーフェルール等にも適用することができる。   Moreover, the ceramic sintered compact in this invention can be applied to the various members used for the connection of optical fibers mentioned above or between an optical fiber and various optical elements, and is not restricted to the ferrule mentioned above. For example, the present invention can be applied to a splicer used for completely connecting optical fibers, a dummy ferrule used for an optical module, and the like.

この様に本発明は、製品コストの大幅な低減を実現する為に、圧縮成形(高精度金型によるプレス成形)による各寸法の高精度化により、この仕上げ加工の部分を不要とする製造方法である。   In this way, the present invention is a manufacturing method that eliminates the need for this finishing process by increasing the precision of each dimension by compression molding (press molding with a high-precision die) in order to achieve a significant reduction in product cost. It is.

以下、本発明の実施例を説明する。   Examples of the present invention will be described below.

本発明の実施例1を図1に示す製造方法にて、ジルコニア原料で、外径φ2.5mm、内径φ1.25mm、長さ10.5mmのジルコニアフェルールを100個作製した。 100 of zirconia ferrules having an outer diameter of 2.5 mm, an inner diameter of 1.25 mm, and a length of 10.5 mm were produced from the zirconia raw material by the manufacturing method shown in FIG.

また、バインダ−に関しては、樹脂系を用いた。   As for the binder, a resin system was used.

ここで使用するプレス用の成形金型50は、図3に簡単な構造を示す通り、精密成形金型50の上金型12、下金型13を使用し、また、下金型13にはPC面13aを具備しており、C面15aを具備しているピン15を先端部15bから上金型12へ挿入して、圧縮成形して高精度な円筒成形体10を作製した。このとき、上金型12、下金型13の加熱温度は100℃で、ピン15に圧力100Nかけながら、30℃まで冷却した。   As shown in FIG. 3, the pressing mold 50 used here uses the upper mold 12 and the lower mold 13 of the precision molding mold 50, and the lower mold 13 includes A pin 15 having a PC surface 13a and having a C surface 15a was inserted into the upper mold 12 from the tip 15b, and compression molded to produce a highly accurate cylindrical molded body 10. At this time, the heating temperature of the upper mold 12 and the lower mold 13 was 100 ° C., and the pin 15 was cooled to 30 ° C. while applying a pressure of 100 N.

なお、上金型12、下金型13、ピン15は、完成品の寸法に、成形前原料のバインダー等の混合比から収縮率を算出し決定する。今回の場合、75%とし金型50の設計を行った。また、上記上金型12、下金型13、ピン15、先端部15bの精度は、図5(a)に示すように上金型12の内周円筒度及び外周円筒度、内周真円度、外周真円度が3μm以下であり、さらに、図5(b)に示す下金型13の内周円筒度、内周真円度が3μm以下であり、また、図5(c)に示すようにピン15、先端部15bの円筒度、ピン15、先端部15bの真円度が3μm以下であり、またピン15及び15bの同芯度が3μm以下なため転写性が図られれば、円筒成形体10の内外径の円筒度、真円度、同芯度が3μm以下のものを使用した。   The upper mold 12, the lower mold 13, and the pin 15 are determined by calculating the shrinkage ratio from the mixing ratio of the binder or the like of the raw material before molding in the dimensions of the finished product. In this case, the mold 50 was designed to 75%. Further, the accuracy of the upper mold 12, the lower mold 13, the pin 15, and the tip 15b is as shown in Fig. 5A. 5 and the roundness of the outer circumference is 3 μm or less, and the inner cylinder and the roundness of the inner mold 13 of the lower mold 13 shown in FIG. 5B are 3 μm or less, and FIG. As shown, if the cylindricality of the pin 15 and the tip portion 15b, the roundness of the pin 15 and the tip portion 15b is 3 μm or less, and the concentricity of the pins 15 and 15b is 3 μm or less, transferability can be achieved. The cylindrical molded body 10 having an inner and outer diameter of cylindricity, roundness, and concentricity of 3 μm or less was used.

プレス成形時には、空気が残留していると成形できない為に、金型50内から除去する必要があることから、金型50の内径に接する細穴からポンプ16で吸引し真空を保てる構造とした。   At the time of press molding, since it cannot be molded if air remains, it must be removed from the inside of the mold 50, so that the vacuum can be maintained by sucking with a pump 16 from a narrow hole contacting the inner diameter of the mold 50. .

また、1次プレスである押し出し成形においては、図2(a)に示す方法で2段式均一加熱により、均一な密度である成形体11を作製し、該成形体11の寸法は、外径φ3.33mm、内径φ0.3mm、長さが600mmのものを作製して、定寸カットした。   Further, in the extrusion molding as the primary press, a molded body 11 having a uniform density is produced by two-stage uniform heating by the method shown in FIG. 2A, and the dimension of the molded body 11 is the outer diameter. A product having a diameter of 3.33 mm, an inner diameter of 0.3 mm, and a length of 600 mm was produced and cut to a fixed size.

なお、定寸カット後の寸法は、長手方向の寸法は14.5mmとなるようカットし、その時の重量ばらつきは100個全てにおいて1%以内になった。   In addition, the dimension after the fixed size cut was cut so that the dimension in the longitudinal direction was 14.5 mm, and the weight variation at that time was within 1% in all 100 pieces.

脱バイ・焼成に使用するセッタ20は、図4に示すV式セッタ20で横置きにて行った。   The setter 20 used for the debuying and firing was performed horizontally by the V-type setter 20 shown in FIG.

そのセラミックス焼結体を観察すると、金型50の合わせ目に若干のバリが発生しているが、外周ラップ加工にて除去することで問題なく製品として完成させることができた。   When the ceramic sintered body was observed, some burrs were generated at the joint of the mold 50, but the product could be completed without any problems by removing it by outer peripheral lapping.

ここで、本発明の金型50加熱温度を30℃、70℃、100℃、150℃、170℃と比較例1として10℃としたときの円筒成形体10の外周真円度、円筒度、内周真円度、同芯度を測定し、寸法精度がどの条件が優れているか確認した。このとき、使用する上金型12、下金型13、ピン15、ピン先端部15bの精度は上記図5(a)(b)(c)と同じ3μm以下のものを使用し、各条件N=5にて測定し、その平均値で確認した。

Figure 0004618992
以上より、金型50の加熱温度が30℃未満だと、温度が低く、金型への転写性が悪いので本願の除冷にはあたらず、筒成形体10の精度が出ない。 Here, when the mold 50 heating temperature of the present invention is 30 ° C., 70 ° C., 100 ° C., 150 ° C., 170 ° C. and 10 ° C. as Comparative Example 1, the roundness of the outer periphery of the cylindrical molded body 10, cylindricity, The inner roundness and concentricity were measured and it was confirmed which conditions were excellent in dimensional accuracy. At this time, the precision of the upper mold 12, the lower mold 13, the pin 15, and the pin tip 15 b to be used is the same as those shown in FIGS. = 5, and the average value was confirmed.
Figure 0004618992
From the above, if the heating temperature of the mold 50 is less than 30 ° C., the temperature is low and the transferability to the mold is poor, so the cooling of the present application is not performed and the accuracy of the cylindrical molded body 10 is not achieved.

次に、150℃以上になると、外周円筒度2.0μm、真円度3.0μm、内周真円度2.0μm、同芯度3.0μmと精度があまり良くないのに対し、30℃〜150℃は、真円度、円筒度、同芯度が0.2μm以下と優れていることがわかった。その中でも100℃領域は外周円筒度0.2μm、真円度0.1μm、内周真円度が0.1μm、同芯度0.1μmと優れており、本発明の実施例2は、金型50加熱温度を100℃にして行った。   Next, when the temperature is 150 ° C. or higher, the accuracy is not so good as the outer cylindricality is 2.0 μm, the roundness is 3.0 μm, the inner roundness is 2.0 μm, and the concentricity is 3.0 μm. ˜150 ° C. was found to have excellent roundness, cylindricity, and concentricity of 0.2 μm or less. Among them, the 100 ° C. region is excellent with an outer cylindricality of 0.2 μm, a roundness of 0.1 μm, an inner peripheral roundness of 0.1 μm, and a concentricity of 0.1 μm. The mold 50 was heated at a heating temperature of 100 ° C.

また、比較例2として、図10に示す製造方法にて、樹脂系バインダ−を用いてセラミックス筒状成形体を第2プレス成形後に冷却し、脱バイ・焼成してジルコニアフェルールを作製した。   Further, as Comparative Example 2, the ceramic cylindrical molded body was cooled after the second press molding using a resin binder in the manufacturing method shown in FIG. 10, and was removed and fired to produce a zirconia ferrule.

なお、押出成形条件、押出成形方法、第2プレス成形条件、金型50の精度、セッタ20は、本発明の実施例と同じものを使用し、2次成形方法のみ違っている。また、機械加工は本発明の実施例と同様、外周ラップ加工のみでバリを除去して製品化した。   The extrusion molding conditions, the extrusion molding method, the second press molding conditions, the precision of the mold 50, and the setter 20 are the same as in the embodiment of the present invention, and only the secondary molding method is different. Further, as in the example of the present invention, the machining was performed by removing the burrs only by the outer peripheral lapping.

さらに、比較例3として、図9に示す従来の製造方法にて、水系バインダ−を用いて、機械仕上げにてジルコニアフェルールを100個作製した。   Further, as Comparative Example 3, 100 zirconia ferrules were manufactured by mechanical finishing using an aqueous binder by the conventional manufacturing method shown in FIG.

このときの、各サンプルの外周の円筒度、真円度及び内周の真円度、同芯度を測定し、さらに100個作製するまでの時間を測定した。また、本発明の実施例2及び比較例2においては、ピン15の精度(円筒度、真円度)を2μm、3μm、4μm振って確認した。   At this time, the cylindricity, the roundness, the roundness of the inner circumference, and the concentricity of each sample were measured, and the time until 100 samples were produced was measured. In Example 2 and Comparative Example 2 of the present invention, the accuracy (cylindricity and roundness) of the pin 15 was confirmed by shaking by 2 μm, 3 μm, and 4 μm.

なお、円筒度、同芯度、真円度、は、各サンプル100個の平均値で、作業時間は、本発明の実施例2、比較例2、比較例3の各平均値である。

Figure 0004618992
以上より、比較例2では、ピン精度(円筒度、真円度)2μmは、外周円筒度1.0μm、真円度1.1μm、内周真円度1.0μm、同芯度1.2μmとなり、ピン精度3μmでは、外周円筒度1.2μm、真円度1.2μm、内周真円度1.5μm、同芯度1.3μmとなり、ピン精度4μmでは、外周円筒度2.0μm、真円度2.1μm、内周真円度1.9μm、同芯度2.2となり、平均作業時間73hとなった。 The cylindricity, concentricity, and roundness are average values of 100 samples, and the working time is average values of Example 2, Comparative Example 2, and Comparative Example 3 of the present invention.
Figure 0004618992
As described above, in Comparative Example 2, the pin accuracy (cylindricity, roundness) of 2 μm is as follows: outer peripheral cylindricity of 1.0 μm, roundness of 1.1 μm, inner peripheral roundness of 1.0 μm, concentricity of 1.2 μm When the pin accuracy is 3 μm, the outer cylinder is 1.2 μm, the roundness is 1.2 μm, the inner circle is 1.5 μm, and the concentricity is 1.3 μm. When the pin accuracy is 4 μm, the outer cylinder is 2.0 μm, The roundness was 2.1 μm, the inner roundness was 1.9 μm, and the concentricity was 2.2, resulting in an average work time of 73 h.

比較例3では、外周円筒度0.3μm、真円度0.2μm、内周真円度0.2μm、同芯度0.3μmとなり平均作業時間120hとなった。   In Comparative Example 3, the outer peripheral cylindricity was 0.3 μm, the roundness was 0.2 μm, the inner peripheral roundness was 0.2 μm, and the concentricity was 0.3 μm, and the average working time was 120 h.

本発明の実施例2においては、ピン精度(円筒度、真円度)2μmは、外周円筒度0.2μm、真円度0.2μm、内周真円度0.2μm、同芯度0.2μmとなり、ピン精度3μmでは、外周円筒度0.1μm、真円度0.2μm、内周真円度0.2μm、同芯度0.2μmとなり、ピン精度4μmでは、外周円筒度0.4μm、真円度0.5μm、内周真円度0.5μm、同芯度0.4μmとなり平均作業時間70hとなった。   In the second embodiment of the present invention, the pin accuracy (cylindricity, roundness) of 2 μm is 0.2 μm for outer cylindricality, 0.2 μm for roundness, 0.2 μm for inner roundness, and 0. When the pin accuracy is 3 μm, the outer cylinder is 0.1 μm, the roundness is 0.2 μm, the inner circle is 0.2 μm, and the concentricity is 0.2 μm. When the pin accuracy is 4 μm, the outer cylinder is 0.4 μm. The roundness was 0.5 μm, the inner circumference roundness was 0.5 μm, and the concentricity was 0.4 μm, resulting in an average working time of 70 h.

このように本発明は加工時間が比較例3に比べ大幅に削減でき、なお且つ、比較例2と比較すると、加工時間はほぼ同等だが、製品の精度が大幅に改善されてできる。また、ピン精度においても、3μm以下であれば、円筒度、真円度、同芯度が向上できる。   As described above, the processing time of the present invention can be greatly reduced as compared with Comparative Example 3, and the processing time is substantially the same as that of Comparative Example 2, but the accuracy of the product can be greatly improved. Moreover, also in pin precision, if it is 3 micrometers or less, cylindricity, roundness, and concentricity can be improved.

つまり、比較例2では、比較例3と同様に機械加工をしないとフェルールの内外径の真円度、円筒度、同芯度の精度が向上できず、本発明においては、ピン精度3μm以下を使用することによりバリを除去する程度の外周ラップ加工のみで、高信頼性の製品が提供できる。   That is, in Comparative Example 2, the accuracy of the roundness, cylindricity, and concentricity of the inner and outer diameters of the ferrule cannot be improved unless machining is performed as in Comparative Example 3. In the present invention, the pin accuracy is 3 μm or less. By using it, a highly reliable product can be provided only by peripheral lapping that removes burrs.

次に、本発明の実施例2の円筒成形体10を装填する金型50は、上下金型温度差がない条件であるが、本発明の実施例3において、図4に示すように上金型加熱17と下金型加熱18の温度を変えて故意に勾配をつけた条件での円筒成形体10の外周平均円筒度及び外径真円度を比較した。   Next, the mold 50 in which the cylindrical molded body 10 of Example 2 of the present invention is loaded is a condition that there is no difference in temperature between the upper and lower molds. In Example 3 of the present invention, as shown in FIG. The outer peripheral average cylindricity and the outer diameter roundness of the cylindrical molded body 10 were compared under a condition where the temperature of the mold heating 17 and the lower mold heating 18 was changed intentionally to give a gradient.

なお、上金型12と下金型13の温度差は30℃、15℃、0℃、−15℃、−30℃、−45℃の条件とした。

Figure 0004618992
以上より、本発明の実施例3において、温度差が0℃、15℃、30℃が外周平均円筒度が0.2μm以下、外周平均真円度が0.1μm以下と良好であり、さらに15℃が外周平均円筒度0.1μm、外周平均真円度0.08μmとより良好な結果となった。 The temperature difference between the upper mold 12 and the lower mold 13 was 30 ° C, 15 ° C, 0 ° C, -15 ° C, -30 ° C, and -45 ° C.
Figure 0004618992
As described above, in Example 3 of the present invention, the temperature difference is 0 ° C., 15 ° C., and 30 ° C., the outer peripheral average cylindricity is 0.2 μm or less, and the outer peripheral average roundness is 0.1 μm or less, and 15 The results were more favorable at 0 ° C. with an outer peripheral average cylindricity of 0.1 μm and an outer peripheral average roundness of 0.08 μm.

このことにより、本発明にいては、温度勾配をつけることによりさらなる高信頼性の高い製品が提供できる。   Accordingly, in the present invention, a product with higher reliability can be provided by providing a temperature gradient.

本発明のセラミックス焼結体の製造方法を示す流れ図である。It is a flowchart which shows the manufacturing method of the ceramic sintered compact of this invention. 本発明のセラミックス成形体の製造方法を示す(a)は透視図(b)断面図である。(A) which shows the manufacturing method of the ceramic molded body of this invention is a perspective view (b) sectional drawing. (a)(b)(c)は本発明の圧縮成形を示す断面図である。(A) (b) (c) is sectional drawing which shows the compression molding of this invention. 本発明の加熱方法を示す断面図である。It is sectional drawing which shows the heating method of this invention. 本発明の金型及びピンの精度部分を示す斜視図である。It is a perspective view which shows the precision part of the metal mold | die and pin of this invention. 本発明の焼成方法を示す図である。It is a figure which shows the baking method of this invention. 光通信用コネクター部材であるフェルールを示す部分断面図である。It is a fragmentary sectional view which shows the ferrule which is a connector member for optical communications. フェルールを用いた光通信用コネクターを示す断面図である。It is sectional drawing which shows the connector for optical communication using a ferrule. 従来の水系バインダ−を使用したときの製造方法水を示す流れ図である。It is a flowchart which shows the manufacturing method water when using the conventional water-system binder. 従来の樹脂系バインダ−を使用したときの製造方法を示す流れ図である。It is a flowchart which shows a manufacturing method when using the conventional resin binder.

符号の説明Explanation of symbols

1:フェルール
1a:貫通孔
1b:C面
1c:外周
1d:PC面
2:支持体
3:光ファイバ
4:スリーブ
5:成形前原料
6:投入口
7:混練部
8:スクリュー部
9a:成形金型
9b:コアピン
10:円筒成形体
10a:C面
10b:PC面
12:上金型
13:下金型
13a:PC面
15:ピン
15a:C面
15b:先端部
16:真空ポンプ
17:上金型加熱
18:下金型加熱
20:セッタ
30:押出成形機
50:金型
1: Ferrule 1a: Through-hole 1b: C surface 1c: Periphery 1d: PC surface 2: Support body 3: Optical fiber 4: Sleeve 5: Raw material 6: Molding port 7: Kneading part 8: Screw part 9a: Molding metal Mold 9b: Core pin 10: Cylindrical molded body 10a: C surface 10b: PC surface 12: Upper mold 13: Lower mold 13a: PC surface 15: Pin 15a: C surface 15b: Tip 16: Vacuum pump 17: Upper metal Mold heating 18: Lower mold heating 20: Setter 30: Extruder 50: Mold

Claims (3)

セラミックス粉末に焼結助剤と樹脂バインダーを添加した成形前原料を押し出し成形にて、第1セラミックス円筒成形体を作製する1次成形工程と、
前記第1セラミックス円筒成形体を金型に装填し、圧縮しながら徐冷して第2セラミックス円筒成形体を作製する2次成形工程と、を備え、
前記2次成形工程における前記金型は、前記円筒成形体が挿入される貫通孔を有する円筒形状の上金型と、凸形状の下面を有して前記貫通孔に挿入されるピンと、凹形状の上面を有してこの上面が前記貫通孔の貫通方向の延長線上に位置するように前記上金型の下端面に当接される下金型との3つの部材からなる構成をなしており、
前記下金型の表面温度は、前記上金型の表面温度と同じ温度、若しくは、前記上金型の表面温度よりも高い温度であって、温度差が30℃以下となる温度で維持されていることを特徴とするセラミックス粉末の成形方法。
A primary molding step of producing a first ceramic cylindrical molded body by extruding a raw material before molding obtained by adding a sintering aid and a resin binder to ceramic powder;
A secondary molding step of loading the first ceramic cylindrical molded body into a mold and slowly cooling while compressing to produce a second ceramic cylindrical molded body,
The mold in the secondary molding step includes a cylindrical upper mold having a through hole into which the cylindrical molded body is inserted, a pin having a convex lower surface and inserted into the through hole, and a concave shape. And has a structure composed of three members: a lower mold that comes into contact with the lower end surface of the upper mold so that the upper surface is positioned on an extension line in the penetration direction of the through hole. ,
The surface temperature of the lower mold is the same as the surface temperature of the upper mold or higher than the surface temperature of the upper mold , and the temperature difference is maintained at a temperature of 30 ° C. or less. A method for forming a ceramic powder, comprising:
前記2次成形工程において、前記第1セラミックス円筒成形体の温度を30℃〜150℃として内周部にピンを圧入し、前記第1セラミックス円筒成形体の温度を30℃未満まで徐冷する、請求項1に記載のセラミックス粉末の成形方法。   In the secondary forming step, the temperature of the first ceramic cylindrical molded body is set to 30 ° C. to 150 ° C., a pin is press-fitted into the inner peripheral portion, and the temperature of the first ceramic cylindrical molded body is gradually cooled to less than 30 ° C., The method for forming a ceramic powder according to claim 1. 前記ピンが円形断面であり、その長手方向全てにおける円筒度、真円度が3μm以下である、請求項2に記載のセラミックス粉末の成形方法。   The method for forming a ceramic powder according to claim 2, wherein the pin has a circular cross section, and the cylindricity and roundness in all of the longitudinal directions thereof are 3 μm or less.
JP2003334428A 2003-04-22 2003-09-25 Molding method of ceramic powder Expired - Fee Related JP4618992B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003334428A JP4618992B2 (en) 2003-04-22 2003-09-25 Molding method of ceramic powder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003117696 2003-04-22
JP2003334428A JP4618992B2 (en) 2003-04-22 2003-09-25 Molding method of ceramic powder

Publications (2)

Publication Number Publication Date
JP2004338363A JP2004338363A (en) 2004-12-02
JP4618992B2 true JP4618992B2 (en) 2011-01-26

Family

ID=33543142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003334428A Expired - Fee Related JP4618992B2 (en) 2003-04-22 2003-09-25 Molding method of ceramic powder

Country Status (1)

Country Link
JP (1) JP4618992B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100584557C (en) * 2007-01-03 2010-01-27 刘顺峰 Forming device of blank of cored ceramics and its forming method
US7976740B2 (en) 2008-12-16 2011-07-12 Microsoft Corporation Fabrication of optically smooth light guide

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH059907U (en) * 1991-07-19 1993-02-09 トヨタ自動車株式会社 Low pressure injection molding machine
JP2001145909A (en) * 1999-09-10 2001-05-29 Seiko Instruments Inc Method for holding ceramics

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01198303A (en) * 1988-02-03 1989-08-09 Agency Of Ind Science & Technol Manufacture of ceramics molded object
JPH0387208A (en) * 1989-08-31 1991-04-12 Toshiba Corp Manufacture of ceramic product

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH059907U (en) * 1991-07-19 1993-02-09 トヨタ自動車株式会社 Low pressure injection molding machine
JP2001145909A (en) * 1999-09-10 2001-05-29 Seiko Instruments Inc Method for holding ceramics

Also Published As

Publication number Publication date
JP2004338363A (en) 2004-12-02

Similar Documents

Publication Publication Date Title
US6213649B1 (en) Sleeve for optical connector ferrules and method for production thereof
JP4618992B2 (en) Molding method of ceramic powder
JP2005119266A (en) Molding die
JP2003104776A (en) Production method for ceramic sintered compact
JP2003252683A (en) Method for producing ceramic sintered compact
JP2006116933A (en) Extrusion molding machine, extrusion molding method using the same and ferrule for optical communication obtained by the same
JP3109251B2 (en) Optical element molding method
JP3203402B2 (en) Optical element molding die, method of manufacturing the same, and optical element molding method
JP2000275478A (en) V-grooved substrate, its manufacture, and optical-fiber array
US9477048B2 (en) Sleeve for optical communication and method of manufacturing the sleeve for optical communication
JP2006126343A (en) Forming apparatus of cylindrically formed body, and method of forming the cylindrically formed body using the same
JP2005231933A (en) Mold for optical element and method for molding optical element
JP2005122085A (en) Method for manufacturing precision sleeve
CN218195843U (en) Zirconia ceramic lantern ring
JP2006327901A (en) Method of manufacturing ceramic sintered body and ceramic firing tool
JP2005281014A (en) Method for producing sintered ceramic compact and optical communication connector using sintered ceramic compact produced thereby
JP2006088522A (en) Manufacturing method of molded product
JP2005179156A (en) Method for manufacturing sintered ceramic compact and connector for optical communication
JP2002250839A (en) Ferrule for optical fiber connector and method of its manufacturing
JP2835536B2 (en) Ferrule manufacturing method and its mold
JP2003137662A (en) Method of manufacturing sintered ceramic compact
JP2005131833A (en) Manufacturing method of ceramic sintered body and optical communication connector
JPS61174127A (en) Molding tool of glass lens
JP2003073710A (en) Holder for baking, manufacturing method therefor, and method for manufacturing ceramic parts for optical communication therewith
JPH05124824A (en) Stock for optical element and method for molding optical element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100928

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101026

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees