JP2005231933A - Mold for optical element and method for molding optical element - Google Patents

Mold for optical element and method for molding optical element Download PDF

Info

Publication number
JP2005231933A
JP2005231933A JP2004041934A JP2004041934A JP2005231933A JP 2005231933 A JP2005231933 A JP 2005231933A JP 2004041934 A JP2004041934 A JP 2004041934A JP 2004041934 A JP2004041934 A JP 2004041934A JP 2005231933 A JP2005231933 A JP 2005231933A
Authority
JP
Japan
Prior art keywords
mold
optical element
molding
sliding
thermal expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004041934A
Other languages
Japanese (ja)
Inventor
Takahisa Kondo
隆久 近藤
Shoji Nakamura
正二 中村
Yoshiyuki Shimizu
義之 清水
Tomoaki Shimazaki
智章 嶋崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004041934A priority Critical patent/JP2005231933A/en
Publication of JP2005231933A publication Critical patent/JP2005231933A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/03Press-mould materials defined by material properties or parameters, e.g. relative CTE of mould parts
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/05Press-mould die materials
    • C03B2215/07Ceramic or cermets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/72Barrel presses or equivalent, e.g. of the ring mould type

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the clearance between a shaping die and a drum die at a high temperature during molding to reduce the deviation of the optical axis of an optical element; and to secure the minimum clearance between the shaping die and the drum die and necessary for sliding before and after molding. <P>SOLUTION: A mold for an optical element is composed of a pair of shaping dies 1 and 2 and a drum die 3 into which the shaping dies are inserted. While an optical element raw material 4 arranged between the shaping dies is being heated, one of the shaping dies slides in the drum die to apply pressure to the optical element raw material, thus transferring optically effective faces formed on the inside surfaces of the shaping dies to the optical element raw material. The thermal expansion coefficient α1 of the raw material of the shaping die 1 which slides in the drum die in molding, the thermal expansion coefficient α2 of the raw material of the shaping die 2 which does not slide in the drum die in molding and receives pressure via the optical element raw material, and the thermal expansion coefficient α3 of the material of the drum die 3 are set so as to have the relation: α2>α1≥α3. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、光学機器に使用される光学素子を精密ガラス成形法により成形するための光学素子用成形金型、およびその成形金型を用いた光学素子の成形方法に関する。   The present invention relates to an optical element molding die for molding an optical element used in an optical apparatus by a precision glass molding method, and an optical element molding method using the molding die.

近年、光学素子を研磨工程なしの一発成形により成形する試みが多くなされている。ガラス素材を溶融状態から型に流し込み加圧成形する方法が最も能率的であるが、冷却時のガラス収縮を制御することが難しく、精密な光学素子成形には適さない。従って一定の形状に予備加工された光学素子素材を上下型間に供給し、加熱し、押圧成形するのが一般的な成形方法である。(例えば、特許文献1参照)。   In recent years, many attempts have been made to mold an optical element by one-shot molding without a polishing step. The method of casting a glass material from a molten state into a mold and performing pressure molding is the most efficient, but it is difficult to control glass shrinkage during cooling, and is not suitable for precise optical element molding. Accordingly, it is a general molding method to supply an optical element material preliminarily processed into a certain shape between the upper and lower molds, heat, and press molding. (For example, refer to Patent Document 1).

そのような従来の成形方法について、図2を参照して説明する。図2は、光学素子素材を押圧成形して、光学面が形成された状態における、成形型と光学素子の断面を示す。11、12は一対の成形型であり、成形装置のプレスヘッド15、16に取り付けられている。一対の成形型11、12は、胴型13内に装着されている。一対の成形型11、12、および胴型13により形成された空間内で、光学素子14が成形されている。押圧して光学素子14に成形される前の光学素子素材は、適当な加熱手段を用いて均一にガラスの軟化点近傍の温度まで加熱された後、成形型11、12の成形面により押圧成形される。胴型13は、成形後の芯取り工程をなくすために用いられ、同時に胴型13によって、成形型11、12により形成される二つの光学面の光軸が位置合わせされる。
特開昭58−84134号公報
Such a conventional molding method will be described with reference to FIG. FIG. 2 shows a cross section of the molding die and the optical element in a state where the optical surface is formed by pressing the optical element material. Reference numerals 11 and 12 denote a pair of molds, which are attached to press heads 15 and 16 of the molding apparatus. The pair of molds 11 and 12 are mounted in the body mold 13. The optical element 14 is molded in the space formed by the pair of molding dies 11 and 12 and the barrel die 13. The optical element material before being pressed and molded into the optical element 14 is uniformly heated to a temperature near the softening point of the glass using an appropriate heating means, and then pressed by the molding surfaces of the molds 11 and 12. Is done. The barrel mold 13 is used to eliminate the centering step after molding, and at the same time, the barrel mold 13 aligns the optical axes of the two optical surfaces formed by the molding dies 11 and 12.
JP 58-84134 A

しかしながら上記のような方法では、超精密な非球面光学素子を成形するためには、次のような困難が生じる。すなわち、非球面光学素子では、一般に芯取りが困難であるため胴型を用いた一発成形が必要である。しかも、例えば光ピックアップに用いられるような超精密非球面光学素子においては、二つの光学面の光軸ズレが10μm以下というような高精度が必要である。   However, in the method as described above, the following difficulties arise in order to mold an ultraprecision aspherical optical element. That is, since aspherical optical elements are generally difficult to center, a one-shot molding using a barrel mold is necessary. In addition, in an ultra-precision aspherical optical element used for an optical pickup, for example, high accuracy is required such that the optical axis deviation between the two optical surfaces is 10 μm or less.

一方、一対の成形型と胴型の嵌合の面からは、クリアランスが10μmという精度の加工が困難になっていく。さらに、高温状態で成形しなければならないので、長期的に精度を維持することは難しい。また成形型および胴型の素材が同じであれば、常温時および高温時において熱膨張率変動が同じであるため、加工寸法差のクリアランスが保たれる。従って胴型内径と成形型外径の加工精度が光軸ズレに反映され、その結果、光学性能に影響する。   On the other hand, processing with an accuracy of a clearance of 10 μm becomes difficult from the surface of fitting between the pair of molds and the barrel mold. Furthermore, since it must be molded at a high temperature, it is difficult to maintain accuracy over the long term. Further, if the material of the mold and the body is the same, the variation in the coefficient of thermal expansion is the same at the normal temperature and at the high temperature, so that the clearance of the processing dimension difference is maintained. Therefore, the processing accuracy of the inner diameter of the body mold and the outer diameter of the mold is reflected in the optical axis deviation, and as a result, the optical performance is affected.

本発明は、成形時の高温下での成形型と胴型のクリアランスを小さくし、光学素子の光軸のズレを小さくするとともに、成形の前後における成形型と胴型の間に、摺動に必要な最小クリアランスを確保することが可能な光学素子用成形金型を提供することを目的とする。   The present invention reduces the clearance between the molding die and the barrel die at a high temperature during molding, reduces the deviation of the optical axis of the optical element, and slides between the molding die and the barrel die before and after molding. It is an object of the present invention to provide a molding die for optical elements capable of ensuring a necessary minimum clearance.

本発明の光学素子用成形金型は、一対の成形型と、前記成形型が挿入される胴型と、前記成形型の間に配置された光学素子素材とを加熱しながら、前記成形型の一方を前記胴型内を摺動させてその成形型により前記光学素子素材に押圧力を加えることにより、前記成形型内面に加工された光学有効面を前記光学素子素材に転写して光学素子を作製するための成形金型である。前記一対の成形型のうち、成形時に前記胴型内を摺動させる摺動成形型の素材の熱膨張率をα1とし、成形時に前記胴型内摺動させず、押圧力を前記摺動成形型と前記光学素子素材を介して受ける非摺動成形型の素材の熱膨張率をα2とし、前記胴型の素材の熱膨張率をα3とするとき、α2>α1≧α3の関係となるように、各素材の熱膨張率が設定されていることを特徴とする。   The molding die for optical elements of the present invention comprises a pair of molding dies, a barrel die into which the molding dies are inserted, and an optical element material disposed between the molding dies, while heating the molding die. One side is slid in the body mold and a pressing force is applied to the optical element material by the molding die to transfer the optically effective surface processed on the inner surface of the molding die to the optical element material, thereby This is a molding die for manufacturing. Of the pair of molding dies, the coefficient of thermal expansion of the sliding mold material that slides in the barrel mold during molding is α1, and the sliding force is not slid in the cylinder mold during molding, and the pressing force is the sliding molding. When the coefficient of thermal expansion of the mold and the material of the non-sliding mold received through the optical element material is α2, and the coefficient of thermal expansion of the material of the body mold is α3, α2> α1 ≧ α3. Further, the thermal expansion coefficient of each material is set.

本発明の光学素子の成形方法によれば、一対の成形型と、前記成形型が挿入される胴型と、前記成形型の間に配置された光学素子素材とを加熱しながら、前記成形型の一方を前記胴型内を摺動させてその成形型により前記光学素子素材に押圧力を加えることにより、前記成形型内面に加工された光学有効面を前記光学素子素材に転写して光学素子を作製する。そして、前記一対の成形型のうち、成形時に前記胴型内を摺動させる摺動成形型の素材の熱膨張率をα1とし、成形時に前記胴型内摺動させず、押圧力を前記摺動成形型と前記光学素子素材を介して受ける非摺動成形型の素材の熱膨張率をα2とし、前記胴型の素材の熱膨張率をα3とするとき、α2>α1≧α3の関係となるように各素材の熱膨張率が設定された成形型を用いることを特徴とする。   According to the method for molding an optical element of the present invention, the mold is heated while heating a pair of molds, a barrel mold into which the mold is inserted, and an optical element material disposed between the molds. The optical effective surface processed on the inner surface of the molding die is transferred to the optical element material by sliding one of the members in the body mold and applying a pressing force to the optical element material by the molding die. Is made. Of the pair of molding dies, the coefficient of thermal expansion of the material of the sliding mold that slides in the barrel mold during molding is α1, and the pressing force is not slid in the cylinder mold during molding. When the coefficient of thermal expansion of the dynamic mold and the material of the non-sliding mold received via the optical element material is α2, and the coefficient of thermal expansion of the body mold material is α3, α2> α1 ≧ α3 Thus, a molding die in which the coefficient of thermal expansion of each material is set is used.

上記構成の光学素子用成形金型を用いることにより、成形型の熱膨張率を胴型の熱膨張率より大きく設定することで、成形時の高温下での成形型と胴型のクリアランスを小さくして、光学素子の光軸のズレを小さくすることができる。しかも摺動成形型は非摺動成形型より熱膨張率の小さい素材を用いることで、摺動に必要な最小クリアランスを確保できる。   By using the molding die for optical elements having the above configuration, the thermal expansion coefficient of the molding die is set to be larger than the thermal expansion coefficient of the barrel mold, thereby reducing the clearance between the molding die and the barrel mold at a high temperature during molding. Thus, the deviation of the optical axis of the optical element can be reduced. In addition, the sliding mold can ensure the minimum clearance required for sliding by using a material having a smaller coefficient of thermal expansion than the non-sliding mold.

本発明の光学素子用成形金型において、前記各成形型は、タングステンカーバイト(WC)を主成分とする素材を用いて形成され、前記タングステンカーバイト(WC)のバインダー含有率が、摺動成形型>非摺動成形型>胴型の関係とすることができる。それにより、熱膨張率を容易に調整することが可能である。   In the molding die for optical elements of the present invention, each of the molding dies is formed using a material mainly composed of tungsten carbide (WC), and the binder content of the tungsten carbide (WC) is slid. The relationship of molding die> non-sliding molding die> trunk die can be established. Thereby, the coefficient of thermal expansion can be easily adjusted.

本発明の光学素子の成形方法において、好ましくは、成形する高温時での前記胴型と前記非摺動成形型のクリアランスが実質的に0になるように、前記熱膨張率α1およびα3の関係を設定する。それにより、さらに光軸のズレを小さくすることができる。また、予熱工程、押圧工程、および冷却工程を実施するための成形装置により、前記一対の成形型および前記胴型を用いて前記光学素子素材を成形することができる。   In the optical element molding method of the present invention, preferably, the relationship between the thermal expansion coefficients α1 and α3 so that the clearance between the barrel mold and the non-sliding mold at a high temperature for molding is substantially zero. Set. Thereby, the deviation of the optical axis can be further reduced. Further, the optical element material can be molded using the pair of molds and the barrel mold by a molding apparatus for performing the preheating step, the pressing step, and the cooling step.

以下、本発明の実施の形態について、図1を参照しながら具体的に説明する。図1は、成形装置のプレスヘッドに成形型を固定せずに成形する場合の、成形前の状態を示す断面図である。成形装置のプレスヘッド5,6には、図示しないが、加熱部が備わっている。非摺動成形型2上に、胴型3および摺動成形型1が挿入されたものが、プレスヘッド6上に載置されている。非摺動成形型2と摺動成形型1の間には、光学素子素材4がセットされている。非摺動成形型2、摺動成形型1、胴型3および光学素子素材4を、プレスヘッド6で約600℃に昇温させ、プレスヘッド5が下降し摺動成形型1を押圧する。押圧された光学素子素材4が変形し、光学素子が成形される。   Hereinafter, embodiments of the present invention will be described in detail with reference to FIG. FIG. 1 is a cross-sectional view showing a state before molding when molding is performed without fixing a molding die to a press head of a molding apparatus. Although not shown, the press heads 5 and 6 of the molding apparatus are provided with a heating unit. A non-sliding mold 2 on which a body mold 3 and a sliding mold 1 are inserted is placed on a press head 6. An optical element material 4 is set between the non-sliding mold 2 and the sliding mold 1. The non-sliding mold 2, the sliding mold 1, the body mold 3 and the optical element material 4 are heated to about 600 ° C. by the press head 6, and the press head 5 is lowered to press the sliding mold 1. The pressed optical element material 4 is deformed to mold the optical element.

非摺動成形型2および摺動成形型1における胴型3内に挿入される嵌合部1a、2aの外径を6.000mm、胴型3の内径を6.008mmとする。すなわち常温時の非摺動成形型2および摺動成形型1と胴型3の嵌合部のクリアランスが各々8μmであり、最大16μm以内の光軸ズレが発生する。摺動成形型1、非摺動成形型2および胴型3の素材として、例えば炭化タングステン材を用いる。非摺動成形型2は、バインダ−含有率を12%とし、熱膨張率α2は6.98×10-6/℃となる。摺動成形型1は、バインダ−含有率を7%とし、熱膨張率α1は6.23×10-6/℃となり、非摺動成形型2より小さい。胴型3は、バインダ−含有率を5%とし、熱膨張率α3は5.07×10-6/℃となり、成形型1、2よりも小さい素材である。 The outer diameters of the fitting portions 1a and 2a inserted into the body mold 3 in the non-sliding mold 2 and the sliding mold 1 are set to 6.000 mm, and the inner diameter of the body mold 3 is set to 6.008 mm. That is, the clearance between the non-sliding mold 2 at normal temperature and the fitting portion between the sliding mold 1 and the body mold 3 is 8 μm, respectively, and an optical axis deviation within a maximum of 16 μm occurs. As a material for the sliding mold 1, the non-sliding mold 2, and the body mold 3, for example, a tungsten carbide material is used. The non-sliding mold 2 has a binder content of 12% and a thermal expansion coefficient α2 of 6.98 × 10 −6 / ° C. The sliding mold 1 has a binder content of 7% and a thermal expansion coefficient α1 of 6.23 × 10 −6 / ° C., which is smaller than the non-sliding mold 2. The body mold 3 is a material having a binder content of 5% and a thermal expansion coefficient α3 of 5.07 × 10 −6 / ° C., which is smaller than the molds 1 and 2.

これらを約600℃に加熱する成形温度時には、摺動成形型1と胴型3とのクリアランスは4μm、非摺動成形型2と胴型3とのクリアランスは1μmと小さくなる。従って、摺動成形型1と非摺動成形型2の光学面の最大光軸ズレ量が5μm以内となり、常温時のクリアランス11μmより小さくなる。   At the molding temperature at which these are heated to about 600 ° C., the clearance between the sliding mold 1 and the body mold 3 is as small as 4 μm, and the clearance between the non-sliding mold 2 and the body mold 3 is as small as 1 μm. Accordingly, the maximum optical axis deviation between the optical surfaces of the sliding mold 1 and the non-sliding mold 2 is within 5 μm, which is smaller than the clearance of 11 μm at room temperature.

さらに、非摺動成形型2の外径を6.001mmにすれば、成形温度での嵌合部のクリアランスが実質的に0となる。従って摺動成形型1のクリアランスの4μmのみとなり、光軸ズレは最大でも4μm以内と小さくなる。   Furthermore, if the outer diameter of the non-sliding mold 2 is set to 6.001 mm, the clearance of the fitting portion at the molding temperature is substantially zero. Accordingly, the clearance of the sliding mold 1 is only 4 μm, and the optical axis deviation is as small as 4 μm at the maximum.

胴型3と摺動成形型1のクリアランスを小さくすればさらに光軸ズレが小さくなるが、胴型2および成形型の機械加工精度、成形温度安定性等々考慮すると、成形時の高温下で安定した摺動を可能とするためには、クリアランスが4μm程度必要である。   If the clearance between the body mold 3 and the sliding mold 1 is reduced, the optical axis deviation is further reduced. However, considering the machining accuracy and molding temperature stability of the body mold 2 and the mold, it is stable at a high temperature during molding. In order to enable such sliding, a clearance of about 4 μm is required.

また一般に熱膨張率は温度によって変化するので、成形温度に応じて実際の膨張度合いを見積もる必要がある。この場合は、成形型の外形寸法と組み合わせて微調を行うことが望ましい。   In general, since the coefficient of thermal expansion varies with temperature, it is necessary to estimate the actual degree of expansion according to the molding temperature. In this case, it is desirable to perform fine adjustment in combination with the outer dimensions of the mold.

また熱膨張率の差が大きい素材を用いれば、成形型外径、特に胴型の内径加工精度を緩くすることができる。さらに、成形型の外径寸法を個々に変えずにクリアランスを小さくすることも可能で、加工が容易となる。また常温時にはクリアランスが大きいため、胴型内への成形型の挿入が容易となることから、成形型の自動分解、組み立て装置等の精度に対する要求を緩くできる効果も得られる。   If a material having a large difference in thermal expansion coefficient is used, it is possible to loosen the processing accuracy of the outer diameter of the mold, particularly the inner diameter of the body mold. Furthermore, it is possible to reduce the clearance without individually changing the outer diameter of the mold, which facilitates processing. In addition, since the clearance is large at room temperature, it is easy to insert the mold into the body mold, so that the effect of reducing the accuracy of the automatic mold disassembly and assembly apparatus can be obtained.

本発明の光学素子用成形金型によれば、成形時の高温下での成形型と胴型のクリアランスを小さくして、光学素子の光軸のズレを小さくするとともに、成形の前後における成形型と胴型の間に、摺動に必要な最小クリアランスを確保することができる。従って、高精度の光学素子を容易に作製でき、光ピックアップに用いられる超精密非球面光学素子等の製造に有用である。   According to the molding die for optical elements of the present invention, the clearance between the molding die and the body die at a high temperature during molding is reduced, the optical axis shift of the optical element is reduced, and the molding die before and after molding. The minimum clearance required for sliding can be ensured between the body mold and the body mold. Therefore, a high-precision optical element can be easily manufactured, which is useful for manufacturing an ultra-precise aspherical optical element used for an optical pickup.

本発明における成形金型と成形方法の成形前の状態を示す断面図Sectional drawing which shows the state before shaping | molding of the shaping die in this invention, and a shaping | molding method 本発明および従来例における光学素子の成形状態を示す断面図Sectional drawing which shows the molding state of the optical element in this invention and a prior art example

符号の説明Explanation of symbols

1 摺動成形型
2 非摺動成形型
3,13 胴型
4 光学素子素材
5,6,15,16 プレスヘッド
11,12 成形型
14 光学素子素材

DESCRIPTION OF SYMBOLS 1 Sliding shaping | molding die 2 Non-sliding shaping | molding die 3, 13 Body type | mold 4 Optical element material 5, 6, 15, 16 Press head 11, 12 Molding die 14 Optical element material

Claims (5)

一対の成形型と、前記成形型が挿入される胴型と、前記成形型の間に配置された光学素子素材とを加熱しながら、前記成形型の一方を前記胴型内を摺動させてその成形型により前記光学素子素材に押圧力を加えることにより、前記成形型内面に加工された光学有効面を前記光学素子素材に転写して光学素子を作製するための光学素子用成形金型において、
前記一対の成形型のうち、成形時に前記胴型内を摺動させる摺動成形型の素材の熱膨張率をα1とし、成形時に前記胴型内摺動させず、押圧力を前記摺動成形型と前記光学素子素材を介して受ける非摺動成形型の素材の熱膨張率をα2とし、前記胴型の素材の熱膨張率をα3とするとき、
α2>α1≧α3の関係となるように、各素材の熱膨張率が設定されていることを特徴とする光学素子用成形金型。
While heating a pair of molds, a barrel mold into which the mold is inserted, and an optical element material disposed between the molds, one of the molds is slid in the barrel mold. In a molding die for an optical element for producing an optical element by applying a pressing force to the optical element material by the molding die to transfer an optically effective surface processed on the inner surface of the molding die to the optical element material. ,
Of the pair of molding dies, the coefficient of thermal expansion of the sliding mold material that slides in the barrel mold during molding is α1, and the sliding force is not slid in the cylinder mold during molding, and the pressing force is the sliding molding. When the coefficient of thermal expansion of the material of the non-sliding mold received through the mold and the optical element material is α2, and the coefficient of thermal expansion of the material of the barrel mold is α3,
A molding die for optical elements, wherein the thermal expansion coefficient of each material is set so as to satisfy the relationship of α2> α1 ≧ α3.
前記各成形型は、タングステンカーバイト(WC)を主成分とする素材を用いて形成され、前記タングステンカーバイト(WC)のバインダー含有率が、摺動成形型>非摺動成形型>胴型の関係である請求項1記載の光学素子用成形金型。   Each mold is formed using a material mainly composed of tungsten carbide (WC), and the binder content of the tungsten carbide (WC) is sliding mold> non-sliding mold> body mold. The molding die for optical elements according to claim 1, wherein: 一対の成形型と、前記成形型が挿入される胴型と、前記成形型の間に配置された光学素子素材とを加熱しながら、前記成形型の一方を前記胴型内を摺動させてその成形型により前記光学素子素材に押圧力を加えることにより、前記成形型内面に加工された光学有効面を前記光学素子素材に転写して光学素子を作製する光学素子の成形方法において、
前記一対の成形型のうち、成形時に前記胴型内を摺動させる摺動成形型の素材の熱膨張率をα1とし、成形時に前記胴型内摺動させず、押圧力を前記摺動成形型と前記光学素子素材を介して受ける非摺動成形型の素材の熱膨張率をα2とし、前記胴型の素材の熱膨張率をα3とするとき、
α2>α1≧α3の関係となるように各素材の熱膨張率が設定された成形型を用いることを特徴とする光学素子の成形方法。
While heating a pair of molds, a barrel mold into which the mold is inserted, and an optical element material disposed between the molds, one of the molds is slid in the barrel mold. In the molding method of an optical element for producing an optical element by transferring an optical effective surface processed on the inner surface of the molding die to the optical element material by applying a pressing force to the optical element material by the molding die,
Of the pair of molding dies, the coefficient of thermal expansion of the sliding mold material that slides in the barrel mold during molding is α1, and the sliding force is not slid in the cylinder mold during molding, and the pressing force is the sliding molding. When the coefficient of thermal expansion of the material of the non-sliding mold received through the mold and the optical element material is α2, and the coefficient of thermal expansion of the material of the barrel mold is α3,
A molding method of an optical element, wherein a molding die in which a coefficient of thermal expansion of each material is set so as to satisfy a relationship of α2> α1 ≧ α3.
成形する高温時での前記胴型と前記非摺動成形型のクリアランスが実質的に0になるように、前記熱膨張率α1およびα3の関係を設定する請求項3記載の光学素子の成形方法。   4. The method for molding an optical element according to claim 3, wherein the relationship between the thermal expansion coefficients α1 and α3 is set so that the clearance between the body mold and the non-sliding mold at a high temperature for molding is substantially zero. . 予熱工程、押圧工程、および冷却工程を実施するための成形装置により、前記一対の成形型および前記胴型を用いて前記光学素子素材を成形する請求項3記載の光学素子の成形方法。

The optical element molding method according to claim 3, wherein the optical element material is molded using the pair of molds and the barrel mold by a molding apparatus for performing a preheating step, a pressing step, and a cooling step.

JP2004041934A 2004-02-18 2004-02-18 Mold for optical element and method for molding optical element Withdrawn JP2005231933A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004041934A JP2005231933A (en) 2004-02-18 2004-02-18 Mold for optical element and method for molding optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004041934A JP2005231933A (en) 2004-02-18 2004-02-18 Mold for optical element and method for molding optical element

Publications (1)

Publication Number Publication Date
JP2005231933A true JP2005231933A (en) 2005-09-02

Family

ID=35015279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004041934A Withdrawn JP2005231933A (en) 2004-02-18 2004-02-18 Mold for optical element and method for molding optical element

Country Status (1)

Country Link
JP (1) JP2005231933A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007331969A (en) * 2006-06-14 2007-12-27 Konica Minolta Opto Inc Mold for molding optical element
JP2009091199A (en) * 2007-10-09 2009-04-30 Fujinon Corp Molding die for optical element
KR101567820B1 (en) 2014-02-20 2015-11-10 부산대학교 산학협력단 Mold Device Composed Of Different Materials

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007331969A (en) * 2006-06-14 2007-12-27 Konica Minolta Opto Inc Mold for molding optical element
JP2009091199A (en) * 2007-10-09 2009-04-30 Fujinon Corp Molding die for optical element
KR101567820B1 (en) 2014-02-20 2015-11-10 부산대학교 산학협력단 Mold Device Composed Of Different Materials

Similar Documents

Publication Publication Date Title
JP2005320199A (en) Optical glass element and method of manufacturing the same
WO2017064979A1 (en) Method for controlling device for manufacturing optical element, method for manufacturing optical element, and device for manufacturing optical element
JP6374951B2 (en) Optical element molding die set and optical element manufacturing method
JP2005231933A (en) Mold for optical element and method for molding optical element
US20080165438A1 (en) Optical lens unit including lens barrel containing lens and method for producing optical lens unit
JP5288923B2 (en) Optical element molding method and molding apparatus
JP2000095532A (en) Press-formed optical element, its production, die for press-forming optical element and device for press- forming optical element
JP2011026152A (en) Mold for optical element and molding method
JP4477518B2 (en) Method and apparatus for manufacturing optical element
JP4832939B2 (en) Method for manufacturing optical element molding die
JP2000247653A (en) Metal mold for forming optical element and optical element
JP2003063832A (en) Mold for forming optical element
JP2005162547A (en) Optical element shaping die, optical element manufacturing apparatus and method for manufacturing optical element
JPH02111635A (en) Forming mold for press lens and forming method
JP5198347B2 (en) A method for producing a precision press-molding preform and a method for producing a glass optical element.
JP4952614B2 (en) Glass lens molding equipment
JP2008013392A (en) Method for manufacturing optical element
JP4618992B2 (en) Molding method of ceramic powder
JP2006096579A (en) Method for forming optical element
JP2009096675A (en) Molding unit of optical element
JP2006206394A (en) Optical device forming mold, method of manufacturing the same and method of manufacturing optical device using the same
JPH06263462A (en) Glass lens forming mold
JP2007297229A (en) Method for manufacturing optical device
JP4472568B2 (en) Mold, mold manufacturing method and optical element molding method
JPH10109312A (en) Production of glass mold for glasses

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070501