JP2007297229A - Method for manufacturing optical device - Google Patents

Method for manufacturing optical device Download PDF

Info

Publication number
JP2007297229A
JP2007297229A JP2006124975A JP2006124975A JP2007297229A JP 2007297229 A JP2007297229 A JP 2007297229A JP 2006124975 A JP2006124975 A JP 2006124975A JP 2006124975 A JP2006124975 A JP 2006124975A JP 2007297229 A JP2007297229 A JP 2007297229A
Authority
JP
Japan
Prior art keywords
mold
lens material
lens
curvature
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006124975A
Other languages
Japanese (ja)
Inventor
Tomoaki Shimazaki
智章 嶋崎
Atsushi Murata
淳 村田
Toshiaki Takano
利昭 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006124975A priority Critical patent/JP2007297229A/en
Publication of JP2007297229A publication Critical patent/JP2007297229A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress the decentering due to molding and the development of flash caused by the decentering by correctly positioning a lens material on the central axis of a molding surface. <P>SOLUTION: A lens material 5 has a convexity having a larger radius of curvature than that of the concavity of a lower die 2. The lens material 5 is abutted against the peripheral part of the concavity in the state where a gap is provided between the deepest part of the concavity and the top of the convexity of the lens material 5, and is arranged in a set of molding dies 10 aligned by the difference of curvature between the concavity and the convexity of the lens material 5. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、レーザー光学機器、撮像機器の光学系などに用いられる光学素子の製造方法であって、特に、精密プレス成形法により光学素子を製造する技術に関するものである。   The present invention relates to a method for manufacturing an optical element used in an optical system of a laser optical device or an imaging device, and particularly relates to a technique for manufacturing an optical element by a precision press molding method.

近年、光ディスク装置やデジタルビデオカメラ等に用いる光学素子として、光の有効利用や収差低減の観点から、球面レンズよりも優れた性能を持つ非球面レンズが採用されている。非球面レンズは、従来のような研磨方式で作成しようとすると、その製造容易性及び製造コストの観点から好ましくないため、精密プレス成形法により作成するのが一般的である。   In recent years, an aspherical lens having a performance superior to that of a spherical lens has been adopted as an optical element used for an optical disk device, a digital video camera, and the like from the viewpoint of effective use of light and reduction of aberration. An aspherical lens is generally produced by a precision press molding method because it is not preferable from the viewpoint of ease of production and production cost when it is attempted to produce it by a conventional polishing method.

この精密プレス成形法において、非球面レンズを、種々の光学定数を有し材料の選択範囲が広いガラス材で形成する場合には、ガラス材の熱特性に応じた温度と圧力とを加えて変形させるようにしている。   In this precision press molding method, when the aspherical lens is made of a glass material with various optical constants and a wide range of material selection, it is deformed by applying temperature and pressure according to the thermal characteristics of the glass material. I try to let them.

特許文献1には、上下型と胴型とで形成される内部空間にガラス素材を投入するにあたり、胴型内径と近似した外径寸法を有するガラス素材を用いて、胴型によってガラス素材の位置を規制することで、金型成形面の略中心にガラス素材を載置させてバリ発生を防止する技術が開示されている。   In Patent Document 1, when a glass material is put into an internal space formed by an upper die and a barrel die, a glass material having an outer diameter approximate to the inner diameter of the barrel mold is used. A technique for preventing the generation of burrs by placing a glass material substantially at the center of the mold forming surface is disclosed.

しかし、特許文献1に記載の技術では、平面状のガラス素材を用いて成形するために、金型成形面との密閉空間が大きく、金型成形面とガラス素材とで区画される密閉空間のガス抜きのためにプレス操作において、押圧と開放とを繰り返さなければレンズ面の未転写部が回避されないおそれがあるという課題や、ガラス素材と胴型内径との間にはガラス素材の挿入に必要なクリアランスが不可欠であるため、ガラス素材が必ずしも金型成形面の中心に載置される保証がない等の課題が存在する。   However, in the technique described in Patent Document 1, since molding is performed using a planar glass material, the sealed space between the mold molding surface and the sealed space partitioned by the mold molding surface and the glass material is large. In press operation for degassing, there is a possibility that the untransferred part of the lens surface may not be avoided unless it is repeatedly pressed and released, and it is necessary to insert the glass material between the glass material and the barrel inner diameter Since a clear clearance is indispensable, there is a problem that there is no guarantee that the glass material is necessarily placed at the center of the molding surface.

また、特許文献2には、上下型と胴型とで構成される金型を用いて非光学有効面を形成する型部材の温度と、光学有効面を形成する型部材の温度とに温度差を設け、非光学有効面を形成する型部材の温度を低く設定する技術が開示されている。すなわち、バリ発生の箇所である上下型と胴型とのクリアランス近傍の温度を低くしてガラス素材の流れを抑制することでバリ対策を行うようにしている。   Further, Patent Document 2 discloses a temperature difference between a temperature of a mold member that forms a non-optically effective surface and a temperature of a mold member that forms an optically effective surface using a mold composed of an upper and lower mold and a body mold. And a technique for setting the temperature of the mold member forming the non-optically effective surface low is disclosed. That is, a countermeasure against burrs is made by suppressing the flow of the glass material by lowering the temperature in the vicinity of the clearance between the upper and lower molds and the trunk mold, which are the places where burrs are generated.

しかし、特許文献2に記載の技術では、非光学有効面(レンズ外周部)と光学有効面(レンズ中心部からレンズ外周部近傍までの範囲)とは極めて近接しており、近接した互いの型部材に温度差を設けることは熱伝導の関係で困難であるだけでなく、温度差の大きさによっては熱歪みが大きくなり、成形されたレンズにクラックや割れを誘発するおそれがある。   However, in the technique described in Patent Document 2, the non-optical effective surface (lens outer peripheral portion) and the optical effective surface (range from the lens central portion to the vicinity of the lens outer peripheral portion) are extremely close to each other, and the adjacent molds It is not only difficult to provide a temperature difference in the member due to heat conduction, but thermal distortion increases depending on the magnitude of the temperature difference, which may induce cracks and cracks in the molded lens.

また、特許文献3には、成形予備体として、予め面取り加工された材料(機械加工や成形によって面取り加工された材料)を準備することが開示されている。すなわち、成形品のバリが発生しやすい箇所に予め面取り加工を施しておくことで、材料の変形量を制御してバリ対策を行うようにしている。   Patent Document 3 discloses preparing a chamfered material (a material chamfered by machining or molding) as a molding preliminary body. That is, a chamfering process is performed in advance on a portion where burrs of the molded product are likely to occur, thereby controlling the amount of deformation of the material and taking measures against burrs.

しかし、特許文献3に記載の技術では、成形品を得るために予備加工が必要であることや、2回の成形作業が必要である等、成形品が高価になるといった課題がある。   However, the technique described in Patent Document 3 has a problem that the molded product becomes expensive, for example, preliminary processing is necessary to obtain the molded product, and two molding operations are required.

これらの課題を解決するために、例えば、レンズ面が凸形状の場合には、成形面となる非球面形状の曲率半径よりも小さな曲率半径の表面形状を有するガラス材を用い、成形面の形状をガラス材に精密転写させることで所望の形状のレンズを得ることが考えられる。   In order to solve these problems, for example, when the lens surface has a convex shape, a glass material having a surface shape with a radius of curvature smaller than the radius of curvature of the aspherical surface to be the molding surface is used, and the shape of the molding surface is It is conceivable to obtain a lens having a desired shape by precisely transferring the lens to a glass material.

図3は、従来のレンズ成形型組の構成を示す断面図である。図3に示すように、レンズ成形型組は、上型31と、上型31に対向配置された下型32と、上型31と下型32とが摺動可能に挿入された筒状の胴型33とを備えている。   FIG. 3 is a cross-sectional view showing a configuration of a conventional lens mold set. As shown in FIG. 3, the lens mold set includes an upper mold 31, a lower mold 32 disposed opposite to the upper mold 31, and a cylindrical shape in which the upper mold 31 and the lower mold 32 are slidably inserted. A body mold 33 is provided.

前記上型31及び下型32には、成形面となる非球面形状の凹部が形成されている。このレンズ成形型組内にはガラス材39が配置されており、上型31及び下型32でプレスすることにより、所望の形状のレンズが成形される。
特開平8−301624号公報 特開平10−152331号公報 特開2001−163628号公報
The upper mold 31 and the lower mold 32 are formed with aspherical concave portions that serve as molding surfaces. A glass material 39 is disposed in the lens mold set, and a lens having a desired shape is molded by pressing with the upper mold 31 and the lower mold 32.
JP-A-8-301624 Japanese Patent Laid-Open No. 10-152331 JP 2001-163628 A

しかしながら、ガラス材39表面の曲率半径が成形面の曲率半径よりも小さい場合には、成形時に、ガラス材39が接触点P1,P2の2点のみで成形面に接触した状態となることから、成形面の中心軸とガラス材39の中心軸とを合致させるのは極めて難しく、ガラス材39の成形時において非軸対称的に変形されて偏芯し、転写面の形状が悪化するだけでなく、レンズ外周部にバリが発生するおそれがあった。   However, when the curvature radius of the surface of the glass material 39 is smaller than the curvature radius of the molding surface, the glass material 39 is in contact with the molding surface at only two points P1 and P2 during molding. It is extremely difficult to match the central axis of the molding surface with the central axis of the glass material 39, and not only the shape of the transfer surface is deteriorated, but the glass material 39 is deformed non-axisymmetrically and eccentrically. There was a risk that burrs would occur on the outer periphery of the lens.

本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、レンズ素材を成形面の中心軸上に正確に位置決めして、成形による偏芯やその偏芯に起因するバリの発生を抑制することにある。   The present invention has been made in view of the above points, and an object of the present invention is to accurately position the lens material on the center axis of the molding surface, and to determine the eccentricity caused by molding and the burrs caused by the eccentricity. It is to suppress the occurrence of.

すなわち、本発明に係る光学素子の製造方法は、下型の凹部の曲率半径よりも大きな曲率半径の凸部を有するレンズ素材を、凹部の最深部とレンズ素材の凸部の最頂部との間に隙間を設けた状態で凹部の周縁部に当接させるとともに、凹部とレンズ素材の凸部との曲率差により調芯して成形型組内に配置し、配置されたレンズ素材を軟化温度近傍まで加熱し、加熱されたレンズ素材を上型と下型とによりプレスして光学素子を成形することを特徴とする。   That is, in the method of manufacturing an optical element according to the present invention, a lens material having a convex portion having a curvature radius larger than the curvature radius of the concave portion of the lower mold is placed between the deepest portion of the concave portion and the topmost portion of the convex portion of the lens material. In the state where a gap is provided in the concave portion, it is brought into contact with the peripheral portion of the concave portion, and is aligned by the difference in curvature between the concave portion and the convex portion of the lens material, and is arranged in the mold set, and the arranged lens material is near the softening temperature. And the heated lens material is pressed with an upper mold and a lower mold to mold an optical element.

以上のように、本発明によれば、レンズ素材と成形面との曲率差に基づく自動調芯作用(ベルクランプ作用)を利用して、レンズ素材を成形面の中心軸上に正確に位置決めすることができ、成形による偏芯や、偏芯に起因するバリの発生を抑制する上で有利となる。これにより、品質の高いレンズ供給と生産性の高いレンズ成形が実現できる。   As described above, according to the present invention, the lens material is accurately positioned on the center axis of the molding surface by utilizing the automatic centering action (bell clamp action) based on the difference in curvature between the lens material and the molding surface. This is advantageous in suppressing the eccentricity caused by molding and the generation of burrs caused by the eccentricity. Thereby, high-quality lens supply and high-productivity lens molding can be realized.

以下、本発明の実施形態を図面に基づいて詳細に説明する。以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものでは全くない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The following description of the preferred embodiments is merely exemplary in nature and is in no way intended to limit the invention, its application, or its application.

図1は、本発明の実施形態に係る光学素子の製造装置を用いた製造方法を説明するための部分断面図である。図1に示すように、この光学素子の製造装置は、成形型組10と、上加熱板7と、下加熱板8とを備えている。   FIG. 1 is a partial cross-sectional view for explaining a manufacturing method using an optical element manufacturing apparatus according to an embodiment of the present invention. As shown in FIG. 1, the optical element manufacturing apparatus includes a mold set 10, an upper heating plate 7, and a lower heating plate 8.

前記成形型組10は、円柱形状の部材の下面に成形面となる非球面形状の凹部が形成された上型1と、上型1に対向配置され上面に成形面となる非球面形状の凹部が形成された下型2と、上型1及び下型2が摺動可能に挿入された内胴型3と、該内胴型3に外嵌され且つ内胴型3よりも軸方向の高さが高くなるように形成された外胴型4とを備えている。   The mold set 10 includes an upper mold 1 in which an aspherical concave portion serving as a molding surface is formed on the lower surface of a cylindrical member, and an aspherical concave portion disposed opposite to the upper mold 1 and serving as a molding surface on the upper surface. A lower mold 2 in which the upper mold 1 and the lower mold 2 are slidably inserted, and is fitted to the inner mold 3 and is higher in the axial direction than the inner mold 3. And an outer shell mold 4 formed so as to be high.

前記外胴型4は、プレス成形時に上加熱板7と当接して位置規制するストッパとして機能するものであり、内胴型3と外胴型4との軸方向の寸法差に基づいて、成形されるレンズの厚さが設定されるようになっている。   The outer cylinder die 4 functions as a stopper that abuts on the upper heating plate 7 and regulates the position at the time of press molding, and is formed based on the axial dimensional difference between the inner cylinder die 3 and the outer cylinder die 4. The thickness of the lens to be set is set.

前記上加熱板7は、上型1の上部に接触した状態で配置され、且つヒーター6が埋設されており、上型1を所定の温度まで加熱することができるようになっている。   The upper heating plate 7 is disposed in contact with the upper portion of the upper mold 1 and has a heater 6 embedded therein so that the upper mold 1 can be heated to a predetermined temperature.

前記下加熱板8は、下型2、内胴型3、及び外胴型4の下部に接触した状態で配置され、且つヒーター6が埋設されており、成形型組10全体を所定の温度まで加熱することができるようになっている。   The lower heating plate 8 is disposed in contact with the lower portions of the lower mold 2, the inner trunk mold 3, and the outer trunk mold 4, and a heater 6 is embedded therein. The entire mold set 10 is heated to a predetermined temperature. It can be heated.

前記上加熱板7の上部には、図示しないプレス軸が連結されており、所定の押圧力Fで、レンズ成形に必要な加圧を行うことができるようになっている。   A press shaft (not shown) is connected to the upper part of the upper heating plate 7 so that the pressure required for lens molding can be performed with a predetermined pressing force F.

なお、図1では、上加熱板7及び下加熱板8の温度検知と温度制御、成形型組10、上加熱板7、及び下加熱板8全体を不活性雰囲気中に配置するチャンバー等は図示を省略している。   In FIG. 1, the temperature detection and temperature control of the upper heating plate 7 and the lower heating plate 8, the mold set 10, the upper heating plate 7, and the chamber in which the entire lower heating plate 8 is disposed in an inert atmosphere are illustrated. Is omitted.

前記成形型組10内には、成形されてレンズとなるレンズ素材5が配置されている。具体的に、レンズ素材5は、略球形状に形成され、下型2の成形面となる凹部の曲率半径よりも大きな曲率半径の凸部を有しており、下型2の凹部の最深部とレンズ素材5の凸部の最頂部との間に密閉空間Sを設けた状態で、下型2の凹部の周縁部(接触点P2,P3を含む円周部)に当接するように配置されている。これにより、上型1の成形面をレンズ素材5と当接させたときに、レンズ素材5は、接触点P1,P2,P3(正確には、接触点P2,P3を含む円周部と、接触点P1)により支持されることとなり、成形型組10内においてレンズ素材5を安定して保持することができる。   In the mold set 10, a lens material 5 that is molded into a lens is disposed. Specifically, the lens material 5 is formed in a substantially spherical shape, and has a convex portion having a radius of curvature larger than the radius of curvature of the concave portion serving as the molding surface of the lower die 2, and the deepest portion of the concave portion of the lower die 2. In a state in which a sealed space S is provided between the convex portion of the lens material 5 and the top of the convex portion of the lens material 5, the lower mold 2 is disposed so as to abut on the peripheral portion (circumferential portion including the contact points P2 and P3) of the concave portion. ing. As a result, when the molding surface of the upper mold 1 is brought into contact with the lens material 5, the lens material 5 has contact points P1, P2, P3 (more precisely, a circumferential portion including the contact points P2, P3, and The lens material 5 can be stably held in the mold set 10 by being supported by the contact point P1).

さらに、前記レンズ素材5は、下型2の凹部とレンズ素材5の凸部との曲率差により調芯(ベルクランプ作用)されて、成形面となる凹部の中心軸上に正確に位置決めされている。これにより、レンズ素材5を成形面中心に対してきわめて正確に載置することができる。   Further, the lens material 5 is centered (bell clamp action) by the difference in curvature between the concave portion of the lower mold 2 and the convex portion of the lens material 5, and is accurately positioned on the central axis of the concave portion serving as a molding surface. Yes. As a result, the lens material 5 can be placed very accurately with respect to the center of the molding surface.

具体的に、本実施形態では、成形されるレンズの焦点距離を2mm、NAを0.85としたものについて説明している。また、下型2の成形面は近軸Rが1.748mmで中心から外周に向かって部分Rが徐々に大きくなる非球面量の多い形状となっている。一方、上型1の成形面も非球面形状をなしているが、レンズ素材5の曲率半径に対して十分に大きな近軸Rで形成されているものとする。   Specifically, in the present embodiment, a case where the focal length of the molded lens is 2 mm and the NA is 0.85 is described. Further, the molding surface of the lower mold 2 has a shape with a large amount of aspherical surface in which the paraxial radius R is 1.748 mm and the portion R gradually increases from the center toward the outer circumference. On the other hand, the molding surface of the upper mold 1 is also aspherical, but is formed with a paraxial radius R that is sufficiently large with respect to the radius of curvature of the lens material 5.

ここで、前記レンズ素材5の凸部を下型2の凹部の周縁部に当接させたときの、凹部の最深部とレンズ素材5の凸部の最頂部との間には密閉空間Sが設けられているため、この密閉空間Sの中心軸上の間隔寸法Dが大きい場合には、密閉空間S内に閉じこめられたガスによってレンズ面に未転写部が残るおそれがある。   Here, when the convex portion of the lens material 5 is brought into contact with the peripheral edge portion of the concave portion of the lower mold 2, a sealed space S is formed between the deepest portion of the concave portion and the topmost portion of the convex portion of the lens material 5. Therefore, when the distance D on the central axis of the sealed space S is large, the untransferred portion may remain on the lens surface due to the gas confined in the sealed space S.

そこで、本発明者は、球形状で半径の異なる数種類のレンズ素材を準備して、下型2の凹部の最深部からレンズ素材5の凸部の最頂部までの間隔寸法Dを変化させた場合の未転写部の発生有無とバリ発生の有無について成形実験を行い、間隔寸法Dの最適値について考察した。以下、より具体的な実験条件とともに、その実験結果を示す。   Therefore, the present inventor prepared several types of lens materials having a spherical shape and different radii, and changed the distance dimension D from the deepest portion of the concave portion of the lower mold 2 to the topmost portion of the convex portion of the lens material 5. A molding experiment was conducted on the presence or absence of untransferred portions and the presence or absence of burrs, and the optimum value of the interval dimension D was considered. The experimental results are shown below along with more specific experimental conditions.

前記成形型組10は、タングステンカーバイドを主成分とする超硬合金を用いて構成した。上型1及び下型2の成形面となる非球面形状の凹部は、研削加工を施して鏡面に仕上げるようにした。この成形面には、研磨後に、レンズ素材5との融着防止のための白金系貴金属膜をスパッタリングにて成膜した。   The mold set 10 was made of a cemented carbide containing tungsten carbide as a main component. The aspherical concave portions that form the molding surfaces of the upper mold 1 and the lower mold 2 were finished to a mirror surface by grinding. A platinum-based noble metal film for preventing fusion with the lens material 5 was formed on the molding surface by sputtering after polishing.

前記レンズ素材5は、比較的軟化点の低い硼珪酸系のガラス材料(ガラス転移点:501℃、屈伏点:549℃)を用い、成形面との間隔寸法Dを変化させるために、外径の異なる3種類の研磨ボールを準備した。   The lens material 5 is made of a borosilicate glass material (glass transition point: 501 ° C., yield point: 549 ° C.) having a relatively low softening point, and the outer diameter is changed in order to change the distance dimension D from the molding surface. Three types of polishing balls with different sizes were prepared.

そして、レンズを成形する条件としては、上加熱板7及び下加熱板8が、それぞれ530℃/600℃となるように温度設定し、図1に示すように、上型1及び下型2の成形面によりレンズ素材5を挟み込んだ状態で3分間保持した後、図示しないプレス軸により、700Nの押圧力Fを印加して、上加熱板7が外胴型4に当接するまでレンズ素材5を押圧した。この押圧状態を継続したまま、上加熱板7及び下加熱板8のヒーター6への通電を停止して、500℃まで冷却した。   And as conditions for shape | molding a lens, the upper heating plate 7 and the lower heating plate 8 set temperature so that it may respectively be 530 degreeC / 600 degreeC, and as shown in FIG. After holding the lens material 5 between the molding surfaces for 3 minutes, a pressing force F of 700 N is applied by a press shaft (not shown), and the lens material 5 is held until the upper heating plate 7 comes into contact with the outer body mold 4. Pressed. While this pressed state was continued, the energization of the heater 6 of the upper heating plate 7 and the lower heating plate 8 was stopped and cooled to 500 ° C.

その後、押圧力を解除して室温まで冷却して成形されたレンズを取り出した。これにより、一定の厚みで成形されたレンズが得られた。   Thereafter, the pressing force was released and the molded lens was taken out by cooling to room temperature. As a result, a lens molded with a constant thickness was obtained.

表1は、上述した実験条件によって得られた実験結果を示したものであり、特に、下型2の成形面に対する未転写部の発生の有無とバリ発生の有無とについて調べた一覧表である。   Table 1 shows the experimental results obtained under the above-described experimental conditions. In particular, Table 1 is a table in which the presence / absence of untransferred portions and the occurrence of burrs on the molding surface of the lower mold 2 is examined. .

Figure 2007297229
Figure 2007297229

表1に示すように、実験1〜実験3で得られたレンズを、フィゾー型の干渉計を用いて透過波面収差を計測したところ、トータル波面収差のRMSで0.03λ以下の収差を確認することができた。   As shown in Table 1, when the transmitted wavefront aberration of the lenses obtained in Experiments 1 to 3 was measured using a Fizeau interferometer, an aberration of 0.03λ or less was confirmed by the RMS of the total wavefront aberration. I was able to.

実験1〜実験3において、下型2の成形面側におけるレンズの未転写部は、レンズ素材5と成形面とで形成される間隔寸法Dが151μm以下の場合には確認されなかった。このことにより、前記レンズ素材5の凸部を下型2の凹部の周縁部に当接させたときの、該凹部の最深部からレンズ素材5の凸部の最頂部までの間隔寸法Dが170μm以下であることが好ましいと考えられる。   In Experiments 1 to 3, the untransferred portion of the lens on the molding surface side of the lower mold 2 was not confirmed when the distance D formed between the lens material 5 and the molding surface was 151 μm or less. Thus, when the convex portion of the lens material 5 is brought into contact with the peripheral edge portion of the concave portion of the lower mold 2, the distance dimension D from the deepest portion of the concave portion to the topmost portion of the convex portion of the lens material 5 is 170 μm. The following is considered preferable.

総合評価として、実験2及び実験3ではレンズとして機能的に問題ないという結果が得られ、実験1では収差の一部が若干悪いがレンズとして十分に使用可能であるという結果が得られた。また、バリの発生は全ての実験において確認されなかった。   As a comprehensive evaluation, in Experiment 2 and Experiment 3, a result that there was no functional problem as a lens was obtained, and in Experiment 1, a part of the aberration was slightly bad, but the lens was sufficiently usable. Moreover, generation | occurrence | production of the burr | flash was not confirmed in all the experiments.

このように、密閉空間Sは小さい方がレンズ成形をする上で有利となることが分かる。密閉空間Sを小さくする成形方法はいくつか存在するが、その方法の1つとして、重量を小さくすることで密閉空間Sは少なくすることが考えられる。図2は、光学素子に必要な重量より小さくして成形した光学素子の構成を示す断面図である。   Thus, it can be seen that a smaller sealed space S is advantageous for lens molding. There are several molding methods for reducing the sealed space S. One of the methods is to reduce the sealed space S by reducing the weight. FIG. 2 is a cross-sectional view showing the configuration of an optical element molded to be smaller than the weight required for the optical element.

図2に示す例では、上型1の成形面及び下型2の成形面が精度良く転写されたレンズ面22,23が形成されている。この場合においても、光学有効面が光学素子に転写されれば、光学設計に基づく収差が得られる。なお、図2中に記載した一点鎖線は、所望の有効光路が確保されていることを表している。   In the example shown in FIG. 2, lens surfaces 22 and 23 are formed on which the molding surface of the upper mold 1 and the molding surface of the lower mold 2 are accurately transferred. Even in this case, if the optically effective surface is transferred to the optical element, aberration based on the optical design can be obtained. In addition, the dashed-dotted line described in FIG. 2 represents that the desired effective optical path is ensured.

なお、本実施形態では、レンズ形状が凸状の集光レンズを例にとって説明したが、レンズの形状が凹レンズ又はメニスカスレンズであっても、成形面とレンズ素材5との曲率半径を本発明と同様の関係、すなわち、成形面となる非球面形状の凸部の曲率半径よりも小さな曲率半径の凹部を有するレンズ素材5を用いることで、自動的に調芯する作用(ベルクランプ作用)が得られることはもちろんであり、成形時の偏芯及びバリ発生を抑止することができて好ましい。   In the present embodiment, the description has been made by taking a condensing lens having a convex lens shape as an example. However, even if the lens shape is a concave lens or a meniscus lens, the radius of curvature between the molding surface and the lens material 5 is the same as that of the present invention. By using the lens material 5 having the same relationship, that is, a concave portion having a radius of curvature smaller than the radius of curvature of the aspherical convex portion serving as a molding surface, an automatically aligning action (bell clamp action) is obtained. Of course, it is preferable because it can suppress the occurrence of eccentricity and burrs during molding.

また、レンズの大きさや、成形面の曲率半径等に応じて密閉空間Sを最小にすることが重要であり、間隔寸法Dを小さくするように最適化したレンズ素材を用いることで、同様の作用効果を得ることが可能である。このようにすれば、密閉空間Sが存在するようなレンズ素材を用いても複数のプレス操作を必要とせず、1回のプレス操作で未転写部のないレンズ成形を行うことができる。   In addition, it is important to minimize the sealed space S according to the size of the lens, the radius of curvature of the molding surface, and the like. By using a lens material optimized to reduce the distance dimension D, the same effect can be obtained. An effect can be obtained. In this way, even if a lens material having a sealed space S is used, a plurality of press operations are not required, and lens formation without an untransferred portion can be performed by a single press operation.

以上説明したように、本発明は、レンズ素材を成形面の中心軸上に正確に位置決めして、成形による偏芯やその偏芯に起因するバリの発生を抑制することができるという実用性の高い効果が得られることから、きわめて有用で産業上の利用可能性は高い。   As described above, the present invention has a practicality in that the lens material can be accurately positioned on the central axis of the molding surface to suppress the eccentricity caused by molding and the generation of burrs caused by the eccentricity. Since it is highly effective, it is extremely useful and has high industrial applicability.

本発明の実施形態に係る光学素子の製造装置を用いた製造方法を説明するための部分断面図である。It is a fragmentary sectional view for demonstrating the manufacturing method using the manufacturing apparatus of the optical element which concerns on embodiment of this invention. 本実施形態に係る光学素子の製造方法で成形される光学素子の一例を示す断面図である。It is sectional drawing which shows an example of the optical element shape | molded with the manufacturing method of the optical element which concerns on this embodiment. 従来のレンズ成形型組の構成を示す部分断面図である。It is a fragmentary sectional view which shows the structure of the conventional lens shaping | molding die group.

符号の説明Explanation of symbols

1 上型
2 下型
3 内胴型
4 外胴型
5 ヒーター
7 上加熱板
8 下加熱板
9 レンズ素材
10 成形型組
S 密閉空間
D 間隔寸法
1 Upper mold 2 Lower mold 3 Inner trunk mold 4 Outer trunk mold 5 Heater 7 Upper heating plate 8 Lower heating plate 9 Lens material 10 Mold set S Sealed space D Spacing

Claims (4)

上型と、該上型に対向配置された下型と、該上型と該下型とが摺動可能に挿入された筒状の胴型とを備え、該上型及び該下型のうち少なくとも一方に、成形面となる非球面形状の凹部が形成された成形型組を用いた光学素子の製造方法であって、
前記凹部の曲率半径よりも大きな曲率半径の凸部を有するレンズ素材を、該凹部の最深部と該レンズ素材の凸部の最頂部との間に隙間を設けた状態で該凹部の周縁部に当接させるとともに、該凹部と該レンズ素材の凸部との曲率差により調芯して前記成形型組内に配置する手順と、
前記配置されたレンズ素材を軟化温度近傍まで加熱する手順と、
前記加熱されたレンズ素材を前記上型と前記下型とによりプレスして光学素子を成形する手順とを備えたことを特徴とする光学素子の製造方法。
An upper mold, a lower mold disposed opposite to the upper mold, and a cylindrical body mold in which the upper mold and the lower mold are slidably inserted. At least one is a method of manufacturing an optical element using a mold set in which an aspherical concave portion to be a molding surface is formed,
A lens material having a convex portion with a radius of curvature larger than the radius of curvature of the concave portion is provided on the peripheral portion of the concave portion with a gap provided between the deepest portion of the concave portion and the topmost portion of the convex portion of the lens material. A procedure of making contact and aligning the concave portion with the convex portion of the lens material and arranging it in the mold set; and
Heating the arranged lens material to near the softening temperature;
A method of manufacturing an optical element, comprising: a step of pressing the heated lens material with the upper mold and the lower mold to mold an optical element.
請求項1において、
前記前記レンズ素材の凸部を前記凹部の周縁部に当接させたときの、該凹部の最深部から該レンズ素材の凸部の最頂部までの距離が170μm以下であることを特徴とする光学素子の製造方法。
In claim 1,
The distance from the deepest part of the concave part to the topmost part of the convex part of the lens material when the convex part of the lens material is brought into contact with the peripheral part of the concave part is 170 μm or less. Device manufacturing method.
上型と、該上型に対向配置された下型と、該上型と該下型とが摺動可能に挿入された筒状の胴型とを備え、該上型及び該下型のうち少なくとも一方に、成形面となる非球面形状の凸部が形成された成形型組を用いた光学素子の製造方法であって、
前記凸部の曲率半径よりも小さな曲率半径の凹部を有するレンズ素材を、該凸部の最頂部と該レンズ素材の凹部の最深部との間に隙間を設けた状態で該凸部の周縁部に当接させるとともに、該凸部と該レンズ素材の凹部との曲率差により調芯して前記成形型組内に配置する手順と、
前記配置されたレンズ素材を軟化温度近傍まで加熱する手順と、
前記加熱されたレンズ素材を前記上型と前記下型とによりプレスして光学素子を成形する手順とを備えたことを特徴とする光学素子の製造方法。
An upper mold, a lower mold disposed opposite to the upper mold, and a cylindrical body mold in which the upper mold and the lower mold are slidably inserted. At least one is a method of manufacturing an optical element using a molding die set in which an aspherical convex portion to be a molding surface is formed,
A lens material having a concave portion with a radius of curvature smaller than the radius of curvature of the convex portion, and a peripheral portion of the convex portion with a gap provided between the topmost portion of the convex portion and the deepest portion of the concave portion of the lens material And aligning with the difference in curvature between the convex portion and the concave portion of the lens material and placing in the mold set,
Heating the arranged lens material to near the softening temperature;
A method of manufacturing an optical element, comprising: a step of pressing the heated lens material with the upper mold and the lower mold to mold an optical element.
請求項3において、
前記前記レンズ素材の凹部を前記凸部の周縁部に当接させたときの、該凸部の最頂部から該レンズ素材の凹部の最深部までの距離が170μm以下であることを特徴とする光学素子の製造方法。
In claim 3,
The distance from the topmost part of the convex part to the deepest part of the concave part of the lens material when the concave part of the lens material is brought into contact with the peripheral edge of the convex part is 170 μm or less. Device manufacturing method.
JP2006124975A 2006-04-28 2006-04-28 Method for manufacturing optical device Pending JP2007297229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006124975A JP2007297229A (en) 2006-04-28 2006-04-28 Method for manufacturing optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006124975A JP2007297229A (en) 2006-04-28 2006-04-28 Method for manufacturing optical device

Publications (1)

Publication Number Publication Date
JP2007297229A true JP2007297229A (en) 2007-11-15

Family

ID=38767063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006124975A Pending JP2007297229A (en) 2006-04-28 2006-04-28 Method for manufacturing optical device

Country Status (1)

Country Link
JP (1) JP2007297229A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010006621A (en) * 2008-06-24 2010-01-14 Olympus Corp Molding stock for optical element and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010006621A (en) * 2008-06-24 2010-01-14 Olympus Corp Molding stock for optical element and method for producing the same

Similar Documents

Publication Publication Date Title
JP3714360B1 (en) Optical glass element and manufacturing method thereof
JP4818685B2 (en) Glass optical element molding method
JP6374951B2 (en) Optical element molding die set and optical element manufacturing method
JP2008207973A (en) Method for manufacturing lens blank and lens
JP4808089B2 (en) Optical element molding method
JP4792139B2 (en) Glass lens, glass lens manufacturing method, and mold press mold
US7561355B2 (en) Optical lens unit including lens barrel containing lens and method for producing optical lens unit
JP2007297229A (en) Method for manufacturing optical device
JP4777210B2 (en) Optical element manufacturing method and optical element
JP4848165B2 (en) Optical element manufacturing method and glass lens
JP5473794B2 (en) Optical element
JP5059540B2 (en) Optical element molding equipment
JP2000247653A (en) Metal mold for forming optical element and optical element
JP4832939B2 (en) Method for manufacturing optical element molding die
JP4727596B2 (en) Optical element molding method
US20090052058A1 (en) Optical element molding method and optical element
JP2006206394A (en) Optical device forming mold, method of manufacturing the same and method of manufacturing optical device using the same
JP2006096579A (en) Method for forming optical element
JP2008239406A (en) Method for molding optical element and optical element
JP2010260775A (en) Glass aspheric lens and method for manufacturing the same
JP2005231933A (en) Mold for optical element and method for molding optical element
JP2003063832A (en) Mold for forming optical element
JP3214922B2 (en) Optical element molding die and method of manufacturing the same
JPH10101346A (en) Glass preform and production of optical element using the preform
WO2018025844A1 (en) Press-forming glass material and optical element production method using same