JP2002182068A - Quartz glass ferrule and method for manufacturing the same - Google Patents

Quartz glass ferrule and method for manufacturing the same

Info

Publication number
JP2002182068A
JP2002182068A JP2000404387A JP2000404387A JP2002182068A JP 2002182068 A JP2002182068 A JP 2002182068A JP 2000404387 A JP2000404387 A JP 2000404387A JP 2000404387 A JP2000404387 A JP 2000404387A JP 2002182068 A JP2002182068 A JP 2002182068A
Authority
JP
Japan
Prior art keywords
ferrule
quartz glass
sintered body
density
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000404387A
Other languages
Japanese (ja)
Inventor
Masaaki Takeshita
昌章 竹下
Sumihiko Kurita
澄彦 栗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koransha Co Ltd
Original Assignee
Koransha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koransha Co Ltd filed Critical Koransha Co Ltd
Priority to JP2000404387A priority Critical patent/JP2002182068A/en
Publication of JP2002182068A publication Critical patent/JP2002182068A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/06Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/06Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction
    • C03B19/066Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction for the production of quartz or fused silica articles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B20/00Processes specially adapted for the production of quartz or fused silica articles, not otherwise provided for

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Coupling Of Light Guides (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a ferrule of an optical fiber connector which prevents the irregular reflection of light incident on the ferrule end surface. SOLUTION: At least part or the entire part of the ferrule is constituted of a quartz glass sintered compact. The density of the sintered compact is 95% or greater than the theoretical value, and the average pore diameter is equal to or smaller than 10 μm. The ferrule is obtained by steps in which one or more kinds of silicic powders having an average particle diameter of at least 10 μm or less are mixed, and a molded body of a green density of 50% or greater is prepared and sintered at >=1000 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光通信産業に用い
られる部材に関するものであって、詳しくは光ファイバ
ーを相互接続するための光ファイバーコネクターのフェ
ルールに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a member used in the optical communication industry, and more particularly to a ferrule of an optical fiber connector for interconnecting optical fibers.

【0002】[0002]

【従来の技術】光ファイバーを相互接続する場合は、光
ファイバーコネクターが用いられる。この光ファイバー
コネクターを構成する部材にフェルールがある。従来か
らフェルールの材料としては、アルミナ、ジルコニア等
のセラミックスが使用されている。これらセラミックス
は高硬度、高弾性率を有する材料であって、フェルール
に要求される高精度と寸法安定性を満たすことが可能で
ある。
2. Description of the Related Art When interconnecting optical fibers, optical fiber connectors are used. There is a ferrule as a member constituting the optical fiber connector. Conventionally, ceramics such as alumina and zirconia have been used as ferrule materials. These ceramics are materials having high hardness and high modulus of elasticity, and can satisfy the high precision and dimensional stability required for ferrules.

【0003】しかし、アルミナ、ジルコニアセラミック
ス製フェルールは多結晶体であるため不透明であり、フ
ェルールのファイバー挿入孔の周辺の端面(以下フェル
ール端面)で入射してきた光の一部が乱反射し、フェル
ール内の光ファイバーに再侵入することによって光通信
機能に支障を来すという致命的な欠点がある。また光フ
ァイバーは石英ガラス製であるが、これに対してフェル
ールが高硬度、高弾性率体のセラミックスであるため、
光ファイバーとフェルールの接続の際にフェルールの端
面研磨工程において、両材料の研磨加工特性が異なるこ
とに起因する端面の平坦化に長時間を有するという問題
がある。
However, the ferrule made of alumina or zirconia ceramics is opaque because it is a polycrystalline material, and a part of the light incident on the end face around the fiber insertion hole of the ferrule (hereinafter referred to as the ferrule end face) is irregularly reflected, and the ferrule inside the ferrule is formed. There is a fatal drawback that the optical communication function is hindered by re-entering the optical fiber. The optical fiber is made of quartz glass, whereas the ferrule is a ceramic with high hardness and high elastic modulus,
In the step of polishing the end face of the ferrule at the time of connecting the optical fiber and the ferrule, there is a problem that it takes a long time to flatten the end face due to the difference in polishing characteristics between the two materials.

【0004】さらにアルミナセラミックスの線熱膨張係
数は約8×10−6/℃、ジルコニアのそれは約10×
10−6/℃、これに対して石英ガラスのそれは0.5
×10−6/℃と桁違いに低い。このことは、光ファイ
バーコネクターの長期使用と使用環境によってはフェル
ールと光ファイバー両者の寸法的なずれが生じることを
意味し、実際に寒冷地区、高温地区では光通信に支障が
でる場合がある。
Further, the coefficient of linear thermal expansion of alumina ceramics is about 8 × 10 −6 / ° C., and that of zirconia is about 10 × 10 −6 / ° C.
10 −6 / ° C., whereas that of quartz glass is 0.5
× 10 −6 / ° C., an order of magnitude lower. This means that the dimensional deviation between the ferrule and the optical fiber may occur depending on the long-term use and use environment of the optical fiber connector, and optical communication may actually be hindered in a cold area or a high temperature area.

【0005】これを解決する手段として特願平8−67
749号、特願平8−53545号には石英ガラス製フ
ェルールおよびその製造方法が記載されている。これら
は石英ガラスを一度溶融してフェルール形態を付与する
という石英ガラスの一般的な製造方法を駆使するもので
ある。
As means for solving this problem, Japanese Patent Application No. 8-67 is disclosed.
No. 749 and Japanese Patent Application No. 8-53545 describe a ferrule made of quartz glass and a manufacturing method thereof. These use a general manufacturing method of quartz glass in which quartz glass is once melted to give a ferrule form.

【0006】しかし、石英ガラスを溶融成形する場合
は、石英の融点が1700℃以上と非常に高温であり、
かつ石英溶融体の粘性が他のガラスと比べて非常に高い
ため、2000℃以上の極高温での溶融成形が必要であ
る。また溶融成形法ではフェルールのような超高精度が
要求される製品において、これを満たす寸法精度を出す
ことが非常に困難であって、溶融成形後に精密研磨を行
うことによって寸法を出す必要がある。つまり溶融法に
よる石英ガラス製フェルールは、加工コストが高いとい
う基本的な問題を抱えている。
However, when quartz glass is melt-molded, the melting point of quartz is as high as 1700 ° C. or higher,
Further, since the viscosity of the quartz melt is much higher than that of other glasses, it is necessary to perform melt forming at an extremely high temperature of 2000 ° C. or more. In addition, it is very difficult to obtain dimensional accuracy that satisfies ultra-high precision such as ferrule in products such as ferrules by the melt molding method, and it is necessary to obtain dimensions by performing precision polishing after melt molding. . That is, the quartz glass ferrule formed by the melting method has a basic problem that the processing cost is high.

【0007】[0007]

【発明が解決しようとする課題】石英ガラス製フェルー
ルは、理論的に石英ガラス製光ファイバーと組み合わせ
ることが理想であるが、上記のような従来の石英ガラス
を溶融成形する手法によって製造される場合は、寸法精
度、コスト面で問題があり、未だ実用化されていないの
が実情である。本発明における課題は、石英ガラスをフ
ェルールの材料としながら、充分に実用的コストに対応
できるフェルールを提供することにある。
It is ideal that a quartz glass ferrule is theoretically combined with a quartz glass optical fiber. However, there is a problem in terms of dimensional accuracy and cost, and the fact is that it has not been put to practical use yet. An object of the present invention is to provide a ferrule that can sufficiently cope with practical costs while using quartz glass as a ferrule material.

【0008】[0008]

【課題を解決するための手段】上記課題に対して鋭意研
究を行った結果、以下の解決手段を見いだした。即ち、 光ファイバーコネクターのフェルールであって、該
フェルールの少なくとも一部あるいは全体が石英ガラス
焼結体からなることを特徴とするフェルール。 上記石英ガラス焼結体の焼結密度が理論値の95%
以上、かつ平均気孔径が10μm以下であることを特徴
とするに記載のフェルール。 上記石英ガラス焼結体の曲げ強度値が60MPa以
上であることを特徴とする及至に記載のフェルー
ル。 少なくとも平均粒子径10μm以下の粉体を1種以
上から成る生密度50%以上の成形体を作製する工程
と、該成形体を1000℃以上で焼結する工程から成る
ことを特徴とする及至に記載のフェルールの製造方
法。 上記粉体が非晶質シリカを少なくとも50mass
%以上含有することを特徴とするに記載の製造法。
Means for Solving the Problems As a result of intensive studies on the above-mentioned problems, the following solutions have been found. That is, a ferrule of an optical fiber connector, wherein at least a part or the whole of the ferrule is made of a quartz glass sintered body. The sintered density of the quartz glass sintered body is 95% of the theoretical value
The ferrule described in the above, wherein the average pore diameter is 10 μm or less. The ferrule according to claim 1, wherein the quartz glass sintered body has a bending strength value of 60 MPa or more. A step of producing a compact having a green density of 50% or more, comprising at least one powder having an average particle diameter of 10 μm or less, and a step of sintering the compact at 1000 ° C. or higher. Manufacturing method of the described ferrule. The powder contains at least 50 mass of amorphous silica.
% Or more.

【0009】[0009]

【発明の実施の形態】本発明のフェルールは石英ガラス
焼結体から成る。本発明の最大の特徴はこの石英ガラス
焼結体にある。石英ガラス焼結体の密度は石英ガラスの
理論密度を100%とした場合、95%以上必要であ
る。即ち、焼結体密度が95%を下回ると石英ガラス焼
結体の場合は、不透明化が著しくなる。焼結体の不透明
化の進行は、フェルール端面での光透過性能を低下させ
る。不透明化の原因は密度不足、即ち気孔が残留してい
ることによる。この残留気孔に光が衝突すると乱反射を
起こし、一部が再びフェルール端面から照射され、これ
がフェルールの中心孔に通っている光ファイバーに混入
し、光通信性能の低下につながる。石英ガラス焼結体の
密度が理論密度に対して95%以上であれば、この残留
気孔による光の乱反射を押さえることが可能となる。こ
こで石英ガラス焼結体の理論密度は2.20Mg/m
である。
BEST MODE FOR CARRYING OUT THE INVENTION The ferrule of the present invention comprises a quartz glass sintered body. The greatest feature of the present invention lies in the quartz glass sintered body. The density of the quartz glass sintered body needs to be 95% or more when the theoretical density of the quartz glass is 100%. That is, when the sintered body density is less than 95%, in the case of the quartz glass sintered body, opacity becomes remarkable. The progress of the opacity of the sintered body lowers the light transmission performance at the ferrule end face. The cause of the opacity is due to insufficient density, that is, remaining pores. When light collides with the residual pores, diffuse reflection occurs, and a part is radiated again from the end face of the ferrule, and this is mixed into the optical fiber passing through the center hole of the ferrule, leading to a decrease in optical communication performance. When the density of the quartz glass sintered body is at least 95% of the theoretical density, it is possible to suppress irregular reflection of light due to the residual pores. Here, the theoretical density of the quartz glass sintered body is 2.20 Mg / m 3
It is.

【0010】同時に石英ガラス焼結体中の残留気孔のサ
イズは、上述した光の乱反射という観点において、極め
て重要なファクターである。即ち、溶融ガラス成形法と
製造方法が全く異なる本発明では、焼結によって空隙を
完全に消去するのが非常に困難である。本発明の石英ガ
ラス焼結体から成るフェルールでは、焼結体中に残留す
る平均気孔径が15μm以下、好ましくは10μm以下
であることが必要である。平均気孔径が15μmを越え
ると、気孔自体のサイズ効果によって光の大きな散乱が
生じ、フェルール端面から入射した光が再度、端面部か
ら照射される。また焼結体の強度は気孔径に大きく依存
することが知られているが、とくにフェルールのような
極小サイズの製品では、とくに気孔が製品強度に大きな
要素となる。つまり平均気孔径が15μmを越えるとフ
ェルールの機械的強度が低下し、光ファイバーコネクタ
ーの組立時の破損、あるいは長期使用に耐えなくなる。
なお、本発明は安価な焼結法によって高精度の石英ガラ
ス焼結体製フェルールを提供せんことにあるが、場合に
よっては成形体を焼結後に加熱・加圧処理(熱間等方加
圧)することでほとんど残留気孔をなくすことも可能で
ある。
At the same time, the size of the residual pores in the quartz glass sintered body is a very important factor from the viewpoint of the above-mentioned irregular reflection of light. That is, in the present invention, which is completely different from the molten glass forming method and the manufacturing method, it is very difficult to completely eliminate voids by sintering. In the ferrule made of the quartz glass sintered body of the present invention, the average pore diameter remaining in the sintered body needs to be 15 μm or less, preferably 10 μm or less. If the average pore diameter exceeds 15 μm, large scattering of light occurs due to the size effect of the pores themselves, and light incident from the ferrule end face is again irradiated from the end face. It is known that the strength of the sintered body greatly depends on the pore diameter. Particularly, in a product of an extremely small size such as a ferrule, pores are a major factor in the product strength. That is, if the average pore diameter exceeds 15 μm, the mechanical strength of the ferrule decreases, and the ferrule cannot be damaged during assembly of the optical fiber connector or cannot be used for a long time.
The present invention is to provide a high-precision quartz glass sintered body ferrule by an inexpensive sintering method, but in some cases, after sintering the formed body, heat and pressure treatment (hot isostatic pressing) ) Can substantially eliminate residual pores.

【0011】本発明で規定する石英ガラス焼結体から成
るフェルールの平均気孔径は、フェルールの任意点を長
手軸方向と垂直に切断し、研磨加工によって平滑面を得
た後、走査型電子顕微鏡にて気孔数と気孔径を全数カウ
ントする。なお、気孔径は全て円とみなし、気孔径=
(最大径+最小径)/2の計算式で全ての気孔径を計算
し、平均気孔径=(全気孔径の和)/個数の計算式で算
出し、小数点1桁を四捨五入する。この手法で任意面を
3ヶ所測定し、平均値を採用することで石英ガラス焼結
体から成るフェルールの平均気孔径が測定できる。
The average pore diameter of the ferrule made of the quartz glass sintered body specified in the present invention is determined by cutting an arbitrary point of the ferrule perpendicular to the longitudinal axis direction, obtaining a smooth surface by polishing, and then using a scanning electron microscope. The total number of pores and pore diameters are counted in. In addition, all pore diameters are regarded as circles, and pore diameter =
All pore diameters are calculated by the formula of (maximum diameter + minimum diameter) / 2, calculated by the formula of average pore diameter = (sum of all pore diameters) / number, and rounded to one decimal place. The average pore diameter of a ferrule made of a quartz glass sintered body can be measured by measuring three points on an arbitrary surface by this method and employing the average value.

【0012】本発明の石英ガラス焼結体から成るフェル
ールの機械的強度は、出来るだけ高いことが望ましい
が、実用に耐えるだけの強度があれば充分である。即
ち、本発明の石英ガラス製フェルールの曲げ強度を測定
することは、その形状から困難であるが、同一原料と同
一製造工程および研磨加工を施した試験片を用いて、石
英ガラス製フェルールの曲げ強度とみなす。試験片はJ
IS R1601に記載の曲げ試験方法に準拠し、曲げ
強度を測定する。本発明の石英ガラス焼結体から成るフ
ェルールの曲げ強度は60MPa以上必要である。曲げ
強度がこれを下回ると光ファイバーコネクターに組み込
む作業や長期使用において何らかの要因によってフェル
ールが破損する場合がある。
The mechanical strength of the ferrule made of the quartz glass sintered body of the present invention is desirably as high as possible, but it is sufficient if the ferrule has sufficient strength to withstand practical use. That is, although it is difficult to measure the bending strength of the quartz glass ferrule of the present invention, it is difficult to measure the bending strength of the quartz glass ferrule using the same raw material and the same manufacturing process and a polished test piece. Regarded as strength. The test piece is J
The bending strength is measured according to the bending test method described in IS R1601. The bending strength of the ferrule made of the quartz glass sintered body of the present invention needs to be 60 MPa or more. If the flexural strength is less than this, the ferrule may be broken by some factor in the work for assembling into the optical fiber connector or in long-term use.

【0013】本発明の石英ガラス焼結体から成るフェル
ールは、以下の製造方法によって作製する。まず、原料
粉末の平均粒子径が重要である。原料粉末の平均粒子径
は平均10μm以下であることが必要である。これより
大きい場合は、粉末成形後の生密度は高いものの、粗粒
効果による焼結特性の低下を招き、焼結温度が上昇し製
造コストが高くなる。原料粉末の平均粒子径が10μm
以下であれば、焼結温度も概ね1600℃以下が達成可
能で、かつ成形条件を調整することで、成形体密度は理
論密度の50%以上が達成できる。逆に平均粒子径が1
0μm以下であっても、成形体密度が理論密度の50%
未満である場合は、焼結特性の低下、残留気孔径の粗大
化、気孔数の増加を招き、本発明の目的である石英ガラ
ス製フェルールの特性が発揮できない。ここで言う成形
体密度とは、フェルール形状、あるいはフェルールを得
る成形プロセスと同一の手法によって得られた試験片の
体積と、使用した粉体が焼結後に石英ガラス化したと見
なして計算した測定物の重量と、石英ガラスの理論密度
から計算したものを指す。
The ferrule made of the quartz glass sintered body of the present invention is manufactured by the following manufacturing method. First, the average particle size of the raw material powder is important. The average particle diameter of the raw material powder needs to be 10 μm or less on average. If it is larger than this, although the green density after powder compaction is high, the sintering characteristics are reduced due to the coarse grain effect, the sintering temperature is increased, and the production cost is increased. The average particle size of the raw material powder is 10 μm
If it is at most, a sintering temperature of about 1600 ° C. or less can be achieved, and a molding density of 50% or more of the theoretical density can be achieved by adjusting the molding conditions. Conversely, the average particle size is 1
Even if the thickness is 0 μm or less, the density of the compact is 50% of the theoretical density.
If it is less than 1, the sintering characteristics are reduced, the residual pore diameter is coarsened, and the number of pores is increased, so that the characteristics of the quartz glass ferrule, which is the object of the present invention, cannot be exhibited. The density of the green body referred to here is the ferrule shape or the volume of the test piece obtained by the same method as the molding process for obtaining the ferrule, and a measurement calculated assuming that the powder used has become vitrified after sintering. It is calculated from the weight of the material and the theoretical density of quartz glass.

【0014】上述したように、成形体密度は出来る限り
高いほうが残留気孔の減少に効果があるが、実用的には
少なくとも50%以上、より好ましくは60%以上であ
る。これを達成するための一つの手段として、平均粒子
径10μm以下の原料粉末を2種以上、混合して粒度配
合する手法は、本発明の石英ガラス焼結体を得る上で有
効である。この場合、原料粉末の形態が板状、角張った
形状、球状のいずれであっても、上述した粉末成形体の
生密度が理論値の概ね50%以上、好ましくは60%以
上になるように粉末を選択する。
As described above, the higher the density of the compact is, the more effective the reduction of residual pores is, but practically it is at least 50% or more, more preferably 60% or more. As a means for achieving this, a method of mixing two or more types of raw material powders having an average particle diameter of 10 μm or less and blending the particle sizes is effective in obtaining the quartz glass sintered body of the present invention. In this case, regardless of whether the raw material powder is in the form of a plate, a square shape, or a sphere, the powder is formed so that the green density of the above-mentioned powder compact becomes approximately 50% or more, preferably 60% or more of the theoretical value. Select

【0015】ここで粉体としては、非晶質シリカ(石英
ガラスも含む)、非晶質シリカの前駆体構造を有する粉
末、あるいは粉体の一部に有機構造を有する粉末などが
本発明の粉末の範疇に入る。本発明の石英ガラス焼結体
の成形用粉体としては、非晶質シリカ粉体が少なくとも
50mass%以上含有されていることが好ましい。さ
らに焼結によって石英ガラス化するような液体、ゾル、
ゲル物質を成形体に添加して成形体の密度向上、あるい
は成形体強度の向上を図っても良い。この場合、熱分解
等の反応によって石英ガラスあるいはシリカ質に変化す
るようなものが含まれているような成形体の場合の生密
度は、それらを石英ガラスの理論密度に変換して計算す
る。
The powder used in the present invention includes amorphous silica (including quartz glass), powder having a precursor structure of amorphous silica, and powder having an organic structure as a part of the powder. It falls into the category of powder. The powder for molding the quartz glass sintered body of the present invention preferably contains at least 50 mass% or more of amorphous silica powder. In addition, liquids, sols, etc.
A gel substance may be added to the compact to improve the density of the compact or the strength of the compact. In this case, the green density in the case of a molded article containing a substance that changes into quartz glass or siliceous substance by a reaction such as thermal decomposition is calculated by converting them into the theoretical density of quartz glass.

【0016】粉末成形法は、一般的な製造方法が適応可
能であり、具体的には押し出し成形、射出成形、プレス
成形、着肉型の鋳込み成形、自己硬化型の鋳込み成形が
ある。とくにフェルールの内径が1穴の場合は、押し出
し、射出成形が有用であって、多穴フェルールでは着肉
型、あるいは自己硬化型鋳込み成形が有用である。いず
れの成形法であっても、本発明を成立するためには成形
体密度が概ね50%以上、好ましくは60%以上必要で
ある。
A general manufacturing method can be applied to the powder molding method, and specific examples include extrusion molding, injection molding, press molding, in-mold casting molding, and self-curing casting molding. In particular, when the inner diameter of the ferrule is one hole, extrusion and injection molding are useful, and for a multi-hole ferrule, a fill-in type or a self-hardening type casting is useful. Regardless of the molding method, the density of the molded body is required to be approximately 50% or more, preferably 60% or more in order to realize the present invention.

【0017】成形体の焼結工程は、成形体中に結合剤、
あるいは付着水分、粉末表面の水酸基などがある場合
は、焼結前に加熱処理して焼却、脱離させておく(脱脂
工程)ことが重要である。これを怠ると本発明の必須要
件である焼結体の密度、平均気孔径、曲げ強度が満たさ
れない場合がある。そのため、成形法別に処理条件は若
干異なる。また高純度の石英ガラス焼結体製フェルール
を得るためには、成形体あるいは脱脂体の酸処理も適宜
使用する。
In the step of sintering the compact, a binder,
Alternatively, when there is moisture attached, hydroxyl groups on the surface of the powder, etc., it is important to incinerate and remove by heating before sintering (degreasing step). If this is neglected, the density, average pore diameter and bending strength of the sintered body, which are essential requirements of the present invention, may not be satisfied. Therefore, the processing conditions are slightly different depending on the molding method. In order to obtain a ferrule made of a high-purity quartz glass sintered body, an acid treatment of a molded body or a degreased body is appropriately used.

【0018】焼結工程は、焼結体の残留気孔数と気孔径
を減少させるため、減圧下での焼結、いわゆる真空焼結
が好ましい。減圧度は少なくとも10−2Pa以上必要
である。焼結温度は使用する粉体の焼結性、成形体密度
によって異なるが、概ね1100℃以上、好ましくは1
300℃以上、上限は1700℃以下である。また保持
時間は残留気孔数と気孔径に影響を与える要素である
が、焼結特性に優れる粉末を用いた場合は、保持0分も
可能であるが、概ね0.5〜1時間が一応の目安であ
る。得られた石英ガラス焼結体から成るフェルールの寸
法精度は、概ね±2%以下の範囲内と高精度である。
In the sintering step, sintering under reduced pressure, so-called vacuum sintering, is preferable in order to reduce the number of residual pores and the pore diameter of the sintered body. The degree of pressure reduction needs to be at least 10 −2 Pa or more. The sintering temperature varies depending on the sinterability of the powder used and the density of the compact, but is generally 1100 ° C. or higher, preferably 1
The upper limit is 300 ° C or higher and the upper limit is 1700 ° C or lower. The retention time is a factor that affects the number of residual pores and the pore diameter. When powder having excellent sintering characteristics is used, the retention time can be 0 minute, but generally 0.5 to 1 hour. It is a guide. The dimensional accuracy of the ferrule formed of the obtained quartz glass sintered body is high within a range of about ± 2% or less.

【0019】焼結体は通常のアルミナ、ジルコニアフェ
ルールと同様の精密研磨加工仕上げを行うが、石英ガラ
スは硬度が両者より低いため、加工時間が短縮可能であ
る。また粉末焼結法の場合、石英ガラスの溶融温度以下
で製造するため、寸法変形率が5%以下と極めて高精度
である。この事は先の研磨加工時間の短縮とコスト低減
に有効である。
The sintered body is subjected to the same precision polishing finish as the usual alumina and zirconia ferrules, but the working time can be shortened because quartz glass has a lower hardness than both. Further, in the case of the powder sintering method, since the sintering is performed at a melting temperature of quartz glass or less, the dimensional deformation rate is extremely high at 5% or less. This is effective for shortening the polishing time and cost.

【0020】[0020]

【実施例】(実施例1) 平均粒子径1μmの非晶質シリカ100mass% 蒸留水20mass%(粉末に対して外割) 分散剤(アミン系)0.8mass% 結合剤(PVA) 0.5mass% 非晶質シリカ粉末と蒸留水、分散剤、結合剤をボールミ
ルにて16時間湿式混合後、ボールミルからスリップを
取り出し、減圧容器内にスリップを入れ、攪拌しなが
ら、スリップ中の粗大泡を30分間脱気し、注型用のス
リップとした。次にフェルールの内径に見合う金属ピン
を有する多孔質樹脂型へスリップを注型し、着肉成形を
行った。着肉終了後にコアピンを外し、鋳型からフェル
ール成形体を取り出した。成形体の中心には140μm
の貫通孔が形成した。これを室温で5時間乾燥後、電気
炉にて2℃/分の昇温速度で600℃まで加熱し、1時
間保持後、炉冷し脱脂体を得た。次に脱脂体を減圧下で
5℃/分の昇温速度で1400℃まで加熱し、30分保
持後、炉冷し焼結体を取り出した。これを研磨加工しフ
ェルールとして焼結体密度の測定、および平均気孔径の
測定を行った後、光伝送の評価試験を行った。この実施
結果を表1に示す。番号1〜5の各々の試験データは試
験個数10個の平均値を表している。
EXAMPLES (Example 1) Amorphous silica having an average particle diameter of 1 μm 100 mass% distilled water 20 mass% (outside of powder) Dispersant (amine) 0.8 mass% Binder (PVA) 0.5 mass % After wet-mixing the amorphous silica powder, distilled water, dispersant, and binder in a ball mill for 16 hours, take out the slip from the ball mill, put the slip in a reduced pressure container, and stir the coarse bubbles in the slip by 30%. Degassed for a minute to make a slip for casting. Next, a slip was cast into a porous resin mold having a metal pin corresponding to the inner diameter of the ferrule, and inlay molding was performed. After completion of the inking, the core pin was removed, and the ferrule molded body was taken out of the mold. 140 μm at the center of the compact
Formed through holes. This was dried at room temperature for 5 hours, heated to 600 ° C. in an electric furnace at a rate of 2 ° C./min, kept for 1 hour, and cooled in a furnace to obtain a degreased body. Next, the degreased body was heated to 1400 ° C. under a reduced pressure at a rate of temperature increase of 5 ° C./min, held for 30 minutes, cooled in a furnace, and taken out of the sintered body. This was polished and used as a ferrule to measure the sintered body density and the average pore diameter, and then an optical transmission evaluation test was performed. Table 1 shows the results of this operation. Each test data of Nos. 1 to 5 represents an average value of 10 test pieces.

【0021】[0021]

【表1】 [Table 1]

【0022】表1において、フェルール成形体の生密度
が43%の場合(番号1)、焼結によって得られたフェ
ルール焼結体の密度は90%にとどまり、その平均気孔
径は22μmであった。このフェルールを用いた光伝送
試験では、フェルールの残留気孔に起因する光の乱反射
が認められた。同様に番号2のフェルールでは、番号1
よりも乱反射特性は軽減されたが、同一方法で製造され
た試験片の曲げ強度値は55MPaであったが、光ファ
イバーコネクター組立時に10個中1個が破損し、実用
特性には至らなかった。番号3の成形体の生密度50
%、焼結体密度95%、平均気孔径が10μmの場合
は、番号1、2に比べて、乱反射特性は格段に軽減され
た。
In Table 1, when the green density of the ferrule compact was 43% (No. 1), the density of the ferrule sintered body obtained by sintering was only 90%, and the average pore diameter was 22 μm. . In an optical transmission test using this ferrule, irregular reflection of light due to residual pores of the ferrule was observed. Similarly, in the ferrule of the number 2, the number 1
Although the irregular reflection characteristics were reduced, the bending strength value of the test piece manufactured by the same method was 55 MPa, but one out of ten pieces was damaged at the time of assembling the optical fiber connector, and did not reach practical characteristics. Green density 50 of molded product of No. 3
%, The sintered body density was 95%, and the average pore diameter was 10 μm, the diffuse reflection characteristics were remarkably reduced as compared with Nos. 1 and 2.

【0023】このフェルールと同一の製造プロセスで得
られた試験片の曲げ強度値は60MPaを示し、組立工
程に供した10個ともに破損等の問題は生じなかった。
成形体の生密度57%、焼結体密度97%、平均気孔径
8μm(番号4)では、フェルール端面での乱反射は若
干残ったが、実用上は支障ない程度であることが判明し
た。さらに番号5、6の場合は番号1〜3に比べて高
く、得られたフェルール端面での乱反射はほとんど検出
されなかった。このときの残留平均気孔径は10μm以
下であり、これが得られる成形体密度は概ね60%以
上、焼結体密度は99%以上であった。また番号5、6
の試験片での曲げ強度値はそれぞれ65、70MPaを
示した。
The bending strength of the test piece obtained by the same manufacturing process as that of the ferrule was 60 MPa, and no problem such as breakage occurred in all of the ten test pieces subjected to the assembling process.
When the green density of the molded body was 57%, the sintered body density was 97%, and the average pore diameter was 8 μm (No. 4), diffuse reflection at the ferrule end surface remained slightly, but it was found that it was not a problem in practical use. Furthermore, the cases of Nos. 5 and 6 were higher than those of Nos. 1 to 3, and diffused reflection at the obtained ferrule end face was hardly detected. At this time, the residual average pore diameter was 10 μm or less, and the density of the molded body obtained from this was approximately 60% or more, and the density of the sintered body was 99% or more. Numbers 5 and 6
The bending strength values of the test pieces were 65 and 70 MPa, respectively.

【0024】番号7は溶融成形法によって製造された石
英ガラス製フェルールを、番号9は、ジルコニア製フェ
ルールを示している。ジルコニア焼結体の場合、生密
度、焼結体密度、平均気孔径は、本発明の石英ガラス焼
結体の範疇に入っているが、ジルコニアが多結晶体で不
透明であるため、乱反射が生じている。このように本発
明の範囲である番号3〜6の粉末焼結法による石英ガラ
ス焼結体から成るフェルールは、従来のアルミナ、ジル
コニア焼結体からなるフェルールと比較して、フェルー
ル端面での光乱反射が極めて軽減されていることが明ら
かである。
Reference numeral 7 denotes a quartz glass ferrule manufactured by a melt molding method, and reference numeral 9 denotes a zirconia ferrule. In the case of a zirconia sintered body, the green density, the sintered body density, and the average pore diameter fall within the category of the quartz glass sintered body of the present invention, but irregular reflection occurs because zirconia is a polycrystalline and opaque. ing. As described above, the ferrule made of the quartz glass sintered body by the powder sintering method of Nos. 3 to 6 which is within the scope of the present invention has a light at the end face of the ferrule compared with the conventional ferrule made of the alumina and zirconia sintered bodies. It is clear that the diffuse reflection has been greatly reduced.

【0025】(実施例2)実施例1と同様の粉末に平均
粒子径0.5μmの同種粉末を40mass%添加した
混合粉末に硬化性樹脂、分散媒、分散剤を加え、ボール
ミルにて12時間湿式混合して、一次スリップを作製し
た。これに硬化性樹脂の硬化剤を添加し、約15分間、
減圧脱泡操作を行った後、フェルール内径用コアピンを
有する金型へスリップを注型し、約50℃で自己硬化さ
せた。スリップが硬化した段階で、硬化体を鋳型から脱
型し、室温で5時間、80℃で5時間乾燥後、生密度6
5%の成形体を得た。これを電気炉にて2℃/分の昇温
速度で加熱し、550℃、1時間保持後、炉冷した。次
に脱脂体を減圧下(10−3Pa)で1400℃、30
分保持後、炉冷した。得られたフェルール焼結体の密度
は99%、残留する平均気孔径5μm、このフェルール
端面での光の乱反射は検出されなかった。
(Example 2) A curable resin, a dispersion medium, and a dispersant were added to a mixed powder obtained by adding 40 mass% of the same powder having an average particle diameter of 0.5 µm to the same powder as in Example 1, and the mixture was subjected to a ball mill for 12 hours. The primary slip was made by wet mixing. Add a curing agent for the curable resin to this, and about 15 minutes
After performing the vacuum degassing operation, a slip was poured into a mold having a core pin for the inner diameter of the ferrule, and self-cured at about 50 ° C. When the slip was cured, the cured product was released from the mold and dried at room temperature for 5 hours and at 80 ° C. for 5 hours.
A 5% compact was obtained. This was heated in an electric furnace at a heating rate of 2 ° C./min, kept at 550 ° C. for 1 hour, and then cooled in the furnace. Next, the degreased body was heated at 1400 ° C. under reduced pressure (10 −3 Pa) for 30 minutes.
After holding for one minute, the furnace was cooled. The density of the obtained ferrule sintered body was 99%, the remaining average pore diameter was 5 μm, and irregular reflection of light on the end face of the ferrule was not detected.

【0026】[0026]

【発明の効果】以上説明したように、本発明による石英
ガラス焼結体から成るフェルールは、以下のような産業
上の利点を有する。 1)フェルール端面での光の乱反射を軽減できる 2)フェルールの寸法精度が高い 3)フェルールの研磨加工時間が短縮できる 4)粉末焼結法によって各種の形状を有するフェルール
が製造できる
As described above, the ferrule made of the quartz glass sintered body according to the present invention has the following industrial advantages. 1) Irregular reflection of light at the end face of the ferrule can be reduced. 2) Dimensional accuracy of the ferrule is high. 3) Polishing time of the ferrule can be reduced. 4) Ferrules having various shapes can be manufactured by powder sintering.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 光ファイバーコネクターのフェルールで
あって、該フェルールの少なくとも一部あるいは全体が
石英ガラス焼結体からなることを特徴とするフェルー
ル。
1. A ferrule for an optical fiber connector, wherein at least a part or the whole of the ferrule is made of a quartz glass sintered body.
【請求項2】 上記石英ガラス焼結体の焼結密度が理論
値の95%以上、かつ平均気孔径が10μm以下である
ことを特徴とする請求項1に記載のフェルール。
2. The ferrule according to claim 1, wherein a sintered density of the quartz glass sintered body is 95% or more of a theoretical value and an average pore diameter is 10 μm or less.
【請求項3】 上記石英ガラス焼結体の曲げ強度値が6
0MPa以上であることを特徴とする請求項1及至請求
項2に記載のフェルール。
3. The quartz glass sintered body has a bending strength of 6
The ferrule according to claim 1, wherein the ferrule is 0 MPa or more.
【請求項4】 少なくとも平均粒子径10μm以下の粉
体を1種以上から成る生密度50%以上の成形体を作製
する工程と、該成形体を1000℃以上で焼結する工程
から成ることを特徴とする請求項1及至請求項3に記載
のフェルールの製造方法。
4. A method for producing a compact having a green density of 50% or more comprising at least one kind of powder having an average particle diameter of 10 μm or less, and sintering the compact at 1000 ° C. or more. The method for producing a ferrule according to claim 1, wherein the ferrule is provided.
【請求項5】 上記粉体が非晶質シリカを少なくとも5
0mass%以上含有することを特徴とする請求項4に
記載の製造方法。
5. The method of claim 1, wherein the powder comprises at least 5 amorphous silica.
The method according to claim 4, wherein the content is 0 mass% or more.
JP2000404387A 2000-12-18 2000-12-18 Quartz glass ferrule and method for manufacturing the same Pending JP2002182068A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000404387A JP2002182068A (en) 2000-12-18 2000-12-18 Quartz glass ferrule and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000404387A JP2002182068A (en) 2000-12-18 2000-12-18 Quartz glass ferrule and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2002182068A true JP2002182068A (en) 2002-06-26

Family

ID=18868350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000404387A Pending JP2002182068A (en) 2000-12-18 2000-12-18 Quartz glass ferrule and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2002182068A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013077146A1 (en) * 2011-11-25 2013-05-30 Fdk株式会社 Optical component equipped with interference filter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013077146A1 (en) * 2011-11-25 2013-05-30 Fdk株式会社 Optical component equipped with interference filter
JP2013113921A (en) * 2011-11-25 2013-06-10 Fdk Corp Optical component with interference filter
CN104126139A (en) * 2011-11-25 2014-10-29 Fdk株式会社 Optical component equipped with interference filter
US9341757B2 (en) 2011-11-25 2016-05-17 Kohoku Kogyo Co., Ltd. Optical component including interference filter

Similar Documents

Publication Publication Date Title
CN113880559A (en) Preparation method of hard-to-cure ceramic based on photocuring forming and product
EP1552913A1 (en) Method for producing ceramic formed article
JP6862241B2 (en) Manufacturing method of sintered silica parts
JP2002182068A (en) Quartz glass ferrule and method for manufacturing the same
JP4452059B2 (en) Method for producing opaque silica glass molded body
JP5240722B2 (en) Ceramic ferrule and its manufacturing method
JP4452062B2 (en) Method for producing black silica glass molded body
KR101527356B1 (en) Ceramic core And Its Manufacturing Methode
KR101142265B1 (en) High dense silicon carbide for core materials of glass lens and Preparing method thereof
US5935513A (en) Method for sintering ceramic tubes
JP7054254B2 (en) Manufacturing method of preform for optical fiber
JP4618992B2 (en) Molding method of ceramic powder
Prediger et al. High-resolution structuring of transparent spinel ceramics
WO2002069009A1 (en) Ferrule for optical-fiber connector and process for producing the same
JP4693288B2 (en) Ferrule for optical fiber and manufacturing method thereof
JPWO2013183296A1 (en) Optical communication sleeve and method of manufacturing the optical communication sleeve
JP3195858B2 (en) Optical fiber connector parts made of zirconia
JP2006327901A (en) Method of manufacturing ceramic sintered body and ceramic firing tool
JP2003221275A (en) Method for manufacturing sintered body of ceramics
CN116514540A (en) Glass ceramic composite material, preparation method thereof and electronic equipment
JP2002311292A (en) Ferrule for optical fiber connector
JP2004115307A (en) Method for manufacturing ceramic sintered compact
JP2005179156A (en) Method for manufacturing sintered ceramic compact and connector for optical communication
JP2021154751A (en) Manufacturing method of molded body
JPH07248432A (en) Capillary for optical connector

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20071207

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20090630

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20090714

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091208