JP2005131688A - Manufacturing method of seamless steel tube for boiler and its piping - Google Patents
Manufacturing method of seamless steel tube for boiler and its piping Download PDFInfo
- Publication number
- JP2005131688A JP2005131688A JP2003372004A JP2003372004A JP2005131688A JP 2005131688 A JP2005131688 A JP 2005131688A JP 2003372004 A JP2003372004 A JP 2003372004A JP 2003372004 A JP2003372004 A JP 2003372004A JP 2005131688 A JP2005131688 A JP 2005131688A
- Authority
- JP
- Japan
- Prior art keywords
- rolling
- mass
- strain rate
- temperature
- sec
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
Description
本発明は、ボイラー及びその配管用継目無鋼管の製造方法に係わり、特に、所謂「9%Cr合金鋼」を素材にしても、マンネスマン方式の傾斜圧延法で、内外面に圧延疵を発生させずに継目無鋼管を安定して製造する技術に関する。 The present invention relates to a method of manufacturing a boiler and its seamless pipe for piping, and in particular, even if so-called “9% Cr alloy steel” is used as a raw material, rolling wrinkles are generated on the inner and outer surfaces by Mannesmann's inclined rolling method. The present invention relates to a technology for stably producing seamless steel pipes.
近年、火力発電あるいは化学工業で使用される高温機器は、より高温、高圧に耐えることが要求されている。そのため、機器の素材にする鋼材のクリープ特性を向上させるために、9〜12質量%のCrを含有する鋼材が開発され、JIS,ASTMに規格登録もされている。 In recent years, high-temperature equipment used in thermal power generation or the chemical industry is required to withstand higher temperatures and pressures. Therefore, in order to improve the creep characteristics of steel materials used as equipment materials, steel materials containing 9 to 12% by mass of Cr have been developed and registered as standards in JIS and ASTM.
一般に、鋼材は、Cr含有量が多くなると、クリープ特性は向上するが、その反面で加工性が低下する。従って、これら高Cr鋼の開発に際しては、加工性の限界を探りつつ、クリープ特性を向上させようとする努力がなされてきた。しかしながら、そのような鋼材を素材にして、マンネスマンミル等の傾斜圧延方式で継目無鋼管を製造しようとしても、圧延自体が困難であるという問題があった。 In general, when the Cr content of the steel material increases, the creep characteristics are improved, but on the other hand, the workability is lowered. Therefore, in developing these high Cr steels, efforts have been made to improve the creep characteristics while exploring the limits of workability. However, even if an attempt is made to produce a seamless steel pipe by such an inclined rolling method such as a Mannesmann mill using such a steel material as a raw material, there is a problem that the rolling itself is difficult.
継目無鋼管は、図1に示すように、マンネスマン・マンドレル方式又はマンネスマン・プラグミル方式の圧延工程で成形されるのが一般的である。つまり、加熱炉1を経た素材2に穿孔して素管3とし、それを拡管、延伸、仕上げるためにピアサー4、マンドレルミル5、エロンゲータ6、プラグミル7、リーラ8、レデューサ9及びサイザー10なる圧延機を適宜配置したマンネスマン−マンドレル方式(図1では、上段側の工程)又はマンネスマン−プラグミル方式(図1では、下段側の工程)の傾斜圧延法によって製造されるのが一般的である。
As shown in FIG. 1, the seamless steel pipe is generally formed by a Mannesmann mandrel type or Mannesmann plug mill type rolling process. In other words, the raw material 2 that has passed through the heating furnace 1 is punched into a raw tube 3, and a
このマンネスマン方式の傾斜圧延は、鋼材の熱間加工のなかでも鋼材に最も苛酷な負荷を与える加工方法として知られ、前記鋼材をこの方法で圧延すると、製品の内外面に圧延疵の発生することが多い。そして、該圧延疵の発生は、以下の現象が影響すると考えられている。
1)Crを始めとした合金元素を多量に含むので、その加工性不足に起因して脆化割れが起きる
2)加熱炉での過度の温度上昇で、素材に熱間加工性の劣るδ―フェライト相が析出し、その析出物の溶融に伴い結晶粒界の滑り破壊が起きる
このような現象は、マンネスマン方式の圧延方法が、図1に示したように、種々の圧延機を複数使用するためである。すなわち、圧延工程が複雑で時間がかかるため、圧延時の素材の温度降下が大きく、素材の熱間加工性を維持するには、できる限り高い温度で圧延したいが、一方で過度の温度上昇は、上記のように疵を発生し易くするので、各圧延機での素材の圧延温度は、再加熱炉より下流側のものを除き、一律に決定され、δ―フェライト相の析出温度の直下程度で圧延が開始されるからである。
This Mannesmann tilt rolling is known as the processing method that gives the most severe load to steel materials during hot working of steel materials. When the steel materials are rolled by this method, rolling flaws are generated on the inner and outer surfaces of the product. There are many. And it is thought that generation | occurrence | production of this rolling wrinkle influences the following phenomena.
1) Since it contains a large amount of alloying elements such as Cr, brittle cracking occurs due to insufficient workability. 2) The material is inferior in hot workability due to excessive temperature rise in the heating furnace. Ferrite phase precipitates, and the grain boundary slip fracture occurs as the precipitate melts. For this phenomenon, Mannesmann rolling method uses a plurality of various rolling mills as shown in FIG. Because. That is, the rolling process is complicated and time consuming, so the temperature drop of the material during rolling is large, and in order to maintain the hot workability of the material, it is desired to roll at the highest possible temperature, but excessive temperature rise is As described above, since flaws are easily generated, the rolling temperature of the material in each rolling mill is uniformly determined except for the downstream side of the reheating furnace, and is just below the precipitation temperature of the δ-ferrite phase. This is because rolling starts.
このような圧延中の割れ問題に対しては、対策も提案されている。例えば、熱間加工温度域での素材の金属組織をオーステナイト単相にするため、Cr,Ni,Mo,Cu,C,N等の主要合金元素の添加量を適切にバランスさせる技術がある(特許文献1参照)。また、Sに代表される熱間加工性に有害な不純成分の含有量を特に低く制限することも提案されている(特許文献2及び3)。 Countermeasures have been proposed for such cracking problems during rolling. For example, there is a technology that appropriately balances the addition amount of main alloy elements such as Cr, Ni, Mo, Cu, C, and N in order to make the metal structure of the material in the hot working temperature range into an austenite single phase (patent) Reference 1). It has also been proposed to limit the content of impure components harmful to hot workability, represented by S, to be particularly low (Patent Documents 2 and 3).
しかしながら、9〜12質量%のCrを含有する鋼材にこのような対策を施しても、熱間加工性の低下に伴う疵の発生は解決できていないのが現状である。また、高価な合金元素の添加量を増加したり、Sを始めとする不純成分の低減という対策は、製鋼段階でのコストアップを招くので、経済的見地より望ましくない。
本発明は、かかる事情に鑑み、マンネスマン方式の傾斜圧延法を採用しても、製品に圧延疵が出現しないボイラー及びその配管用継目無鋼管の製造方法を提供することを目的としている。 In view of such circumstances, an object of the present invention is to provide a boiler that does not cause rolling flaws in a product even when the Mannesmann tilt rolling method is employed, and a method for manufacturing a seamless steel pipe for piping.
発明者は、上記目的を達成するため、圧延対象素材の熱間加工性に及ぼす圧延温度及び歪速度の影響について鋭意研究を重ね、圧延時の素材温度(以下、圧延温度という)に応じて歪速度を調整するようにすれば、良好な熱間加工性を維持でき、その結果として製品の圧延疵が低減できることを見出し、本発明を完成させた。 In order to achieve the above-mentioned object, the inventor conducted extensive research on the influence of the rolling temperature and strain rate on the hot workability of the material to be rolled, and strained according to the material temperature during rolling (hereinafter referred to as rolling temperature). It has been found that if the speed is adjusted, good hot workability can be maintained, and as a result, the rolling wrinkles of the product can be reduced, and the present invention has been completed.
すなわち、本発明は、C:0.15質量%以下,Mn:0.30〜0.60質量%,Si:0.20〜1.0質量%、Cr:8.0〜10.0質量%,Mo:0.85〜1.10質量%,P:0.030質量%以下,S:0.030質量%以下を含み,残部がFe及び不可避的不純物からなる素材を、種々の圧延機を備えたマンドレル方式の圧延工程で継目無鋼管とするに際して、各圧延機での圧延時に、素材の歪速度を当該圧延機における圧延温度に応じて一定範囲の値に調整して、該素材を圧延することを特徴とするボイラー及びその配管用継目無鋼管の製造方法である。この場合、前記素材の圧延時の歪速度が、下記範囲を満足するのが好ましい。
1250℃≦圧延温度の温度域: 歪速度≧1.0/sec,
1200℃≦圧延温度<1250℃の温度域: 歪速度≧0.6/sec,
1150℃≦圧延温度<1200℃の温度域: 3.5/sec≧歪速度≧0.3/sec、
圧延温度<1150℃の温度域: 1.4/sec≧歪速度
That is, the present invention includes C: 0.15 mass% or less, Mn: 0.30 to 0.60 mass%, Si: 0.20 to 1.0 mass%, Cr: 8.0 to 10.0 mass% , Mo: 0.85 to 1.10% by mass, P: 0.030% by mass or less, S: 0.030% by mass or less, the balance of Fe and inevitable impurities, various rolling mills When making a seamless steel pipe in the mandrel type rolling process provided, at the time of rolling in each rolling mill, the strain rate of the material is adjusted to a value within a certain range according to the rolling temperature in the rolling mill, and the material is rolled It is the manufacturing method of the boiler and the seamless steel pipe for the piping characterized by doing. In this case, it is preferable that the strain rate during rolling of the material satisfies the following range.
1250 ° C. ≦ temperature range of rolling temperature: strain rate ≧ 1.0 / sec,
1200 ° C. ≦ rolling temperature <1250 ° C. temperature range: strain rate ≧ 0.6 / sec,
1150 ° C. ≦ rolling temperature <1200 ° C. temperature range: 3.5 / sec ≧ strain rate ≧ 0.3 / sec,
Rolling temperature <1150 ° C. temperature range: 1.4 / sec ≧ strain rate
本発明によれば、ボイラー及びその配管用継目無鋼管の圧延欠陥を大幅に減少することができる。また、成分の管理範囲を厳格にする必要がなくなり、素材コストの低減も期待できる。 According to the present invention, the rolling defects of the boiler and its seamless pipe for piping can be greatly reduced. Moreover, it is not necessary to make the management range of components strict, and a reduction in material cost can be expected.
以下、本発明の実施の形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
まず、本発明が対象とする継目無鋼管は、下記組成の合金鋼を素材に製造されるものである。これは、JIS G3462−STBA26並びにASTM A213/213M−T9及びT91として規定されている。このように各成分の含有量を限定した理由は、下記の通りである。
C:0.15質量%以下
Cは、Cr炭化物等を形成し、鋼の耐食性を劣化させる元素であるが、強度を発揮させるに必要な元素でもあるので、下限を0.15質量%とする。
Mn:0.30〜0.60質量%
Mnは、オーステナイト安定化元素であり、熱間加工時にδフェライト相の析出を抑制するのに有効であるので、0.30質量%を下限とする。一方、あまり過剰に添加すると、結晶粒界の強度を低下させ、鋼の脆性劣化を招くので、0.60質量%を上限とする。
Si:0.20〜1.00質量%
Siは、製鋼段階で脱酸剤として必要な元素であるので、下限を0.20質量%とし、一方、あまり多量に含有させると鋼の靭性を劣化させるので、1.00質量%を上限にする。
Cr:8.0〜10.0質量%
Crは、耐食性向上の基本元素であり、十分な耐食性を得るため下限を8.0質量%とする。また、フェライト相の安定化元素でもあり、あまり多過ぎると、熱間加工時にδフェライト相が析出して熱間加工性や耐硫化物応力腐食割れ性を劣化させる。そのため、上限を10.0質量%にする。
Mo:0.85〜1.10質量%
Moは、結晶粒間の腐食を防止し、溶接性を高め、鋼板の高温強度を増加する。ただし、過剰な添加は、MoC2の析出による二次硬化が促進され過ぎることになり、また経済的にもよろしくない。そこで、0.85〜1.10質量%を上下限とした。
P:0.030質量%以下
Pは、1200℃以上の高温での熱間加工性を著しく劣化させる。特に、ピアサーで鋼素材を穿孔する際に、孔の内面側に疵を発生させる原因となるので、0.03質量%を上限とする。
S:0.030質量%以下
Sも、熱間加工性を劣化させる元素である。特に、Pと同様にピアサーでの穿孔時に内面疵の発生に寄与するので、0.030質量%を上限とする。
First, a seamless steel pipe targeted by the present invention is manufactured from an alloy steel having the following composition. This is defined as JIS G3462-STBA26 and ASTM A213 / 213M-T9 and T91. The reason for limiting the content of each component as described above is as follows.
C: 0.15% by mass or less C is an element that forms Cr carbide and the like and deteriorates the corrosion resistance of steel, but is also an element necessary for exerting strength, so the lower limit is set to 0.15% by mass. .
Mn: 0.30 to 0.60 mass%
Mn is an austenite stabilizing element and is effective in suppressing precipitation of the δ ferrite phase during hot working, so 0.30% by mass is set as the lower limit. On the other hand, if added too much, the strength of the crystal grain boundaries is lowered and brittle deterioration of the steel is caused, so 0.60% by mass is made the upper limit.
Si: 0.20 to 1.00% by mass
Since Si is an element necessary as a deoxidizer in the steelmaking stage, the lower limit is set to 0.20% by mass. On the other hand, if it is contained too much, the toughness of the steel is deteriorated, so 1.00% by mass is set as the upper limit. To do.
Cr: 8.0-10.0 mass%
Cr is a basic element for improving corrosion resistance, and the lower limit is set to 8.0% by mass in order to obtain sufficient corrosion resistance. Moreover, it is also a stabilizing element of the ferrite phase, and if it is too much, the δ ferrite phase is precipitated during hot working and deteriorates hot workability and resistance to sulfide stress corrosion cracking. Therefore, the upper limit is made 10.0 mass%.
Mo: 0.85 to 1.10 mass%
Mo prevents corrosion between crystal grains, improves weldability, and increases the high-temperature strength of the steel sheet. However, excessive addition will promote secondary curing due to the precipitation of MoC2 and is not economical. Therefore, the upper and lower limits were set to 0.85 to 1.10% by mass.
P: 0.030% by mass or less P significantly deteriorates hot workability at a high temperature of 1200 ° C. or higher. In particular, when piercing a steel material with a piercer, it causes a flaw on the inner surface side of the hole, so 0.03% by mass is the upper limit.
S: 0.030% by mass or less S is an element that deteriorates hot workability. Since it contributes to generation | occurrence | production of an internal flaw especially at the time of the piercing | piercing with a piercer like P, 0.030 mass% is made an upper limit.
さらに、本発明では、上記成分の他に、必要な強度及び耐食性を得るため、Al,Ti,Nb、Ni,Cu及びN等を適切な量添加しても良い。 Furthermore, in the present invention, in addition to the above components, an appropriate amount of Al, Ti, Nb, Ni, Cu, N, or the like may be added in order to obtain necessary strength and corrosion resistance.
次に、発明者は、上記した合金鋼を素材にして、マンネスマン方式の傾斜圧延法で疵の発生を抑えて継目無鋼管を安定して製造することを研究することにした。疵の発生を抑えるには、熱間加工性が良い状態で圧延すれば良いからである。そして、そのような素材の熱間加工性に及ぼす因子として、前記したように、素材の圧延温度及び歪速度に着目した。圧延温度に加えて素材の歪速度を選択したのは、素材の歪速度はその熱間加工をコントロールするのに有効な因子になると考えたからである。 Next, the inventor decided to study the stable production of seamless steel pipes by using the above-described alloy steel as a raw material and suppressing the occurrence of wrinkles by the Mannesmann tilt rolling method. This is because rolling can be performed with good hot workability in order to suppress the generation of wrinkles. Then, as described above, as a factor affecting the hot workability of such a material, attention was paid to the rolling temperature and strain rate of the material. The reason why the strain rate of the material is selected in addition to the rolling temperature is that the strain rate of the material is considered to be an effective factor for controlling the hot working.
ここで、素材の歪速度は、下記式のように定義される。 Here, the strain rate of the material is defined as follows.
歪速度=ln[(素材の圧延前断面積/素材の圧延後断面積)/時間]
又は
歪速度=ln[(素材の圧延前肉厚/素材の圧延後肉厚)/時間]
なお、素材の断面積は、素材が管状になっている場合には、実肉部分の断面積である。
また、これらの歪速度の値を具体的に求めるには、素材を一定温度に加熱した後に、一定の圧下を加えて断面積あるいは肉厚を実測すれば良い。また、上記2つの式で得た値は、いずれを用いても良い。
Strain rate = ln [(cross-sectional area before rolling of material / cross-sectional area after rolling of material) / time]
Or strain rate = ln [(wall thickness before rolling of material / wall thickness after rolling of material) / time]
In addition, the cross-sectional area of a raw material is a cross-sectional area of an actual meat part, when a raw material is a tubular shape.
Further, in order to specifically determine these strain rate values, the cross-sectional area or thickness may be measured by heating the material to a constant temperature and then applying a constant reduction. In addition, any of the values obtained by the above two formulas may be used.
そこで、発明者は、この歪速度が圧延時の素材温度(以下、圧延温度)の影響を強く受けることに着目し、歪速度と圧延温度との関係を求めることにした。そして、9質量%Cr鋼(0.10C−0.25Si−0.45Mn−9.0Cr−1.0Mo)を素材にして、その熱間加工性に及ぼす圧延温度及び歪速度の影響を調査した。その調査は、該素材を常温より10秒にて1250℃まで加熱し、10秒間保持した後、変形(引張)を行う温度まで10℃/secで冷却し、その温度で10秒間保持してから、任意の歪み速度で引張ることで行った。つまり、素材の引張り後の破断部断面積を引張り前断面積で割った値を「絞り値」と定義し、この「絞り値」を該素材の熱間加工性を示す尺度とした。「絞り値」が高いほど素材の熱間加工性が良好であることを意味する。 Accordingly, the inventor has focused on the fact that this strain rate is strongly influenced by the material temperature during rolling (hereinafter, rolling temperature), and has determined the relationship between the strain rate and the rolling temperature. And 9 mass% Cr steel (0.10C-0.25Si-0.45Mn-9.0Cr-1.0Mo) was used as a raw material, and the influence of rolling temperature and strain rate on its hot workability was investigated. . The investigation is that the material is heated from room temperature to 1250 ° C. in 10 seconds, held for 10 seconds, cooled to a temperature at which deformation (tensile) is performed at 10 ° C./sec, and held at that temperature for 10 seconds. This was performed by pulling at an arbitrary strain rate. That is, a value obtained by dividing the cross-sectional area of the fractured portion after the tension of the material by the cross-sectional area before the tension is defined as “drawing value”, and this “drawing value” is used as a scale indicating the hot workability of the material. Higher “drawing value” means better hot workability of the material.
調査結果は、圧延温度(縦軸)及び歪速度(横軸)とに対する「絞り値」(単位%)の関係として表1に整理した。 The investigation results are summarized in Table 1 as the relationship between the “drawing value” (unit%) with respect to the rolling temperature (vertical axis) and the strain rate (horizontal axis).
これまでの知見からは、「絞り値」が75%以上あれば、その温度で良好な熱間加工性を示すことが分かっているが、表1より、例えば1250℃の圧延温度域では、歪速度が1.0/sec以上の比較的高歪速度領域で「絞り値」は高い値を示し、歪速度が0.6/sec以下の比較的低歪速度領域で「絞り値」は75%を下回る低い値を示すことが明らかである。一方、1000℃の圧延温度域に着目すると、0.1〜10/secの歪速度範囲では、いずれも75%を下回っているものの、歪速度を下げた方がより絞り値は高い値を示す。なお、9.0質量%Cr鋼のδフェライト相の析出温度(AC4)は1260℃であり、ミクロ/マクロの偏析を考慮した場合、圧延時の温度は1260℃以上とはすべきでなく、歪速度調査を割愛した。 From the knowledge so far, it is known that if the “drawing value” is 75% or more, good hot workability is exhibited at that temperature. From Table 1, for example, in the rolling temperature range of 1250 ° C. The “aperture value” shows a high value in a relatively high strain rate region where the speed is 1.0 / sec or more, and the “aperture value” is 75% in a relatively low strain rate region where the strain rate is 0.6 / sec or less. It is clear that it shows a low value below. On the other hand, when focusing on the rolling temperature range of 1000 ° C., in the strain rate range of 0.1 to 10 / sec, all are lower than 75%, but the drawing value is higher when the strain rate is lowered. . In addition, the precipitation temperature (AC 4 ) of the δ ferrite phase of 9.0 mass% Cr steel is 1260 ° C., and when considering the micro / macro segregation, the temperature during rolling should not be 1260 ° C. or higher. Omitted the strain rate investigation.
この調査結果は、素材の圧延温度と歪速度を適切に選択すれば、熱間加工性が良好な状態で圧延できることを意味している。また、従来のマンネスマン方式による操業では、各圧延機での素材の圧延温度に対して歪速度が適切であったとは言えないこともわかった。そこで、各圧延機において最も熱間加工性が有利とされる歪速度にて造管を行うことを本発明としたのである。 This investigation result means that if the rolling temperature and strain rate of the material are appropriately selected, rolling can be performed with good hot workability. It was also found that in the conventional Mannesmann operation, the strain rate was not appropriate for the rolling temperature of the material in each rolling mill. Therefore, the present invention is to perform pipe making at a strain rate at which hot workability is most advantageous in each rolling mill.
また、表1の結果に基づき、各圧延温度領域毎に熱間加工性良く操業するに適した歪速度の領域を整理すると、
1250℃≦圧延温度の温度域: 歪速度≧1.0/sec,特に、適正歪速度=10/sec
1200℃≦圧延温度<1250℃の温度域: 歪速度≧0.6/sec,特に、適正歪速度=3.5/sec
1150℃≦圧延温度<1200℃の温度域: 3.5/sec≧歪速度≧0.3/sec、特に、適正歪速度=1.8/sec
圧延温度<1150℃の温度域: 1.4/sec≧歪速度,特に、適正歪速度=1.4/sec
となる。したがって、本発明では、この基準により,各圧延機での圧延温度及び歪速度を定めて操業を行えば、圧延疵が従来より少ない継目無鋼管が製造できることになる。
Moreover, based on the results in Table 1, when the regions of the strain rate suitable for operating with good hot workability are arranged for each rolling temperature region,
1250 ° C. ≦ temperature range of rolling temperature: strain rate ≧ 1.0 / sec, especially appropriate strain rate = 10 / sec
1200 ° C. ≦ rolling temperature <1250 ° C. temperature range: strain rate ≧ 0.6 / sec, especially appropriate strain rate = 3.5 / sec
1150 ° C. ≦ rolling temperature <1200 ° C. temperature range: 3.5 / sec ≧ strain rate ≧ 0.3 / sec, especially appropriate strain rate = 1.8 / sec
Rolling temperature <1150 ° C. temperature range: 1.4 / sec ≧ strain rate, especially appropriate strain rate = 1.4 / sec
It becomes. Therefore, in the present invention, if the operation is performed by determining the rolling temperature and strain rate in each rolling mill according to this standard, a seamless steel pipe with fewer rolling mills than conventional can be manufactured.
9質量%Cr鋼(0.10C−0.25Si−0.45Mn―9.0Cr−1.0Mo)を用いて継目無鋼管を製造した。利用した工程は、前記図1の上段側に示したプラグミル方式の製造工程である。素材2の丸ビレットには、外径が260mmφのものを用い、製品鋼管のサイズは、外径が323.9mmφ,肉厚が33.3mmとした。この製造において、各圧延機での圧延温度及び歪速度を本発明に従って定めた。ピアサー4での圧延温度、並びにその際の各圧延機での圧延温度及び歪速度を表2に示すように設定した。なお、表2で、水準1は従来例、水準2は本発明例の場合である。
A seamless steel pipe was manufactured using 9 mass% Cr steel (0.10C-0.25Si-0.45Mn-9.0Cr-1.0Mo). The utilized process is the manufacturing process of the plug mill method shown on the upper side of FIG. The round billet of material 2 was an outer diameter of 260 mmφ, and the product steel pipe had an outer diameter of 323.9 mmφ and a wall thickness of 33.3 mm. In this production, the rolling temperature and strain rate in each rolling mill were determined according to the present invention. The rolling temperature at
実施結果を図2に示すが、製品で調査した内面欠陥発生率は、従来例の水準1が18.7%であったのに対し、本発明の水準2が2.4%まで低下し、疵の発生が格段に低下している。 The results of the implementation are shown in FIG. 2, and the rate of occurrence of inner surface defects investigated with the product was 18.7% for the level 1 of the conventional example, whereas the level 2 of the present invention decreased to 2.4%, The outbreak of drought has dropped dramatically.
1 加熱炉
2 素材
3 素管
4 ピアサー
5 マンドレルミル
6 エロンゲータ
7 プラグミル
8 リーラ
9 レデューサ
10 サイザー
DESCRIPTION OF SYMBOLS 1 Heating furnace 2 Material 3
Claims (2)
各圧延機での圧延時に、素材の歪速度を当該圧延機における圧延温度に応じて一定範囲の値に調整して、該素材を圧延することを特徴とするボイラー及びその配管用継目無鋼管の製造方法。 C: 0.15 mass% or less, Mn: 0.30 to 0.60 mass%, Si: 0.20 to 1.0 mass%, Cr: 8.0 to 10.0 mass%, Mo: 0.85 ~ 1.10 mass%, P: 0.030 mass% or less, S: 0.030 mass% or less, the balance consisting of Fe and inevitable impurities, the mandrel type rolling mill equipped with various rolling mills When making seamless steel pipes in the process,
At the time of rolling in each rolling mill, adjusting the strain rate of the raw material to a value within a certain range according to the rolling temperature in the rolling mill, and rolling the raw material, and a seamless steel pipe for its piping Production method.
1250℃≦圧延温度の温度域: 歪速度≧1.0/sec,
1200℃≦圧延温度<1250℃の温度域: 歪速度≧0.6/sec,
1150℃≦圧延温度<1200℃の温度域: 3.5/sec≧歪速度≧0.3/sec,
圧延温度<1150℃の温度域: 1.4/sec≧歪速度 The method for producing a boiler and its seamless pipe for piping according to claim 1, wherein a strain rate during rolling of the material satisfies the following range.
1250 ° C. ≦ temperature range of rolling temperature: strain rate ≧ 1.0 / sec,
1200 ° C. ≦ rolling temperature <1250 ° C. temperature range: strain rate ≧ 0.6 / sec,
1150 ° C. ≦ rolling temperature <1200 ° C. temperature range: 3.5 / sec ≧ strain rate ≧ 0.3 / sec,
Rolling temperature <1150 ° C. temperature range: 1.4 / sec ≧ strain rate
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003372004A JP4337504B2 (en) | 2003-10-31 | 2003-10-31 | Boiler and method for producing seamless steel pipe for its piping |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003372004A JP4337504B2 (en) | 2003-10-31 | 2003-10-31 | Boiler and method for producing seamless steel pipe for its piping |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005131688A true JP2005131688A (en) | 2005-05-26 |
JP4337504B2 JP4337504B2 (en) | 2009-09-30 |
Family
ID=34648501
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003372004A Expired - Fee Related JP4337504B2 (en) | 2003-10-31 | 2003-10-31 | Boiler and method for producing seamless steel pipe for its piping |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4337504B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113399461A (en) * | 2021-06-15 | 2021-09-17 | 山西太钢不锈钢股份有限公司 | Method for processing niobium-containing austenitic heat-resistant stainless steel round pipe billet |
-
2003
- 2003-10-31 JP JP2003372004A patent/JP4337504B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113399461A (en) * | 2021-06-15 | 2021-09-17 | 山西太钢不锈钢股份有限公司 | Method for processing niobium-containing austenitic heat-resistant stainless steel round pipe billet |
Also Published As
Publication number | Publication date |
---|---|
JP4337504B2 (en) | 2009-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4513807B2 (en) | Fe-Ni alloy tube and method of manufacturing the same | |
JP4632000B2 (en) | Seamless steel pipe manufacturing method | |
JP4946758B2 (en) | High temperature austenitic stainless steel with excellent workability after long-term use | |
JP6197850B2 (en) | Method for producing duplex stainless steel seamless pipe | |
JP6635194B2 (en) | Seamless steel pipe and method of manufacturing the same | |
JP4553073B1 (en) | Manufacturing method of high-strength Cr-Ni alloy seamless pipe | |
WO2010082395A1 (en) | Process for production of duplex stainless steel pipe | |
EP3006585B1 (en) | Seamless steel pipe for line pipe used in sour environment | |
EP3225318B1 (en) | Manufacturing method for duplex stainless steel seamless pipe or tube using a device array for manufacturing seamless steel pipe or tube | |
JP2009174006A (en) | Hot rolled steel sheet as stock for steel tube for hydroforming, steel tube for hydroforming, and their manufacturing methods | |
JP4867088B2 (en) | Manufacturing method of high Cr seamless steel pipe | |
JP2007260705A (en) | Method for manufacturing seamless steel tube | |
JP6341128B2 (en) | Manufacturing method of thin-walled high strength stainless steel seamless pipe for oil well | |
JP2009275261A (en) | Welded steel-pipe superior in crushing resistance and manufacturing method therefor | |
JP5056990B2 (en) | Method for producing seamless steel round bar made of high Cr-high Ni alloy and method for producing seamless pipe using the round steel piece | |
JP4337504B2 (en) | Boiler and method for producing seamless steel pipe for its piping | |
CN111479944A (en) | Ferrite-based stainless steel having excellent impact toughness and method for producing the same | |
US20220380872A1 (en) | Alloy | |
JP4453278B2 (en) | Method for producing seamless steel pipe made of duplex stainless steel | |
JP2006111928A (en) | Thick steel plate for line pipe and its production method | |
JP3417275B2 (en) | Martensitic stainless steel seamless steel pipe with excellent hot workability and sulfide stress cracking resistance | |
JP2004122137A (en) | Method for manufacturing seamless martensitic stainless steel tube | |
JPH0729129B2 (en) | Stretch rolling method for austenitic high alloy seamless steel pipe with excellent sour resistance | |
JP7226595B2 (en) | Electric resistance welded steel pipes for line pipes | |
JP2018075576A (en) | Manufacturing method of seamless steel pipe and manufacturing equipment of seamless steel pipe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060929 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081125 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081202 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090127 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090609 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090622 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120710 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120710 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130710 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |