JP2006111928A - Thick steel plate for line pipe and its production method - Google Patents

Thick steel plate for line pipe and its production method Download PDF

Info

Publication number
JP2006111928A
JP2006111928A JP2004300848A JP2004300848A JP2006111928A JP 2006111928 A JP2006111928 A JP 2006111928A JP 2004300848 A JP2004300848 A JP 2004300848A JP 2004300848 A JP2004300848 A JP 2004300848A JP 2006111928 A JP2006111928 A JP 2006111928A
Authority
JP
Japan
Prior art keywords
steel plate
thick steel
less
concentration
segregation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004300848A
Other languages
Japanese (ja)
Other versions
JP4432719B2 (en
Inventor
Mitsuru Miura
充 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2004300848A priority Critical patent/JP4432719B2/en
Publication of JP2006111928A publication Critical patent/JP2006111928A/en
Application granted granted Critical
Publication of JP4432719B2 publication Critical patent/JP4432719B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thick steel plate for a line pipe whose production cost is lower than that of the conventional one and having excellent HIC (Hydrogen Induced Cracking) resistance in a small amount hydrogen sulfide environment in which the partial pressure of hydrogen sulfide is about 0.1 to 0.3atm. <P>SOLUTION: A stock comprising, by mass, 0.04 to 0.08% C, 0.05 to 0.35% Si, 1.20 to 1.80% Mn, 0.02 to 0.06% Nb, 0.005 to 0.030% Ti, 0.010 to 0.060% Al, 0 to 0.25% Mo, 0 to 0.40% Cu, 0 to 0.50% Cr, 0 to 0.50% Ni, 0 to 0.06% V, ≤0.020% P, ≤0.003% S and <0.0005% Ca, and the balance Fe with impurities, and satisfying an Mn segregation degree of ≤1.2 and a P segregation degree of ≤2.0 is heated to T<SB>1</SB>°C and is rolled at T<SB>2</SB>°C so as to be a thick steel plate satisfying a plate thickness of WTmm. After the rolling, the steel plate is water-cooled to T<SB>3</SB>°C and is air-cooled from the T<SB>3</SB>°C to room temperature. The produced thick steel plate satisfies inequality (1); 547≤0.10WT+1428C+93Si+108Mn-12Cu+113Cr+113Ni+304Mo+430Nb+238V+1315Ti+0.21T<SB>1</SB>+0.03T<SB>2</SB>-0.04T<SB>3</SB>+30≤739. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、厚鋼板及びその製造方法に関し、さらに詳しくは、ラインパイプ用厚鋼板及びその製造方法に関する。   The present invention relates to a thick steel plate and a manufacturing method thereof, and more particularly to a thick steel plate for a line pipe and a manufacturing method thereof.

原油や天然ガスは、湿潤な硫化水素を含む。そのため、原油や天然ガスを掘削するために使用される油井管や、掘削された原油や天然ガスを搬送するラインパイプでは、硫化水素に起因した水素脆化が問題となる。   Crude oil and natural gas contain wet hydrogen sulfide. For this reason, hydrogen embrittlement caused by hydrogen sulfide becomes a problem in oil well pipes used for drilling crude oil and natural gas and in line pipes that transport drilled crude oil and natural gas.

水素脆化には、静的な外部応力下で鋼材に生じる硫化水素割れと、外部応力のない状態で鋼材に生じる水素誘起割れ(Hydrogen Induced Cracking:以下、HICと称する)とがある。ラインパイプは油井管よりも静的な外部応力が掛からない。そのためラインパイプでは特に耐HIC性が要求される。特に、強度グレードがAPI5L X60〜X80であるラインパイプ(以下、高強度ラインパイプと称する)ではHICが発生しやすいため、耐HIC対策が重要である。   Hydrogen embrittlement includes hydrogen sulfide cracking that occurs in steel under static external stress and hydrogen induced cracking (hereinafter referred to as HIC) that occurs in steel without external stress. Line pipes are less subject to static external stress than oil well pipes. Therefore, the HIC resistance is particularly required for the line pipe. In particular, in line pipes (hereinafter referred to as high-strength line pipes) whose strength grades are API5L X60 to X80, HIC is likely to occur, and therefore anti-HIC measures are important.

上述した高強度ラインパイプには一般的にCa処理が実行される。Ca処理は硫化物系介在物の形態を熱間圧延時に延伸しやすいMnSから延伸しにくいCaSにする。そのため介在物と母相との界面でHICが発生するのを防止できる。   Generally, Ca treatment is performed on the above-described high-strength line pipe. In the Ca treatment, the form of the sulfide inclusions is changed from MnS that is easily stretched during hot rolling to CaS that is difficult to stretch. Therefore, it is possible to prevent HIC from occurring at the interface between the inclusion and the parent phase.

Ca処理は1atmの硫化水素分圧のサワー環境で使用される高強度ラインパイプのHICの発生を抑制するのに有効であるが、この処理によりラインパイプの製造コストは高くなる。   The Ca treatment is effective in suppressing the generation of HIC in a high-strength line pipe used in a sour environment with a hydrogen sulfide partial pressure of 1 atm, but this process increases the production cost of the line pipe.

ところで、高強度ラインパイプが使用されるサワー環境には、硫化水素分圧が0.1〜0.3atm程度である硫化水素分圧の比較的低いサワー環境(以下、少量硫化水素環境と称する)がある。1atmの硫化水素分圧のサワー環境での使用を想定したラインパイプは少量硫化水素環境に対しては過剰な材料設計であり、高い製造コストが問題となっている。
特許第347895号公報 特開2002−294394号公報 特開平5−93243号公報 特開平5−9575号公報 特開平2−240211号公報
By the way, the sour environment where a high-strength line pipe is used is a sour environment having a relatively low hydrogen sulfide partial pressure of about 0.1 to 0.3 atm of hydrogen sulfide (hereinafter referred to as a small amount of hydrogen sulfide environment). There is. Line pipes intended for use in a sour environment with a hydrogen sulfide partial pressure of 1 atm have an excessive material design for a small amount of hydrogen sulfide environment, and high manufacturing costs are a problem.
Japanese Patent No. 347895 JP 2002-294394 A JP-A-5-93243 JP-A-5-9575 JP-A-2-240211

本発明の目的は、従来よりも製造コストが安く、硫化水素分圧が0.1atm〜0.3atm程度である少量硫化水素環境におけるHICの発生を抑制できる強度グレードがAPI X60〜X80のラインパイプ用厚鋼板及びその製造方法を提供することである。   The object of the present invention is a line pipe whose API X60 to X80 has a strength grade capable of suppressing the generation of HIC in a small amount of hydrogen sulfide environment where the production cost is lower than conventional and the hydrogen sulfide partial pressure is about 0.1 atm to 0.3 atm. It is to provide a thick steel plate and a manufacturing method thereof.

課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention

本発明者は高強度ラインパイプの製造工程で通常実施されるCa処理を省略して製造コストを安くすることを考えた。そこで、本発明者らは、Ca処理を省略しても少量硫化水素環境でHICの発生を防止できる製造方法を種々の実験に基づいて検討した。その結果、本発明者は、Mn及びPの偏析度と化学組成とが耐HIC性に影響を与えるだけでなく、さらに厚鋼板の製造条件である厚鋼板の板厚と、圧延前のスラブの加熱温度と、圧延時の圧延仕上温度と、圧延後の厚鋼板を水冷するときの水冷停止温度とが耐HIC性に影響を与えることを新たに見出した。本発明者は偏析度と化学組成と製造条件(板厚、スラブ加熱温度、圧延仕上温度及び水冷停止温度)とが相互に関連して耐HIC性に影響を与えていると考えた。   The present inventor has considered to reduce the manufacturing cost by omitting the Ca treatment usually performed in the manufacturing process of the high-strength line pipe. Therefore, the present inventors have examined a production method capable of preventing the generation of HIC in a small amount of hydrogen sulfide environment even if the Ca treatment is omitted, based on various experiments. As a result, the present inventor not only affects the segregation degree and chemical composition of Mn and P on the HIC resistance, but also the plate thickness of the thick steel plate, which is the manufacturing condition of the thick steel plate, and the slab before rolling. It was newly found that the heating temperature, the rolling finishing temperature during rolling, and the water cooling stop temperature when water-cooling the rolled steel plate affect the HIC resistance. The present inventor considered that the segregation degree, chemical composition, and production conditions (sheet thickness, slab heating temperature, rolling finishing temperature, and water cooling stop temperature) correlated with each other and affected HIC resistance.

以上の考えに基づいて及び種々の実験を行った結果、Mn偏析度が1.2以下であり、P偏析度が2.0以下であり、かつ、式(1)を満たす化学組成及び製造条件で製造された厚鋼板は強度グレードがAPIX60〜X80に相当し、かつ、少量硫化水素環境に対する耐HIC性を有することを見出した。   As a result of conducting various experiments based on the above idea, the chemical composition and production conditions satisfying the formula (1) with the Mn segregation degree being 1.2 or less, the P segregation degree being 2.0 or less, and It has been found that the steel plate manufactured in (1) has a strength grade corresponding to APIX60 to X80 and has HIC resistance against a small amount of hydrogen sulfide environment.

547≦0.10WT+1428C+93Si+108Mn−12Cu+113Cr+113Ni+304Mo+430Nb+238V+1315Ti+0.21T+0.03T−0.04T+30≦739 (1) 547 ≦ 0.10 WT + 1428C + 93Si + 108Mn-12Cu + 113Cr + 113Ni + 304Mo + 430Nb + 238V + 1315Ti + 0.21T 1 + 0.03T 2 −0.04T 3 + 30 ≦ 739 (1)

ここで、WT(mm)はラインパイプ用厚鋼板の板厚であり、T(℃)はスラブ加熱温度であり、T(℃)は圧延仕上温度であり、T(℃)は冷却停止温度である。それ以外の記号は各元素の含有量(質量%)である。 Here, WT (mm) is the plate thickness of the thick steel plate for line pipe, T 1 (° C.) is the slab heating temperature, T 2 (° C.) is the rolling finishing temperature, and T 3 (° C.) is cooling. Stop temperature. The other symbols are the content (mass%) of each element.

なお、式(1)を満たす厚鋼板の降伏応力は414〜690MPaとなり、かつ、引張強度は517〜827MPaとなる。換言すれば、式(1)を満たすことによりAPI5L X60〜X80のラインパイプ用厚鋼板が得られる。   In addition, the yield stress of the thick steel plate satisfying the formula (1) is 414 to 690 MPa, and the tensile strength is 517 to 827 MPa. In other words, API5L X60-X80 thick steel plate for line pipes is obtained by satisfying the formula (1).

以上の知見に基づいて、本発明者は以下の発明を完成した。   Based on the above findings, the present inventor has completed the following invention.

本発明によるラインパイプ用厚鋼板の製造方法は、質量%でC:0.04〜0.08%、Si:0.05〜0.35%、Mn:1.20〜1.80%、Nb:0.02〜0.06%、Ti:0.005〜0.030%、Al:0.010〜0.060%、Mo:0〜0.25%、Cu:0〜0.40%、Cr:0〜0.50%、Ni:0〜0.50%、V:0〜0.06%、P:0.020%以下、S:0.003%以下、Ca:0.0005%未満を含有し、残部はFe及び不純物からなり、全体のMn濃度に対する偏析部のMn濃度の比であるMn偏析度が1.2以下であり、全体のP濃度に対する偏析部のP濃度の比であるP偏析度が2.0以下である素材を加熱炉に装入し、T℃に加熱する工程と、加熱した素材を加熱炉から抽出し、T℃の圧延仕上温度で圧延して厚鋼板にする工程と、厚鋼板をT℃まで水冷し、T℃から室温まで空冷する工程とを備え、式(1)を満たす。 The manufacturing method of the thick steel plate for line pipes by this invention is C: 0.04-0.08%, Si: 0.05-0.35%, Mn: 1.20-1.80%, Nb by mass%. : 0.02 to 0.06%, Ti: 0.005 to 0.030%, Al: 0.010 to 0.060%, Mo: 0 to 0.25%, Cu: 0 to 0.40%, Cr: 0 to 0.50%, Ni: 0 to 0.50%, V: 0 to 0.06%, P: 0.020% or less, S: 0.003% or less, Ca: less than 0.0005% The balance consists of Fe and impurities, the Mn segregation degree, which is the ratio of the Mn concentration of the segregation part to the total Mn concentration, is 1.2 or less, and the ratio of the P concentration of the segregation part to the total P concentration is extract the material is P segregation ratio is 2.0 or less was charged into a heating furnace, and heating the T 1 ° C., the heated material from the furnace And comprising the steps of the steel plate was rolled with a finishing temperature of T 2 ° C., and water cooled steel plates to T 3 ° C., and a step of cooling from T 3 ° C. to room temperature, satisfying the equation (1).

547≦0.10WT+1428C+93Si+108Mn−12Cu+113Cr+113Ni+304Mo+430Nb+238V+1315Ti+0.21T+0.03T−0.04T+30≦739 (1) 547 ≦ 0.10 WT + 1428C + 93Si + 108Mn-12Cu + 113Cr + 113Ni + 304Mo + 430Nb + 238V + 1315Ti + 0.21T 1 + 0.03T 2 −0.04T 3 + 30 ≦ 739 (1)

ここで、WT(mm)はラインパイプ用厚鋼板の板厚であり、C、Si、Mn、Cu、Cr、Ni、Mo、Nb、V、Tiは各元素の含有量(質量%)である。   Here, WT (mm) is the plate thickness of the thick steel plate for line pipe, and C, Si, Mn, Cu, Cr, Ni, Mo, Nb, V, and Ti are the contents (mass%) of each element. .

本発明によれば、Ca処理をしなくても上記Mn偏析度及びP偏析度を満足し、かつ、式(1)を満たす化学組成及び製造条件にすれば、高強度ラインパイプ用の厚鋼板であっても少量硫化水素環境においてHICの発生を抑制できる。そのため、Ca処理をしない分従来の高強度ラインパイプ用厚鋼板よりも製造コストを安くでき、かつ、少量硫化水素環境での耐HIC性に優れたラインパイプ用厚鋼板を得ることができる。   According to the present invention, a thick steel plate for a high-strength line pipe can be obtained by satisfying the above-mentioned Mn segregation degree and P-segregation degree and satisfying the formula (1) without producing Ca. Even so, the generation of HIC can be suppressed in a small amount of hydrogen sulfide environment. Therefore, the production cost can be reduced compared with the conventional thick steel plate for high-strength line pipe because the Ca treatment is not performed, and a thick steel plate for line pipe excellent in HIC resistance in a small amount of hydrogen sulfide environment can be obtained.

本発明によるラインパイプ用厚鋼板は、質量%でC:0.04〜0.08%、Si:0.05〜0.35%、Mn:1.20〜1.80%、Nb:0.02〜0.06%、Ti:0.005〜0.030%、Al:0.010〜0.060%、Mo:0〜0.25%、Cu:0〜0.40%、Cr:0〜0.50%、Ni:0〜0.50%、V:0〜0.06%、P:0.020%以下、S:0.003%以下、Ca:0.0005%未満を含有し、残部はFe及び不純物からなり、全体のMn濃度に対する偏析部のMn濃度の比であるMn偏析度が1.2以下であり、全体のP濃度に対する偏析部のP濃度の比であるP偏析度が2.0以下であり、式(1)を満たす。   The thick steel plate for line pipes according to the present invention is C: 0.04 to 0.08%, Si: 0.05 to 0.35%, Mn: 1.20 to 1.80%, Nb: 0.0. 02 to 0.06%, Ti: 0.005 to 0.030%, Al: 0.010 to 0.060%, Mo: 0 to 0.25%, Cu: 0 to 0.40%, Cr: 0 -0.50%, Ni: 0-0.50%, V: 0-0.06%, P: 0.020% or less, S: 0.003% or less, Ca: less than 0.0005% The balance consists of Fe and impurities, and the Mn segregation degree, which is the ratio of the Mn concentration of the segregation part to the total Mn concentration, is 1.2 or less, and the P segregation, which is the ratio of the P concentration of the segregation part to the total P concentration. The degree is 2.0 or less and satisfies the formula (1).

547≦0.10WT+1428C+93Si+108Mn−12Cu+113Cr+113Ni+304Mo+430Nb+238V+1315Ti+0.21T1+0.03T2−0.04T3≦709 (1)   547 ≦ 0.10 WT + 1428C + 93Si + 108Mn-12Cu + 113Cr + 113Ni + 304Mo + 430Nb + 238V + 1315Ti + 0.21T1 + 0.03T2-0.04T3 ≦ 709 (1)

ここで、WT(mm)はラインパイプ用厚板鋼板の板厚であり、T(℃)はラインパイプ用厚板鋼板に圧延される素材の圧延前の加熱炉での加熱温度であり、T(℃)は前記素材を圧延して厚板鋼板にするときの圧延仕上温度であり、T(℃)は圧延後の厚板鋼板を水冷するときの水冷停止温度であり、それ以外は各元素の含有量(質量%)である。 Here, WT (mm) is the plate thickness of the plate steel plate for line pipes, and T 1 (° C.) is the heating temperature in the heating furnace before rolling of the material rolled to the plate steel plate for line pipes, T 2 C.) is a finishing rolling temperature at which the planks steel by rolling the material, T 3 C.) is a water cooling stop temperature at the time of water cooling the thick steel plates after rolling, otherwise Is the content (% by mass) of each element.

好ましくは、ラインパイプ用厚鋼板の降伏応力は414〜690MPaであり、かつ、引張強度は517〜827MPaである。   Preferably, the yield stress of the thick steel plate for line pipe is 414 to 690 MPa, and the tensile strength is 517 to 827 MPa.

要するに、本発明のラインパイプ用厚鋼板の強度グレードはAPI5L X60〜X80に相当する。   In short, the strength grade of the thick steel plate for line pipes of the present invention corresponds to API5L X60 to X80.

好ましくは、ラインパイプ用厚鋼板の板厚WTは、10.0≦WT≦45.0である。   Preferably, the plate thickness WT of the thick steel plate for line pipe is 10.0 ≦ WT ≦ 45.0.

以下、図面を参照し、本発明の実施の形態を詳しく説明する。図中同一又は相当部分には同一符号を付してその説明は繰り返さない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated.

1.化学組成
本発明の実施の形態によるラインパイプ用厚鋼板は、以下の組成を有する。以降、各元素に関する%は質量%を意味する。
1. Chemical composition The thick steel plate for line pipes by embodiment of this invention has the following compositions. Henceforth,% regarding each element means the mass%.

C:0.04〜0.08%
Cは鋼の強度を改善する。過剰なC含有量は圧延工程又は圧延後の冷却工程におけるパーライト変態時にC偏析を引き起こし、局所的に硬度を上昇する。局所的な硬度上昇は耐HIC性を低下する。そのため、C含有量は0.04〜0.08%にする。
C: 0.04 to 0.08%
C improves the strength of the steel. Excessive C content causes C segregation during pearlite transformation in the rolling process or the cooling process after rolling, and locally increases the hardness. Local hardness increase reduces HIC resistance. Therefore, the C content is 0.04 to 0.08%.

Si:0.05〜0.35%
Siは脱酸剤として有効である。さらにSiは鋼の強度を増加する。Si含有量が少なすぎると脱酸が不十分になる。またSi含有量が多すぎると溶接熱影響部(HAZ:Heat Affected Zone)にマルテンサイトを生成し、靭性低下を引き起こす。そのためSi含有量は0.05〜0.35%にする。好ましいSi含有量は0.05〜0.30%である。
Si: 0.05 to 0.35%
Si is effective as a deoxidizer. Furthermore, Si increases the strength of the steel. When there is too little Si content, deoxidation will become inadequate. Moreover, when there is too much Si content, a martensite will be produced | generated in a welding heat affected zone (HAZ: Heat Affected Zone), and a toughness fall will be caused. Therefore, the Si content is set to 0.05 to 0.35%. A preferable Si content is 0.05 to 0.30%.

Mn:1.20〜1.80%
Mnは鋼の強度と靭性に寄与する。Mn含有量が少なすぎると鋼の強度を得るために他の合金元素を添加しなければならず、製造コストを引き上げる。Mn含有量が多くなると連続鋳造スラブに中心偏析を引き起こし、耐HIC性を低下する。圧延工程又は圧延後の水冷工程でMn偏析部にCが濃化し、局所的に硬度を上昇するためである。そのためMn含有量を1.20〜1.80%にする。
Mn: 1.20 to 1.80%
Mn contributes to the strength and toughness of the steel. If the Mn content is too small, other alloy elements must be added to obtain the strength of the steel, which raises the manufacturing cost. When the Mn content is increased, center segregation is caused in the continuously cast slab, and the HIC resistance is lowered. This is because C is concentrated in the Mn segregation part in the rolling process or the water cooling process after rolling, and the hardness is locally increased. Therefore, the Mn content is 1.20 to 1.80%.

Nb:0.02〜0.06%
Nbは結晶粒を微細化し、強度及び靭性を改善する。Nbを添加した鋼をオーステナイト未再結晶域で圧延した後、Ar3変態点以上の温度から急冷することにより鋼の組織を細粒な下部ベイナイト組織にすることができる。Nb含有量が多すぎるとスラブを加熱するときにスラブ中のNb炭窒化物が完全に溶解せず、未溶解のNb炭窒化物がHICの起点となる。そのためNb含有量は0.02〜0.06%にする。好ましいNb含有量は0.02〜0.05%である。
Nb: 0.02 to 0.06%
Nb refines crystal grains and improves strength and toughness. After rolling the steel added with Nb in the austenite non-recrystallized region, the steel structure can be made into a fine lower bainite structure by quenching from a temperature not lower than the Ar3 transformation point. When there is too much Nb content, when heating a slab, Nb carbonitride in a slab will not melt | dissolve completely, but undissolved Nb carbonitride will become the origin of HIC. Therefore, the Nb content is 0.02 to 0.06%. A preferable Nb content is 0.02 to 0.05%.

Ti:0.005〜0.030%
TiはTi炭窒化物を形成し、鋼の強度に寄与する。Ti含有量が多すぎるとTi炭窒化物が粗大化し、HAZの靭性を低下する。さらに連続鋳造スラブの中央部に過剰なTi炭窒化物が形成され、HICを引き起こす。そのため、Ti含有量は0.005〜0.030%にする。好ましいTi含有量は0.005〜0.025%である。
Ti: 0.005-0.030%
Ti forms Ti carbonitride and contributes to the strength of the steel. When there is too much Ti content, Ti carbonitride will coarsen and the toughness of HAZ will fall. Furthermore, an excessive Ti carbonitride is formed at the center of the continuously cast slab, causing HIC. Therefore, the Ti content is made 0.005 to 0.030%. A preferable Ti content is 0.005 to 0.025%.

Al:0.010〜0.060%
Alは脱酸剤である。さらにAlは靭性に寄与する。しかしながらAl含有量が多すぎると過剰な介在物を形成し、鋼の清浄度を下げる。そのため、Al含有量は0.010〜0.060にする。好ましいAl含有量は0.010〜0.055%である。
Al: 0.010 to 0.060%
Al is a deoxidizer. Furthermore, Al contributes to toughness. However, if the Al content is too high, excessive inclusions are formed and the cleanliness of the steel is lowered. Therefore, the Al content is set to 0.010 to 0.060. A preferable Al content is 0.010 to 0.055%.

P:0.020%以下
Pは不純物である。Pはスラブ中央部に偏析し、組織を硬化させることによりHICを引き起こす。そのため、P含有量は0.020%にする。
P: 0.020% or less P is an impurity. P segregates in the center of the slab and causes HIC by hardening the structure. Therefore, the P content is 0.020%.

S:0.003%以下
Sは不純物である。SはMnと結合してMnSを形成し、MnSはHICの起点となる。そのため、S含有量は低い方が好ましい。S含有量は0.003%以下にする。好ましいS含有量は0.002%以下である。
S: 0.003% or less S is an impurity. S combines with Mn to form MnS, which becomes the starting point of HIC. Therefore, the one where S content is low is preferable. S content is made 0.003% or less. A preferable S content is 0.002% or less.

Ca:0.0005%未満
本発明ではCaは不純物である。Caは介在物を球状化しHICの発生を抑制するが、製造コストを引き上げる。そのため、本発明によるラインパイプ用厚鋼板にはCaは添加されない。そのためCa含有量は0.0005%未満になる。
Ca: less than 0.0005% In the present invention, Ca is an impurity. Ca spheroidizes inclusions and suppresses the generation of HIC, but increases the manufacturing cost. Therefore, Ca is not added to the thick steel plate for line pipes according to the present invention. Therefore, the Ca content is less than 0.0005%.

Cu:0〜0.40%
Cuは選択元素である。Cuは靭性及び耐HIC性に寄与する。しかしながら、Cuは製造コストを引き上げる。さらにCuはフェライト形成元素であるため、Cu含有量が多すぎると組織中のフェライトの割合が増加し、鋼の強度が低下する。そのためCu含有量は0〜0.40%にする。
Cu: 0 to 0.40%
Cu is a selective element. Cu contributes to toughness and HIC resistance. However, Cu raises manufacturing costs. Furthermore, since Cu is a ferrite forming element, if the Cu content is too large, the proportion of ferrite in the structure increases and the strength of the steel decreases. Therefore, the Cu content is set to 0 to 0.40%.

Cr:0〜0.50%
Crは選択元素である。Crは強度及び耐食性に寄与する。しかしながら、Crは製造コストを引き上げる。さらに、Cr含有量が多すぎると溶接性を低下する。そのため、Cr含有量は0〜0.50%にする。
Cr: 0 to 0.50%
Cr is a selective element. Cr contributes to strength and corrosion resistance. However, Cr increases manufacturing costs. Furthermore, when there is too much Cr content, weldability will fall. Therefore, the Cr content is 0 to 0.50%.

Ni:0〜0.50%
Niは選択元素である。Niは強度及び靭性に寄与する。Cuを添加する場合、Niも添加するのが好ましい。なぜならNiはCuチェッキングを防止するからである。CuとともにNiを添加する場合、Cu含有量の約2倍以上のNi含有量とするのが好ましい。Ni含有量が高すぎると、溶接性を低下する。そのため、Ni含有量は0〜0.50%にする。
Ni: 0 to 0.50%
Ni is a selective element. Ni contributes to strength and toughness. When adding Cu, it is preferable to also add Ni. This is because Ni prevents Cu checking. When adding Ni together with Cu, the Ni content is preferably about twice or more the Cu content. When Ni content is too high, weldability will fall. Therefore, the Ni content is 0 to 0.50%.

Mo:0〜0.25%
Moは選択元素である。Moは焼き入れ性を改善することにより強度に寄与する。具体的には、Moはオーステナイトからフェライト及びパーライトへの変態を遅らせる。そのため、厚鋼板を所望の強度にするために必要に応じて添加する。Mo含有量は0〜0.25%にする。
Mo: 0 to 0.25%
Mo is a selective element. Mo contributes to strength by improving hardenability. Specifically, Mo delays the transformation from austenite to ferrite and pearlite. Therefore, it adds as needed in order to make a thick steel plate a desired intensity | strength. The Mo content is 0 to 0.25%.

V:0〜0.06%
Vは選択元素である。Vは析出硬化により強度に寄与する。V含有量が多すぎると製造コストが高くなる。そのため、V含有量は0〜0.06%にする。
V: 0 to 0.06%
V is a selective element. V contributes to strength by precipitation hardening. When there is too much V content, manufacturing cost will become high. Therefore, the V content is 0 to 0.06%.

なお、残部はFeで構成されるが、製造過程の種々の要因により他の不純物が含まれることもあり得る。他の不純物とは、たとえば酸化物である。なお、これら不純物により本発明のラインパイプ用厚鋼板の特徴が変わることはない。   The balance is composed of Fe, but other impurities may be included due to various factors in the manufacturing process. Another impurity is, for example, an oxide. In addition, the characteristic of the thick steel plate for line pipes of this invention does not change with these impurities.

本発明のラインパイプ用厚鋼板はMn及びPの偏析度が低い。具体的にはMn偏析度が1.2以下であり、P偏析度が2.0以下である。これらの元素の偏析を抑えることで、HICの発生を抑制できる。   The thick steel plate for line pipes of the present invention has a low segregation degree of Mn and P. Specifically, the Mn segregation degree is 1.2 or less, and the P segregation degree is 2.0 or less. By suppressing segregation of these elements, generation of HIC can be suppressed.

ここで、Mn偏析度とは厚鋼板全体のMn濃度に対するMn偏析部のMn濃度の比であり、たとえば、以下のように測定する。   Here, the Mn segregation degree is the ratio of the Mn concentration of the Mn segregation part to the Mn concentration of the entire thick steel plate, and is measured as follows, for example.

図1Aに示すように厚鋼板10の幅方向に沿って複数のサンプルを採取する。具体的には、幅Wmm及び板厚WTmmの厚鋼板10の端部11からW/8、W/4、W/2、3W/4、7W/8の位置からそれぞれ50mm×50mm×板厚WTmmのサンプル50を採取する。採取した5つのサンプル50の断面を研磨した後、図1Bに示すように板厚WT方向にX線による線分析を実施し、Mn濃度のピーク値を測定する。一方、厚鋼板全体のMn濃度はレードル値又は製品チェック分析により測定した値(バルク値)を用いる。各サンプルでピーク値/バルク値を求め、それらの平均をMn偏析度とする。   A plurality of samples are taken along the width direction of the thick steel plate 10 as shown in FIG. 1A. Specifically, from the end 11 of the thick steel plate 10 having a width Wmm and a plate thickness WTmm, from the positions W / 8, W / 4, W / 2, 3W / 4, 7W / 8, 50 mm × 50 mm × plate thickness WTmm, respectively. Sample 50 is taken. After polishing the cross sections of the collected five samples 50, X-ray line analysis is performed in the plate thickness WT direction as shown in FIG. 1B to measure the peak value of the Mn concentration. On the other hand, the Mn concentration of the entire thick steel plate uses a ladle value or a value (bulk value) measured by product check analysis. The peak value / bulk value is obtained for each sample, and the average of these is taken as the Mn segregation degree.

P偏析度とは厚鋼板全体のP濃度に対するP偏析部のP濃度の比であり、たとえばMn偏析度と同様の測定方法により求められる。   The P segregation degree is the ratio of the P concentration of the P segregation part to the P concentration of the entire thick steel plate, and is obtained, for example, by the same measurement method as the Mn segregation degree.

また、本発明のラインパイプ用鋼板の降伏応力は414〜690MPaであり、かつ、引張強度は517〜827MPaである。換言すれば、本発明のラインパイプ用厚鋼板の強度グレードはAPI5L X60〜X80である。   Moreover, the yield stress of the steel plate for line pipes of this invention is 414-690 MPa, and the tensile strength is 517-827 MPa. In other words, the strength grade of the thick steel plate for line pipes of the present invention is API5L X60 to X80.

3.製造方法
上記化学組成の鋼を溶製し、周知の精錬工程により精錬する。続いて溶鋼を素材にする。具体的には溶鋼を連続鋳造によりスラブにする。このとき、鋳込速度、鋳込温度及び冷却速度を調整することによりスラブでのMn偏析度を1.2以下にし、P偏析度を2.0以下にする。上記Mn偏析度及びP偏析度にするために電磁誘導撹拌を実施してもよい。 続いて、スラブを熱間圧延して厚鋼板にする。具体的には、スラブを加熱炉に装入し、加熱温度T℃で加熱する。好ましい加熱温度Tは、1000〜1200℃である。なお、好ましい加熱時間は180〜300分である。
3. Manufacturing method Steel having the above chemical composition is melted and refined by a well-known refining process. Next, molten steel is used as a raw material. Specifically, molten steel is made into a slab by continuous casting. At this time, by adjusting the casting speed, the casting temperature, and the cooling rate, the Mn segregation degree in the slab is made 1.2 or less, and the P segregation degree is made 2.0 or less. In order to obtain the Mn segregation degree and the P segregation degree, electromagnetic induction stirring may be performed. Subsequently, the slab is hot rolled into a thick steel plate. Specifically, the slab is charged into a heating furnace and heated at a heating temperature T 1 ° C. Preferred heating temperatures T 1 is 1000 to 1200 ° C.. A preferable heating time is 180 to 300 minutes.

所定時間加熱した後、加熱炉からスラブを抽出する。抽出したスラブは粗圧延機及び仕上圧延機により圧延され、厚鋼板になる。このときの好ましい圧延仕上温度Tは700〜950℃である。ここで、圧延仕上温度とは、スラブを圧延機により圧延して厚鋼板とするときの最終パス圧延前の素材の温度をいう。圧延後の好ましい板厚WTは10.0〜45.0mmである。 After heating for a predetermined time, the slab is extracted from the heating furnace. The extracted slab is rolled by a rough rolling mill and a finish rolling mill to form a thick steel plate. Preferred finishing rolling temperature T 2 at this time is 700 to 950 ° C.. Here, the rolling finishing temperature refers to the temperature of the material before the final pass rolling when the slab is rolled with a rolling mill to form a thick steel plate. A preferable plate thickness WT after rolling is 10.0 to 45.0 mm.

圧延された厚鋼板は水冷停止温度T℃まで水冷した後、常温まで空冷する。水冷停止温度T℃は400〜550℃が好ましい。圧延後の厚鋼板の温度はAr3変態点以上である。Ar3変態点以上の温度から急冷することによりCが中心偏析部に濃化するのを抑制し、耐HIC性を向上させる。 The rolled thick steel plate is water cooled to a water cooling stop temperature T 3 ° C and then air cooled to room temperature. Water cooling stop temperature T 3 ° C. is preferably 400 to 550 ° C.. The temperature of the thick steel plate after rolling is not less than the Ar3 transformation point. C is prevented from concentrating in the center segregation area by quenching from A r3 transformation point or above the temperature, improve the HIC resistance.

さらに、本発明によるラインパイプ用厚鋼板の製造方法では、以下の式(1)を満たす。
547≦0.10WT+1428C+93Si+108Mn−12Cu+113Cr+113Ni+304Mo+430Nb+238V+1315Ti+0.21T+0.03T−0.04T+30≦739 (1)
Furthermore, in the manufacturing method of the thick steel plate for line pipes by this invention, the following formula | equation (1) is satisfy | filled.
547 ≦ 0.10 WT + 1428C + 93Si + 108Mn-12Cu + 113Cr + 113Ni + 304Mo + 430Nb + 238V + 1315Ti + 0.21T 1 + 0.03T 2 −0.04T 3 + 30 ≦ 739 (1)

すなわち、ラインパイプ用厚鋼板の耐HIC性には、化学組成だけでなく、板厚WT、加熱温度T、圧延仕上温度T及び水冷停止温度Tが影響する。Mn偏析度を1.2以下、P偏析度を2.0以下にし、かつ、式(1)を満たす化学組成及び製造条件で製造することにより、Ca処理をすることなく少量硫化水素環境における耐HIC性に優れたラインパイプ用厚鋼板を得ることができる。 That is, not only the chemical composition but also the plate thickness WT, the heating temperature T 1 , the rolling finishing temperature T 2 and the water cooling stop temperature T 3 affect the HIC resistance of the thick steel plate for line pipe. By making the Mn segregation degree 1.2 or less, the P segregation degree 2.0 or less, and manufacturing with the chemical composition and production conditions satisfying the formula (1), the resistance in a small amount of hydrogen sulfide environment without Ca treatment. A thick steel plate for line pipes having excellent HIC properties can be obtained.

なお、式(1)を満たすことによりラインパイプ用厚鋼板の降伏応力(0.2%耐力)は414〜690MPaになり、かつ、引張強度は517〜758MPaになる。換言すれば、API5L X60〜X80に相当するラインパイプ用厚鋼板を得ることができる。
さらに、式(2)に示すαが表1のα値欄の値を満たすことにより、表1中のαに対応した強度グレードを有するラインパイプ用厚鋼板を得ることができる。
In addition, by satisfy | filling Formula (1), the yield stress (0.2% yield strength) of the thick steel plate for line pipes will be 414-690 MPa, and tensile strength will be 517-758 MPa. In other words, a thick steel plate for line pipes corresponding to API5L X60 to X80 can be obtained.
Furthermore, when α shown in Formula (2) satisfies the value in the α value column of Table 1, a thick steel plate for line pipes having a strength grade corresponding to α in Table 1 can be obtained.

α=0.10WT+1428C+93Si+108Mn−12Cu+113Cr+113Ni+304Mo+430Nb+238V+1315Ti+0.21T+0.03T−0.04T+30 (2)

Figure 2006111928
α = 0.10WT + 1428C + 93Si + 108Mn-12Cu + 113Cr + 113Ni + 304Mo + 430Nb + 238V + 1315Ti + 0.21T 1 + 0.03T 2 −0.04T 3 +30 (2)
Figure 2006111928

たとえば、547≦α≦613であれば、API5L X60に相当する厚鋼板を得ることができる。   For example, if 547 ≦ α ≦ 613, a thick steel plate corresponding to API5L X60 can be obtained.

表2に示す化学組成の厚鋼板を製造し、製造した厚鋼板の強度及び耐HIC性を評価した。

Figure 2006111928
Thick steel plates having the chemical composition shown in Table 2 were produced, and the strength and HIC resistance of the produced thick steel plates were evaluated.
Figure 2006111928

表2に示す化学組成を有する溶鋼を連続鋳造法によりスラブにした。鋳造したスラブを加熱炉に装入し、表2に示す加熱温度T℃で180〜330分加熱した。加熱したスラブを加熱炉から抽出し、熱間圧延により表2に示す板厚WTmmの厚鋼板にした。このとき、圧延仕上温度T℃は表2に示す通りであった。圧延後の厚鋼板は表2に示す水冷停止温度T℃まで水冷した後、常温まで空冷した。 Molten steel having the chemical composition shown in Table 2 was made into a slab by a continuous casting method. The cast slab was charged into a heating furnace and heated at a heating temperature T 1 ° C shown in Table 2 for 180 to 330 minutes. The heated slab was extracted from the heating furnace and formed into a thick steel plate having a thickness of WT mm shown in Table 2 by hot rolling. At this time, the rolling finishing temperature T 2 ° C was as shown in Table 2. The rolled steel plate was water cooled to a water cooling stop temperature T 3 ° C shown in Table 2 and then air cooled to room temperature.

空冷後、各厚鋼板のMn偏析度及びP偏析度を調査した。具体的には、厚鋼板の一端からW/8、W/4、W/2、3W/4、7W/8の位置でそれぞれ50mm×50mm×板厚WTmmのサンプルを採取した。採取した5つのサンプルの断面を研磨した後、板厚WT方向にX線による線分析を実施し、Mn濃度のピーク値を測定した。一方、厚鋼板全体のMn濃度(バルク値)はレードル値を用いた。各サンプルでピーク値/バルク値を求め、それらの平均をMn偏析度とした。同様の方法でP偏析度も求めた。Mn偏析度及びP偏析度を表2に示す。   After air cooling, the Mn segregation degree and the P segregation degree of each thick steel plate were investigated. Specifically, samples of 50 mm × 50 mm × plate thickness WT mm were taken at positions W / 8, W / 4, W / 2, 3W / 4, and 7W / 8 from one end of the thick steel plate. After polishing the cross sections of the five samples collected, X-ray line analysis was performed in the plate thickness WT direction to measure the peak value of the Mn concentration. On the other hand, the ladle value was used for the Mn concentration (bulk value) of the entire thick steel plate. The peak value / bulk value was obtained for each sample, and the average of these values was taken as the Mn segregation degree. The degree of P segregation was also determined by the same method. Table 2 shows the degree of Mn segregation and the degree of P segregation.

さらに、各厚鋼板の化学組成及び製造条件に基づいてα値を算出した。各厚鋼板のα値を表2に示す。   Furthermore, the α value was calculated based on the chemical composition and production conditions of each thick steel plate. Table 2 shows the α value of each thick steel plate.

[降伏応力及び引張強度調査]
引張試験を実施し、各厚鋼板の降伏応力YS及び引張強度TSを調査した。試験片は平板試験片とし、API規格に基づいて作成した。
[Survey on yield stress and tensile strength]
A tensile test was performed, and the yield stress YS and tensile strength TS of each thick steel plate were investigated. The test piece was a flat plate test piece and was prepared based on the API standard.

[耐HIC性の評価試験]
各厚鋼板に対して耐HIC性の評価試験(HIC試験)を実施した。このとき、NACE溶液として0.3atmの硫化水素を飽和させた0.5%酢酸+5%食塩水を使用した。その他の条件はNACE TM−0284 に基づいてHIC試験を実施した。なお、試験片は上記NACE溶液に96時間浸漬した。超音波探傷により試験後の各試験片の割れの有無を調査した。割れが無かった供試材を合格とし(表2のHIC欄に「○」で示す)、割れが発生した供試材を不合格とした(表2のHIC欄に「×」で示す)。
[HIC resistance evaluation test]
An HIC resistance evaluation test (HIC test) was performed on each thick steel plate. At this time, 0.5% acetic acid + 5% brine saturated with 0.3 atm hydrogen sulfide was used as the NACE solution. For other conditions, the HIC test was performed based on NACE TM-0284. The test piece was immersed in the NACE solution for 96 hours. The presence or absence of cracking of each test piece after the test was investigated by ultrasonic flaw detection. A specimen having no cracks was accepted (indicated by “◯” in the HIC column of Table 2), and a specimen having cracks was rejected (indicated by “x” in the HIC column of Table 2).

[調査結果]
供試材1〜8は化学組成、Mn偏析度、P偏析度及びαが本発明の規定範囲内であったため、HIC試験でも割れが発生しなかった。さらに供試材1〜8の降伏応力YS及び引張強度TSは本発明の規定範囲内となり、強度グレードがAPI5L X60〜X80の範囲内となった。具体的には、供試材1のα値は591であり、強度グレードがX60であった。供試材2〜4のα値は583〜618であり、強度グレードはX65であった。供試材5,6のα値はそれぞれ635,627であり、強度グレードがX70であった。供試材7,8のα値はそれぞれ727,726であり、強度グレードがX80であった。
[Investigation result]
Since the test materials 1 to 8 had the chemical composition, the Mn segregation degree, the P segregation degree, and α within the specified ranges of the present invention, no cracks occurred in the HIC test. Further, the yield stress YS and the tensile strength TS of the test materials 1 to 8 were within the specified range of the present invention, and the strength grade was within the range of API5L X60 to X80. Specifically, the α value of the specimen 1 was 591 and the strength grade was X60. The α values of the test materials 2 to 4 were 583 to 618, and the strength grade was X65. The α values of the test materials 5 and 6 were 635 and 627, respectively, and the strength grade was X70. The α values of the test materials 7 and 8 were 727 and 726, respectively, and the strength grade was X80.

一方、供試材9〜18はHICが発生した。Mn偏析度又はP偏析度が本発明の規定範囲を超えたためと考えられる。また、供試材19及び20は、化学組成は本発明の範囲内であったものの、αが本発明の規定範囲を超えたためHICが発生した。   On the other hand, HIC occurred in the test materials 9 to 18. It is thought that the Mn segregation degree or the P segregation degree exceeded the specified range of the present invention. Further, although the test materials 19 and 20 had a chemical composition within the range of the present invention, HIC occurred because α exceeded the specified range of the present invention.

供試材21〜42は化学組成が本発明の規定範囲を超えたため、HICが発生した。また、供試材43〜45は化学組成が本発明の規定範囲を超え、αが下限値未満であった。そのため、引張強度が本発明の下限値未満となり、APIL5 X60に相当する強度を得られなかった。   Since the chemical composition of the test materials 21 to 42 exceeded the specified range of the present invention, HIC occurred. Moreover, as for the test materials 43-45, the chemical composition exceeded the regulation range of this invention, and (alpha) was less than the lower limit. Therefore, the tensile strength was less than the lower limit of the present invention, and the strength corresponding to APIL5 X60 could not be obtained.

本発明によるラインパイプ用厚鋼板は、原油や天然ガスを搬送するラインパイプに利用可能であり、特に、硫化水素分圧が0.1〜0.3atmの少量硫化水素環境に使用されるラインパイプに利用可能である。   The steel plate for line pipe according to the present invention can be used for a line pipe for conveying crude oil or natural gas, and in particular, a line pipe used in a small amount of hydrogen sulfide environment having a hydrogen sulfide partial pressure of 0.1 to 0.3 atm. Is available.

本発明の実施の形態によるラインパイプ用厚鋼板のMn偏析度及びP偏析度の測定方法を説明するための模式図である。It is a schematic diagram for demonstrating the measuring method of Mn segregation degree and P segregation degree of the thick steel plate for line pipes by embodiment of this invention. 図1中の試験片を用いた線分析の方法を説明するための模式図である。It is a schematic diagram for demonstrating the method of the line analysis using the test piece in FIG.

Claims (4)

質量%でC:0.04〜0.08%、Si:0.05〜0.35%、Mn:1.20〜1.80%、Nb:0.02〜0.06%、Ti:0.005〜0.030%、Al:0.010〜0.060%、Mo:0〜0.25%、Cu:0〜0.40%、Cr:0〜0.50%、Ni:0〜0.50%、V:0〜0.06%、P:0.020%以下、S:0.003%以下、Ca:0.0005%未満を含有し、残部はFe及び不純物からなり、全体のMn濃度に対する偏析部のMn濃度の比であるMn偏析度が1.2以下であり、全体のP濃度に対する偏析部のP濃度の比であるP偏析度が2.0以下である素材を加熱炉に装入し、T℃に加熱する工程と、
加熱した素材を前記加熱炉から抽出し、T℃の圧延仕上温度で圧延して厚鋼板にする工程と、
前記厚鋼板をT℃まで水冷し、T℃から室温まで空冷する工程とを備え、
式(1)を満たすことを特徴とするラインパイプ用厚鋼板の製造方法。
547≦0.10WT+1428C+93Si+108Mn−12Cu+113Cr+113Ni+304Mo+430Nb+238V+1315Ti+0.21T+0.03T−0.04T+30≦739 (1)
ここで、WT(mm)はラインパイプ用厚鋼板の板厚であり、C、Si、Mn、Cu、Cr、Ni、Mo、Nb、V、Tiは各元素の含有量(質量%)である。
C: 0.04 to 0.08% by mass, Si: 0.05 to 0.35%, Mn: 1.20 to 1.80%, Nb: 0.02 to 0.06%, Ti: 0 0.005 to 0.030%, Al: 0.010 to 0.060%, Mo: 0 to 0.25%, Cu: 0 to 0.40%, Cr: 0 to 0.50%, Ni: 0 to 0.50%, V: 0 to 0.06%, P: 0.020% or less, S: 0.003% or less, Ca: less than 0.0005%, the balance consisting of Fe and impurities, the whole A material whose Mn segregation degree, which is the ratio of the Mn concentration of the segregation part to the Mn concentration, is 1.2 or less and whose P segregation degree, which is the ratio of the P concentration of the segregation part to the total P concentration, is 2.0 or less. Charging the furnace and heating to T 1 ° C;
Extracting the heated material from the heating furnace and rolling it into a thick steel plate at a rolling finishing temperature of T 2 ° C;
Water-cooling the steel plate to T 3 ° C and air-cooling from T 3 ° C to room temperature,
The manufacturing method of the thick steel plate for line pipes characterized by satisfy | filling Formula (1).
547 ≦ 0.10 WT + 1428C + 93Si + 108Mn-12Cu + 113Cr + 113Ni + 304Mo + 430Nb + 238V + 1315Ti + 0.21T 1 + 0.03T 2 −0.04T 3 + 30 ≦ 739 (1)
Here, WT (mm) is the plate thickness of the thick steel plate for line pipe, and C, Si, Mn, Cu, Cr, Ni, Mo, Nb, V, and Ti are the contents (mass%) of each element. .
質量%でC:0.04〜0.08%、Si:0.05〜0.35%、Mn:1.20〜1.80%、Nb:0.02〜0.06%、Ti:0.005〜0.030%、Al:0.010〜0.060%、Mo:0〜0.25%、Cu:0〜0.40%、Cr:0〜0.50%、Ni:0〜0.50%、V:0〜0.06%、P:0.020%以下、S:0.003%以下、Ca:0.0005%未満を含有し、残部はFe及び不純物からなり、
全体のMn濃度に対する偏析部のMn濃度の比であるMn偏析度が1.2以下であり、全体のP濃度に対する偏析部のP濃度の比であるP偏析度が2.0以下であり、式(1)を満たすことを特徴とするラインパイプ用厚鋼板。
547≦0.10WT+1428C+93Si+108Mn−12Cu+113Cr+113Ni+304Mo+430Nb+238V+1315Ti+0.21T+0.03T−0.04T+30≦739 (1)
ここで、WT(mm)はラインパイプ用厚鋼板の板厚であり、T(℃)はラインパイプ用厚鋼板に圧延される素材の圧延前の加熱炉での加熱温度であり、T(℃)は前記素材を圧延して厚鋼板にするときの圧延仕上温度であり、T(℃)は圧延後の厚鋼板を水冷するときの水冷停止温度であり、それ以外は各元素の含有量(質量%)である。
C: 0.04 to 0.08% by mass, Si: 0.05 to 0.35%, Mn: 1.20 to 1.80%, Nb: 0.02 to 0.06%, Ti: 0 0.005 to 0.030%, Al: 0.010 to 0.060%, Mo: 0 to 0.25%, Cu: 0 to 0.40%, Cr: 0 to 0.50%, Ni: 0 to 0.50%, V: 0 to 0.06%, P: 0.020% or less, S: 0.003% or less, Ca: less than 0.0005%, the balance consisting of Fe and impurities,
The Mn segregation degree, which is the ratio of the Mn concentration of the segregation part to the total Mn concentration, is 1.2 or less, and the P segregation degree, which is the ratio of the P concentration of the segregation part to the entire P concentration, is 2.0 or less, A thick steel plate for line pipes characterized by satisfying formula (1).
547 ≦ 0.10 WT + 1428C + 93Si + 108Mn-12Cu + 113Cr + 113Ni + 304Mo + 430Nb + 238V + 1315Ti + 0.21T 1 + 0.03T 2 −0.04T 3 + 30 ≦ 739 (1)
Here, WT (mm) is the plate thickness of the thick steel plate for line pipe, T 1 (° C.) is the heating temperature in the heating furnace before rolling of the material rolled into the thick steel plate for line pipe, and T 2 (° C.) is a rolling finishing temperature when the material is rolled into a thick steel plate, T 3 (° C.) is a water cooling stop temperature when water cooling the thick steel plate after rolling, and other than that of each element Content (mass%).
請求項2に記載のラインパイプ用厚鋼板であって、
降伏応力が414〜690MPaであり、かつ、引張強度が517〜827MPaであることを特徴とするラインパイプ用厚鋼板。
It is a thick steel plate for line pipes according to claim 2,
A thick steel plate for line pipes having a yield stress of 414 to 690 MPa and a tensile strength of 517 to 827 MPa.
請求項2又は請求項3に記載のラインパイプ用厚鋼板であって、
10.0≦WT≦45.0であることを特徴とするラインパイプ用厚鋼板。

A thick steel plate for a line pipe according to claim 2 or claim 3,
Thick steel plate for line pipes, wherein 10.0 ≦ WT ≦ 45.0.

JP2004300848A 2004-10-15 2004-10-15 Thick steel plate for line pipe and manufacturing method thereof Active JP4432719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004300848A JP4432719B2 (en) 2004-10-15 2004-10-15 Thick steel plate for line pipe and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004300848A JP4432719B2 (en) 2004-10-15 2004-10-15 Thick steel plate for line pipe and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006111928A true JP2006111928A (en) 2006-04-27
JP4432719B2 JP4432719B2 (en) 2010-03-17

Family

ID=36380692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004300848A Active JP4432719B2 (en) 2004-10-15 2004-10-15 Thick steel plate for line pipe and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4432719B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103866187A (en) * 2014-03-24 2014-06-18 济钢集团有限公司 Steel plate for 500MPa-level pressure container for resisting sulfide stress corrosion cracking and production method thereof
CN105002435A (en) * 2015-09-09 2015-10-28 山东钢铁股份有限公司 High strength-toughness corrosion-resisting steel plate and manufacturing method thereof
CN109082601A (en) * 2018-09-03 2018-12-25 本钢板材股份有限公司 A kind of acid-resisting corrosion X70MS line steel hot rolling roll bending and its manufacturing method
CN112195409A (en) * 2020-09-30 2021-01-08 首钢集团有限公司 High-strength low-hardness hydrogen sulfide corrosion resistant steel and preparation method thereof
CN114318140A (en) * 2021-12-07 2022-04-12 江苏沙钢集团有限公司 Pipeline steel with excellent acid resistance and manufacturing method thereof
CN114381664A (en) * 2021-12-22 2022-04-22 南阳汉冶特钢有限公司 Production method of thick X80MS steel plate for corrosion-resistant pipeline
CN114921721A (en) * 2022-04-27 2022-08-19 首钢集团有限公司 Pipeline steel plate with excellent hydrogen-induced cracking resistance and preparation method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103866187A (en) * 2014-03-24 2014-06-18 济钢集团有限公司 Steel plate for 500MPa-level pressure container for resisting sulfide stress corrosion cracking and production method thereof
CN105002435A (en) * 2015-09-09 2015-10-28 山东钢铁股份有限公司 High strength-toughness corrosion-resisting steel plate and manufacturing method thereof
CN109082601A (en) * 2018-09-03 2018-12-25 本钢板材股份有限公司 A kind of acid-resisting corrosion X70MS line steel hot rolling roll bending and its manufacturing method
CN112195409A (en) * 2020-09-30 2021-01-08 首钢集团有限公司 High-strength low-hardness hydrogen sulfide corrosion resistant steel and preparation method thereof
CN114318140A (en) * 2021-12-07 2022-04-12 江苏沙钢集团有限公司 Pipeline steel with excellent acid resistance and manufacturing method thereof
CN114381664A (en) * 2021-12-22 2022-04-22 南阳汉冶特钢有限公司 Production method of thick X80MS steel plate for corrosion-resistant pipeline
CN114381664B (en) * 2021-12-22 2022-11-22 南阳汉冶特钢有限公司 Production method of thick X80MS steel plate for corrosion-resistant pipeline
CN114921721A (en) * 2022-04-27 2022-08-19 首钢集团有限公司 Pipeline steel plate with excellent hydrogen-induced cracking resistance and preparation method thereof
CN114921721B (en) * 2022-04-27 2023-08-08 首钢集团有限公司 Pipeline steel plate with excellent hydrogen induced cracking resistance and preparation method thereof

Also Published As

Publication number Publication date
JP4432719B2 (en) 2010-03-17

Similar Documents

Publication Publication Date Title
JP6047947B2 (en) Thick high-strength seamless steel pipe for line pipes with excellent sour resistance and method for producing the same
EP3042976B1 (en) Steel sheet for thick-walled high-strength line pipe having exceptional corrosion resistance, crush resistance properties, and low-temperature ductility, and line pipe
JP5251089B2 (en) Welded steel pipe for high-strength thick-walled line pipe excellent in low-temperature toughness and manufacturing method
CA2599868C (en) Steel for oil well pipe having excellent sulfide stress cracking resistance and method for manufacturing seamless steel pipe for oil well
JP5353156B2 (en) Steel pipe for line pipe and manufacturing method thereof
JP5679114B2 (en) Low yield ratio high strength hot rolled steel sheet with excellent low temperature toughness and method for producing the same
JP2006037147A (en) Steel material for oil well pipe
JP5765497B1 (en) ERW steel pipe with excellent weld quality and manufacturing method thereof
JP2012188731A (en) Low yield ratio and high strength hot-rolled steel sheet excellent in low-temperature toughness, and production method therefor
JP5137032B2 (en) Steel plate for submerged arc welding
JP4484123B2 (en) High strength and excellent base material for clad steel plate with excellent weld heat affected zone toughness
JP2010189722A (en) Method of manufacturing sheet steel for thick-walled sour-resistant line pipe of excellent toughness
JP4220871B2 (en) High-tensile steel plate and manufacturing method thereof
JP2013104124A (en) Directly quenched and tempered high tensile strength steel sheet having excellent bendability and method for producing the same
WO2014175122A1 (en) H-shaped steel and method for producing same
WO2021020220A1 (en) High-strength steel sheet for sour resistant line pipe, manufacturing method thereof, and high-strength steel pipe made using high-strength steel sheet for sour resistant line pipe
JP4802450B2 (en) Thick hot-rolled steel sheet with excellent HIC resistance and manufacturing method thereof
JP4507708B2 (en) Low yield ratio high strength high toughness steel sheet manufacturing method
JP7155703B2 (en) Thick steel plate for line pipe and manufacturing method thereof
JP6179604B2 (en) Steel strip for electric resistance welded steel pipe, electric resistance welded steel pipe, and method for producing steel strip for electric resistance welded steel pipe
JP4432719B2 (en) Thick steel plate for line pipe and manufacturing method thereof
JP5867276B2 (en) ERW steel pipe
JP4868762B2 (en) High-strength, high-toughness bainite non-tempered steel sheet with small acoustic anisotropy
JP7048378B2 (en) High strength and high ductility steel sheet
JP6390813B2 (en) Low-temperature H-section steel and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091214

R150 Certificate of patent or registration of utility model

Ref document number: 4432719

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140108

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350