JP2005131475A - Crusher - Google Patents

Crusher Download PDF

Info

Publication number
JP2005131475A
JP2005131475A JP2003368171A JP2003368171A JP2005131475A JP 2005131475 A JP2005131475 A JP 2005131475A JP 2003368171 A JP2003368171 A JP 2003368171A JP 2003368171 A JP2003368171 A JP 2003368171A JP 2005131475 A JP2005131475 A JP 2005131475A
Authority
JP
Japan
Prior art keywords
motor
overload
detecting
crushing apparatus
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003368171A
Other languages
Japanese (ja)
Inventor
Kenji Yamada
健二 山田
Hitoshi Nagaoka
仁 長岡
Masataka Morita
正隆 森田
Akio Nagata
明郎 永田
Tetsuya Kamataki
哲也 鎌滝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koki Holdings Co Ltd
Original Assignee
Hitachi Koki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Koki Co Ltd filed Critical Hitachi Koki Co Ltd
Priority to JP2003368171A priority Critical patent/JP2005131475A/en
Publication of JP2005131475A publication Critical patent/JP2005131475A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/06Hydrolysis; Cell lysis; Extraction of intracellular or cell wall material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/08Homogenizing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/20Heating or cooling

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cell crusher constituted so as to freeze tissue pieces or the like including the liver, heart and smooth muscle of an experimental animal or the like to crush the same simply and rapidly and enhanced in crushing efficiency and the recovery of a useful substance. <P>SOLUTION: In this cell crusher constituted so that a screw shaft driven by a motor is supported in a housing cylinder having a supply port in a rotatable manner and the rotary blade directly connected to the screw shaft is attached to the discharge side of the housing cylinder, a means for detecting overload is provided to the motor and the motor is instantaneously reversed after the detection of overload to efficiently crush the frozen tissue pieces of a living body. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は生体組織細胞を破砕することにより細胞または組織内の有用物質である酵素、DNA、RNA、タンパク質、抗がん性物質、細胞内微小組織等を取り出すことを目的とする破砕装置に関し、取扱いが簡単で、大量の生態組織を迅速且つ安全に処理できるとともに、破砕効率、有用物質の回収率が高い破砕装置に関する。   The present invention relates to a crushing device for the purpose of taking out enzymes, DNA, RNA, proteins, anticancer substances, intracellular micro-tissue, etc., which are useful substances in cells or tissues by crushing living tissue cells, The present invention relates to a crushing apparatus that is easy to handle, can process a large amount of ecological tissue quickly and safely, and has high crushing efficiency and a high recovery rate of useful substances.

従来の細胞破砕装置は、例えば公表平2−504360号公報に示すもの、あるいは図6に示すものがある。これはホモジナイザーとも呼び、高速回転するスクリュー形状の刃で破砕する方法、または回転する内刃と固定された外刃の間で破砕を行う方法である。   Conventional cell crushing devices include, for example, those disclosed in Japanese Published Unexamined Patent Application No. 2-504360 or those shown in FIG. This is also called a homogenizer, and is a method of crushing with a screw-shaped blade rotating at high speed, or a method of crushing between a rotating inner blade and a fixed outer blade.

このような破砕装置においては、小さく裁断された柔らかい少量の組織片の破砕には適しているが、動物の心臓等の平滑筋を含む組織あるいは骨等の硬い組織に対しては、回転刃のみでは破砕効率が悪く、組織片からタンパク質、DNA、RNA等を採集できるまでの大きさに破砕にするのに時間かり、また回転内刃と固定外刃との間に裁断され難い平滑筋や硬い組織が挟まり、破砕能力が著しく低下し、処理能力は満足できるものではない。さらに、上記細胞破砕装置においては破砕するための回転刃が高速(例えば、毎分27,000回転以上)で回転するため、細胞を破砕するときに、回転刃が組織片に高速で何回も当り、回転刃と組織との摩擦により摩擦熱が発生し、細胞から取り出すことを目的とするタンパク質、DNA、RNA等の熱に弱い物質は変質し、また、回転刃により回収するタンパク質、DNA、RNA等の物質を傷め易いので著しく回収率が低下する。
さらに、上記組織は冷凍保存されることがあり、冷凍されたままの組織を粉砕したいという要望もある。
In such a crushing apparatus, it is suitable for crushing a small soft piece of tissue that has been cut into small pieces. However, for a tissue containing smooth muscle such as an animal heart or a hard tissue such as bone, only a rotating blade is used. In this method, the crushing efficiency is low, and it takes time to crush the tissue pieces to a size that allows protein, DNA, RNA, etc. to be collected. The tissue is caught, the crushing capacity is remarkably reduced, and the processing capacity is not satisfactory. Furthermore, in the cell crushing apparatus, since the rotating blade for crushing rotates at a high speed (for example, 27,000 revolutions per minute or more), when crushing the cells, the rotating blade is applied to the tissue piece many times at a high speed. The frictional heat generated by the friction between the rotating blade and the tissue causes the heat-sensitive material such as protein, DNA, RNA, etc. to be extracted from the cells to be altered, and the protein, DNA, Since substances such as RNA are easily damaged, the recovery rate is significantly reduced.
Furthermore, the tissue may be stored frozen, and there is a desire to grind the tissue that has been frozen.

公表平2−504360号公報Publication 2-504360

本発明は、上記問題点を改善し、取扱いが簡単で、大量の生態組織細胞を迅速且つ安全に処理できるとともに、大量の試料を効率よく破砕でき、有用物質の回収率が高い破砕装置を提供することを目的とする。   The present invention provides a crushing apparatus that improves the above problems, is easy to handle, can process a large amount of biological tissue cells quickly and safely, can crush a large amount of samples efficiently, and has a high recovery rate of useful substances. The purpose is to do.

上記課題を解決するため本発明の破砕装置は、筐体と、該筐体内に配置されたモータと、供給口と排出口を有する収納筒と、該収納筒内に前記モータにより駆動されるスクリュー軸を回転可能に支持し、前記収納筒の排出側には前記スクリュー軸と一緒に回転する回転刃が取付けられ、前記回転刃に対向して前記収納筒側には固定刃が取付けられている破砕装置において、前記モータには過負荷を検出する手段を設け、前記負荷を検出する手段からの出力信号により、前記モータを逆転することで達成される。   In order to solve the above problems, a crushing apparatus according to the present invention includes a housing, a motor disposed in the housing, a storage cylinder having a supply port and a discharge port, and a screw driven by the motor in the storage cylinder. The shaft is rotatably supported, a rotary blade that rotates together with the screw shaft is attached to the discharge side of the storage cylinder, and a fixed blade is attached to the storage cylinder side facing the rotary blade. In the crushing apparatus, the motor is provided with means for detecting an overload, and the motor is reversed by an output signal from the means for detecting the load.

前記破砕装置の過負荷を検出する手段は、モータの回転速度を検出することにより達成される。   The means for detecting the overload of the crushing device is achieved by detecting the rotational speed of the motor.

前記破砕装置の過負荷を検出する手段は、モータの駆動電流を検出することにより達成される。   The means for detecting the overload of the crushing device is achieved by detecting the driving current of the motor.

前記装置の過負荷を検出する手段は、ひずみゲージによって達成される
前記破砕装置の過負荷検出後モータを逆転させる時間は過負荷を検出した時間間隔を基に変化させることによって達成される。
The means for detecting the overload of the device is achieved by a strain gauge. The time for reversing the motor after detecting the overload of the crushing device is achieved by changing based on the time interval at which the overload is detected.

前記破砕装置の過負荷検出後モータを逆転させる時間は、過負荷を検出した時間間隔が短くなるに伴い、長くすることで達成される。   The time for reversing the motor after detecting the overload of the crushing device is achieved by lengthening the time interval at which the overload is detected.

前記破砕装置の過負荷検出後モータを逆転させる時間は、一定時間当たりに過負荷を検出した回数を基に変化させることで達成される。   The time for reversing the motor after detecting the overload of the crushing device is achieved by changing it based on the number of times the overload is detected per certain time.

前記破砕装置の過負荷検出後モータを逆転させる時間は、一定時間当たりに過負荷を検出した回数が増加するに伴い、長くすることで達成される。   The time for reversing the motor after detecting the overload of the crushing device is achieved by increasing the number of times the overload is detected per fixed time.

以上のような構成にすることにより、凍結した生体組織片または、凍結した平滑筋を含む組織あるいは骨等の硬い組織等を含んだ生体組織片を破砕装置のモータにより駆動されるスクリュー軸と回転刃により破砕することで、短時間に大量の試料を破砕することが可能で、かつ破砕時の熱は最小限に抑えられる。その結果、取扱いが簡単で、迅速且つ安全に処理できるとともに、破砕効率、有用物質の回収率が高い破砕装置を提供することすることができる。   By adopting the above-described configuration, the rotation of the screw shaft driven by the motor of the crushing device rotates the frozen biological tissue piece, the tissue containing the frozen smooth muscle, or the hard tissue such as bone. By crushing with a blade, a large amount of sample can be crushed in a short time, and heat during crushing can be minimized. As a result, it is possible to provide a crushing apparatus that is easy to handle, can be processed quickly and safely, and has high crushing efficiency and a high recovery rate of useful substances.

本発明の破砕装置について細胞破砕装置を例にとり、図面を参照しながら説明する。
本発明の実施例を図1〜図11を用い説明する。図1は細胞破砕装置の一実施例を示す構造および部品構成を説明する側面図である。図2は細胞破砕装置の一実施例を示す斜視図である。
The crushing apparatus of the present invention will be described by taking a cell crushing apparatus as an example with reference to the drawings.
An embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a side view illustrating a structure and a component configuration showing an embodiment of a cell disrupting apparatus. FIG. 2 is a perspective view showing an embodiment of the cell crushing apparatus.

図1において、細胞破砕装置1の筐体22内にはスクリュー軸4を駆動するためのモータ2が内蔵されており、破砕部3は筐体22に着脱自在に装着され、破砕部3を構成する収納筒7内部にはスクリュー軸4が回転可能に配置されており、さらに、収納筒7の排出口21側にはスクリュー軸4と一緒に回転するよう配置された回転刃5が保持されている。   In FIG. 1, a motor 2 for driving the screw shaft 4 is built in a housing 22 of the cell crushing apparatus 1, and a crushing unit 3 is detachably attached to the housing 22 to constitute the crushing unit 3. A screw shaft 4 is rotatably disposed inside the storage cylinder 7, and a rotary blade 5 disposed to rotate together with the screw shaft 4 is held on the discharge port 21 side of the storage cylinder 7. Yes.

さらにその回転刃5に対向するよう設けられた多孔穴6aを有する固定刃6が固定刃ホルダ20と図示されていない回転防止部材によって回転できないよう取付けられている。さらに、収納筒7には、破砕部3に動物の心臓等の平滑筋を含む組織あるいは骨等の硬い組織等を凍結させた生体組織片を連続的に投入するための供給口8が設けられている。   Furthermore, the fixed blade 6 having the perforated hole 6a provided so as to face the rotary blade 5 is attached so that it cannot be rotated by the fixed blade holder 20 and a rotation preventing member (not shown). Further, the storage cylinder 7 is provided with a supply port 8 for continuously introducing into the crushing section 3 a living tissue piece frozen from a tissue containing smooth muscle such as an animal heart or a hard tissue such as a bone. ing.

本実施例ではスクリュー軸4はモータ2の回転軸に過負荷検出器9を介して着脱自在に嵌合するように設置されている。図3は図1のA−A断面図である。スクリュー軸4は排出口21に向かって軸径が徐々に大きくなる構造であり、スクリュー軸4を保持する収納筒7内部にはスクリュー軸4の回転軸方向に複数の溝12が形成されている。   In this embodiment, the screw shaft 4 is installed so as to be detachably fitted to the rotating shaft of the motor 2 via the overload detector 9. 3 is a cross-sectional view taken along the line AA in FIG. The screw shaft 4 has a structure in which the shaft diameter gradually increases toward the discharge port 21, and a plurality of grooves 12 are formed in the direction of the rotation axis of the screw shaft 4 in the housing cylinder 7 that holds the screw shaft 4. .

上記構成において、細胞破砕装置1の図示しないスイッチをONするとモータ制御部10からの出力によりモータ2が駆動して、スクリュー軸4および回転刃5が回転する。
図4において、細胞破砕装置1に投入された凍結した生体組織片11はスクリュー軸4と収納筒7とで構成される隙間に入り、スクリュー軸4が回転すると凍結した生体組織片11はスクリュー羽根4aに押され、複数の溝12に沿って排出口21へ送られる。スクリュー軸4と収納筒7との隙間は徐々に小さくなり、液体窒素等で凍結した生体組織片11は圧縮力を受け、図4のaからdにおける過程を経て細かく砕かれながら回転刃5の方向へ押出される。
In the above configuration, when a switch (not shown) of the cell crushing apparatus 1 is turned on, the motor 2 is driven by the output from the motor control unit 10 and the screw shaft 4 and the rotary blade 5 rotate.
In FIG. 4, the frozen biological tissue piece 11 put into the cell crushing device 1 enters a gap formed by the screw shaft 4 and the storage cylinder 7, and the frozen biological tissue piece 11 is screw blades when the screw shaft 4 rotates. It is pushed by 4 a and sent to the discharge port 21 along the plurality of grooves 12. The gap between the screw shaft 4 and the storage cylinder 7 is gradually reduced, and the biological tissue piece 11 frozen with liquid nitrogen or the like receives a compressive force, and is crushed through the processes from a to d in FIG. Extruded in the direction.

収納筒7内部に形成された回転軸方向の複数の溝12は、凍結した生体組織片11がスクリュー軸4の回転とともに円周方向に動くことを抑制する働きと、凍結した破砕された生体組織片11を排出側へ送りだす案内溝としての機能を有する。   The plurality of grooves 12 in the direction of the rotation axis formed inside the storage cylinder 7 serve to suppress the movement of the frozen biological tissue piece 11 in the circumferential direction along with the rotation of the screw shaft 4, and the frozen and crushed biological tissue. It has a function as a guide groove for feeding the piece 11 to the discharge side.

排出口21の方向へ押出される破砕された凍結した生体組織片11は回転刃5と固定刃6の多孔穴6aでさらに細かく破砕され、生体組織は凍結したまま、或は、シャーベット状の状態で、排出口21から破砕部3外に排出される。   The crushed frozen biological tissue piece 11 extruded in the direction of the discharge port 21 is further crushed by the porous hole 6a of the rotary blade 5 and the fixed blade 6, and the biological tissue is frozen or in a sherbet-like state. Then, it is discharged out of the crushing part 3 from the discharge port 21.

図5において、非常に硬い組織(例えば骨など)を含む生体組織片11が装置に投入され、スクリュー軸4と収納筒7が作りだす圧縮力にも耐えるような場合、モータ2には過剰な負荷が加わり、過負荷検出器9からの信号が出力される。過負荷検出器9からの信号を受けて、モータ制御部10は直ちにモータ2の回転を停止し、スクリュー軸4は図5aに示される位置で停止する。   In FIG. 5, when a biological tissue piece 11 containing a very hard tissue (for example, bone) is put into the apparatus and can withstand the compressive force created by the screw shaft 4 and the storage cylinder 7, an excessive load is applied to the motor 2. And the signal from the overload detector 9 is output. Upon receiving a signal from the overload detector 9, the motor control unit 10 immediately stops the rotation of the motor 2, and the screw shaft 4 stops at the position shown in FIG. 5a.

その後、図5bに示す矢印のようにスクリュー軸4を回転させるために、モータは逆に回転する。逆に回転することにより、スクリュー軸4と収納筒7との隙間は大きくなり、硬い組織を含む生体組織片11はその隙間で位置および向きを変化させる。   Thereafter, the motor rotates in reverse to rotate the screw shaft 4 as shown by the arrow in FIG. 5b. By rotating in reverse, the gap between the screw shaft 4 and the storage cylinder 7 becomes large, and the living tissue piece 11 including the hard tissue changes its position and orientation.

動植物等の生体組織は機械的な強度(例えば、引張り強度や圧縮強度)に対して方向性依存性が大きく、力を加える方向を変えることにより小さな力で、破砕することが出来る。生体組織片11の向きを変えた後、再度モータ2を正回転させると図5cから図5eに示すように硬い組織を含む生体組織片11でも細かく砕かれることが可能となる。   Biological tissues such as animals and plants are highly directional dependent on mechanical strength (for example, tensile strength and compressive strength), and can be crushed with a small force by changing the direction in which the force is applied. If the direction of the biological tissue piece 11 is changed and then the motor 2 is rotated forward again, the biological tissue piece 11 containing a hard tissue can be finely crushed as shown in FIGS. 5c to 5e.

図6は、過負荷検出後にモータを逆回転させるタイミングを示しており、過負荷検出器9として、モータの回転速度を検出する方法を用いた場合を示している。また、別の方法の過負荷検出器9として、ひずみゲージを用いた場合の検出する方法も合わせて記載している。   FIG. 6 shows the timing of reverse rotation of the motor after overload detection, and shows a case where a method of detecting the rotation speed of the motor is used as the overload detector 9. Further, a method of detecting when a strain gauge is used as an overload detector 9 of another method is also described.

通常の破砕状態体では、モータの回転速度はほぼ一定の回転速度で運転している。しかし、図5bに示すように生体組織片11により、スクリュー軸4の回転が著しく低下した場合、またはロック状態になるとスクリュー軸4を回転駆動しているモータ2に過負荷が加わり、モータの回転は押さえられ、回転速度が予め決められた値以下になると過負荷検出器9の信号がONとなる。この信号を受けて、モータ制御部10はモータ2の回転を停止し、その後、予め決められた回転速度と時間で逆回転を行う。逆回転が終了したら、再度正回転でモータを運転する。また、逆回転は回転数(例えば1乃至2回転)でも良い。   In a normal crushed state body, the motor is operated at a substantially constant rotational speed. However, as shown in FIG. 5b, when the rotation of the screw shaft 4 is remarkably reduced by the biological tissue piece 11, or when the screw shaft 4 is locked, an overload is applied to the motor 2 that rotationally drives the screw shaft 4, and the rotation of the motor Is suppressed, and the signal of the overload detector 9 is turned ON when the rotation speed becomes a predetermined value or less. Upon receiving this signal, the motor control unit 10 stops the rotation of the motor 2 and then performs reverse rotation at a predetermined rotation speed and time. When the reverse rotation is completed, the motor is operated again in the normal rotation. Further, the reverse rotation may be a rotation speed (for example, 1 to 2 rotations).

また過負荷を検出する手段は、モータの駆動電流を検出する方法でも良い。過負荷が加わるとモータの回転は押さえられ駆動電流が増加する。これを検出し、過負荷検出器9の信号出力をONとすることにより、同様の効果を得ることが出来る。   The means for detecting the overload may be a method for detecting the drive current of the motor. When an overload is applied, the rotation of the motor is suppressed and the drive current increases. By detecting this and turning on the signal output of the overload detector 9, the same effect can be obtained.

さらに、過負荷を検出する手段としてひずみゲージの出力を用いても良く、例えばモータ軸にひずみゲージを配置し、図5bに示すように生体組織片11により、スクリュー軸4の回転が著しく低下した場合、またはロック状態になるとスクリュー軸4とモータ軸の間でねじりトルクが発生し、ひずみゲージからの出力が大きくなる。予って、図6に示すようにひずみゲージの出力が予め決められた値(閾値)を超えたときに信号出力をONとすることで同様の効果が得られることが出来る。   Furthermore, the output of the strain gauge may be used as a means for detecting overload. For example, the strain gauge is arranged on the motor shaft, and the rotation of the screw shaft 4 is significantly reduced by the biological tissue piece 11 as shown in FIG. 5b. In this case, or in a locked state, a torsion torque is generated between the screw shaft 4 and the motor shaft, and the output from the strain gauge increases. A similar effect can be obtained by turning on the signal output when the output of the strain gauge exceeds a predetermined value (threshold value) as shown in FIG.

また、ひずみゲージを配置する位置はモータ軸でなくても良く、スクリュー軸4とモータ軸の間でねじりトルクが発生すると、モータ2自体がモータ回転軸を中心に回転しようとするので、この回転しようとする力を検出できるような位置に配置すれは良く、例えばモータを支持する脚部でも良く、さらに筐体22とモータ2との間に、モータ回転軸上に配置された支持軸でも良い。   In addition, the position where the strain gauge is disposed need not be the motor shaft. If a torsional torque is generated between the screw shaft 4 and the motor shaft, the motor 2 itself tries to rotate around the motor rotation shaft. For example, it may be a leg portion that supports the motor, or may be a support shaft disposed on the motor rotation shaft between the housing 22 and the motor 2. .

図7は、モータ2の逆回転を数回行う場合の実施例を示している。
定常状態でt1時間運転後に、破砕されなかった生体組織片11により、モータの回転速度が予め決められた回転速度以下に低下し、過負荷検出器9から第一回目のON信号が出力される。このON信号を受けモータ制御部10は、モータの回転を停止させた後に、予め決められた回転速度と時間(T1時間)だけモータを逆回転させる。逆回転が終了したら、モータ2は再度正回転で運転する。
FIG. 7 shows an embodiment in which the motor 2 is reversely rotated several times.
After operating for t1 hours in a steady state, the rotational speed of the motor is reduced to a predetermined rotational speed or less by the biological tissue piece 11 that has not been crushed, and the first ON signal is output from the overload detector 9. . Upon receiving this ON signal, the motor control unit 10 stops the rotation of the motor and then reversely rotates the motor for a predetermined rotation speed and time (T1 time). When the reverse rotation is completed, the motor 2 operates again in the normal rotation.

その後再度、過負荷検出器9から第二回目のON信号が出力された場合は、この信号を受け、モータ制御部10は、モータを停止するとともに第一回目のON信号と第二回目のON信号との間隔をt2時間とし、t1とt2を比較する。比較の結果、t2がt1よりも短い時間の場合は、モータ2の逆回転による生体組織片11の向きの変化が少ないため、同一方向に圧縮力を加えていることが考えられ、破砕処理が全く進行しない不具合となる。   After that, when the second ON signal is output again from the overload detector 9, the motor control unit 10 receives this signal and stops the motor, and the first ON signal and the second ON signal. The interval between the signals is t2 hours, and t1 and t2 are compared. As a result of the comparison, when t2 is shorter than t1, there is little change in the direction of the biological tissue piece 11 due to the reverse rotation of the motor 2, so it is considered that a compressive force is applied in the same direction, and crushing processing is performed. This is a problem that does not progress at all.

そこで、モータ制御部10はモータの逆回転時間をT1時間よりも長いT2時間だけモータを逆転運転するよう制御し、生体組織片11の向きを大きく変化させることができ、再度の正回転により生体組織片11を破砕できる可能性が向上する。   Therefore, the motor control unit 10 controls the reverse rotation time of the motor so as to reversely operate the motor for T2 time longer than T1 time, and can change the direction of the biological tissue piece 11 greatly, The possibility that the tissue piece 11 can be crushed is improved.

さらに、過負荷検出器9から第三回目のON信号が出力された場合は、モータ制御部10はモータ2を停止するとともに、第二回目のON信号と第三回目のON信号との間隔をt3時間とし、t2よりもt3が短い場合はモータの逆回転時間をT2時間よりも長いT3時間だけモータを逆転運転するよう制御する。
このような制御をすることにより、生体組織片11の向きをさらに大きく変化させることができ、破砕処理の進行停止を防止することが出来る。
Further, when the third ON signal is output from the overload detector 9, the motor control unit 10 stops the motor 2 and sets the interval between the second ON signal and the third ON signal. When t3 is set to be shorter than t2, the reverse rotation time of the motor is controlled to reversely run for T3 time longer than T2 time.
By performing such control, the direction of the biological tissue piece 11 can be changed further greatly, and the progress of the crushing process can be prevented from stopping.

図8において、過負荷検出の時間間隔と逆転時間の関係を示す。過負荷検出の時間間隔が短くなるに従い逆転時間は指数関数的に増加させることで破砕処理の進行停止を防止することが出来る。例えば、過負荷検出の時間間隔がt1の場合のモータ逆転時間はT1となり、過負荷検出の時間間隔がt3の場合のモータ逆転時間はT3となる。あるいは、図9に示すように数種類の逆転時間を前もって設定し、過負荷検出の時間間隔が短くなるに従い逆転時間は階段状に増加させても良い。   FIG. 8 shows the relationship between the overload detection time interval and the reverse rotation time. By increasing the reverse rotation time exponentially as the overload detection time interval becomes shorter, it is possible to prevent the crushing process from stopping. For example, the motor reverse rotation time when the overload detection time interval is t1 is T1, and the motor reverse rotation time when the overload detection time interval is t3 is T3. Alternatively, as shown in FIG. 9, several types of reverse rotation time may be set in advance, and the reverse rotation time may be increased stepwise as the overload detection time interval becomes shorter.

また、過負荷検出の時間間隔ではなくて、一定時間内の過負荷検出の回数によりモータを逆転させる時間を変化させても同様の効果を得られる。図10において一定時間内の過負荷検出回数がn回を数えた場合は、モータ2の逆回転による生体組織片11の向きの変化が少ないか全くないため、同一方向に圧縮力を加えて続けていることが考えられ、破砕処理が全く進行しない不具合と判断できる。   Further, the same effect can be obtained by changing the time for reversing the motor according to the number of times of overload detection within a certain time instead of the overload detection time interval. In FIG. 10, when the number of overload detections within a certain time is counted n times, the direction of the biological tissue piece 11 is little or not changed due to the reverse rotation of the motor 2, so the compression force is continuously applied in the same direction. It can be considered that the crushing process does not proceed at all.

このような場合は前回の逆転時間よりも長い時間モータ2の逆回転を行うことで生体組織片11の向きを前回よりも大きく変化させることができ、再度の正回転により生体組織片11を破砕できる可能性が向上する。図11において検出回数の増加に従い逆転時間を増加させることで破砕処理の進行停止を防止することが出来る。   In such a case, the direction of the biological tissue piece 11 can be changed largely from the previous time by performing the reverse rotation of the motor 2 for a longer time than the previous reverse rotation time, and the biological tissue piece 11 is crushed by the forward rotation again. The possibility of being improved. In FIG. 11, the progress of the crushing process can be prevented by increasing the reverse rotation time as the number of detections increases.

さらに、過負荷検出の間隔が予め決められた時間より短くなった場合、または一定時間内に過負荷検出の回数が予め決められた回数に達した場合は、モータ制御部10は生体組織片の破砕が不可能と判断し、スクリュー軸4を駆動しているモータ2を停止するとともに、モータ2が生体組織片の破砕ができず過負荷によって停止していることを、図示されていないランプ等の表示器によって表示する。   Furthermore, when the overload detection interval becomes shorter than a predetermined time, or when the number of overload detection reaches a predetermined number of times within a certain time, the motor control unit 10 It is determined that crushing is impossible, the motor 2 driving the screw shaft 4 is stopped, and the motor 2 cannot crush the biological tissue piece and is stopped due to overload. Display with the indicator.

このような構成とすることで、凍結した生体組織片はごく短時間に確実に粉砕されるので破砕時の熱による影響は最小限に抑えられ、かつ回転式ホモジナイザーと比較して生体組織片が高速で回転する回転刃によって傷つけられることもなく、また摩擦熱によるタンパク質、DNA、RNA等の熱に弱い物質の変質による回収率の低下や分子量の大きいタンパク質等の抽出のよう場合おいても、タンパク質等の回収物を傷つけることが少なくなり、生体組織抽出率の飛躍的な上昇につながった。例えば人肝臓からのミクロゾーム抽出に用いた場合、このミクロゾームが薬物を代謝する能力は、従来法で抽出したものに比べ数%向上する結果を得られた。さらに従来の細胞破砕装置では、連続的に生体組織片投入し、破砕することはできなかったが、本発明では連続的に生体組織片等の試料を供給口8より投入することも可能で、従来の細胞破砕機と比較し大幅な処理量の増加が達成でき、製薬企業等の工業的利用が可能となった。
さらに、本発明のモータ制御をすることにより、モータの小型化が図れるので、破砕装置を小型化することができ、持運びすることができる。
By adopting such a configuration, the frozen biological tissue piece is reliably crushed in a very short time, so that the influence of heat during crushing is minimized, and the biological tissue piece is smaller than that of a rotary homogenizer. Even if it is not damaged by the rotating blade that rotates at high speed, and the recovery rate is reduced due to alteration of heat-sensitive substances such as protein, DNA, RNA due to frictional heat, or extraction of proteins with large molecular weight, Damage to collected materials such as proteins has been reduced, leading to a dramatic increase in the rate of extraction of biological tissues. For example, when microsomes were extracted from human liver, the ability of these microsomes to metabolize drugs was improved by several percent compared to those extracted by conventional methods. Furthermore, in the conventional cell crushing apparatus, it was not possible to continuously put and crush biological tissue pieces, but in the present invention, it is also possible to continuously feed samples such as biological tissue pieces from the supply port 8, Compared to conventional cell disrupters, a significant increase in throughput was achieved, enabling industrial use by pharmaceutical companies and the like.
Furthermore, by controlling the motor of the present invention, the motor can be reduced in size, so that the crushing device can be reduced in size and carried.

本発明の一実施例を示す細胞破砕装置の構造および部品構成を説明する側面図である。It is a side view explaining the structure and component structure of a cell crushing apparatus which shows one Example of this invention. 本発明の一実施例を示す細胞破砕装置の斜視図である。It is a perspective view of the cell crushing apparatus which shows one Example of this invention. 本発明の一実施例による細胞破砕装置のA―A断面図である。It is AA sectional drawing of the cell crushing apparatus by one Example of this invention. A―A断面における凍結した生体組織片の破砕する様子を示す図である。It is a figure which shows a mode that the frozen biological tissue piece in the AA cross section is crushed. A―A断面における凍結した生体組織片の破砕する様子を示す図である。It is a figure which shows a mode that the frozen biological tissue piece in the AA cross section is crushed. 過負荷によりモータを逆回転させるタイミングを示す図である。It is a figure which shows the timing which reversely rotates a motor by overload. 過負荷によりモータを逆回転させる時間の変化を示す図である。It is a figure which shows the change of the time which reversely rotates a motor by overload. 過負荷検出間隔とモータ逆転時間の関係を示す図である。It is a figure which shows the relationship between an overload detection interval and motor reverse rotation time. 過負荷検出間隔とモータ逆転時間の関係を示す図である。It is a figure which shows the relationship between an overload detection interval and motor reverse rotation time. 過負荷の検出回数によりモータを逆回転させる時間の変化を示す図である。It is a figure which shows the change of the time which reversely rotates a motor by the frequency | count of overload detection. 過負荷の検出回数とモータ逆転時間の関係を示す図である。It is a figure which shows the relationship between the frequency | count of overload detection, and motor reverse rotation time. 従来の細胞破砕装置の断面図である。It is sectional drawing of the conventional cell crushing apparatus.

符号の説明Explanation of symbols

1 細胞破砕装置1、2 モータ、3 破砕部、4 スクリュー軸、4aスクリュー羽根、5 回転刃、6 固定刃、6a 多孔穴、7 収納筒、8 供給口、9過負荷検出器、10 モータ制御部、11 凍結した生体組織片、12 溝、20 固定ホルダ、21 排出口、22 筐体
DESCRIPTION OF SYMBOLS 1 Cell crushing apparatus 1, 2 Motor, 3 Crushing part, 4 Screw shaft, 4a screw blade, 5 Rotary blade, 6 Fixed blade, 6a Porous hole, 7 Storage cylinder, 8 Supply port, 9 Overload detector, 10 Motor control 11, frozen biological tissue piece, 12 groove, 20 fixing holder, 21 discharge port, 22 housing

Claims (8)

筐体と、該筐体内に配置されたモータと、供給口と排出口を有する収納筒と、該収納筒内に前記モータにより駆動されるスクリュー軸を回転可能に支持し、前記収納筒の排出側には前記スクリュー軸と一緒に回転する回転刃が取付けられ、前記回転刃に対向して前記収納筒側には固定刃が取付けられている破砕装置において、前記モータには過負荷を検出する手段を設け、前記負荷を検出する手段からの出力信号により、前記モータを逆転することを特徴とする破砕装置。 A housing, a motor disposed in the housing, a storage cylinder having a supply port and a discharge port, and a screw shaft driven by the motor are rotatably supported in the storage cylinder, and the discharge of the storage cylinder In the crushing apparatus, a rotating blade that rotates together with the screw shaft is attached to the side, and a fixed blade is attached to the storage cylinder side so as to face the rotating blade. A crushing apparatus comprising: a means for reversing the motor by an output signal from the means for detecting the load. 前記細胞破砕装置の過負荷を検出する手段は、モータの回転速度を検出することを特徴とする請求項1記載の破砕装置。 The crushing apparatus according to claim 1, wherein the means for detecting an overload of the cell crushing apparatus detects a rotational speed of a motor. 前記細胞破砕装置の過負荷を検出する手段は、モータの駆動電流を検出することを特徴とする請求項1記載の破砕装置。 The crushing apparatus according to claim 1, wherein the means for detecting an overload of the cell crushing apparatus detects a driving current of a motor. 前記細胞破砕装置の過負荷を検出する手段は、ひずみゲージによることを特徴とする請求項1記載の破砕装置。 The crushing apparatus according to claim 1, wherein the means for detecting an overload of the cell crushing apparatus is a strain gauge. 前記細胞破砕装置の過負荷検出後モータを逆転させる時間は過負荷を検出した時間間隔を基に変化させることを特徴とする請求項1記載の破砕装置。 The crushing apparatus according to claim 1, wherein the time for reversing the motor after detecting the overload of the cell crushing apparatus is changed based on the time interval at which the overload is detected. 前記細胞破砕装置の過負荷検出後モータを逆転させる時間は、過負荷を検出した時間間隔が短くなるに伴い、長くすることを特徴とする請求項5記載の破砕装置。 6. The crushing device according to claim 5, wherein the time for reversing the motor after detecting the overload of the cell crushing device is increased as the time interval at which the overload is detected becomes shorter. 前記細胞破砕装置の過負荷検出後モータを逆転させる時間は、一定時間当たりに過負荷を検出した回数を基に変化させることを特徴とする請求項1記載の破砕装置。 The crushing apparatus according to claim 1, wherein the time for reversing the motor after detecting the overload of the cell crushing apparatus is changed based on the number of times the overload is detected per fixed time. 前記細胞破砕装置の過負荷検出後モータを逆転させる時間は、一定時間当たりに過負荷を検出した回数が増加するに伴い、長くすることを特徴とする請求項7記載の破砕装置。
8. The crushing device according to claim 7, wherein the time for reversing the motor after detecting the overload of the cell crushing device is lengthened as the number of overload detections per fixed time increases.
JP2003368171A 2003-10-28 2003-10-28 Crusher Withdrawn JP2005131475A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003368171A JP2005131475A (en) 2003-10-28 2003-10-28 Crusher

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003368171A JP2005131475A (en) 2003-10-28 2003-10-28 Crusher

Publications (1)

Publication Number Publication Date
JP2005131475A true JP2005131475A (en) 2005-05-26

Family

ID=34645916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003368171A Withdrawn JP2005131475A (en) 2003-10-28 2003-10-28 Crusher

Country Status (1)

Country Link
JP (1) JP2005131475A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010234352A (en) * 2009-03-11 2010-10-21 Sanki Tech Co Ltd Crushing treatment apparatus
KR101359695B1 (en) * 2012-01-09 2014-02-24 (주) 메디컬그룹베스티안 Homogenizer for cell processing and delivery system
CN104689892A (en) * 2015-03-10 2015-06-10 冯亚斌 Novel efficient rapid tissue crusher

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010234352A (en) * 2009-03-11 2010-10-21 Sanki Tech Co Ltd Crushing treatment apparatus
KR101359695B1 (en) * 2012-01-09 2014-02-24 (주) 메디컬그룹베스티안 Homogenizer for cell processing and delivery system
CN104689892A (en) * 2015-03-10 2015-06-10 冯亚斌 Novel efficient rapid tissue crusher

Similar Documents

Publication Publication Date Title
JP3733487B2 (en) Catheter for removing abnormal deposits from human blood vessels
US7334748B2 (en) Method and apparatus for granulating plastic
KR20120135474A (en) Unit for grinding sample, unit for grinding and collecting sample, and process for grinding sample
JP2006289362A (en) Apparatus for mechanically processing dried material
JP2005131475A (en) Crusher
JP5023104B2 (en) Crusher
RU189186U1 (en) Animal Crusher
KR100729652B1 (en) Crusher
TWI626994B (en) Shredder
JPS60209264A (en) Chip crusher
JP5480489B2 (en) Crusher
JP3732137B2 (en) Crusher
JP2005130730A (en) Cell disrupter and, method for disrupting cell
JP2009131750A (en) Cutter for shredder
KR940018146A (en) Continuous press-feeding device for long extrusion material in extrusion pressure vessel
JP2004025157A (en) Uniaxial crusher
JP2003126718A (en) Crusher processor
JP2008168196A (en) Waste tire cutting device
JP2004330020A (en) Crushing treatment apparatus
KR200179868Y1 (en) Grinder for foods
JP3335573B2 (en) Minced meat processing equipment
JP2009011986A (en) Uniaxial volume reducing cutter
CN218132588U (en) Blank subassembly
JPH0623292A (en) Crusher capable of uniformizing size of crushed matter
KR20110004761U (en) Ball mill

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070109