JP2005130603A - Linear electromagnetic actuator - Google Patents

Linear electromagnetic actuator Download PDF

Info

Publication number
JP2005130603A
JP2005130603A JP2003363300A JP2003363300A JP2005130603A JP 2005130603 A JP2005130603 A JP 2005130603A JP 2003363300 A JP2003363300 A JP 2003363300A JP 2003363300 A JP2003363300 A JP 2003363300A JP 2005130603 A JP2005130603 A JP 2005130603A
Authority
JP
Japan
Prior art keywords
mover
electromagnetic actuator
linear electromagnetic
stator
cylindrical member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003363300A
Other languages
Japanese (ja)
Inventor
Kazuya Nakayama
和哉 中山
Tetsuji Kawasaki
川崎  哲治
Akio Toba
章夫 鳥羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2003363300A priority Critical patent/JP2005130603A/en
Publication of JP2005130603A publication Critical patent/JP2005130603A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Linear Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a linear electromagnetic actuator which can improve the setup accuracy of a moving member and besides can obtain desired magnetic properties. <P>SOLUTION: This linear electromagnetic actuator generates axial thrust in a moving member by working magnetic force between a stator and the moving member by energizing the coil of the stator. The moving member is constituted by arranging moving member cores and permanent magnets constituting magnetic poles alternately in axial direction. This is equipped with a cylindrical member 210 which is fixed coaxially to the shaft 202 of the moving member 200 and besides has a flange 210a as a support at its axial one end, and a fixing member 211 which is fixed to its axial other end. The moving member cores 201 and the permanent magnets 203 stacked alternately on the periphery of the cylindrical member are pressure-welded and caught by the above flange 210a and the fixing member 211. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、固定子との間に作用する磁気力によって直線状に駆動される可動子の構造を改良したリニア電磁アクチュエータに関する。   The present invention relates to a linear electromagnetic actuator in which the structure of a mover that is linearly driven by a magnetic force acting between a stator and a stator is improved.

図6は、この種のリニア電磁アクチュエータの従来技術を示す斜視図であり、その主要部は、本出願人の先願である特願2003−356231号に記載されているものである。
図6において、固定子100は、長手方向に沿って複数の突起107が内面にそれぞれ形成された磁性体からなるレール状(長尺状)の固定子片101,102,103,104を互いに平行にして四方に(放射状に)配置すると共に、これらの固定子片101〜104の長手方向片側の端面に、磁性体からなる環状のブリッジ120が密着して接合されている。このブリッジ120は、フェライト等の粉末磁性体を焼結あるいは接着して構成されており、軸方向から見て四隅が丸く形成され、半径方向に沿った幅は固定子片101〜104の幅に等しいと共に、ブリッジ120の外周面は固定子片101〜104の外面と面一状になっている。
FIG. 6 is a perspective view showing the prior art of this type of linear electromagnetic actuator, the main part of which is described in Japanese Patent Application No. 2003-356231 which is the prior application of the present applicant.
In FIG. 6, the stator 100 includes rail-shaped (long-shaped) stator pieces 101, 102, 103, and 104 made of a magnetic material having a plurality of protrusions 107 formed on the inner surface along the longitudinal direction. Thus, the annular bridge 120 made of a magnetic material is closely attached to and joined to the end faces on one side in the longitudinal direction of the stator pieces 101 to 104. The bridge 120 is configured by sintering or bonding a magnetic powder material such as ferrite, and has four round corners as viewed from the axial direction. The width along the radial direction is the width of the stator pieces 101 to 104. At the same time, the outer peripheral surface of the bridge 120 is flush with the outer surfaces of the stator pieces 101 to 104.

また、固定子片101,102,103,104の前記ブリッジ120近傍には、コイル108,109,110,111がそれぞれ集中的に巻回されている。
更に、116はブリッジ120の中心に形成された通孔である。
Further, coils 108, 109, 110, and 111 are intensively wound around the bridge 120 of the stator pieces 101, 102, 103, and 104, respectively.
Further, 116 is a through hole formed at the center of the bridge 120.

図7に詳しく示すように、ブリッジ120の固定子片101〜104と当接する側の面には、固定子片101〜104と対応してこれらの端部を受容する凹状溝部121〜124がそれぞれ形成されている。これらの凹状溝部121〜124の幅Bは、固定子片101〜104の端部を受容(当接)し易くするために、固定子片101〜104の端部の幅bよりも若干長く(B>b)形成されている。また、凹状溝部121,122の中心軸線xと、凹状溝部123,124の中心軸線yとは、ブリッジ120のほぼ中心付近で交差(図示例では直交)している。   As shown in detail in FIG. 7, concave grooves 121 to 124 that receive these ends corresponding to the stator pieces 101 to 104 are formed on the surface of the bridge 120 that contacts the stator pieces 101 to 104, respectively. Is formed. The width B of these concave groove portions 121 to 124 is slightly longer than the width b of the end portions of the stator pieces 101 to 104 in order to facilitate receiving (contact) the end portions of the stator pieces 101 to 104 ( B> b) formed. Further, the central axis x of the concave groove portions 121 and 122 and the central axis y of the concave groove portions 123 and 124 intersect with each other near the center of the bridge 120 (orthogonal in the illustrated example).

図8に示す如く、固定子片101〜104の端面を凹状溝部121〜124の底面に当接させると、凹状溝部121〜124の各内側面にそれぞれ対峙する固定子片101〜104の端部の外側面により、前記中心軸線x,y方向に沿ったブリッジ120及び固定子片101〜104の相対的な動きが所定範囲(前記B−bで表される隙間に相当)内で規制される。すなわち、ブリッジ120の当接面内の位置が拘束されることになる。
更に、後述する可動子200Aの磁極による磁気回路が、凹状溝部121〜124と固定子片101〜104との当接面を介して形成されるので、ブリッジ120と固定子片101〜104との間に磁気的吸引力が発生し、ブリッジ120が固定子片101〜104に吸着されて一体的に保持固定される。
As shown in FIG. 8, when the end surfaces of the stator pieces 101 to 104 are brought into contact with the bottom surfaces of the concave groove portions 121 to 124, the end portions of the stator pieces 101 to 104 that face the inner side surfaces of the concave groove portions 121 to 124, respectively. The relative movements of the bridge 120 and the stator pieces 101 to 104 along the central axis x and y directions are restricted within a predetermined range (corresponding to the gap represented by B-b). . That is, the position within the contact surface of the bridge 120 is constrained.
Furthermore, since the magnetic circuit by the magnetic pole of the mover 200A, which will be described later, is formed through the contact surfaces of the concave grooves 121-124 and the stator pieces 101-104, the bridge 120 and the stator pieces 101-104 A magnetic attraction force is generated therebetween, and the bridge 120 is attracted to the stator pieces 101 to 104 and integrally held and fixed.

このため、接着やネジ止め等の手段を用いなくても、固定子片101〜104の長手方向及びこれに直交する方向(図7,図8のx,y方向)に固定子片101〜104の位置を規制しつつ、ブリッジ120と固定子片101〜104とを一体的に固定できるようになっている。
よって、組立工程の大幅な簡素化が可能になり、接着剤も不要としてコストの低減を図ることができる。また、固定子片101〜104とブリッジ120とを固定するためのネジ部を設ける必要がなく、磁路が損なわれないため磁気特性の悪化を招くおそれもないと共に、ブリッジ120及び固定子片101〜104に対する加工は、凹状溝部121〜124を含む両者の当接面を除けば高い寸法精度が要求されることもない。
For this reason, without using means such as adhesion and screwing, the stator pieces 101 to 104 in the longitudinal direction of the stator pieces 101 to 104 and the directions orthogonal to the longitudinal direction (x and y directions in FIGS. 7 and 8). The bridge 120 and the stator pieces 101 to 104 can be integrally fixed while restricting the position of.
Therefore, the assembling process can be greatly simplified, an adhesive is not required, and the cost can be reduced. Further, there is no need to provide a screw portion for fixing the stator pieces 101 to 104 and the bridge 120, and the magnetic path is not impaired, so that there is no possibility of deteriorating magnetic characteristics, and the bridge 120 and the stator piece 101 are also not affected. The processing for .about.104 does not require high dimensional accuracy except for the contact surfaces of both including the concave groove portions 121-124.

一方、可動子200Aは、図6、図9に示すように、磁極の凸部を構成する正面ほぼ正方形の第1の鋼板201aと、磁極の凹部を構成する正面ほぼ正方形の第2の鋼板201bとを所定枚数ずつ(この例では2枚ずつ)積層したものを単位とし、これらを軸方向に沿って交互に積層した例えば4個の可動子コア201と、これらの可動子コア201の間に配置され、かつ、それぞれが軸方向に沿って着磁された3個の永久磁石203と、可動子コア201及び永久磁石203が固定される軸部202とから構成されている。
なお、可動子コア201及び永久磁石203は、交互に積層されて軸部202に圧入、接着等の手段により固定されている。
上記可動子200Aは、軸部202が固定子100の通孔116を貫通するように固定子100の内部空間に配置され、その際、可動子200Aの磁極は固定子100の突起107にギャップを隔てて対向するものである。
On the other hand, as shown in FIGS. 6 and 9, the mover 200 </ b> A includes a front substantially square first steel plate 201 a that constitutes the convex portion of the magnetic pole and a front substantially square second steel plate 201 b that constitutes the concave portion of the magnetic pole. And a predetermined number (two in this example) are stacked as a unit, and for example, four mover cores 201 that are alternately stacked along the axial direction, and between these mover cores 201 It is comprised from the three permanent magnets 203 which were arrange | positioned and each magnetized along the axial direction, and the axial part 202 to which the needle | mover core 201 and the permanent magnet 203 are fixed.
The mover core 201 and the permanent magnet 203 are alternately stacked and fixed to the shaft portion 202 by means such as press fitting and adhesion.
The mover 200A is disposed in the inner space of the stator 100 so that the shaft portion 202 penetrates the through hole 116 of the stator 100. At this time, the magnetic pole of the mover 200A forms a gap in the protrusion 107 of the stator 100. It is a thing which faces apart.

図10は、従来技術における他の可動子200Bを示す縦断面図である。
この例では、軸部202に非磁性体からなる円筒部材204が固定され、この円筒部材204に、図9とほぼ同一構成の可動子コア201及び永久磁石203(なお、これらの中心を貫通する通孔の内径は、言うまでもなく図9と異なる)が交互に積層配置されている。これらの可動子コア201等も、円筒部材204に圧入または接着して固定される。
このような構成にすることにより、軸部202として鉄などの磁性体を用いた場合でも、可動子コア201と軸部202との直接的な磁気的結合が回避されて軸部202の中を通る漏れ磁束が低減されるため、可動子200Bの推力低下を抑制することができる。
FIG. 10 is a longitudinal sectional view showing another movable element 200B in the prior art.
In this example, a cylindrical member 204 made of a non-magnetic material is fixed to the shaft portion 202, and the movable member core 201 and the permanent magnet 203 (which penetrate through the centers thereof) having substantially the same configuration as that in FIG. The inner diameters of the through holes are, of course, different from those shown in FIG. 9). These mover cores 201 and the like are also fixed to the cylindrical member 204 by press-fitting or bonding.
By adopting such a configuration, even when a magnetic material such as iron is used as the shaft portion 202, direct magnetic coupling between the mover core 201 and the shaft portion 202 is avoided, and the shaft portion 202 is moved inside. Since the leakage magnetic flux which passes is reduced, the thrust fall of the needle | mover 200B can be suppressed.

ここで、図6に示したリニア電磁アクチュエータの動作を略述する。
各固定子片101〜104の突起107は、隣接する固定子片に対しその長手方向に沿って順次ずれるように配置されており、例えばコイル108,109に電流を通流して固定子片101がN極、固定子片102がS極となるように励磁すると、可動子200AのS極は固定子片101の突起107に、可動子200AのN極は固定子片102の突起107にそれぞれ吸引されるため、可動子200は軸方向に沿って移動する。
この時、他の組の固定子片103,104のコイル110,111に通流して固定子片103がN極、固定子片104がS極となるように励磁すると、可動子200AのS極は固定子片103の突起107に、可動子200AのN極は固定子片104の突起107にそれぞれ吸引されるため、可動子200は同一方向に更に移動する。
Here, the operation of the linear electromagnetic actuator shown in FIG. 6 will be outlined.
The protrusions 107 of the stator pieces 101 to 104 are arranged so as to be sequentially displaced along the longitudinal direction with respect to the adjacent stator pieces. For example, current is passed through the coils 108 and 109 so that the stator piece 101 is When the N pole and the stator piece 102 are excited so as to become the S pole, the S pole of the mover 200A is attracted to the protrusion 107 of the stator piece 101, and the N pole of the mover 200A is attracted to the protrusion 107 of the stator piece 102, respectively. Therefore, the mover 200 moves along the axial direction.
At this time, if the stator piece 103 is passed through the coils 110 and 111 of the other pairs of stator pieces 103 and 104 and excited so that the stator piece 103 has the N pole and the stator piece 104 has the S pole, the S pole of the mover 200A. Is attracted to the protrusion 107 of the stator piece 103 and the N pole of the mover 200A is attracted to the protrusion 107 of the stator piece 104, so that the mover 200 further moves in the same direction.

次に、コイル108,109に前記とは逆方向に電流を通流することにより、可動子200Aは同一方向に更に移動し、その後、コイル110,111及びコイル108,109を交互に励磁すれば、可動子200Aに連続的に推力を発生させてこれを一方向に移動させることができる。
なお、コイル108〜111に流す電流は、パルス状あるいは正弦波状の電流である。
Next, by passing a current through the coils 108 and 109 in the opposite direction, the mover 200A further moves in the same direction, and then the coils 110 and 111 and the coils 108 and 109 are alternately excited. The thrust can be continuously generated in the mover 200A and moved in one direction.
Note that the current flowing through the coils 108 to 111 is a pulsed or sinusoidal current.

上記のように、この従来技術は固定子100によって可動子200Aを包囲する立体的な構造であるから、リニア電磁アクチュエータの空間利用率が向上して小型化が図れると共に、可動子200Aの上下左右からの磁気的吸引力の相殺により、可動子200Aを支持する軸部202及びその軸受け(図示せず)等の機構部に対する負担も小さくなる。
更に、可動子200Aを円柱状に形成すれば、可動子200Aの軸周りの取付角度を厳密に調整する必要がなくなり、軸部202への磁気的吸引力によるモーメントが解消される。また、環状のブリッジ120は十分な磁路の確保に効果的であり、その内部に形成された通孔116に可動子200Aの軸部202の軸受けを配置すれば、リニア電磁アクチュエータの小型軽量化に寄与することができる。
As described above, since this prior art has a three-dimensional structure that surrounds the mover 200A by the stator 100, the space utilization rate of the linear electromagnetic actuator can be improved and the size can be reduced. By canceling out the magnetic attractive force from the shaft, the burden on the mechanism portion such as the shaft portion 202 supporting the mover 200A and its bearing (not shown) is reduced.
Further, if the movable element 200A is formed in a cylindrical shape, it is not necessary to strictly adjust the mounting angle around the axis of the movable element 200A, and the moment due to the magnetic attractive force to the shaft portion 202 is eliminated. The annular bridge 120 is effective in securing a sufficient magnetic path. If the bearing of the shaft portion 202 of the mover 200A is disposed in the through-hole 116 formed therein, the linear electromagnetic actuator can be reduced in size and weight. Can contribute.

なお、前述した図6,図9,図10のように複数の固定子コア201を軸方向に沿って積層した可動子、及びこの可動子を有するリニアパルスモータが、下記の特許文献1,2にも記載されている。   Note that a movable element in which a plurality of stator cores 201 are laminated in the axial direction as shown in FIGS. 6, 9, and 10, and a linear pulse motor having the movable element are disclosed in Patent Documents 1 and 2 below. It is also described in.

特開平7−170719号公報(図1〜図4等)Japanese Patent Laid-Open No. 7-170719 (FIGS. 1-4, etc.) 実開平6−60284号公報(図1,図5等)Japanese Utility Model Publication No. 6-60284 (FIG. 1, FIG. 5 etc.)

上記従来技術の可動子200A,200Bにおいて、可動子コア201を軸部202や円筒部材204に圧入して固定する場合、例えば図11に示すように、第1の鋼板201a等に圧入に伴う変形(反り)が発生し、鋼板201aの内部や鋼板201a,201bの相互間、更にはこれらと永久磁石203との間に隙間が発生することがある。これにより、所定の組立精度が得られなくなると共に、磁気抵抗の増加により、磁路を通る磁束が減少して推力が低下するという問題を生じていた。
また、鋼板201a,201bには圧入に伴う応力が残留して磁気特性が劣化し、上記同様に推力が低下する原因となっていた。
In the above-described conventional movers 200A and 200B, when the mover core 201 is press-fitted and fixed to the shaft portion 202 or the cylindrical member 204, for example, as shown in FIG. 11, deformation caused by press-fitting into the first steel plate 201a or the like. (Warpage) may occur, and a gap may be generated inside the steel plate 201a, between the steel plates 201a and 201b, and between these and the permanent magnet 203. As a result, predetermined assembly accuracy cannot be obtained, and an increase in magnetic resistance causes a problem that the magnetic flux passing through the magnetic path is reduced and the thrust is reduced.
In addition, the steel plates 201a and 201b remain stressed due to the press-fitting, thereby deteriorating the magnetic characteristics and causing the thrust to decrease as described above.

更に、可動子コア201を圧入ではなく軸部202や円筒部材204に接着して固定する場合には、多数枚の鋼板201a,201b及び永久磁石203を一枚ずつ接着する手間がかかるため、生産性が悪くコスト高になると共に、余分な接着剤が鋼板201a,201bや永久磁石203の相互間に入り込み、結果的に所定の組立精度や磁気特性が得られなくなるおそれがあった。   Furthermore, when the mover core 201 is fixed by adhering to the shaft portion 202 or the cylindrical member 204 instead of press-fitting, it takes time to bond a large number of the steel plates 201a and 201b and the permanent magnet 203 one by one. In addition, the cost is high and the cost is high, and there is a possibility that excess adhesive enters between the steel plates 201a and 201b and the permanent magnet 203, resulting in failure to obtain predetermined assembly accuracy and magnetic characteristics.

そこで本発明は、上記問題点を解消し、可動子の組立精度を向上させ、しかも所望の磁気特性を得ることができるリニア電磁アクチュエータを提供しようとするものである。   Accordingly, the present invention aims to provide a linear electromagnetic actuator that solves the above-described problems, improves the assembly accuracy of the mover, and obtains desired magnetic characteristics.

上記課題を解決するため、請求項1記載の発明は、固定子のコイルに通電して前記固定子と可動子との間に磁力を作用させ、この可動子に軸方向に沿った推力を発生させるリニア電磁アクチュエータであって、前記可動子が、磁極を構成する可動子コアと永久磁石とを軸方向に交互に積層配置して構成されるリニア電磁アクチュエータにおいて、
可動子の軸部に同心状に固定され、かつ軸方向一端部に支持部を有する筒部材と、この筒部材の軸方向他端部に固定可能な固定部材と、を備え、前記筒部材の外周面に交互に積層配置された前記可動子コア及び永久磁石を、前記支持部及び固定部材により圧接、挟持するものである。
In order to solve the above-mentioned problems, the invention according to claim 1 is directed to apply a magnetic force between the stator and the mover by energizing the coil of the stator, and generate a thrust along the axial direction on the mover. In the linear electromagnetic actuator, wherein the mover is configured by alternately laminating a mover core and a permanent magnet constituting a magnetic pole in the axial direction,
A cylindrical member fixed concentrically to the shaft portion of the mover and having a support portion at one end in the axial direction; and a fixing member that can be fixed to the other end in the axial direction of the cylindrical member. The mover core and the permanent magnet, which are alternately stacked on the outer peripheral surface, are pressed and clamped by the support portion and the fixing member.

請求項2記載の発明は、請求項1に記載したリニア電磁アクチュエータにおいて、
前記可動子コアが、磁極の凸部を構成する第1の鋼板と磁極の凹部を構成する第2の鋼板とを所定枚数ずつ積層したものを単位として形成されると共に、前記永久磁石が軸方向に沿って着磁され、M(Mは2以上の整数)個の可動子コアとM−1個の永久磁石とを交互に積層配置したものである。
The invention according to claim 2 is the linear electromagnetic actuator according to claim 1,
The mover core is formed as a unit in which a predetermined number of first steel plates constituting the convex portions of the magnetic poles and second steel plates constituting the concave portions of the magnetic poles are laminated, and the permanent magnet is axially And M (M is an integer of 2 or more) mover cores and M−1 permanent magnets are alternately stacked.

請求項3記載の発明は、請求項1または2に記載したリニア電磁アクチュエータにおいて、前記筒部材がほぼ円筒状に形成され、前記可動子コアを構成する第1,第2の鋼板及び前記永久磁石に、前記筒部材の外径以上の内径を有する通孔を形成したものである。   According to a third aspect of the present invention, in the linear electromagnetic actuator according to the first or second aspect, the cylindrical member is formed in a substantially cylindrical shape, and the first and second steel plates and the permanent magnet constituting the mover core. Further, a through hole having an inner diameter equal to or larger than the outer diameter of the cylindrical member is formed.

請求項4記載の発明は、請求項1〜3の何れか1項に記載したリニア電磁アクチュエータにおいて、
前記固定部材を、前記筒部材の端部に圧入または接着して固定したものである。
The invention according to claim 4 is the linear electromagnetic actuator according to any one of claims 1 to 3,
The fixing member is fixed by press-fitting or bonding to an end portion of the cylindrical member.

請求項5記載の発明は、請求項1〜4の何れか1項に記載したリニア電磁アクチュエータにおいて、
前記可動子コア及び永久磁石を交互に積層した部材が、ほぼ円筒状に形成されていることを特徴とする。
The invention according to claim 5 is the linear electromagnetic actuator according to any one of claims 1 to 4,
The member in which the mover core and the permanent magnet are alternately laminated is formed in a substantially cylindrical shape.

請求項6記載の発明は、請求項1〜5の何れか1項に記載したリニア電磁アクチュエータにおいて、
前記筒部材及び固定部材を、非磁性体により形成したものである。
The invention according to claim 6 is the linear electromagnetic actuator according to any one of claims 1 to 5,
The cylindrical member and the fixing member are formed of a nonmagnetic material.

請求項7記載の発明は、請求項1〜6の何れか1項に記載したリニア電磁アクチュエータにおいて、
前記固定子は、レール状で長手方向に所定間隔にて並ぶ複数の突起を有する磁性体からなる複数の固定子片と、これらの固定子片を磁化するために各固定子片にそれぞれ集中的に巻回されたコイルと、各固定子片の端部に配置されて各固定子片を磁気的に結合する環状のブリッジと、を有し、かつ、各固定子片が互いにほぼ平行に配置されていると共に、
これらの固定子片によって包囲される内部空間に前記可動子が配置され、前記固定子の突起と前記可動子の磁極とがギャップを隔てて対向していることを特徴とする。
The invention according to claim 7 is the linear electromagnetic actuator according to any one of claims 1 to 6,
The stator is concentrated in each stator piece in order to magnetize the stator pieces, and a plurality of stator pieces made of a magnetic body having a plurality of protrusions arranged in a rail shape at a predetermined interval in the longitudinal direction. Each of the stator pieces is arranged substantially in parallel with each other, and the stator piece is arranged at the end of each stator piece and an annular bridge that magnetically couples the stator pieces. As well as
The mover is disposed in an internal space surrounded by the stator pieces, and the protrusion of the stator and the magnetic pole of the mover face each other with a gap therebetween.

本発明によれば、可動子コアを圧入したり接着する方法によらず、可動子コア及び永久磁石を筒部材の軸方向に沿って積層したものを筒部材の支持部と固定部材とにより圧接、挟持する構造であるため、可動子コアを構成する鋼板の変形や接着剤の入り込みを防ぎ、組立精度や磁気特性の向上、生産性の向上、コストの低減を図ることができる。   According to the present invention, regardless of the method of press-fitting or bonding the mover core, the mover core and the permanent magnet laminated together along the axial direction of the tubular member are pressed by the support portion of the tubular member and the fixed member. Because of the sandwiching structure, deformation of the steel plate constituting the mover core and entry of the adhesive can be prevented, and assembly accuracy and magnetic characteristics can be improved, productivity can be improved, and cost can be reduced.

以下、図に沿って本発明の実施形態を説明する。図1は本発明の第1実施形態を示す斜視図である。図6及び図10と同一の構成要素には同一の参照符号を付してある。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view showing a first embodiment of the present invention. The same components as those in FIGS. 6 and 10 are denoted by the same reference numerals.

図1において、100は固定子であり、その構造は図6と全く同一である。
200は可動子であり、その構造を図2を参照しつつ以下に説明する。図2において、210は軸部202に固定される円筒部材であり、この円筒部材210の軸方向一端部には支持部としてのフランジ210aが形成されている。また、211は前記円筒部材210の軸方向他端部に嵌合される円環状の固定部材である。
In FIG. 1, 100 is a stator, and its structure is exactly the same as FIG.
Reference numeral 200 denotes a mover, and its structure will be described below with reference to FIG. In FIG. 2, reference numeral 210 denotes a cylindrical member fixed to the shaft portion 202, and a flange 210 a as a support portion is formed at one axial end portion of the cylindrical member 210. Reference numeral 211 denotes an annular fixing member fitted to the other axial end of the cylindrical member 210.

更に、図10と同様に、磁極の凸部を構成する正面ほぼ正方形の第1の鋼板201aと、磁極の凹部を構成する正面ほぼ正方形の第2の鋼板201bとを所定枚数ずつ(この実施形態では2枚ずつ)積層したものを単位とし、これらを軸方向に沿って交互に積層した例えば4個の可動子コア201と、これらの可動子コア201の間に配置された3個の永久磁石203とが、前記円筒部材210の胴部の外周面に配置されている。
図3は可動子コア201を、図4は永久磁石203を示す正面図であり、鋼板201a,201b及び永久磁石203には、円筒部材210の胴部の外径以上の内径を有する通孔201c,203aが形成されている。
Further, as in FIG. 10, a predetermined number of first substantially square front steel plates 201a constituting the convex portions of the magnetic poles and second substantially square steel plates 201b constituting the concave portions of the magnetic poles (this embodiment). For example, four mover cores 201 in which these are stacked alternately along the axial direction, and three permanent magnets arranged between these mover cores 201 203 is disposed on the outer peripheral surface of the body portion of the cylindrical member 210.
3 is a front view showing the mover core 201, and FIG. 4 is a front view showing the permanent magnet 203. The steel plates 201a and 201b and the permanent magnet 203 have through-holes 201c having an inner diameter equal to or larger than the outer diameter of the body of the cylindrical member 210. , 203a are formed.

この可動子200の組立方法を説明すると、まず、円筒部材210に軸部202を挿入して両者を一体的に固定する。次に、可動子コア201及び永久磁石203を所定枚数、交互に円筒部材210の非フランジ側端部から胴部に被装し、最後に固定部材211を前記胴部の端部に圧入または接着する。これにより、可動子コア201及び永久磁石203は、前記フランジ210aと固定部材211とにより圧接、挟持されて可動子200が一体的に形成される。   A method for assembling the movable element 200 will be described. First, the shaft portion 202 is inserted into the cylindrical member 210 and the both are integrally fixed. Next, a predetermined number of mover cores 201 and permanent magnets 203 are alternately mounted on the body from the non-flange side end of the cylindrical member 210, and finally the fixing member 211 is press-fitted or bonded to the end of the body. To do. Thereby, the mover core 201 and the permanent magnet 203 are pressed and sandwiched by the flange 210a and the fixed member 211, so that the mover 200 is integrally formed.

この実施形態では、鋼板201a,201b(可動子コア201)及び永久磁石203に、円筒部材210の胴部の外径と等しいか若干大きい通孔201c,203aが形成されているため、これらを円筒部材210の胴部に容易に被装することができ、圧入する必要がない。よって可動子コア201や永久磁石203に無理な力が加わらず、変形(反り)や歪みを生じることがないから、鋼板201a,201bや永久磁石203の相互間に隙間が発生せず、組立精度の低下や磁気抵抗の増加、推力の低下を招くおそれがない。
また、鋼板201a,201bに、圧入に伴う応力が残留する心配もなく、安定した磁気特性を有するアクチュエータを得ることができる。
In this embodiment, the steel plates 201a and 201b (mover core 201) and the permanent magnet 203 are formed with through holes 201c and 203a that are equal to or slightly larger than the outer diameter of the body of the cylindrical member 210. It can be easily placed on the body of the member 210, and there is no need to press fit. Therefore, an excessive force is not applied to the mover core 201 and the permanent magnet 203, and deformation (warping) and distortion do not occur, so that no gap is generated between the steel plates 201a and 201b and the permanent magnet 203, and the assembly accuracy is improved. There is no risk of lowering the power, increasing the magnetic resistance, or lowering the thrust.
In addition, an actuator having stable magnetic characteristics can be obtained without worrying that stress accompanying press-fitting remains on the steel plates 201a and 201b.

更に、円筒部材210の周囲に可動子コア201及び永久磁石203を積層して固定部材211を圧入または接着するだけで可動子200を形成できるため、生産性が良好となり、コストの低減にも寄与することができる。
加えて、固定部材211を接着する場合にもその使用箇所が限られるので、余分な接着剤が鋼板201a,201b等の相互間に入り込んで磁気特性を悪化させる心配もない。
Furthermore, since the mover 200 can be formed simply by laminating the mover core 201 and the permanent magnet 203 around the cylindrical member 210 and press-fitting or bonding the fixed member 211, the productivity is improved and the cost is reduced. can do.
In addition, since the place where the fixing member 211 is bonded is limited, there is no fear that excess adhesive enters between the steel plates 201a and 201b and deteriorates the magnetic characteristics.

なお、円筒部材210及び固定部材211を非磁性体にて形成することにより、軸部202に鉄などの磁性体を使用した場合でも、可動子コア201と軸部202との直接的な磁気的結合を回避して軸部202の中を通る漏れ磁束を低減することができる。   In addition, by forming the cylindrical member 210 and the fixing member 211 with a non-magnetic material, even when a magnetic material such as iron is used for the shaft portion 202, a direct magnetic contact between the mover core 201 and the shaft portion 202 is achieved. The leakage magnetic flux passing through the shaft portion 202 can be reduced by avoiding the coupling.

次いで、図5は、本発明の他の実施形態における可動子200’の斜視図である。
この例では、可動子200’が全体としてほぼ円柱状に形成されている。言い換えれば、可動子コア201’及び永久磁石203’を交互に積層した部材が、ほぼ円筒状に形成されているものである。
Next, FIG. 5 is a perspective view of a mover 200 ′ according to another embodiment of the present invention.
In this example, the mover 200 ′ is formed in a substantially cylindrical shape as a whole. In other words, the member in which the mover core 201 ′ and the permanent magnet 203 ′ are alternately stacked is formed in a substantially cylindrical shape.

図5において、可動子コア201’は、円環状の第1,第2の鋼板を複数積層して構成され、この可動子コア201’及び円環状の永久磁石203’が、円筒部材210の胴部の周囲に交互に積層されている。なお、円筒部材210のフランジ210a及び固定部材211による可動子コア201’及び永久磁石203’の圧接、挟持構造は、図2と同様である。
この場合、可動子200’の磁極に対向する固定子片の突起の対向面も、前記磁極の外周面に適合した曲面とすることが望ましい。
この実施形態によれば、可動子コア201’を構成する第1,第2の鋼板及び永久磁石203’の軸周りの位置(角度)合わせを考慮する必要なくこれらを積層できるので、生産性が一層向上する。
In FIG. 5, the mover core 201 ′ is configured by laminating a plurality of annular first and second steel plates, and the mover core 201 ′ and the annular permanent magnet 203 ′ are formed on the body of the cylindrical member 210. It is laminated alternately around the part. The press-contacting and clamping structure of the mover core 201 ′ and the permanent magnet 203 ′ by the flange 210a and the fixed member 211 of the cylindrical member 210 is the same as that in FIG.
In this case, it is desirable that the facing surface of the protrusion of the stator piece facing the magnetic pole of the mover 200 ′ is also a curved surface adapted to the outer peripheral surface of the magnetic pole.
According to this embodiment, the first and second steel plates constituting the mover core 201 ′ and the permanent magnet 203 ′ can be laminated without having to consider the position (angle) alignment around the axis. Further improvement.

上記各実施形態では、固定子片の数が4個の場合について説明したが、本発明はこれに限定されるものではなく、固定子片の数については一般にK(Kは3以上の整数)個の場合に適用可能である。   In the above embodiments, the case where the number of stator pieces is four has been described. However, the present invention is not limited to this, and the number of stator pieces is generally K (K is an integer of 3 or more). It is applicable to the case of piece.

本発明の実施形態を示す斜視図である。It is a perspective view which shows embodiment of this invention. 実施形態における可動子の縦断面図である。It is a longitudinal cross-sectional view of the needle | mover in embodiment. 実施形態における可動子コアの正面図である。It is a front view of the needle | mover core in embodiment. 実施形態における永久磁石の正面図である。It is a front view of the permanent magnet in an embodiment. 本発明の他の実施形態における可動子の斜視図である。It is a perspective view of the needle | mover in other embodiment of this invention. 従来技術の斜視図である。It is a perspective view of a prior art. 従来技術における主要部の説明図である。It is explanatory drawing of the principal part in a prior art. 従来技術における主要部の説明図である。It is explanatory drawing of the principal part in a prior art. 従来技術における可動子の縦断面図である。It is a longitudinal cross-sectional view of the needle | mover in a prior art. 従来技術における可動子の縦断面図である。It is a longitudinal cross-sectional view of the needle | mover in a prior art. 従来技術における可動子の縦断面図である。It is a longitudinal cross-sectional view of the needle | mover in a prior art.

符号の説明Explanation of symbols

100:固定子
101〜104:固定子片
107:突起
108〜111:コイル
116:通孔
120:ブリッジ
200,200’:可動子
201,201’:可動子コア
201a,201b:鋼板
201c:通孔
202:軸部
203,203’:永久磁石
203a:通孔
210:円筒部材
210a:フランジ(支持部)
211:固定部材
DESCRIPTION OF SYMBOLS 100: Stator 101-104: Stator piece 107: Protrusion 108-111: Coil 116: Through-hole 120: Bridge 200,200 ': Movable element 201, 201': Movable element core 201a, 201b: Steel plate 201c: Through-hole 202: Shaft part 203, 203 ': Permanent magnet 203a: Through hole 210: Cylindrical member 210a: Flange (support part)
211: Fixed member

Claims (7)

固定子のコイルに通電して前記固定子と可動子との間に磁力を作用させ、この可動子に軸方向に沿った推力を発生させるリニア電磁アクチュエータであって、前記可動子が、磁極を構成する可動子コアと永久磁石とを軸方向に交互に積層配置して構成されるリニア電磁アクチュエータにおいて、
可動子の軸部に同心状に固定され、かつ軸方向一端部に支持部を有する筒部材と、
この筒部材の軸方向他端部に固定可能な固定部材と、を備え、
前記筒部材の外周面に交互に積層配置された前記可動子コア及び永久磁石を、前記支持部及び固定部材により圧接、挟持することを特徴とするリニア電磁アクチュエータ。
A linear electromagnetic actuator that energizes a coil of a stator to cause a magnetic force to act between the stator and the mover, and generates a thrust along the axial direction on the mover, the mover having a magnetic pole In a linear electromagnetic actuator configured by alternately laminating and arranging a mover core and a permanent magnet in the axial direction,
A cylindrical member fixed concentrically to the shaft of the mover and having a support at one end in the axial direction;
A fixing member that can be fixed to the other axial end of the cylindrical member,
A linear electromagnetic actuator, wherein the mover core and the permanent magnet, which are alternately stacked on the outer peripheral surface of the cylindrical member, are pressed and clamped by the support portion and the fixing member.
請求項1に記載したリニア電磁アクチュエータにおいて、
前記可動子コアが、磁極の凸部を構成する第1の鋼板と磁極の凹部を構成する第2の鋼板とを所定枚数ずつ積層したものを単位として形成されると共に、前記永久磁石が軸方向に沿って着磁され、M(Mは2以上の整数)個の可動子コアとM−1個の永久磁石とを交互に積層配置したことを特徴とするリニア電磁アクチュエータ。
The linear electromagnetic actuator according to claim 1,
The mover core is formed as a unit in which a predetermined number of first steel plates constituting the convex portions of the magnetic poles and second steel plates constituting the concave portions of the magnetic poles are laminated, and the permanent magnet is axially A linear electromagnetic actuator characterized in that M (M is an integer of 2 or more) mover cores and M-1 permanent magnets are alternately stacked.
請求項1または2に記載したリニア電磁アクチュエータにおいて、
前記筒部材がほぼ円筒状に形成され、前記可動子コアを構成する第1,第2の鋼板及び前記永久磁石に、前記筒部材の外径以上の内径を有する通孔を形成したことを特徴とするリニア電磁アクチュエータ。
The linear electromagnetic actuator according to claim 1 or 2,
The cylindrical member is formed in a substantially cylindrical shape, and a through hole having an inner diameter equal to or larger than an outer diameter of the cylindrical member is formed in the first and second steel plates and the permanent magnet constituting the mover core. Linear electromagnetic actuator.
請求項1〜3の何れか1項に記載したリニア電磁アクチュエータにおいて、
前記固定部材を、前記筒部材の端部に圧入または接着して固定したことを特徴とするリニア電磁アクチュエータ。
In the linear electromagnetic actuator according to any one of claims 1 to 3,
A linear electromagnetic actuator, wherein the fixing member is fixed by press-fitting or adhering to an end of the cylindrical member.
請求項1〜4の何れか1項に記載したリニア電磁アクチュエータにおいて、
前記可動子コア及び永久磁石を交互に積層した部材が、ほぼ円筒状に形成されていることを特徴とするリニア電磁アクチュエータ。
In the linear electromagnetic actuator according to any one of claims 1 to 4,
A linear electromagnetic actuator characterized in that a member in which the mover core and permanent magnet are alternately laminated is formed in a substantially cylindrical shape.
請求項1〜5の何れか1項に記載したリニア電磁アクチュエータにおいて、
前記筒部材及び固定部材を、非磁性体により形成したことを特徴とするリニア電磁アクチュエータ。
In the linear electromagnetic actuator according to any one of claims 1 to 5,
A linear electromagnetic actuator characterized in that the cylindrical member and the fixing member are formed of a non-magnetic material.
請求項1〜6の何れか1項に記載したリニア電磁アクチュエータにおいて、
前記固定子は、レール状で長手方向に所定間隔にて並ぶ複数の突起を有する磁性体からなる複数の固定子片と、これらの固定子片を磁化するために各固定子片にそれぞれ集中的に巻回されたコイルと、各固定子片の端部に配置されて各固定子片を磁気的に結合する環状のブリッジと、を有し、かつ、各固定子片が互いにほぼ平行に配置されていると共に、
これらの固定子片によって包囲される内部空間に前記可動子が配置され、前記固定子の突起と前記可動子の磁極とがギャップを隔てて対向していることを特徴とするリニア電磁アクチュエータ。
In the linear electromagnetic actuator according to any one of claims 1 to 6,
The stator is concentrated in each stator piece in order to magnetize the stator pieces, and a plurality of stator pieces made of a magnetic body having a plurality of protrusions arranged in a rail shape at a predetermined interval in the longitudinal direction. Each of the stator pieces is arranged substantially in parallel with each other, and the stator piece is arranged at the end of each stator piece and an annular bridge that magnetically couples the stator pieces. As well as
A linear electromagnetic actuator characterized in that the mover is arranged in an internal space surrounded by these stator pieces, and a projection of the stator and a magnetic pole of the mover face each other with a gap.
JP2003363300A 2003-10-23 2003-10-23 Linear electromagnetic actuator Pending JP2005130603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003363300A JP2005130603A (en) 2003-10-23 2003-10-23 Linear electromagnetic actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003363300A JP2005130603A (en) 2003-10-23 2003-10-23 Linear electromagnetic actuator

Publications (1)

Publication Number Publication Date
JP2005130603A true JP2005130603A (en) 2005-05-19

Family

ID=34642668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003363300A Pending JP2005130603A (en) 2003-10-23 2003-10-23 Linear electromagnetic actuator

Country Status (1)

Country Link
JP (1) JP2005130603A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101088278B1 (en) 2009-11-16 2011-11-30 김상호 Electric Cylinder
US8186807B2 (en) 2008-02-29 2012-05-29 Seiko Epson Corporation Actuator, method for manufacturing actuator, droplet ejection device, droplet ejection head and printer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8186807B2 (en) 2008-02-29 2012-05-29 Seiko Epson Corporation Actuator, method for manufacturing actuator, droplet ejection device, droplet ejection head and printer
KR101088278B1 (en) 2009-11-16 2011-11-30 김상호 Electric Cylinder

Similar Documents

Publication Publication Date Title
CN102948053B (en) Linear electric machine
US8179001B2 (en) Linear motor armature and linear motor
JP2005312286A (en) Linear actuator
JP2007110822A (en) Periodic magnetic field generator, manufacturing method therefor, and linear motor using this periodic magnetic field generator
JP2001352747A (en) Linear motor and press molding machine using the same as drive source
JP2005184878A (en) Linear motor and attraction offset linear motor
JP2000116100A (en) Linear motor
JP2000083364A (en) Movable core linear motor
KR100421372B1 (en) Structure for enagaging linear motor
JP2001112228A (en) Movable magnet type linear actuator
JP2005130603A (en) Linear electromagnetic actuator
KR20020064558A (en) Structure for engaging lamination core of linear motor
JP5447308B2 (en) Linear motor
JP5370820B2 (en) Linear actuator and method of assembling the same
JP5261080B2 (en) Linear motor
JP3796100B2 (en) Linear motor
JP5553247B2 (en) Linear slider
JP5360555B2 (en) Linear actuator
JP2001197717A (en) Field component of linear motor and method of magnetizing permanent magnet for field
CN115280654A (en) Movable element and linear servo motor
JP5849415B2 (en) Linear drive device and manufacturing method thereof
JP2002034225A (en) Magnet-movable liner motor
JP2004023830A (en) Linear actuator
JPH10285898A (en) Linear actuator
JP2006121814A (en) Linear motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090407

A02 Decision of refusal

Effective date: 20090804

Free format text: JAPANESE INTERMEDIATE CODE: A02