JP2004023830A - Linear actuator - Google Patents

Linear actuator Download PDF

Info

Publication number
JP2004023830A
JP2004023830A JP2002172313A JP2002172313A JP2004023830A JP 2004023830 A JP2004023830 A JP 2004023830A JP 2002172313 A JP2002172313 A JP 2002172313A JP 2002172313 A JP2002172313 A JP 2002172313A JP 2004023830 A JP2004023830 A JP 2004023830A
Authority
JP
Japan
Prior art keywords
linear actuator
laminated
radial
thin steel
dent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002172313A
Other languages
Japanese (ja)
Inventor
Koji Ueda
植田 浩司
Shinichirou Kawano
川野 慎一朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002172313A priority Critical patent/JP2004023830A/en
Publication of JP2004023830A publication Critical patent/JP2004023830A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electromagnets (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a linear actuator where a radial laminate can be assembled easily and also which uses the laminate of thin steel plates securing rigidity and dimensional accuracy as a structure. <P>SOLUTION: The linear actuator is characterized in that an external laminated iron core consists of a radial laminate where thin steel plates are laminated in the circumferential direction, and at least one projection or recess is made each in annular form at both ends of the radial stack, and the radial stack can be easily set up by engaging a hollow circular end plate, which has an annular projection or recess corresponding to the annular projection or recess, with it, and also this linear actuator can secure rigidity or dimensional accuracy as the structure of a motor core. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、例えばリニアモータ、リニア発電機、電磁弁などのリニアアクチュエータに関するものである。
【0002】
【従来の技術】
図5を用いて、従来のリニアモータを説明する。このリニアモータは、薄板鋼板を金型で打ち抜いて型取りをしたE型コアを多数枚、中心軸のまわりに放射状に向けて筒状を形成させたヨーク部20を形成させ、このヨーク部20のスロット部21に巻回したコイル22を備えたインナーヨーク23と、長方形をなす薄板鋼板を金型で打ち抜いて型取りをしたI型コアを多数枚、中心軸のまわりに放射状に向けて筒状を形成させたアウターヨーク24、そしてインナーヨーク23とアウターヨーク24の間のギャップ部25に永久磁石片26、永久磁石片27とこの永久磁石片26、永久磁石片27を支持する可動体28から構成されている。なおこれら永久磁石片26、永久磁石片27は半径方向に着磁されており、その磁極の向きは例えば永久磁石片26のインナーヨーク側がN極であれば、永久磁石片27のインナーヨーク側がS極となるように、永久磁石片の磁極がそれぞれ反対に可動体28に固定されている。以上の構成のリニアモータではコイル22に電流を流すことで発生する磁束の流れは矢印で示した磁路を形成する。そのためコイル22に流す電流の向きを切り換えることで、コイル22から発生する磁束の流れる方向が変わり、その磁束変化に従って永久磁石片26、永久磁石片27が吸引反発を繰り返して軸方向に往復運動する。
【0003】
【発明が解決しようとする課題】
従来の薄板鋼板を金型で打ち抜いて型取りをしたC型やE型コアを多数枚、中心軸のまわりに放射状に向けて筒状を形成させたラジアル積層体では、複数の薄板鋼板の主面を相対するように周方向に積層し、筒状態としたラジアル積層体であって、隣り合う薄板鋼板は積層コア外周側の上部で重なり下部で離れる、または、積層コア外周側の下部で重なり上部で離れた形態で、隣り合う薄板鋼板を連結しながら外部積層鉄心もしくは内部積層鉄心を構成している。この状態ではこれら外部積層鉄心または内部積層鉄心は柔軟性を有したラジアル積層体であり、モータを構成するコア部分としての剛性や寸法精度は十分必要とする性能が得られない。そのためモータのコア部分としての外部積層鉄心もしくは内部積層鉄心を形成するためには、例えば最外周を円筒状のフレームで覆うなどして柔軟性を有したラジアル積層体を形状規制し強度や寸法精度を確保することが必要であったが、ラジアル積層体の最外径をフレーム内径に精度良く嵌合させることは非常に困難であり、また組み立てにおいてもフレーム内周面に隙間無く沿わせることが必要なため、内径側から外径側への張りなど調整することが困難であった。
【0004】
本発明は、これらの課題を鑑み、ラジアル積層体を容易に組み立てることができるとともに、構造体としての剛性や寸法精度を確保した薄板鋼板の積層体を用いたリニアアクチュエータを提供することを目的とする。
【0005】
【課題を解決するための手段】
前記課題を解決するために、本発明は少なくとも内周面に一つのスロットを有する環状の外部積層鉄心と、前記スロットに巻線を施したコイル部と、前記外部積層鉄心の内周面に沿って振動する永久磁石と、この永久磁石を支持する可動体と、前記可動体の内側に筒状の内部積層鉄心とを備えたリニアアクチュエータであって、前記コイル部を施した前記外部積層鉄心は薄板鋼板を周方向に積層したラジアル積層体からなり、そのラジアル積層体両端面に少なくとも一箇所の突起もしくは凹みが環状をなして形成されており、その環状をなした突起もしくは凹みに対応した環状の突起もしくは凹みを有した中空円形端板を嵌合させることで、ラジアル積層体を容易に組み立てることができるとともに、構造体としての剛性や寸法精度を確保することができる。
【0006】
また本発明は、少なくとも内周面に一つのスロットを有する環状の外部積層鉄心において、薄板鋼板を周方向に積層したラジアル積層体からなる筒状のヨーク部と薄板鋼板を周方向に積層したラジアル積層体からなる筒状のティース部に分割した構成で、前記筒状のヨーク部両端面に少なくとも一箇所の突起もしくは凹みが形成され、また前記筒状のティース部両端面に少なくとも一箇所の突起もしくは凹みが形成され、またはヨーク部とティース部のどちらか一方の端面に少なくとも一箇所の突起もしくは凹みが形成されており、その環状をなした突起もしくは凹みに対応した環状の突起もしくは凹みを有した中空円形端板を嵌合させることで、ラジアル積層体を容易に組み立てることができるとともに、構造体としての剛性や寸法精度を確保することができ、またヨーク部とティース部が分離していることから、中空円形端板を基準に各部材を順次組み上げることができる。
【0007】
【発明の実施の形態】
本件発明は、少なくとも内周面に一つのスロットを有する環状の外部積層鉄心と、前記スロットに巻線を施したコイル部と、前記外部積層鉄心の内周面に沿って振動する永久磁石と、この永久磁石を支持する可動体と、前記可動体の内側に筒状の内部積層鉄心とを備えたリニアアクチュエータにおいて、前記コイル部を施した前記外部積層鉄心は薄板鋼板を周方向に積層したラジアル積層体からなり、そのラジアル積層体両端面に少なくとも一箇所の突起もしくは凹みが環状をなして形成されており、その環状をなした突起もしくは凹みに対応した環状の突起もしくは凹みを有した中空円形端板を嵌合させたものである。
【0008】
また、前記外部積層鉄心において、薄板鋼板を周方向に積層したラジアル積層体からなる筒状のヨーク部と薄板鋼板を周方向に積層したラジアル積層体からなる筒状のティース部に分割した構成で、前記筒状のヨーク部両端面に少なくとも一箇所の突起もしくは凹みが形成され、また前記筒状のティース部片端面に少なくとも一箇所の突起もしくは凹みが形成され、またはヨーク部とティース部のどちらか一方の端面に少なくとも一箇所の突起もしくは凹みが形成し、その環状をなした突起もしくは凹みに対応した環状の突起もしくは凹みを有した中空円形端板を嵌合させたものである。
【0009】
また、中空円形端板の材質を非磁性体で構成したものである。
【0010】
また、中空円形端板の材質を固有抵抗値の高い材料で構成したものである。
【0011】
また、本願のリニアアクチュエータを使用し電動圧縮機としたものである。
【0012】
また、前記電動圧縮機を使用し冷凍サイクルを備えた機器としたものである。
【0013】
また、前記リニアアクチュエータを備え携帯電子機器としたものである。
【0014】
【実施例】
次に本発明の特徴である外部積層鉄心の構造についてそれぞれ図面を参照して説明する。
【0015】
(実施例1)
図1に示すように外部積層鉄心1は薄板鋼板をE型に型取りをして、隣り合う薄板鋼板の積層コア外周側の上部をレーザ溶接で重なるようにし、その下部は溶接せず離れさせる。次にこの鋼板と次の鋼板のコア外周側の下部をレーザ溶接で重なるようにして、その上部は溶接せずに離れさせる。この状態を繰り返し、隣り合う薄板鋼板を連結させて円筒状のラジアル積層体をなす。内部積層鉄心4は薄板鋼板をI型に型取りをして、隣り合う薄板鋼板の積層コア外周側の上部をレーザ溶接で重なるようにし、その下部は溶接せず離れさせる。また、積層コア外周側の下部をレーザ溶接で重なるようにして、その上部は溶接せずに離れさせる。この状態を繰り返し、隣り合う薄板鋼板を連結させて円筒状のラジアル積層体をなす。この外部積層鉄心1と同心円上内側に内部積層鉄心4を配置し、両者が形成するギャップ部5に、永久磁石2を保持させた振動体3を挿入する。また外部積層鉄心1のスロット部には銅線を巻回したコイル部6を設ける。このコイル部6に電流を流し発生する磁束で振動体が軸方向に動く。このように外部積層鉄心1と内部積層鉄心4で形成されるギャップ部5は永久磁石2を保持させた振動体3が可動するため、このギャップ部5は均等なギャップを形成する必要がある。ところがこの外部積層鉄心1は前述のように薄板鋼板を周方向に積層したラジアル積層体の状態ではモータのコアとして柔軟性があり、内周面側に永久磁石2を保持した振動体3と内部積層鉄心4を配置するためには、均等なギャップが確保できるように、内周面の真円度および直角度を出すことが必要となる。そこで、中空円形端板7に設けた環状の突起部8は外部積層鉄心1の両端面に設けた環状の凹み9が嵌合することで、周方向の位置が規制されて真円を形成するとともに、中空円形端板7の上端面と外部積層鉄心1の下端面が対向する面において直角方向の位置規制と、構造体としての剛性を持たせることができる。なお、中空円形端板7に設けた環状の突起部8は、環状の凹みでもよく、その際は嵌合する相手方の外部積層鉄心1の両端面に設けた環状の凹み9は突起形状としてもよい。
【0016】
(実施例2)
図2に示すように外部積層鉄心18は薄板鋼板をT型に型取りして隣り合う薄板鋼板の積層コア外周側の上部をレーザ溶接で重なるようにし、その下部は溶接せず離れさせる。また、積層コア外周側の下部をレーザ溶接で重なるようにして、その上部は溶接せずに離れさせる。この状態を繰り返し、隣り合う薄板鋼板を連結させて円筒状のラジアル積層体であるヨーク部10と、L型に型取りして隣り合う薄板鋼板の積層コア外周側の上部をレーザ溶接で重なるようにし、その下部は溶接せず離れさせる。また、積層コア外周側の下部をレーザ溶接で重なるようにして、その上部は溶接せずに離れさせる。この状態を繰り返し、隣り合う薄板鋼板を連結させて円筒状のラジアル積層体であるティース部11およびティース部12で構成する。ヨーク部10はその端面に凹み16が設けてあり、またティース部11およびティース部12は凹み17がそれぞれの端側に設けてある。これら凹みは中空円形端板13に設けてある突起14と突起15に嵌合する構造になっている。まず、中空円形端板13の突起14はヨーク部10の凹み16と嵌合される。また、中空円形端板13の突起15はティース部11およびティース部12の凹み17と嵌合される。これらを中空円形端板13の突起14および突起15を基準として組み上げることによって、それぞれの部材が同心円上に精度良く組み立てられると同時に、二枚の中空円形端板ですべての位置が規制されることから、構造体としての強度も確保することができる。なお、ヨーク部10の凹み16やティース部11およびティース部12の凹み17は両方が突起の形状であっても良く、また凹みと突起の組み合わせでも良く、その際は嵌合する相手方の中空円形端板13に設けた突起15は、相手方の形状と嵌合できる形状をなしている。
【0017】
(実施例3)
また、前記の中空円形端板7および中空円形端板13に非磁性材料を用いることによって、磁気回路上振動体3を可動させるのに必要となる領域以外に磁束が引き寄せられないようにでき、磁気利用効率を低下することなく、積層鉄心としての組み立て精度や剛性を向上することができる。
【0018】
(実施例4)
また、前記中空円形端板7および中空円形端板13に固有抵抗の高い材料を用いることによって、コイル部6から発生する磁界によって生じる渦電流を抑制することができる。
【0019】
(実施例5)
図3に本願リニアアクチュエータを使用した電動圧縮機の一実施例を示す。このリニアアクチュエータを使用することで信頼性の高い電動圧縮機が得られる。また、この電動圧縮機を使用した冷凍サイクルを備えることで機器の信頼性を向上することが可能となる。
【0020】
(実施例6)
図4に本願リニアアクチュエータを使用した携帯電子機器の一実施例を示す。図4には携帯電話の説明用の断面図が示されている。中央の基板にこのリニアアクチュエータを搭載した振動素子が使用されている。このリニアアクチュエータを使用することで信頼性の高い携帯電子機器が得られる。
【0021】
【発明の効果】
前記実施例から明らかなように、本発明に係るリニアアクチュエータの積層鉄心構造については、外部積層鉄心の端面に環状の突起または環状の凹みを設け、その部分と嵌合する環状をなす凹みまたは環状をなす突起を設けた中空円形端板とを組み合わせることによって、内部積層鉄心との同心度すなわちギャップ部の間隔を高精度に保つことができるとともに、構造体としての剛性を確保することができるという効果を有する。
【0022】
また、このリニアアクチュエータを使用することで信頼性の高い電動圧縮機が得られる。また、この電動圧縮機を使用した冷凍サイクルを備えることで機器の信頼性を向上することが可能となる。
【0023】
また、このリニアアクチュエータを使用することで信頼性の高い携帯電子機器が得られる。
【図面の簡単な説明】
【図1】本発明の実施例1に係るリニアアクチュエータの積層鉄心部分の断面図
【図2】本発明の実施例2に係るリニアアクチュエータの外部積層鉄心部分をヨーク部とティース部に分割した積層鉄心部分の断面図
【図3】本発明の実施例5に係る本願リニアアクチュエータを使用した電動圧縮機の説明図
【図4】本発明の実施例6に係るリニアアクチュエータを使用した携帯電子機器の一実施例を示す説明図
【図5】従来の積層鉄心部断面図
【符号の説明】
1 外部積層鉄心
7 中空円形端板
8 突起部
9 凹み
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a linear actuator such as a linear motor, a linear generator, and a solenoid valve.
[0002]
[Prior art]
A conventional linear motor will be described with reference to FIG. In this linear motor, a plurality of E-shaped cores formed by punching a thin steel plate with a die are formed, and a yoke portion 20 is formed in a cylindrical shape radially around a central axis. An inner yoke 23 provided with a coil 22 wound around a slot portion 21 and a number of I-shaped cores formed by punching out a rectangular thin steel plate with a mold, and radiating around a central axis. A permanent magnet piece 26, a permanent magnet piece 27, and a movable body 28 that supports the permanent magnet piece 26 and the permanent magnet piece 27 in a gap 25 between the inner yoke 23 and the outer yoke 24. It is composed of The permanent magnet piece 26 and the permanent magnet piece 27 are magnetized in the radial direction. For example, if the inner yoke side of the permanent magnet piece 26 is N-pole, the inner yoke side of the permanent magnet piece 27 is S The magnetic poles of the permanent magnet pieces are oppositely fixed to the movable body 28 so as to be poles. In the linear motor having the above configuration, the flow of the magnetic flux generated by passing the current through the coil 22 forms a magnetic path indicated by an arrow. Therefore, by switching the direction of the current flowing through the coil 22, the direction of the magnetic flux generated from the coil 22 changes, and the permanent magnet piece 26 and the permanent magnet piece 27 repeat the attractive repulsion and reciprocate in the axial direction according to the change in the magnetic flux. .
[0003]
[Problems to be solved by the invention]
In a conventional radial laminated body in which a large number of C-type and E-type cores formed by punching out a thin sheet steel by a die and forming a cylindrical shape radially around a central axis, a plurality of thin sheet steels are mainly used. A radial laminated body that is laminated in the circumferential direction so that the surfaces face each other and is in a cylindrical state, and adjacent thin steel plates overlap at the upper part on the outer peripheral side of the laminated core and separate at the lower part, or overlap at the lower part on the outer peripheral side of the laminated core An outer laminated core or an inner laminated core is formed while connecting adjacent thin steel plates in a form separated at the upper portion. In this state, the outer laminated core or the inner laminated core is a radial laminated body having flexibility, and the performance that sufficiently requires rigidity and dimensional accuracy as a core part constituting the motor cannot be obtained. Therefore, in order to form the outer laminated core or the inner laminated core as the motor core, for example, the outermost circumference is covered with a cylindrical frame, etc. However, it is very difficult to accurately fit the outermost diameter of the radial laminated body to the inner diameter of the frame. Since it is necessary, it has been difficult to adjust the tension from the inner diameter side to the outer diameter side.
[0004]
In view of these problems, an object of the present invention is to provide a linear actuator using a laminated body of thin steel plates that can easily assemble a radial laminated body and secure rigidity and dimensional accuracy as a structure. I do.
[0005]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention provides an annular outer laminated core having at least one slot on the inner peripheral surface, a coil portion in which the slot is wound, and an inner peripheral surface of the outer laminated core. A linear actuator comprising: a permanent magnet that vibrates and moves; a movable body that supports the permanent magnet; and a cylindrical inner laminated core inside the movable body, wherein the outer laminated core provided with the coil portion is: The radial laminated body is formed by laminating thin steel plates in the circumferential direction, and at least one projection or recess is formed in an annular shape on both ends of the radial laminated body, and the annular shape corresponds to the annularly formed projection or recess. By fitting a hollow circular end plate having projections or depressions, the radial laminated body can be easily assembled and the rigidity and dimensional accuracy of the structure are secured. It is possible.
[0006]
The present invention also relates to a radial outer laminated iron core having at least one slot on the inner peripheral surface, wherein a cylindrical yoke portion composed of a radial laminated body in which thin steel plates are laminated in the circumferential direction and a radially laminated thin steel plate. At least one projection or recess is formed on both end surfaces of the cylindrical yoke portion, and at least one projection is formed on both end surfaces of the cylindrical tooth portion. Alternatively, a recess is formed, or at least one protrusion or recess is formed on one of the end faces of the yoke portion and the teeth portion, and an annular protrusion or recess corresponding to the annular protrusion or recess is provided. By fitting the hollow circular end plate, the radial laminated body can be easily assembled and the rigidity and dimensional accuracy of the structure can be reduced. Can be coercive, and from the yoke portion and the tooth portion are separated, it is possible to sequentially assemble each member relative to the hollow circular end plate.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention provides an annular outer laminated iron core having at least one slot on the inner peripheral surface, a coil portion provided with a winding in the slot, and a permanent magnet vibrating along the inner peripheral surface of the outer laminated iron core, In a linear actuator including a movable body supporting the permanent magnet and a cylindrical inner laminated core inside the movable body, the outer laminated core provided with the coil portion is formed by radially laminating thin steel plates in a circumferential direction. At least one projection or dent is formed in a ring shape on both end surfaces of the radial laminate, and a hollow circular shape having an annular projection or dent corresponding to the annular projection or dent. The end plates are fitted together.
[0008]
Further, in the external laminated iron core, a cylindrical yoke portion made of a radial laminated body in which thin steel plates are laminated in the circumferential direction and a cylindrical tooth portion made of a radial laminated body in which thin steel plates are laminated in the circumferential direction are divided. At least one protrusion or dent is formed on both end surfaces of the cylindrical yoke portion, and at least one protrusion or dent is formed on one end surface of the cylindrical tooth portion. At least one projection or depression is formed on one of the end surfaces, and a hollow circular end plate having an annular projection or depression corresponding to the annular projection or depression is fitted.
[0009]
The hollow circular end plate is made of a non-magnetic material.
[0010]
Further, the material of the hollow circular end plate is made of a material having a high specific resistance value.
[0011]
Further, an electric compressor is formed by using the linear actuator of the present application.
[0012]
Further, the electric compressor is a device provided with a refrigeration cycle using the electric compressor.
[0013]
Further, a portable electronic device including the linear actuator is provided.
[0014]
【Example】
Next, the structure of the external laminated iron core, which is a feature of the present invention, will be described with reference to the drawings.
[0015]
(Example 1)
As shown in FIG. 1, the outer laminated iron core 1 forms a thin steel plate into an E shape so that the upper portion of the adjacent thin steel plate on the outer peripheral side of the laminated core is overlapped by laser welding, and the lower portion is separated without welding. . Next, this steel sheet and the lower part of the outer peripheral side of the core of the next steel sheet are overlapped by laser welding, and the upper part is separated without welding. This state is repeated, and adjacent thin steel plates are connected to form a cylindrical radial laminated body. The inner laminated iron core 4 forms a thin steel plate into an I shape so that the upper portion of the adjacent thin steel plate on the outer peripheral side of the laminated core is overlapped by laser welding, and the lower portion is separated without welding. Further, the lower part on the outer peripheral side of the laminated core is made to overlap by laser welding, and the upper part is separated without welding. This state is repeated, and adjacent thin steel plates are connected to form a cylindrical radial laminated body. The inner laminated core 4 is disposed concentrically inside the outer laminated core 1, and the vibrating body 3 holding the permanent magnet 2 is inserted into a gap 5 formed by the two. Further, a coil part 6 around which a copper wire is wound is provided in a slot part of the outer laminated iron core 1. The vibrating body moves in the axial direction by the magnetic flux generated by applying a current to the coil unit 6. As described above, since the vibrating body 3 holding the permanent magnet 2 is movable in the gap portion 5 formed by the outer laminated core 1 and the inner laminated core 4, the gap portion 5 needs to form a uniform gap. However, the outer laminated core 1 is flexible as a motor core in the state of a radial laminated body in which thin steel plates are laminated in the circumferential direction as described above, and the outer laminated core 1 includes a vibrating body 3 holding a permanent magnet 2 on the inner peripheral surface side and an inner portion. In order to arrange the laminated iron core 4, it is necessary to set the roundness and the squareness of the inner peripheral surface so that a uniform gap can be secured. Therefore, the annular projections 8 provided on the hollow circular end plate 7 are fitted with the annular recesses 9 provided on both end surfaces of the outer laminated core 1, whereby the position in the circumferential direction is regulated to form a perfect circle. At the same time, it is possible to regulate the position in the direction perpendicular to the surface where the upper end surface of the hollow circular end plate 7 and the lower end surface of the outer laminated core 1 face each other, and to provide rigidity as a structure. The annular projection 8 provided on the hollow circular end plate 7 may be an annular depression. In this case, the annular depression 9 provided on both end surfaces of the mating external laminated core 1 may have a projection shape. Good.
[0016]
(Example 2)
As shown in FIG. 2, the outer laminated iron core 18 forms a thin steel plate into a T-shape so that the upper portion of the adjacent thin steel plate on the outer peripheral side of the laminated core is overlapped by laser welding, and the lower portion is separated without welding. Further, the lower part on the outer peripheral side of the laminated core is made to overlap by laser welding, and the upper part is separated without welding. This state is repeated so that the adjacent thin steel plates are connected to each other so that the yoke portion 10 which is a cylindrical radial laminated body and the upper portion of the outer peripheral side of the laminated core of the adjacent thin steel plates formed by L-shaping are overlapped by laser welding. And the lower part is separated without welding. Further, the lower part on the outer peripheral side of the laminated core is made to overlap by laser welding, and the upper part is separated without welding. This state is repeated, and the adjacent thin steel plates are connected to each other to form a cylindrical radial laminated body having the teeth 11 and the teeth 12. The yoke portion 10 has a recess 16 on its end face, and the teeth portion 11 and the teeth portion 12 have recesses 17 on their respective end sides. These recesses have a structure that fits into the projections 14 and 15 provided on the hollow circular end plate 13. First, the protrusion 14 of the hollow circular end plate 13 is fitted into the recess 16 of the yoke portion 10. Further, the projections 15 of the hollow circular end plate 13 are fitted into the recesses 17 of the teeth 11 and the teeth 12. By assembling these with reference to the projections 14 and 15 of the hollow circular end plate 13, the respective members can be accurately assembled on a concentric circle, and at the same time, all positions are regulated by the two hollow circular end plates. Therefore, the strength of the structure can be ensured. The recess 16 of the yoke portion 10 and the recesses 17 of the teeth portion 11 and the teeth portion 12 may both have the shape of a protrusion or a combination of a recess and a protrusion. The protrusion 15 provided on the end plate 13 has a shape that can be fitted with the shape of the other party.
[0017]
(Example 3)
Further, by using a non-magnetic material for the hollow circular end plate 7 and the hollow circular end plate 13, it is possible to prevent magnetic flux from being attracted to a region other than a region necessary for moving the vibrating body 3 on the magnetic circuit, The assembly accuracy and rigidity of the laminated core can be improved without lowering the magnetic utilization efficiency.
[0018]
(Example 4)
Further, by using a material having a high specific resistance for the hollow circular end plate 7 and the hollow circular end plate 13, an eddy current generated by a magnetic field generated from the coil portion 6 can be suppressed.
[0019]
(Example 5)
FIG. 3 shows an embodiment of the electric compressor using the linear actuator of the present invention. By using this linear actuator, a highly reliable electric compressor can be obtained. Also, by providing a refrigeration cycle using this electric compressor, it is possible to improve the reliability of the equipment.
[0020]
(Example 6)
FIG. 4 shows an embodiment of a portable electronic device using the linear actuator of the present invention. FIG. 4 is a sectional view for explaining the mobile phone. A vibrating element having this linear actuator mounted on a central substrate is used. By using this linear actuator, a highly reliable portable electronic device can be obtained.
[0021]
【The invention's effect】
As is apparent from the above-described embodiment, the laminated core structure of the linear actuator according to the present invention has an annular projection or an annular dent provided on the end face of the outer laminated core, and an annular dent or an annular dent fitted to the portion. By combining with a hollow circular end plate provided with projections, it is possible to maintain the concentricity with the inner laminated core, that is, the gap interval of the gap portion with high accuracy, and to secure rigidity as a structure. Has an effect.
[0022]
Further, a highly reliable electric compressor can be obtained by using this linear actuator. Also, by providing a refrigeration cycle using this electric compressor, it is possible to improve the reliability of the equipment.
[0023]
In addition, a highly reliable portable electronic device can be obtained by using this linear actuator.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a laminated core portion of a linear actuator according to a first embodiment of the present invention. FIG. FIG. 3 is an explanatory view of an electric compressor using a linear actuator according to a fifth embodiment of the present invention. FIG. 4 is a sectional view of a portable electronic device using a linear actuator according to a sixth embodiment of the present invention. FIG. 5 is an explanatory view showing one embodiment. FIG. 5 is a sectional view of a conventional laminated iron core.
1 External Laminated Iron Core 7 Hollow Circular End Plate 8 Projection 9 Depression

Claims (7)

少なくとも内周面に一つのスロットを有する環状の外部積層鉄心と、前記スロットに巻線を施したコイル部と、前記外部積層鉄心の内周面に沿って振動する永久磁石と、この永久磁石を支持する可動体と、前記可動体の内側に筒状の内部積層鉄心とを備えたリニアアクチュエータにおいて、前記コイル部を施した前記外部積層鉄心は薄板鋼板を周方向に積層したラジアル積層体からなり、そのラジアル積層体両端面に少なくとも一箇所の突起もしくは凹みが環状をなして形成されており、その環状をなした突起もしくは凹みに対応した環状の突起もしくは凹みを有した中空円形端板を嵌合させたことを特徴とするリニアアクチュエータ。An annular outer laminated iron core having at least one slot on the inner peripheral surface, a coil portion provided with a winding in the slot, a permanent magnet vibrating along the inner peripheral surface of the outer laminated core, and a permanent magnet. In a linear actuator having a movable body to be supported and a cylindrical inner laminated core inside the movable body, the outer laminated core provided with the coil portion is a radial laminated body in which thin steel plates are laminated in the circumferential direction. At least one projection or dent is formed on both end surfaces of the radial laminated body in an annular shape, and a hollow circular end plate having an annular projection or dent corresponding to the annular projection or dent is fitted. A linear actuator characterized by being combined. 前記外部積層鉄心において、薄板鋼板を周方向に積層したラジアル積層体からなる筒状のヨーク部と薄板鋼板を周方向に積層したラジアル積層体からなる筒状のティース部に分割した構成で、前記筒状のヨーク部両端面に少なくとも一箇所の突起もしくは凹みが形成され、また前記筒状のティース部片端面に少なくとも一箇所の突起もしくは凹みが形成され、またはヨーク部とティース部のどちらか一方の端面に少なくとも一箇所の突起もしくは凹みが形成されたことを特徴とする請求項1記載のリニアアクチュエータ。In the external laminated iron core, the cylindrical yoke portion made of a radial laminated body obtained by laminating thin steel plates in the circumferential direction and the cylindrical teeth portion formed of a radial laminated body obtained by laminating thin steel plates in the circumferential direction are divided into At least one protrusion or dent is formed on both end surfaces of the cylindrical yoke portion, and at least one protrusion or dent is formed on one end surface of the cylindrical tooth portion, or one of the yoke portion and the tooth portion 2. The linear actuator according to claim 1, wherein at least one projection or depression is formed on an end face of the linear actuator. 前記中空円形端板は非磁性体であることを特徴とする請求項1記載のリニアアクチュエータ。The linear actuator according to claim 1, wherein the hollow circular end plate is made of a non-magnetic material. 前記中空円形端板は固有抵抗値の高い材料であることを特徴とする請求項1記載のリニアアクチュエータ。The linear actuator according to claim 1, wherein the hollow circular end plate is made of a material having a high specific resistance value. 請求項1から請求項4いずれか一項に記載のリニアアクチュエータを使用した電動圧縮機。An electric compressor using the linear actuator according to any one of claims 1 to 4. 請求項5記載の電動圧縮機を使用した冷凍サイクルを備えた機器。An apparatus provided with a refrigeration cycle using the electric compressor according to claim 5. 請求項1から請求項4いずれか一項に記載のリニアアクチュエータを備えた携帯電子機器。A portable electronic device comprising the linear actuator according to any one of claims 1 to 4.
JP2002172313A 2002-06-13 2002-06-13 Linear actuator Pending JP2004023830A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002172313A JP2004023830A (en) 2002-06-13 2002-06-13 Linear actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002172313A JP2004023830A (en) 2002-06-13 2002-06-13 Linear actuator

Publications (1)

Publication Number Publication Date
JP2004023830A true JP2004023830A (en) 2004-01-22

Family

ID=31171914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002172313A Pending JP2004023830A (en) 2002-06-13 2002-06-13 Linear actuator

Country Status (1)

Country Link
JP (1) JP2004023830A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005294830A (en) * 2004-03-26 2005-10-20 Bose Corp Electromagnetic actuator and controlling method of the same
JP2006129686A (en) * 2004-11-01 2006-05-18 Lg Electronics Inc Outer stator of reciprocating motor, and manufacturing method thereof
KR100595565B1 (en) 2004-07-26 2006-07-03 엘지전자 주식회사 Fixing apparatus of stater for reciprocating motor
JP2006197787A (en) * 2005-01-10 2006-07-27 Lg Electronics Inc Stator of reciprocating motor and manufacturing method thereof
US8186807B2 (en) 2008-02-29 2012-05-29 Seiko Epson Corporation Actuator, method for manufacturing actuator, droplet ejection device, droplet ejection head and printer
JP2013172487A (en) * 2012-02-17 2013-09-02 Nippon Steel & Sumitomo Metal Rotary electric machine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005294830A (en) * 2004-03-26 2005-10-20 Bose Corp Electromagnetic actuator and controlling method of the same
KR100595565B1 (en) 2004-07-26 2006-07-03 엘지전자 주식회사 Fixing apparatus of stater for reciprocating motor
JP2006129686A (en) * 2004-11-01 2006-05-18 Lg Electronics Inc Outer stator of reciprocating motor, and manufacturing method thereof
JP2006197787A (en) * 2005-01-10 2006-07-27 Lg Electronics Inc Stator of reciprocating motor and manufacturing method thereof
US8186807B2 (en) 2008-02-29 2012-05-29 Seiko Epson Corporation Actuator, method for manufacturing actuator, droplet ejection device, droplet ejection head and printer
JP2013172487A (en) * 2012-02-17 2013-09-02 Nippon Steel & Sumitomo Metal Rotary electric machine

Similar Documents

Publication Publication Date Title
US7049925B2 (en) Linear actuator
JPS59132379U (en) synchronous motor
JP2002238237A (en) Structure of stator of reciprocal motor
JPH0522920A (en) Linear actuator
JP2002171740A (en) Reciprocal motor
JP2000083364A (en) Movable core linear motor
JP2003174759A (en) Magnetic driver
JPH11313476A (en) Linear motor
JP2004023830A (en) Linear actuator
JP2002238236A (en) Structure for fixing stator of reciprocal motor
JP2001078417A (en) Linear actuator
JP2004023911A (en) Linear actuators, pump device using the same and compressor device
US6770990B2 (en) Reciprocating motor
JPH11187639A (en) Magnet moving type linear actuator
JP2016025818A (en) Electric generator
JP2000236653A (en) Stator of linear motor and manufacture thereof
KR100802622B1 (en) Stator structure for reciprocating motor
JPH0984282A (en) Stator for motor and manufacture thereof
JP2002010610A (en) Linear motor
JP2004260924A (en) Linear actuator
JP2004266903A (en) Linear vibration actuator
US11742709B2 (en) Axial gap motor having a void portion provided for the increased torque of said motor
JPH10323002A (en) Linear motor
KR100417422B1 (en) Reciprocating motor
JP2006271193A (en) Motor