JP2004266903A - Linear vibration actuator - Google Patents

Linear vibration actuator Download PDF

Info

Publication number
JP2004266903A
JP2004266903A JP2003052840A JP2003052840A JP2004266903A JP 2004266903 A JP2004266903 A JP 2004266903A JP 2003052840 A JP2003052840 A JP 2003052840A JP 2003052840 A JP2003052840 A JP 2003052840A JP 2004266903 A JP2004266903 A JP 2004266903A
Authority
JP
Japan
Prior art keywords
magnet
stator
linear vibration
vibration actuator
magnets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003052840A
Other languages
Japanese (ja)
Inventor
Norisada Nishiyama
典禎 西山
Shinichirou Kawano
慎一朗 川野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003052840A priority Critical patent/JP2004266903A/en
Publication of JP2004266903A publication Critical patent/JP2004266903A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem wherein the best use of the original performance of a magnet cannot be made, because the magnetization of a permanent magnet is difficult, and it cannot achieve size reduction and performance elevation as an actuator, in a linear vibration actuator where a permanent magnet is arranged within a hollow moving member and a stator is arranged via a magnetic gap. <P>SOLUTION: This linear vibration actuator uses a plurality of circular magnets 2A and 2B, with their magnetization being oriented in parallel, in the radial direction of the magnet center. Hereby, the magnetization of a small-diameter magnet can be facilitated. That is, the magnetization is carried out so that obverse and reverse become reverse poles by developing band-shaped flexible magnets, and the curled magnets are arranged within the moving member. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、リニア振動アクチュエータに関する。
【0002】
【従来の技術】
従来、リニア振動アクチュエータの一例について図8、及び図9を用いて説明する。図8は、従来例におけるリニア振動アクチュエータの平面図(カバー、バネは透視)、図9は同軸断面図を示す。内側に永久磁石12を配したリング状可動子13と、その内径にギャップを介して、エ字状断面をもつ軸対称コアに対して、中心部分をとりかこむように巻かれたコイル部14を有する固定子15とを軸方向へ可動できるよう弾性体16で支持した構成を有している(例えば、特許文献1参照)。
【0003】
コイル部14へ交流あるいは、パルスを通電すると発生する磁束に従い、可動子13が上下に振動する。一端を固定子15、他端を可動子13に固定した支持体16を可動子の上下に備え、可動子の運動エネルギーを振動として取り出す。
【0004】
可動子13の内径の永久磁石は内径が同一極となり、外径と異極となるよう単極に着磁されている(例えば内径をN極、外径をS極)。
【0005】
【特許文献1】
出願番号2001―358108の公開公報
【0006】
【発明が解決しようとする課題】
しかしながら、磁石の内径が10mm程度以下と小さい場合、着磁が困難であるという課題を有していた。特にアクチュエータの小型高性能化のため、磁石には、高エネルギー積、耐熱性を有する高保磁力の磁石が求められる。例えばSmCo焼結磁石である。高性能なSmCo焼結磁石の着磁には4MA/m以上と大きな着磁磁場が必要である。本例のような内径10mm程度以下の小径磁石を単極着磁することは困難であり、磁石本来の性能を生かせず、アクチュエータとして小型高性能化に課題があった。
【0007】
【課題を解決するための手段】
本件出願に係る第1の発明のリニア振動アクチュエータは、中空状可動子の内径に磁気ギャップを介して固定子を配し、前記中空状可動子内径に複数の磁石が設けられ、前記磁石は、前記固定子に対面する側が同一極に着磁され、かつ磁石中心の板厚方向に磁化平行配向されている。
【0008】
また、本件出願に係る第2の発明のリニア振動アクチュエータは、第1の発明のリニア振動アクチュエータにおいて、磁石が、リングを軸方向に2分割された円弧状磁石であり、2つの前記磁石どうしが接することなく離間して配置される。
【0009】
また、本件出願に係る第3の発明のリニア振動アクチュエータは、第2の発明のリニア振動アクチュエータにおいて、2個の磁石間と磁気ギャップを介して対向する個所の少なくとも一箇所に切欠きを有する固定子を備える。
【0010】
また、本件出願に係る第4の発明のリニア振動アクチュエータは、上記第1から第3の発明のリニア振動アクチュエータにおいて、磁石と磁石との間の位置と、磁気ギャップを介して対向する個所の少なくとも一箇所に切欠きを有する固定子を備える。
【0011】
また、本件出願に係る第5の発明のリニア振動アクチュエータは、中空状可動子の内径に磁気ギャップを介して固定子を設け、前記中空状可動子の内径には、帯状のフレキシブルな磁石を展開して表裏が逆の極となるよう着磁を行い、カーリングし前記固定子に対面する側が同一極に構成される。
【0012】
また、本件出願に係る第6の発明のリニア振動アクチュエータは、第5の発明のリニア振動アクチュエータにおいて、固定子に切欠き部を有し、前記切欠き部とカーリングされたフレキブルな磁石の合わせ面とが相対する位置関係の構成を備える。
【0013】
また、本件出願に係る第7の発明のリニア振動アクチュエータは、上記第5、第6の発明のリニア振動アクチュエータにおいて、板厚方向に対して傾斜させた着磁分布を有するフレキシブルな磁石をカーリングし、前記磁石の固定子に対面する側を同一極とし、磁気ギャップを介して対向する個所の少なくとも一箇所に切欠き部が設けられる固定子を有し、その切欠き部と磁石のカーリングによる合わせ面部とを対向させ、前記切欠き部の固定子径方向の深さ方向に対して直交する方向へ磁束を集中させる着磁分布とする。
【0014】
また、本件出願に係る第8の発明のリニア振動アクチュエータは、第7の発明のリニア振動アクチュエータにおいて、フレキシブルな磁石を曲面へ展開し平行着磁を行い、板厚方向に対して傾斜させた着磁分布を有する磁石を備える。
【0015】
また、本件出願に係る第9の発明のリニア振動アクチュエータは、上記第1から第8の発明のリニア振動アクチュエータにおいて、中空状可動子の形状がリング状である。
【0016】
また、本件出願に係る第10の発明のリニア振動アクチュエータは、上記第1から第8の発明のリニア振動アクチュエータにおいて、中空状可動子の内側形状が円形状で、外側が多角形である。
【0017】
また、本件出願に係る第11の発明は、上記第1から第10の発明のリニア振動アクチュエータを搭載する情報携帯端末である。また、情報携帯端末に替えて携帯電話、PDA、ゲーム、時計などに搭載する。
【0018】
このように、磁石中心の半径方向に磁化平行配向した円弧状磁石を複数用いることで、小径磁石の単極着磁を容易に行うことができ、小型高性能なリニア振動アクチュエータを提供することができる
また、帯状のフレキシブルな磁石を展開して表裏が逆の極となるよう着磁を行い、カーリングした磁石を可動子の内径部に配することで小型高性能なリニア振動アクチュエータを提供することができる。
【0019】
【発明の実施の形態】
本件出願に係る発明のリニア振動アクチュエータは、以下の要件を備えている。
中空状可動子の内径に磁気ギャップを介して固定子を配し、この中空状可動子の内径に磁石中心の半径方向に磁化平行配向され、固定子に対面する側を同一極に着磁された複数磁石を備える構成とするリニア振動アクチュエータである。
【0020】
また、帯状のフレキシブルな磁石を展開して表裏が逆の極となるよう着磁を行い、カーリングし固定子に対面する側が同一極としたことを特長とするリニア振動アクチュエータである。
【0021】
【実施例】
以下に、本件出願に係る発明の実施例を説明する。
【0022】
(実施例1)
図1、図2にリニア振動アクチュエータ1の構成を示す。図1は、本実施例におけるリニア振動アクチュエータの平面図(カバー、バネは点線により透視図を示す)、図2は同軸断面図を示す。
【0023】
内側に永久磁石2A、2Bを配したリング状可動子3と、その内径にギャップを介して、エ字状断面をもつ軸対称コアに対して、中心部分をとりかこむように巻かれたコイル部4を有する固定子5とを軸方向へ可動できるように弾性体のバネ6で支持した構成を有している。
【0024】
コイル部4へ交流を通電すると発生する磁束に従い、可動子3が上下に振動する。一端を固定子5、他端を可動子3に固定した支持体であるバネ6を可動子の上下に備え、可動子の運動エネルギーを振動として取り出す。
【0025】
可動子3の内径の永久磁石は固定子に対面する側が同一極となり、永久磁石の固定子に対面する側の裏側の面が異極となるように着磁されている。例えば、固定子に対面する側がN極であり、固定子に対面する側の裏側の面がS極である。又は、固定子に対面する側がS極であり、固定子に対面する側の裏側の面がN極である。
【0026】
ここで、磁石2A、2Bは、ハッチングで示した方向に磁石中心の半径方向に磁化平行配向した磁石であり、配向方向に内径が同一極となるよう着磁されている。本実施例では、磁石を分割し、また平行着磁を行うことで、小径にも関わらず、内径の着磁と外径の着磁とが互いに異極となる着磁状態を実現している。
【0027】
さらに、磁石2Aと2Bの合わせ面20をはなすことで、お互いに逆方向となる反磁界の影響を低減し有効磁束を高めている。固定子5の、磁石2Aと2Bの合わせ面20に対向する箇所に切欠き50を設けており、有効な鎖交磁束が少ない箇所を、固定子コイルの配線部としている。
【0028】
また、中空状可動子の形状違いの例について図3(a)、(b)に示す。図3(a)の可動子は外形状が四角形で内形状が円形、図3(b)の可動子32は、この実施例1の他の形状の可動子平面図であり、外形状が八角形で内形状が円形であり、ともに限られたサイズにおいて、より可動子重量を大きくできて、小型であるが従来よりも大きな振動を得ることができる。
【0029】
このように、中空状可動子は、リング状の形状、略円筒形の形状、又は略ドーナツ形の形状であり、中空状可動子の外形状・内形状は、リニア振動アクチュエータの仕様により適宜選択する。これら形状は、円形、楕円、多角形、などである。
【0030】
このように、本実施例は、中空状可動子の内径に磁気ギャップを介して固定子を配する。この中空状可動子の内径に磁石を設ける。そして、この磁石の固定子に対面する側を同一極に着磁し、磁石中心の半径方向に磁化平行配向した複数磁石を配し、磁石と磁石との間の位置と、磁気ギャップを介して対向する個所の少なくとも一箇所に切欠きを設けた固定子を有した構成とすることにより、小型高性能なリニアアクチュエータを提供することができる。さらに、本実施例のリニア振動アクチュエータを携帯電話、PDA、ゲーム、時計、情報携帯端末に搭載することで、小型高性能な情報携帯端末を提供できる。
【0031】
(実施例2)
図4に他の実施例を示す。図4は第2の実施例の可動子と固定子の平面図である。可動子30、固定子5、永久磁石21・23が設けられる。図4(a)は、磁石が3分割で構成された例、図4(b)は、4分割で構成された例である。
【0032】
ここで、磁石21・23は、ハッチングで示す方向に磁化平行配向した磁石であり、固定子に対面する側が同一極となるよう着磁されている。本実施例では、磁石を3分割、あるいは4分割し、平行着磁を行うことで、小径にも関わらず、内径と外径が異極となる単極磁石を実現している。
【0033】
図4(a)は、固定子5の、永久磁石21の合わせ面22に対向する箇所に切欠き50を設けており、有効な鎖交磁束が少ない箇所を、固定子コイルの配線部としている。
【0034】
図4(b)は、この実施例2の他の構成を示す。固定子5の、永久磁石23の合わせ面24に対向する箇所に切欠き50を設けており、有効な鎖交磁束が少ない箇所を、固定子コイルの配線部としている。
【0035】
このように、本実施例は、中空状可動子の内径に磁気ギャップを介して固定子を配し、この中空状可動子の内径に、固定子に対面する側を同一極に着磁し、磁石中心の半径方向に磁化平行配向した複数磁石を配し、磁石と磁石との間の位置と、磁気ギャップを介して対向する個所の少なくとも一箇所に切欠きを設けた固定子を有する構成としているので、小型高性能なリニアアクチュエータを提供できる。
【0036】
(実施例3)
図5に他の実施例を示す。図5は第3の実施例の可動子と固定子の平面図である。30は可動子、5は固定子、25は永久磁石を示す。本実施例の永久磁石は帯状のフレキシブルな磁石を用い、展開して表裏が逆の極となるよう着磁を行い、カーリングし固定子に対面する側が同一極とした構成としている。また、カーリングした永久磁石の合わせ面の位置26が、磁気ギャップを介して固定子5の対向する箇所に切欠き50を設けた構成として、有効な鎖交磁束が少ない箇所を、固定子コイルの配線部としている。このような構成により、小型高性能なリニアアクチュエータを提供できる。
【0037】
(実施例4)
図6に他の実施例を示す。図6(a)は第4の実施例の可動子と固定子の平面図である。30は可動子、5は固定子、27は永久磁石を示す。図6(b)は、磁石27の着磁の状態を示す図である。
【0038】
本実施例の永久磁石は帯状のフレキシブルな磁石を用い、展開して表裏が逆の極となるよう着磁を行う。着磁を行うときには、永久磁石を平面でなく、図6(b)に示す2つの山を持たせた曲面に展開した状態で平行着磁を行う。この磁石をカーリングすることで、図6(a)に示した、固定子切欠き部と直行したB部、D部へ磁束を集中することができ、切欠き部50近傍の無効な磁束低減することができる。
【0039】
図7は、フレキシブルな永久磁石の磁化を示した図である。図7(a)は、平面に展開して平行着磁をした場合であり、永久磁石25の有効磁石長さはM1で板厚に等しい。一方、図7(b)は、本実施例に示す2つの山を持たせた曲面に展開して平行着磁をした場合であり、永久磁石27の有効磁石長さは傾斜した箇所においては、板厚、すなわちM1より厚くM2である。このような構成により、減磁耐体力を大きくでき、また、パーミアンスの増加により有効磁束も増加できる。
【0040】
このように、本実施例は、フレキシブルな磁石を曲面へ展開し平行着磁を行い、板厚方向に対して傾斜させた着磁分布を有する磁石を備える構成としているので、小型高性能なリニアアクチュエータを提供できる。
【0041】
【発明の効果】
以上説明したように、本件出願に係る発明によれば、中空状可動子の内径に磁気ギャップを介して固定子を配し、この中空状可動子の内径に磁石中心の半径方向に磁化平行配向され、固定子に対面する側を同一極に着磁された複数磁石を配した構成とし、小型高性能なリニア振動アクチュエータを容易に実現できる。
【0042】
また、帯状のフレキシブルな磁石を展開して表裏が逆の極となるよう着磁を行い、カーリングし固定子に対面する側が同一極とした構成によっても同様に、小型高性能なリニア振動アクチュエータを容易に実現できる。
【図面の簡単な説明】
【図1】本発明のリニア振動アクチュエータの平面図
【図2】本発明のリニア振動アクチュエータの軸断面図
【図3】(a)実施例1の可動子平面図
(b)実施例1の他の形状の可動子平面図
【図4】(a)実施例2の可動子と固定子の平面図
(b)実施例2の他の構成の可動子と固定子の平面図
【図5】実施例3の可動子と固定子の平面図
【図6】(a)実施例4の可動子と固定子の平面図
(b)実施例4の磁石の着磁の状態を示す図
【図7】(a)実施例4の平面に展開して平行着磁をした場合の磁石の着磁状態を示す図
(b)実施例4の2つの山を持たせた曲面に展開して平行着磁をした場合の磁石の着磁状態を示す図
【図8】従来例におけるリニア振動アクチュエータの平面図
【図9】従来例におけるリニア振動アクチュエータの軸断面図
【符号の説明】
1 リニア振動アクチュエータの底面
2A 永久磁石
2B 永久磁石
20 永久磁石2Aと永久2Bの合わせ面
3 可動子
4 コイル部
5 固定子
50 切欠き
6 バネ
7 カバー
11 リニア振動アクチュエータの底面図
12 永久磁石
13 可動子
14 コイル部
15 固定子
16 バネ
17 カバー
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a linear vibration actuator.
[0002]
[Prior art]
Conventionally, an example of a linear vibration actuator will be described with reference to FIGS. FIG. 8 is a plan view of a linear vibration actuator in a conventional example (cover and spring are seen through), and FIG. 9 is a coaxial sectional view. A ring-shaped movable element 13 having a permanent magnet 12 disposed inside, and a coil portion 14 wound around the central portion of an axially symmetric core having an E-shaped cross section via a gap in the inner diameter thereof. The stator 15 is supported by an elastic body 16 so as to be movable in the axial direction (see, for example, Patent Document 1).
[0003]
The mover 13 vibrates up and down in accordance with the magnetic flux generated when an alternating current or pulse is applied to the coil portion 14. Supports 16 having one end fixed to the stator 15 and the other end fixed to the mover 13 are provided above and below the mover, and the kinetic energy of the mover is extracted as vibration.
[0004]
The permanent magnet having the inner diameter of the mover 13 has the same inner diameter and is magnetized to a single pole so as to be different from the outer diameter (for example, the inner diameter is N and the outer diameter is S).
[0005]
[Patent Document 1]
Application Publication No. 2001-358108 Publication Gazette
[Problems to be solved by the invention]
However, when the inner diameter of the magnet is as small as about 10 mm or less, there is a problem that magnetization is difficult. In particular, in order to improve the size and performance of the actuator, the magnet is required to have a high coercive force magnet having a high energy product and heat resistance. For example, SmCo sintered magnet. Magnetizing a high-performance SmCo sintered magnet requires a large magnetizing magnetic field of 4 MA / m or more. It is difficult to single-pole magnetize a small-diameter magnet having an inner diameter of about 10 mm or less as in this example, and there has been a problem in miniaturization and high performance as an actuator without utilizing the original performance of the magnet.
[0007]
[Means for Solving the Problems]
In the linear vibration actuator of the first invention according to the present application, a stator is arranged on an inner diameter of a hollow movable element via a magnetic gap, and a plurality of magnets are provided on the inner diameter of the hollow movable element, The side facing the stator is magnetized to the same pole, and is magnetized in parallel in the plate thickness direction of the magnet center.
[0008]
The linear vibration actuator according to a second aspect of the present application is the linear vibration actuator according to the first aspect, wherein the magnet is an arc-shaped magnet obtained by dividing the ring into two in the axial direction. They are spaced apart without touching.
[0009]
The linear vibration actuator of the third invention according to the present application is the linear vibration actuator of the second invention, wherein the linear vibration actuator of the second invention has a notch in at least one of the locations opposed to each other between the two magnets via the magnetic gap. Prepare a child.
[0010]
A linear vibration actuator according to a fourth aspect of the present application is the linear vibration actuator according to any one of the first to third aspects of the present invention, wherein at least a position between the magnets and a position facing each other via a magnetic gap is provided. A stator having a notch at one location is provided.
[0011]
According to a fifth aspect of the linear vibration actuator of the present application, a stator is provided on the inner diameter of the hollow movable element via a magnetic gap, and a strip-shaped flexible magnet is developed on the inner diameter of the hollow movable element. Then, magnetization is performed so that the front and back are opposite poles, curling and the side facing the stator are configured with the same pole.
[0012]
A linear vibration actuator according to a sixth aspect of the present application is the linear vibration actuator according to the fifth aspect of the present invention, wherein the stator has a cutout portion, and the mating surface of the flexible magnet curled with the cutout portion. It has a configuration of a positional relationship in which and are opposed.
[0013]
A linear vibration actuator according to a seventh aspect of the present application is the linear vibration actuator according to the fifth and sixth aspects of the present invention, in which a flexible magnet having a magnetization distribution inclined with respect to the thickness direction is curled. , Having a stator in which the side facing the stator of the magnet has the same pole and a notch is provided in at least one of the locations facing each other via a magnetic gap, and the notch and magnet are aligned by curling A magnetization distribution in which the magnetic flux is concentrated in a direction orthogonal to the depth direction in the stator radial direction of the notch is opposed to the surface portion.
[0014]
The linear vibration actuator according to an eighth aspect of the present application is the linear vibration actuator according to the seventh aspect of the present invention, wherein a flexible magnet is developed on a curved surface to perform parallel magnetization and tilted with respect to the thickness direction. A magnet having a magnetic distribution is provided.
[0015]
The linear vibration actuator according to a ninth aspect of the present application is the linear vibration actuator according to any of the first to eighth aspects, wherein the hollow movable element has a ring shape.
[0016]
According to a tenth aspect of the linear vibration actuator of the present application, in the linear vibration actuators of the first to eighth aspects, the hollow movable element has a circular inner shape and a polygonal outer side.
[0017]
An eleventh invention according to the present application is an information portable terminal on which the linear vibration actuator according to any of the first to tenth inventions is mounted. Also, it is installed in a mobile phone, PDA, game, watch, etc. instead of the information portable terminal.
[0018]
Thus, by using a plurality of arc-shaped magnets magnetized in parallel in the radial direction of the center of the magnet, single-pole magnetization of a small-diameter magnet can be easily performed, and a small high-performance linear vibration actuator can be provided. It is also possible to provide a small high-performance linear vibration actuator by deploying a band-shaped flexible magnet and magnetizing it so that the front and back have opposite poles and arranging the curled magnet on the inner diameter part of the mover Can do.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
The linear vibration actuator of the invention according to the present application has the following requirements.
A stator is arranged on the inner diameter of the hollow mover via a magnetic gap, and the inner diameter of the hollow mover is magnetized parallel to the radial direction of the center of the magnet, and the side facing the stator is magnetized to the same pole. In addition, the linear vibration actuator includes a plurality of magnets.
[0020]
In addition, the linear vibration actuator is characterized in that a belt-like flexible magnet is developed and magnetized so that the front and back have opposite poles, and the side facing the stator is curled.
[0021]
【Example】
Examples of the invention according to the present application will be described below.
[0022]
(Example 1)
1 and 2 show the configuration of the linear vibration actuator 1. FIG. 1 is a plan view of a linear vibration actuator in the present embodiment (a cover and a spring are shown as perspective views by dotted lines), and FIG. 2 is a coaxial sectional view.
[0023]
A ring-shaped movable element 3 having permanent magnets 2A and 2B arranged inside, and a coil part 4 wound around an axially symmetric core having an E-shaped cross section via a gap in the inner diameter thereof. And a stator 5 having an elastic body so that it can be moved in the axial direction.
[0024]
The mover 3 vibrates up and down in accordance with the magnetic flux generated when the coil portion 4 is energized. Spring 6 which is a support having one end fixed to the stator 5 and the other end fixed to the mover 3 is provided above and below the mover, and the kinetic energy of the mover is extracted as vibration.
[0025]
The permanent magnet having the inner diameter of the mover 3 is magnetized so that the side facing the stator has the same polarity and the back side of the permanent magnet facing the stator has a different polarity. For example, the side facing the stator is the N pole, and the back side of the side facing the stator is the S pole. Alternatively, the side facing the stator is the S pole, and the back side of the side facing the stator is the N pole.
[0026]
Here, the magnets 2A and 2B are magnets that are magnetized in parallel in the radial direction of the magnet center in the direction indicated by hatching, and are magnetized so that the inner diameter is the same pole in the orientation direction. In this embodiment, the magnet is divided and the parallel magnetization is performed to realize a magnetization state in which the inner diameter magnetization and the outer diameter magnetization are different from each other regardless of the small diameter. .
[0027]
Furthermore, by separating the mating surfaces 20 of the magnets 2A and 2B, the effect of demagnetizing fields that are opposite to each other is reduced, and the effective magnetic flux is increased. A notch 50 is provided in a portion of the stator 5 facing the mating surface 20 of the magnets 2A and 2B, and a portion having a small effective flux linkage is used as a wiring portion of the stator coil.
[0028]
Moreover, it shows to FIG. 3 (a), (b) about the example of a shape difference of a hollow shape needle | mover. The mover shown in FIG. 3A has a quadrilateral outer shape and a circular inner shape, and the mover 32 shown in FIG. 3B is a plan view of the mover having another shape according to the first embodiment. The rectangular shape and the inner shape are circular, and the weight of the mover can be increased more in a limited size, and the vibration can be obtained more compactly than in the conventional case.
[0029]
As described above, the hollow mover has a ring shape, a substantially cylindrical shape, or a substantially donut shape, and the outer shape and the inner shape of the hollow mover are appropriately selected according to the specifications of the linear vibration actuator. To do. These shapes are a circle, an ellipse, a polygon, and the like.
[0030]
As described above, in this embodiment, the stator is arranged on the inner diameter of the hollow movable element via the magnetic gap. A magnet is provided on the inner diameter of the hollow movable element. And the side facing this stator of the magnet is magnetized to the same pole, a plurality of magnets magnetized in parallel in the radial direction of the center of the magnet are arranged, the position between the magnets and the magnetic gap By adopting a configuration having a stator provided with a notch in at least one of the opposing locations, a small high-performance linear actuator can be provided. Furthermore, by mounting the linear vibration actuator of this embodiment on a mobile phone, PDA, game, watch, and information portable terminal, a small and high performance information portable terminal can be provided.
[0031]
(Example 2)
FIG. 4 shows another embodiment. FIG. 4 is a plan view of the mover and the stator of the second embodiment. A mover 30, a stator 5, and permanent magnets 21 and 23 are provided. 4A shows an example in which the magnet is divided into three parts, and FIG. 4B shows an example in which the magnet is divided into four parts.
[0032]
Here, the magnets 21 and 23 are magnets magnetized in parallel in the direction indicated by hatching, and are magnetized so that the side facing the stator has the same pole. In the present embodiment, the magnet is divided into three or four parts, and parallel magnetization is performed, thereby realizing a monopolar magnet having an inner diameter and an outer diameter that are different from each other despite a small diameter.
[0033]
4A, a notch 50 is provided in a portion of the stator 5 facing the mating surface 22 of the permanent magnet 21, and a portion having a small effective flux linkage is used as a wiring portion of the stator coil. .
[0034]
FIG. 4B shows another configuration of the second embodiment. A notch 50 is provided in a portion of the stator 5 facing the mating surface 24 of the permanent magnet 23, and a portion having a small effective flux linkage is used as a wiring portion of the stator coil.
[0035]
Thus, in this embodiment, a stator is arranged on the inner diameter of the hollow movable element via the magnetic gap, and the inner surface of the hollow movable element is magnetized on the same pole on the side facing the stator, As a configuration having a stator in which a plurality of magnets magnetized in parallel in the radial direction of the magnet center are arranged, and a notch is provided at at least one position between the magnets and a position facing each other via a magnetic gap Therefore, a small high-performance linear actuator can be provided.
[0036]
(Example 3)
FIG. 5 shows another embodiment. FIG. 5 is a plan view of the mover and stator of the third embodiment. Reference numeral 30 denotes a mover, 5 denotes a stator, and 25 denotes a permanent magnet. The permanent magnet of the present embodiment is a belt-like flexible magnet that is unfolded and magnetized so that the front and back have opposite poles, and is curled so that the side facing the stator has the same pole. Further, the position 26 on the mating surface of the curled permanent magnet is provided with a notch 50 at a location where the stator 5 is opposed via a magnetic gap. The wiring part. With such a configuration, a small high-performance linear actuator can be provided.
[0037]
Example 4
FIG. 6 shows another embodiment. FIG. 6A is a plan view of the mover and the stator of the fourth embodiment. Reference numeral 30 denotes a movable element, 5 denotes a stator, and 27 denotes a permanent magnet. FIG. 6B is a diagram showing a magnetized state of the magnet 27.
[0038]
The permanent magnet of this embodiment is a belt-like flexible magnet that is unfolded and magnetized so that the front and back are opposite poles. When the magnetization is performed, the parallel magnetization is performed in a state where the permanent magnet is not a flat surface but is developed on a curved surface having two peaks as shown in FIG. By curling this magnet, the magnetic flux can be concentrated on the B and D portions perpendicular to the stator notch shown in FIG. 6A, and the invalid magnetic flux in the vicinity of the notch 50 is reduced. be able to.
[0039]
FIG. 7 is a diagram showing the magnetization of a flexible permanent magnet. FIG. 7A shows a case in which the magnet is developed in a plane and parallel magnetized, and the effective magnet length of the permanent magnet 25 is M1 and equal to the plate thickness. On the other hand, FIG. 7 (b) shows a case where the two magnets are developed on a curved surface having two peaks as shown in the present embodiment and subjected to parallel magnetization. The plate thickness is M2, which is thicker than M1. With such a configuration, the demagnetization resistance can be increased, and the effective magnetic flux can be increased by increasing the permeance.
[0040]
As described above, the present embodiment has a configuration in which a flexible magnet is developed on a curved surface, performs parallel magnetization, and includes a magnet having a magnetization distribution inclined with respect to the plate thickness direction. An actuator can be provided.
[0041]
【The invention's effect】
As described above, according to the invention according to the present application, a stator is arranged on the inner diameter of the hollow movable element via a magnetic gap, and the parallel magnetization in the radial direction of the magnet center is arranged on the inner diameter of the hollow movable element. In addition, it is possible to easily realize a small high-performance linear vibration actuator by arranging a plurality of magnets magnetized to the same pole on the side facing the stator.
[0042]
In addition, a small, high-performance linear vibration actuator can also be obtained by developing a belt-shaped flexible magnet and magnetizing it so that the front and back have opposite poles and curling and facing the stator on the same pole. It can be easily realized.
[Brief description of the drawings]
FIG. 1 is a plan view of a linear vibration actuator of the present invention. FIG. 2 is an axial cross-sectional view of the linear vibration actuator of the present invention. FIG. 3A is a plan view of a mover of a first embodiment. [FIG. 4] (a) Plan view of the mover and stator of the second embodiment (b) Plan view of mover and stator of another configuration of the second embodiment [FIG. 5] Implementation FIG. 6A is a plan view of the mover and the stator of Example 4. FIG. 6B is a diagram showing the magnetized state of the magnet of Example 4. FIG. (A) The figure which shows the magnetization state of the magnet at the time of expand | deploying on the plane of Example 4 and carrying out parallel magnetization, (b) Expanding on the curved surface which gave the two peaks of Example 4, and carrying out parallel magnetization FIG. 8 is a plan view of the linear vibration actuator in the conventional example. FIG. 9 is a diagram of the linear vibration actuator in the conventional example. Rear view DESCRIPTION OF SYMBOLS
DESCRIPTION OF SYMBOLS 1 Bottom surface of linear vibration actuator 2A Permanent magnet 2B Permanent magnet 20 Mating surface of permanent magnet 2A and permanent 2B 3 Movable element 4 Coil part 5 Stator 50 Notch 6 Spring 7 Cover 11 Bottom view of linear vibration actuator 12 Permanent magnet 13 Movable Child 14 Coil portion 15 Stator 16 Spring 17 Cover

Claims (11)

中空状可動子の内径に磁気ギャップを介して固定子を配し、前記中空状可動子内径に複数の磁石が設けられ、前記磁石は、前記固定子に対面する側が同一極に着磁され、かつ磁石中心の板厚方向に磁化平行配向されているリニア振動アクチュエータ。A stator is arranged on the inner diameter of the hollow movable element via a magnetic gap, and a plurality of magnets are provided on the inner diameter of the hollow movable element, and the magnet is magnetized on the same pole on the side facing the stator, A linear vibration actuator that is magnetized in parallel in the plate thickness direction of the magnet center. 磁石が、リングを軸方向に2分割された円弧状磁石であり、2つの前記磁石どうしが接することなく離間して配置される請求項1記載のリニア振動アクチュエータ。The linear vibration actuator according to claim 1, wherein the magnet is an arc-shaped magnet obtained by dividing the ring into two in the axial direction, and the two magnets are spaced apart from each other without being in contact with each other. 2個の磁石間と磁気ギャップを介して対向する個所の少なくとも一箇所に切欠きを有する固定子を備える請求項2記載のリニア振動アクチュエータ。The linear vibration actuator according to claim 2, further comprising a stator having a notch at least at one of the locations facing each other between the two magnets with a magnetic gap interposed therebetween. 磁石と磁石との間の位置と、磁気ギャップを介して対向する個所の少なくとも一箇所に切欠きを有する固定子を備える請求項1から請求項3のいずれかに記載のリニア振動アクチュエータ。The linear vibration actuator according to any one of claims 1 to 3, further comprising a stator having a notch at at least one of a position between the magnets and a position facing each other via a magnetic gap. 中空状可動子の内径に磁気ギャップを介して固定子を設け、前記中空状可動子の内径には、帯状のフレキシブルな磁石を展開して表裏が逆の極となるよう着磁を行い、カーリングし前記固定子に対面する側が同一極に構成されるリニア振動アクチュエータ。A stator is provided on the inner diameter of the hollow movable element via a magnetic gap, and a belt-shaped flexible magnet is developed on the inner diameter of the hollow movable element so that the front and back surfaces are opposite to each other and magnetized. A linear vibration actuator in which the side facing the stator is configured with the same pole. 固定子に切欠き部を有し、前記切欠き部とカーリングされたフレキブルな磁石の合わせ面とが相対する位置関係の構成を備える請求項5記載のリニア振動アクチュエータ。The linear vibration actuator according to claim 5, wherein the stator has a notch portion, and has a configuration in which the notch portion and a curled flexible magnet mating surface face each other. 板厚方向に対して傾斜させた着磁分布を有するフレキシブルな磁石をカーリングし、前記磁石の固定子に対面する側を同一極とし、磁気ギャップを介して対向する個所の少なくとも一箇所に切欠き部が設けられる固定子を有し、その切欠き部と磁石のカーリングによる合わせ面部とを対向させ、前記切欠き部の固定子径方向の深さ方向に対して直交する方向へ磁束を集中させる着磁分布とする請求項5又は請求項6のいずれかに記載のリニア振動アクチュエータ。Curling a flexible magnet having a magnetization distribution inclined with respect to the plate thickness direction, making the side facing the stator of the magnet the same pole, and notching at least one of the locations facing each other via a magnetic gap A stator provided with a portion, the notch portion and a mating surface portion by curling of the magnet are opposed to each other, and the magnetic flux is concentrated in a direction orthogonal to the depth direction of the stator radial direction of the notch portion. The linear vibration actuator according to claim 5, wherein the linear vibration actuator has a magnetization distribution. フレキシブルな磁石を曲面へ展開し平行着磁を行い、板厚方向に対して傾斜させた着磁分布を有する磁石を備える請求項7記載のリニア振動アクチュエータ。The linear vibration actuator according to claim 7, further comprising a magnet having a magnetized distribution in which a flexible magnet is developed on a curved surface to perform parallel magnetization and is inclined with respect to the thickness direction. 中空状可動子の形状がリング状である請求項1から請求項8のいずれかに記載のリニア振動アクチュエータ。The linear vibration actuator according to claim 1, wherein the hollow movable element has a ring shape. 中空状可動子の内側形状が円形状で、外側が多角形である請求項1から請求項8のいずれかに記載のリニア振動アクチュエータ。The linear vibration actuator according to claim 1, wherein the hollow movable element has a circular inner shape and a polygonal outer side. 請求項1から請求項10のいずれかに記載のリニア振動アクチュエータを搭載する情報携帯端末。The information portable terminal carrying the linear vibration actuator in any one of Claims 1-10.
JP2003052840A 2003-02-28 2003-02-28 Linear vibration actuator Pending JP2004266903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003052840A JP2004266903A (en) 2003-02-28 2003-02-28 Linear vibration actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003052840A JP2004266903A (en) 2003-02-28 2003-02-28 Linear vibration actuator

Publications (1)

Publication Number Publication Date
JP2004266903A true JP2004266903A (en) 2004-09-24

Family

ID=33117606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003052840A Pending JP2004266903A (en) 2003-02-28 2003-02-28 Linear vibration actuator

Country Status (1)

Country Link
JP (1) JP2004266903A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010104864A (en) * 2008-10-28 2010-05-13 Sanyo Electric Co Ltd Reciprocating vibration generator
JP2010231234A (en) * 2005-10-21 2010-10-14 Shicoh Engineering Co Ltd Driving device
KR20180039040A (en) * 2018-04-05 2018-04-17 자화전자(주) vibration actuator
KR20190040153A (en) * 2019-04-04 2019-04-17 자화전자(주) vibration actuator
US11070121B2 (en) 2016-08-04 2021-07-20 Jahwa Electronics Co., Ltd. Vibration generating apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010231234A (en) * 2005-10-21 2010-10-14 Shicoh Engineering Co Ltd Driving device
JP2011065192A (en) * 2005-10-21 2011-03-31 Shicoh Engineering Co Ltd Lens driving apparatus
JP2010104864A (en) * 2008-10-28 2010-05-13 Sanyo Electric Co Ltd Reciprocating vibration generator
US11070121B2 (en) 2016-08-04 2021-07-20 Jahwa Electronics Co., Ltd. Vibration generating apparatus
KR20180039040A (en) * 2018-04-05 2018-04-17 자화전자(주) vibration actuator
KR101970708B1 (en) * 2018-04-05 2019-04-19 자화전자(주) vibration actuator
KR20190040153A (en) * 2019-04-04 2019-04-17 자화전자(주) vibration actuator
KR102076277B1 (en) * 2019-04-04 2020-02-11 자화전자(주) vibration actuator

Similar Documents

Publication Publication Date Title
EP1706934B1 (en) Rotor-stator structure for electrodynamic machines
US7294948B2 (en) Rotor-stator structure for electrodynamic machines
US7884522B1 (en) Stator and rotor-stator structures for electrodynamic machines
RU2593681C2 (en) Electromechanical-electroacoustic transducer with small thickness and wide range of motion and relating method of production
AU2003223322A1 (en) Rotary electric motor having at least two axially air gaps separating stator and rotor segments
US7916412B2 (en) Lens driving device
JP2001128434A (en) Linear motor
JP6065568B2 (en) Magnetizer
JP2596857Y2 (en) Moving magnet type actuator
KR20170094219A (en) Apparatus and method for magnetizing permanent magnets
JP2004088884A (en) Linear vibration electric machine
JP2004266903A (en) Linear vibration actuator
JP2004023911A (en) Linear actuators, pump device using the same and compressor device
JPH11187639A (en) Magnet moving type linear actuator
JP5589507B2 (en) Mover and stator of linear drive unit
JP2001112228A (en) Movable magnet type linear actuator
EP1810391B1 (en) Rotor-stator structure for electrodynamic machines
JP2004112937A (en) Magnetic actuator and tactile display device
JP3523331B2 (en) Exciter
JP2004023830A (en) Linear actuator
JPH1169761A (en) Linear motor
JP2004343999A (en) Generator with rotation plate
JP2004104853A (en) Motor
JP5874246B2 (en) Linear drive mover
JP2002034224A (en) Magnet-movable linear motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051115

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090526