JP2005129234A - Secondary battery and its manufacturing method - Google Patents

Secondary battery and its manufacturing method Download PDF

Info

Publication number
JP2005129234A
JP2005129234A JP2003360083A JP2003360083A JP2005129234A JP 2005129234 A JP2005129234 A JP 2005129234A JP 2003360083 A JP2003360083 A JP 2003360083A JP 2003360083 A JP2003360083 A JP 2003360083A JP 2005129234 A JP2005129234 A JP 2005129234A
Authority
JP
Japan
Prior art keywords
laminate film
metal foil
secondary battery
layer
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003360083A
Other languages
Japanese (ja)
Inventor
Yasuhisa Kojima
育央 小嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Tochigi Ltd
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Tochigi Ltd, NEC Tokin Corp filed Critical NEC Tokin Tochigi Ltd
Priority to JP2003360083A priority Critical patent/JP2005129234A/en
Publication of JP2005129234A publication Critical patent/JP2005129234A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a secondary battery which can improve reliability against an impact from the outside with an outer package structure using a laminated film, and to provide its manufacturing method. <P>SOLUTION: In this secondary battery wherein a power generating element is sealed using a three-layer structure laminated film 4 formed by laminating high polymer layers on both surfaces of metal foil 6, the size of the metal foil is set to be smaller than the size of the polymer layer. As a result, since the metal film 6 does not exist at the periphery of the laminated film 4, even when an excess length is cut off after the periphery is sealed by heat welding, the metal foil 6 is not exposed at the end face formed by cutting off the excess length, substantially eliminating failures caused by the contact of the metal foil 6 with terminals, etc. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、発電素子がラミネートフィルムを用いて封止された構造を有する二次電池に関わるものである。   The present invention relates to a secondary battery having a structure in which a power generation element is sealed with a laminate film.

近年の電子機器、特に携帯電話、ノート型パーソナルコンピュータ、ビデオカメラなどの携帯用情報機器の発達や普及に伴い、小型、軽量で、かつエネルギー密度が高い二次電池の需要が大きく伸張し、なお、高性能化の検討がなされている。このような二次電池として特にリチウムイオン二次電池が、その高性能のため注目されている。   With the development and popularization of portable information devices such as mobile phones, notebook personal computers, and video cameras in recent years, the demand for secondary batteries that are small, lightweight, and have high energy density has greatly increased. Considering higher performance. As such a secondary battery, a lithium ion secondary battery is particularly attracting attention because of its high performance.

リチウムイオン二次電池の一般的な構造は、リチウム−コバルト複合酸化物などの正極活物質粉末、導電性粉末、及びバインダからなる正極活物質層を、アルミニウム箔からなる正極集電体表面に形成してなる正極、炭素系の負極活物質粉末、及びバインダからなる負極活物質層を、銅箔からなる負極集電体表面に形成してなる負極を、多孔質のフィルムからなるセパレータを介して重ね、電解液を含浸したものである。   The general structure of a lithium ion secondary battery is that a positive electrode active material layer made of a positive electrode active material powder such as lithium-cobalt composite oxide, a conductive powder, and a binder is formed on the surface of a positive electrode current collector made of aluminum foil. A negative electrode formed by forming a negative electrode active material layer made of a positive electrode, a carbon-based negative electrode active material powder, and a binder on the surface of a negative electrode current collector made of copper foil, with a separator made of a porous film interposed therebetween It is repeatedly impregnated with an electrolytic solution.

そして、二次電池としての容量増加のため、正極及び負極の対を複数積層した積層素子や、帯状に形成した正極及び負極を巻き回した巻回素子などが用いられているが、いずれの場合も電解液を用いるので、このような素子を金属のケースに封入して、電解液が外部に漏れないようにしている。従って、リチウムイオン二次電池に代表される二次電池を、さらに小型化、軽量化するには、電解液を高分子電解質に替えたり、金属ケース以外の外装材を用いたりすることが必要となる。   And in order to increase the capacity as a secondary battery, a laminated element in which a plurality of pairs of positive and negative electrodes are laminated, a winding element in which a positive electrode and a negative electrode formed in a strip shape are wound, etc. are used. Since the electrolytic solution is also used, such an element is enclosed in a metal case so that the electrolytic solution does not leak to the outside. Therefore, in order to further reduce the size and weight of a secondary battery represented by a lithium ion secondary battery, it is necessary to replace the electrolyte with a polymer electrolyte or use an exterior material other than a metal case. Become.

外装材を薄型化、軽量化するには、高分子フィルムを用いるのが、最も簡便である。しかし高分子フィルムは、水分や低分子量の有機溶媒の透過を防止しきれないので、アルミニウムなどの金属箔と高分子フィルムからなる、ラミネートフィルムが用いられている。   In order to make the exterior material thinner and lighter, it is most convenient to use a polymer film. However, since a polymer film cannot completely prevent permeation of moisture and a low molecular weight organic solvent, a laminate film made of a metal foil such as aluminum and a polymer film is used.

このような用途に用いられるラミネートフィルムにおいては、金属箔の一方の面に、比較的機械的強度が大きい高分子フィルムを、保護層として貼り付け、対向する面に、熱融着性が大きい熱可塑性の高分子フィルムを貼り付けた3層構造を有するのが一般的である。   In a laminated film used for such applications, a polymer film having a relatively high mechanical strength is attached as a protective layer on one surface of a metal foil, and a heat-fusing property is provided on the opposite surface. It generally has a three-layer structure with a plastic polymer film attached thereto.

図2は、3層構造のラミネートフィルムを外装に用いた、従来の二次電池の例を示す図で、図2(a)は斜視図、図2(b)はラミネートフィルムの切断端面を拡大した断面図である。図2において、8は発電素子、9は正極端子、10は負極端子、11はラミネートフィルム、12は熱融着層、13は金属箔、14は保護層である。   2A and 2B are diagrams showing an example of a conventional secondary battery using a laminate film having a three-layer structure as an exterior. FIG. 2A is a perspective view and FIG. 2B is an enlarged view of a cut end surface of the laminate film. FIG. In FIG. 2, 8 is a power generation element, 9 is a positive electrode terminal, 10 is a negative electrode terminal, 11 is a laminate film, 12 is a heat fusion layer, 13 is a metal foil, and 14 is a protective layer.

このような外装構造を形成するには、図における上下方向から、熱融着層12を対向させた状態で、ラミネートフィルム11で発電素子8を挟み、発電素子8の表面に熱融着層12が密着するように、ラミネートフィルム11にフォーミングを施した後、発電素子8の周縁部分の熱融着層12を、熱プレスなどを用いて接合、一体化する。そして、一定長の前記一体化部分を確保するようにして、ラミネートフィルム11の周縁部を切断する。   In order to form such an exterior structure, the power generation element 8 is sandwiched between the laminate films 11 in a state where the heat fusion layer 12 is opposed to the heat fusion layer 12 from above and below in the figure, and the heat fusion layer 12 is formed on the surface of the power generation element 8. After forming the laminate film 11 so as to be in close contact with each other, the heat fusion layer 12 at the peripheral portion of the power generation element 8 is joined and integrated using a hot press or the like. And the peripheral part of the laminate film 11 is cut | disconnected so that the said integral part of fixed length may be ensured.

このような外装構造の問題点として、ラミネートフィルム11を構成する金属箔13と、端子などとの接触がある。つまり、図2(b)に示したように、ラミネートフィルム11の切断端面には、金属箔13が外部に露出した部分が生じ、これが端子や保護回路などと接触することで不良の原因となる。   As a problem of such an exterior structure, there is contact between the metal foil 13 constituting the laminate film 11 and a terminal. That is, as shown in FIG. 2 (b), a portion where the metal foil 13 is exposed to the outside is formed on the cut end surface of the laminate film 11, and this causes a defect by coming into contact with a terminal or a protection circuit. .

これに対処する技術として、特許文献1には、リチウムイオンを吸蔵・放出する正極及び負極と、前記正極と前記負極の間に配置されたリチウムイオン伝導性電解質層とを含む発電要素、前記正極に接続された正極リード、前記負極に接続された負極リード、前記発電要素を前記正極リード及び前記負極リードの端部が外側に延出するように収納し、熱融着により封止されたラミネートフィルムを具備し、前記ラミネートフィルムは、外側の層が絶縁性樹脂から形成されると共に、前記発電要素と対向する層が熱融着性樹脂から形成され、この熱融着性樹脂層に金属層が積層されており、融着部のうち前記正極リード及び前記負極リードと接する部分に前記金属層が存在しないことを特徴とするリチウム二次電池が開示されている。   As a technique for coping with this, Patent Document 1 discloses a power generation element including a positive electrode and a negative electrode that occlude and release lithium ions, and a lithium ion conductive electrolyte layer disposed between the positive electrode and the negative electrode, and the positive electrode. A positive electrode lead connected to the negative electrode, a negative electrode lead connected to the negative electrode, and a laminate in which the power generation element is housed so that ends of the positive electrode lead and the negative electrode lead extend outward and sealed by heat fusion The laminate film includes an outer layer formed from an insulating resin, and a layer facing the power generation element is formed from a heat-fusible resin, and a metal layer is formed on the heat-fusible resin layer. Is disclosed, and a lithium secondary battery is disclosed in which the metal layer does not exist in a portion of the fused portion that contacts the positive electrode lead and the negative electrode lead.

つまり、正極及び負極のリードが引き出された部分の、ラミネートフィルムの切断端面近傍の金属箔を除去することで、金属箔と正極及び負極のリードとの接触による短絡不良を抑制している。しかしながら、金属箔を除去する部分が正極及び負極のリードの近傍に限定されているので、二次電池が外部から衝撃を受け、正極または負極のリードが位置ずれを起こした場合の対策に、なお改善の余地がある。   That is, by removing the metal foil in the vicinity of the cut end surface of the laminate film at the portion where the positive and negative leads are drawn, short-circuit failure due to contact between the metal foil and the positive and negative leads is suppressed. However, since the portion where the metal foil is removed is limited to the vicinity of the positive and negative electrode leads, the secondary battery is subjected to an external impact, and as a countermeasure when the positive or negative electrode lead is displaced, There is room for improvement.

特許第3283213号公報Japanese Patent No. 3283213

従って、本発明の課題は、外部からの衝撃などに対する信頼性が向上した、ラミネートフィルムを用いた外装構造を有する二次電池、及びその製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a secondary battery having an exterior structure using a laminate film, which has improved reliability against external impacts and the like, and a manufacturing method thereof.

本発明は、前記課題を解決できるラミネートフィルムの熱融着部の構造と、それを実現するための方法を検討した結果なされたものである。   This invention is made | formed as a result of examining the structure of the heat-fusion part of the laminate film which can solve the said subject, and the method for implement | achieving it.

即ち、本発明は、正極、負極、及び電解質を有する発電素子と、金属箔及び高分子層を有するラミネートフィルムにより前記発電素子を封入してなる二次電池において、前記ラミネートフィルムの端面には、前記金属箔が存在しないことを特徴とする二次電池である。   That is, the present invention relates to a secondary battery in which the power generation element is enclosed by a power generation element having a positive electrode, a negative electrode, and an electrolyte, and a laminate film having a metal foil and a polymer layer. The secondary battery is characterized in that the metal foil does not exist.

また、本発明は、前記ラミネートフィルムが、前記金属箔の一方の面に高分子からなる保護層を有し、対向する面に高分子からなる熱融着層を有することを特徴とする、前記の二次電池である。   Further, the present invention is characterized in that the laminate film has a protective layer made of a polymer on one surface of the metal foil, and a heat fusion layer made of a polymer on the opposite surface, Secondary battery.

また、本発明は、板状の形状で正極端子及び負極端子が引き出された発電素子を、高分子からなる熱融着層、金属箔及び高分子からなる保護層を有するラミネートフィルムを用いて、前記熱融着層を対向させた状態で挟み、前記発電素子の表面に前記熱融着層が密着するように、前記ラミネートフィルムにフォーミングを施し、前記発電素子の周縁部の前記熱融着層を加熱圧接して一体化部を形成した後、一定の長さの前記一体化部が残存するように、前記ラミネートフィルムの周縁部を切断する二次電池の製造方法において、前記金属箔の周縁を、前記熱融着層及び前記保護層よりも、小さくすることで、前記ラミネートフィルムを切断した端面に、前記金属箔を露出させないことを特徴とする二次電池の製造方法である。   Further, the present invention uses a laminate film having a heat sealing layer made of a polymer, a metal foil and a protective layer made of a polymer, as a power generation element in which a positive electrode terminal and a negative electrode terminal are drawn out in a plate shape, The heat-sealing layer is sandwiched between the heat-generating layers, and the laminate film is formed so that the heat-sealing layer is in close contact with the surface of the power-generating element, and the heat-sealing layer at the peripheral edge of the power-generating element In the method of manufacturing a secondary battery in which the peripheral portion of the laminate film is cut so that the integrated portion of a certain length remains after the heat-pressing is performed to form the integrated portion, the peripheral edge of the metal foil Is made smaller than the heat-fusible layer and the protective layer, so that the metal foil is not exposed at the end face of the laminated film cut.

本発明のラミネートフィルムの外装を有する二次電池においては、ラミネートフィルムの切断端面に、金属箔の露出部分がまったく存在しないので、従来見られたような、金属箔と端子などとの間の接触による不良を、極めて少なくすることができる。   In the secondary battery having the laminate film exterior of the present invention, since there is no exposed portion of the metal foil on the cut end surface of the laminate film, the contact between the metal foil and the terminal, as has been conventionally seen, Defects caused by can be extremely reduced.

また、ラミネートフィルム切断端面に金属箔が存在しないので、異種材料の接合面の界面剥離が発生しなくなり、長期間に亘る使用に際しての信頼性を向上することができる。一般に剥離は、殆どが切断端面から起こるので、本発明が剥離防止に資するところは極めて大きいと言える。   Further, since the metal foil is not present on the cut end face of the laminate film, the interface peeling of the joint surface of different materials does not occur, and the reliability in use over a long period of time can be improved. In general, most of the peeling occurs from the cut end face, so it can be said that the present invention contributes to prevention of peeling.

図1は、本発明の実施の形態の一例を示す図で、図1(a)は発電素子とラミネートフィルムの配置を示す斜視図、図1(b)はラミネートフィルムの切断端面を拡大した断面図である。図1において、1は発電素子、2は正極端子、3は負極端子、4はラミネートフィルム、5は熱融着層、6は金属箔、7は保護層である。   FIG. 1 is a diagram showing an example of an embodiment of the present invention, FIG. 1 (a) is a perspective view showing an arrangement of a power generation element and a laminate film, and FIG. 1 (b) is an enlarged cross-sectional view of a cut end surface of the laminate film. FIG. In FIG. 1, 1 is a power generation element, 2 is a positive electrode terminal, 3 is a negative electrode terminal, 4 is a laminate film, 5 is a heat fusion layer, 6 is a metal foil, and 7 is a protective layer.

なお、図1においては、説明の便宜のため、構成材料を積層する前の状態で、ラミネートフィルム4を示し、図における上側に配置するラミネートフィルム4は省略した。   In FIG. 1, for convenience of explanation, the laminate film 4 is shown in a state before the constituent materials are laminated, and the laminate film 4 disposed on the upper side in the drawing is omitted.

図1に示したように、本発明に用いるラミネートフィルム4には、高分子からなる保護層7または熱融着層5よりも、縦横とも寸法が小さい金属箔6が積層されている。このような目的に使用される金属箔6には、延性や展性に優れ、可撓性が要求される。具体的には、アルミニウムや銅などが用いられる。   As shown in FIG. 1, the laminate film 4 used in the present invention is laminated with a metal foil 6 having dimensions smaller than that of the protective layer 7 or the heat sealing layer 5 made of polymer. The metal foil 6 used for such a purpose is excellent in ductility and malleability and is required to be flexible. Specifically, aluminum or copper is used.

また、熱融着層5には、室温では一定以上の機械的強度を有し、高温で軟化した際に接着性を発現することが要求されるので、いわゆるホットメルト接着剤に用いられる高分子が好適である。具体的には、エチレン−酢酸ビニル共重合体やエチレン−アクリル酸エチル共重合体などが挙げられる。また、いわゆるアイオノマーから選ばれる、接着性に優れた材料も使用できる。   Further, the heat-sealable layer 5 is required to have a certain level of mechanical strength at room temperature and to exhibit adhesiveness when softened at a high temperature. Is preferred. Specific examples include an ethylene-vinyl acetate copolymer and an ethylene-ethyl acrylate copolymer. A material excellent in adhesiveness selected from so-called ionomers can also be used.

アイオノマーは、オレフィンとアクリル酸やマレイン酸などからなる共重合体を金属化合物で処理したもので、イオン架橋構造を有し、常温では熱硬化性高分子のような特性を発現するので、特にこのような用途に適している。   An ionomer is a copolymer of an olefin and acrylic acid or maleic acid treated with a metal compound. It has an ionic crosslinking structure and exhibits properties like a thermosetting polymer at room temperature. Suitable for such applications.

また、保護層7には、機械的な強度、耐磨耗性、耐擦過性などが要求されるので、比較的硬質の高分子が用いられる、具体的にはポリエチレンテレフタレートやポリプロピレンなどが挙げられる。また、これらの高分子は比較的接着性が劣るので、二層押出成形で得られる、熱融着層を構成する高分子の層と保護層を構成する高分子の層を有する、2層フィルムを用いることで、熱融着面の接合強度を大きくすることができる。   Further, since the protective layer 7 is required to have mechanical strength, abrasion resistance, scratch resistance, and the like, a relatively hard polymer is used, specifically, polyethylene terephthalate, polypropylene, or the like can be used. . In addition, since these polymers have relatively poor adhesion, a two-layer film having a polymer layer constituting a heat-sealing layer and a polymer layer constituting a protective layer, obtained by two-layer extrusion molding By using this, the bonding strength of the heat-sealing surface can be increased.

なお、ラミネートフィルムの周縁部の熱融着には、従来の熱プレス法や超音波を用いた加熱融着法などを、そのまま用いることができる。   In addition, the conventional heat press method, the heat-fusion method using an ultrasonic wave, etc. can be used for heat fusion of the peripheral part of a laminate film as it is.

次に、具体的な実施例を挙げ、本発明について詳細に説明する。   Next, the present invention will be described in detail with specific examples.

まず集電体として、正極には厚みが20μmのアルミニウム箔、負極には厚みが20μの銅箔を準備し、それぞれ、幅が40mm、長さが70mmとなるように切断した。   First, as a current collector, an aluminum foil having a thickness of 20 μm was prepared for the positive electrode and a copper foil having a thickness of 20 μm was prepared for the negative electrode, and each of them was cut to have a width of 40 mm and a length of 70 mm.

次に、正極の作製について説明する。まず、炭酸リチウムと炭酸コバルトを、リチウムとコバルトのモル比が1:1になるように混合し、空気中で900℃、5時間焼成した。この焼成体を、乳鉢を用いて粉砕し、平均粒径が6μmの焼成粉末とした。さらに得られた焼成粉末と炭酸リチウム粉末を、重量比で95/5となるように混合した。   Next, preparation of the positive electrode will be described. First, lithium carbonate and cobalt carbonate were mixed so that the molar ratio of lithium to cobalt was 1: 1, and baked in air at 900 ° C. for 5 hours. The fired body was pulverized using a mortar to obtain a fired powder having an average particle size of 6 μm. Further, the obtained fired powder and lithium carbonate powder were mixed so that the weight ratio was 95/5.

前記混合粉末と、導電材としてのグラファイトと、バインダとしてのポリフッ化ビニリデンを、重量比で91/6/3となるように秤量混合し、N−メチル−2−ピロリドンに分散して正極電極活物質層形成用ペーストとした。このペーストを集電体の両面に、溶媒を除去した後の厚みが100μmとなるように塗布、乾燥して正極を得た。   The mixed powder, graphite as a conductive material, and polyvinylidene fluoride as a binder are weighed and mixed at a weight ratio of 91/6/3, dispersed in N-methyl-2-pyrrolidone, and positive electrode active The material layer forming paste was obtained. This paste was applied to both sides of the current collector so that the thickness after removing the solvent was 100 μm and dried to obtain a positive electrode.

次に、負極の作製について説明する。フェノール樹脂を不活性ガス気流中で焼成後、粉砕して得られた平均粒径7μmの炭素材料と、バインダとしてのポリフッ化ビニリデンを、重量比で90/10となるように秤量混合し、N−メチル−2−ピロリドンに分散して負極電極活物質層形成用のペーストとした。この後は正極と同様にして負極を得た。   Next, production of the negative electrode will be described. A carbon material having an average particle diameter of 7 μm obtained by firing and pulverizing a phenol resin in an inert gas stream, and polyvinylidene fluoride as a binder are weighed and mixed so that the weight ratio is 90/10. -Dispersed in methyl-2-pyrrolidone to obtain a paste for forming a negative electrode active material layer. Thereafter, a negative electrode was obtained in the same manner as the positive electrode.

次に、電解液を含浸するための、電解質層の調製について説明する。シリカ粉末が33重量%、フッ化ビニリデン−ヘキサフルオルプロピレン共重合体粉末が23重量%、フタル酸ジブチルが44重量%となるように秤量して、アセトンで希釈、混合してペーストを調製し、乾燥後の厚みが100μmとなるように成膜して電解質層を得た。   Next, preparation of the electrolyte layer for impregnating the electrolytic solution will be described. A paste was prepared by weighing 33 wt% of silica powder, 23 wt% of vinylidene fluoride-hexafluoropropylene copolymer powder and 44 wt% of dibutyl phthalate, and diluting and mixing with acetone. The electrolyte layer was obtained by forming a film so that the thickness after drying was 100 μm.

次に、前記の正極及び負極をそれぞれ2枚、間に電解質層に介在させて積層し、熱プレスで加熱及び加圧を行い、続いてフタル酸ジブチルの抽出処理を施した。引き続き、正極及び負極の端子を取り付け、プロピレンカーボネートに、テトラエチルアンニウムテトラフルオロホウ酸塩を、1モル/Lの濃度で溶解した電解液を含浸して、発電素子を得た。   Next, two each of the positive electrode and the negative electrode were laminated with the electrolyte layer interposed therebetween, heated and pressurized with a hot press, and subsequently extracted with dibutyl phthalate. Subsequently, positive and negative terminals were attached, and an electrolytic solution in which tetraethylanium tetrafluoroborate was dissolved in propylene carbonate at a concentration of 1 mol / L was impregnated to obtain a power generating element.

次に、外装に用いるラミネートフィルムについて説明する。ここでは、保護層としてポリエチレンテレフタレートと、エチレン−メタクリル酸共重合体を亜鉛化合物で処理して得られるアイオノマーからなる2層フィルムを用いた。保護層全体の厚みは18μmでアイオノマーの層の厚みは3μmである。   Next, the laminate film used for the exterior will be described. Here, a two-layer film made of an ionomer obtained by treating polyethylene terephthalate and an ethylene-methacrylic acid copolymer with a zinc compound was used as a protective layer. The total thickness of the protective layer is 18 μm, and the thickness of the ionomer layer is 3 μm.

また、金属箔には、厚みが20μmのアルミニウム箔を用い、熱融着層には、前記のアイオノマーを用いた。これらの3層の大きさは、図1に示したように金属箔が、他の層よりも小さく設定されている。   Further, an aluminum foil having a thickness of 20 μm was used as the metal foil, and the above-mentioned ionomer was used as the heat fusion layer. The size of these three layers is set so that the metal foil is smaller than the other layers as shown in FIG.

このような構造のラミネートフィルムを、熱融着層を内側にして折り曲げ、端子が解放側に配置されるようにして、前記の発電素子を間に挟んだ。その後、発電素子の表面に熱融着層が密着するように、ラミネートフィルムにフォーミングを施し、熱プレスを用いて、発電素子の周縁部の熱融着層を一体化した。   The laminate film having such a structure was bent with the heat-sealing layer inside, and the terminals were arranged on the release side, and the power generation element was sandwiched between them. Thereafter, the laminate film was formed so that the heat-sealing layer was in close contact with the surface of the power generating element, and the heat-sealing layer at the peripheral edge of the power generating element was integrated using a heat press.

引き続き、一体化した熱融着層の余長部分を切断し、二次電池を得た。この切断した端面の近傍を、端面に垂直な方向で切断し、断面を観察したところ、図1(b)に示したように、外部にアルミニウム箔が露出した部分は認められなかった。これによって本発明の効果が確認できた。   Subsequently, the extra length portion of the integrated heat fusion layer was cut to obtain a secondary battery. When the vicinity of the cut end face was cut in a direction perpendicular to the end face and the cross section was observed, as shown in FIG. 1B, a portion where the aluminum foil was exposed to the outside was not recognized. This confirmed the effect of the present invention.

なお、前記実施例では、リチウムイオン二次電池について説明したが、他の二次電池や、同様の構造を有する電気化学セルにも適用できる。   In addition, although the said Example demonstrated the lithium ion secondary battery, it is applicable also to another secondary battery and the electrochemical cell which has the same structure.

本発明の実施の形態の一例を示す図。図1(a)は発電素子とラミネートフィルムの配置を示す斜視図。図1(b)はラミネートフィルムの切断端面を拡大した断面図。The figure which shows an example of embodiment of this invention. Fig.1 (a) is a perspective view which shows arrangement | positioning of a power generation element and a laminate film. FIG.1 (b) is sectional drawing to which the cut end surface of the laminate film was expanded. 3層構造のラミネートフィルムを外装に用いた従来の二次電池の例を示す図。図2(a)は斜視図。図2(b)はラミネートフィルムの切断端面を拡大した断面図。The figure which shows the example of the conventional secondary battery which used the laminate film of 3 layer structure for the exterior. FIG. 2A is a perspective view. FIG.2 (b) is sectional drawing to which the cut end surface of the laminate film was expanded.

符号の説明Explanation of symbols

1,8 発電素子
2,9 正極端子
3,10 負極端子
4,11 ラミネートフィルム
5,12 熱融着層
6,13 金属箔
7,14 保護層
DESCRIPTION OF SYMBOLS 1,8 Power generation element 2,9 Positive electrode terminal 3,10 Negative electrode terminal 4,11 Laminate film 5,12 Thermal fusion layer 6,13 Metal foil 7,14 Protective layer

Claims (3)

正極、負極、及び電解質を有する発電素子と、金属箔及び高分子層を有するラミネートフィルムにより前記発電素子を封入してなる二次電池において、前記ラミネートフィルムの端面には、前記金属箔が存在しないことを特徴とする二次電池。   In a secondary battery in which the power generation element is sealed with a power generation element having a positive electrode, a negative electrode, and an electrolyte, and a laminate film having a metal foil and a polymer layer, the metal foil is not present on an end surface of the laminate film. A secondary battery characterized by that. 前記ラミネートフィルムは、前記金属箔の一方の面に高分子からなる保護層を有し、対向する面に高分子からなる熱融着層を有することを特徴とする、請求項1に記載の二次電池。   2. The laminate film according to claim 1, wherein the laminate film has a protective layer made of a polymer on one surface of the metal foil, and has a heat fusion layer made of a polymer on the opposite surface. Next battery. 板状の形状で正極端子及び負極端子が引き出された発電素子を、高分子からなる熱融着層、金属箔及び高分子からなる保護層を有するラミネートフィルムを用いて、前記熱融着層を対向させた状態で挟み、前記発電素子の表面に前記熱融着層が密着するように、前記ラミネートフィルムにフォーミングを施し、前記発電素子の周縁部の前記熱融着層を加熱圧接して一体化部を形成した後、一定の長さの前記一体化部が残存するように、前記ラミネートフィルムの周縁部を切断する二次電池の製造方法において、前記金属箔の周縁を、前記熱融着層及び前記保護層よりも、小さくすることで、前記ラミネートフィルムを切断した端面に、前記金属箔を露出させないことを特徴とする二次電池の製造方法。   A power generation element in which a positive electrode terminal and a negative electrode terminal are drawn out in a plate shape is formed by using a heat sealing layer made of a polymer, a laminate film having a protective layer made of a metal foil and a polymer, and The laminate film is formed so that the heat-sealing layer is in close contact with the surface of the power generation element so as to be opposed to each other, and the heat-sealing layer at the peripheral edge of the power generation element is integrally heated and pressed. In the method for manufacturing a secondary battery, in which the peripheral portion of the laminate film is cut so that the integrated portion having a certain length remains after the formation portion is formed. A method for manufacturing a secondary battery, wherein the metal foil is not exposed to an end face obtained by cutting the laminate film by making the layer smaller than the protective layer and the protective layer.
JP2003360083A 2003-10-21 2003-10-21 Secondary battery and its manufacturing method Pending JP2005129234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003360083A JP2005129234A (en) 2003-10-21 2003-10-21 Secondary battery and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003360083A JP2005129234A (en) 2003-10-21 2003-10-21 Secondary battery and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005129234A true JP2005129234A (en) 2005-05-19

Family

ID=34640499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003360083A Pending JP2005129234A (en) 2003-10-21 2003-10-21 Secondary battery and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005129234A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013120730A (en) * 2011-12-08 2013-06-17 Hitachi Ltd Lithium secondary battery, sheet material, and battery pack
US8507123B2 (en) 2010-11-16 2013-08-13 Samsung Electronics Co., Ltd. Flexible battery and flexible electronic device including the same
JP2015072804A (en) * 2013-10-03 2015-04-16 凸版印刷株式会社 Outer packaging body for battery and battery using the same
JP2015072821A (en) * 2013-10-03 2015-04-16 凸版印刷株式会社 Sheath material for secondary battery and secondary battery
WO2020080146A1 (en) * 2018-10-16 2020-04-23 昭和電工株式会社 Rechargeable battery pack

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8507123B2 (en) 2010-11-16 2013-08-13 Samsung Electronics Co., Ltd. Flexible battery and flexible electronic device including the same
US8753763B2 (en) 2010-11-16 2014-06-17 Samsung Electronics Co., Ltd. Flexible battery and flexible electronic device including the same
JP2013120730A (en) * 2011-12-08 2013-06-17 Hitachi Ltd Lithium secondary battery, sheet material, and battery pack
JP2015072804A (en) * 2013-10-03 2015-04-16 凸版印刷株式会社 Outer packaging body for battery and battery using the same
JP2015072821A (en) * 2013-10-03 2015-04-16 凸版印刷株式会社 Sheath material for secondary battery and secondary battery
WO2020080146A1 (en) * 2018-10-16 2020-04-23 昭和電工株式会社 Rechargeable battery pack

Similar Documents

Publication Publication Date Title
JP4828458B2 (en) Secondary battery with improved sealing safety
JP4766057B2 (en) Nonaqueous electrolyte battery and method for producing nonaqueous electrolyte battery
JP3937422B2 (en) Lithium ion battery and manufacturing method thereof
JP4075034B2 (en) Nonaqueous electrolyte battery and manufacturing method thereof
WO2012153866A1 (en) Nonaqueous-secondary-battery layered structure and nonaqueous-secondary-battery layering method
JP4720384B2 (en) Bipolar battery
WO2012153865A1 (en) Non-aqueous secondary battery, mounted unit, and method for manufacturing non-aqueous secondary battery
KR101097013B1 (en) Reed member and method of manufacturing the same, and nonaqueous electrolyte capacitor device
JP5023391B2 (en) Manufacturing method of laminated battery
JP2015079719A (en) All-solid battery
WO2017158986A1 (en) Battery cell
JP2004356085A (en) Jelly roll type electrode assembly and secondary battery adopting this
KR20120060315A (en) Secondary Battery of Improved Insulating Property
JP2010086807A (en) Nonaqueous electrolyte battery
JP2009181899A (en) Laminated battery
JPH10261386A (en) Battery case and battery
JP4443260B2 (en) Laminated battery
JP2005129234A (en) Secondary battery and its manufacturing method
JP4984202B2 (en) Secondary battery and portable device equipped with the same
JP2005222901A (en) Sealed battery
JP4055234B2 (en) Solid electrolyte battery
KR101163388B1 (en) Secondary Battery with Excellent Insulation Resistance
JP3439743B2 (en) Nonaqueous electrolyte battery and method for producing the same
JP2003346768A (en) Non-aqueous electrolyte secondary battery
JP2005259621A (en) Laminated film sheathed battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080326

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080716