JP2005123436A - Manufacturing method of multilayer printed wiring board - Google Patents

Manufacturing method of multilayer printed wiring board Download PDF

Info

Publication number
JP2005123436A
JP2005123436A JP2003357685A JP2003357685A JP2005123436A JP 2005123436 A JP2005123436 A JP 2005123436A JP 2003357685 A JP2003357685 A JP 2003357685A JP 2003357685 A JP2003357685 A JP 2003357685A JP 2005123436 A JP2005123436 A JP 2005123436A
Authority
JP
Japan
Prior art keywords
resin
wiring board
printed wiring
multilayer printed
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003357685A
Other languages
Japanese (ja)
Inventor
Takahiro Tanabe
貴弘 田邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2003357685A priority Critical patent/JP2005123436A/en
Publication of JP2005123436A publication Critical patent/JP2005123436A/en
Pending legal-status Critical Current

Links

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide the manufacturing method of a multilayer printed wiring board where surface roughness is excellent and following property of resist is good, and which is effective for narrowing a line/space; and to provide the manufacturing method of the multilayer printed wiring board which contributes much for high density, thinning, reliability improvement and cost reduction of the multilayer printed wiring board without applying much more load than ever to environment. <P>SOLUTION: The manufacturing method obtains the multilayer printed wiring board by heating and pressing at least two kinds of respectively one or more adhesive sheets having the lowest melt viscosities different from each other. In the manufacturing method of the multilayer printed wiring board, the difference between the lowest melt viscosities of the respective adhesive sheets is ≥1,000 Pa s. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は,多層プリント配線板の製造方法に関する。   The present invention relates to a method for manufacturing a multilayer printed wiring board.

従来多層プリント配線板を製造する場合,回路形成された内層回路基板上にガラスクロス基材にエポキシ樹脂を含浸して半硬化したさせたプリプレグシートを一枚以上重ね,さらにその上に銅箔を重ね熱板プレスにて加熱一体成形するという工程を経ている。近年は,多層化が進み,複数の層をもち,それぞれの層をスルーホールで電気的に接続する工法が取られており,さらにその上に逐次プリプレグシートを重ねてゆき,非貫通の接続穴で接続する,いわゆるビルドアップ配線板が主流となってきている。   Conventionally, when manufacturing a multilayer printed wiring board, one or more prepreg sheets obtained by impregnating a glass cloth base material with an epoxy resin and semi-cured are stacked on an inner circuit board on which a circuit is formed, and a copper foil is further formed thereon. It has undergone a process of heat-integrated molding with a stacked hot plate press. In recent years, multilayering has progressed, and there has been a construction method in which multiple layers are electrically connected to each other through through holes. Further, a prepreg sheet is successively stacked thereon to form non-through connection holes. The so-called build-up wiring boards that are connected by the mainstream are becoming mainstream.

その際に,内層のスルーホールを埋め込む方法として,穴埋め剤を使用する方法から,工数低減のためや絶縁層と熱膨脹係数を合わせる等の目的で,例えば,特許公報1のように,ビルドアップ層の絶縁層を用いてスルーホールを穴埋めする工法が広まってきている。   At that time, as a method of embedding through-holes in the inner layer, from the method of using a hole-filling agent, for the purpose of reducing the number of man-hours and matching the thermal expansion coefficient with the insulating layer, for example, a build-up layer as disclosed in Patent Publication 1 is used. A method of filling a through-hole with an insulating layer is becoming widespread.

一方,近年,プリント配線板は,高密度化のために,ラインとスペースの間隔がますます狭小化しており,レジストの追従性などの問題などから,高い表面平滑性が求められている。   On the other hand, in recent years, printed wiring boards are becoming narrower in distance between lines and spaces due to higher density, and high surface smoothness is required due to problems such as resist followability.

特開2003−37362号公報JP 2003-37362 A

ビルドアップ層の樹脂で,内層スルーホールを埋め込む場合,スルーホール近傍の樹脂がスルーホール内に流れ込むため,結果として,スルーホール上,およびその付近の樹脂厚みが周囲と比較して5μm以上薄くなり,外層回路の形成時に,レジストが密着できず,レジストと銅箔の間に空隙ができ,そこにエッチング液が染み込み,ラインが切れてしまうなどの問題がでている。   When the inner layer through hole is embedded with the resin of the buildup layer, the resin in the vicinity of the through hole flows into the through hole. As a result, the resin thickness on and around the through hole is 5 μm or more thinner than the surroundings. When the outer layer circuit is formed, there is a problem that the resist cannot be in close contact, a gap is formed between the resist and the copper foil, the etching solution penetrates there, and the line is cut off.

さらに,近年,接着剤シートに用いられる電気絶縁性樹脂は,高周波対応,レーザ加工対応など様々な機能性を持たせている。そのため,インピーダンスの整合のためや,レーザ加工のショット数を安定させるために,表面平滑性はますます重要視されている。   Furthermore, in recent years, electrically insulating resins used for adhesive sheets have various functions such as high frequency compatibility and laser processing compatibility. For this reason, surface smoothness is becoming more and more important for impedance matching and for stabilizing the number of shots in laser processing.

本発明は以下の発明に関する。
(1) 少なくとも2種類の最低溶融粘度が異なる接着剤シート各1枚以上を,加熱,加圧して得られる多層プリント配線板の製造方法。
(2) 接着剤シートの少なくともどちらか一方に,電気絶縁性フィラーを含む熱硬化性樹脂を用いることを特徴とする前記(1)に記載の多層プリント配線板の製造方法。
(3) 各接着シートの最低溶融粘度差が,1,000Pa・s以上あることを特徴とする前記(1)または(2)に記載の多層プリント配線板の製造方法。
(4) 各接着剤シートのどちらか一方の最低溶融粘度が3,000〜20,000Pa・sの範囲にあり,他方が,300〜10,000Pa・sの範囲にあることを特徴とする前記(1)〜(3)に記載の多層プリント配線板の製造方法。
(5) 接着剤シートの少なくともどちらか一方が,樹脂付き銅箔を用いることを特徴とする前記(1)〜(4)に記載の多層プリント配線板の製造方法。
The present invention relates to the following inventions.
(1) A method for producing a multilayer printed wiring board obtained by heating and pressing at least two adhesive sheets having different minimum melt viscosities.
(2) The method for producing a multilayer printed wiring board according to (1), wherein a thermosetting resin containing an electrically insulating filler is used for at least one of the adhesive sheets.
(3) The method for producing a multilayer printed wiring board according to (1) or (2), wherein the difference in minimum melt viscosity of each adhesive sheet is 1,000 Pa · s or more.
(4) The minimum melt viscosity of one of the adhesive sheets is in the range of 3,000 to 20,000 Pa · s, and the other is in the range of 300 to 10,000 Pa · s (1) The manufacturing method of the multilayer printed wiring board as described in (3)-(3).
(5) The method for producing a multilayer printed wiring board according to any one of (1) to (4), wherein at least one of the adhesive sheets uses a resin-coated copper foil.

本発明により製造した多層プリント配線板は、表面粗さに優れるため,レジストの追従性が良く,ライン/スペースの狭小化に有効である。既存の設備で製造可能であり,環境にも今まで以上に大きな負荷を与えることはない。したがって、多層プリント配線板の高密度化、薄型化、高信頼性化、低コスト化に多大な貢献をする。   The multilayer printed wiring board manufactured according to the present invention is excellent in surface roughness, and therefore has good resist followability and is effective in narrowing the line / space. It can be manufactured with existing equipment and does not place a greater burden on the environment than ever before. Therefore, it greatly contributes to increasing the density, thickness, reliability, and cost of multilayer printed wiring boards.

本発明は,最低溶融粘度の異なる2種類の接着剤シートを用いることにより,内層スルーホールへの樹脂の流れ込み方をコントロールすることを目的とする。すなわち、最低溶融粘度の低いほうの樹脂で,選択的に内層スルーホールを埋め込むことが出来る。最低溶融粘度が高いほうの樹脂は,絶縁層を保持して、より均一で厚みばらつきの少ない絶縁層を形成することを目的とする。   An object of the present invention is to control the flow of resin into the inner layer through-hole by using two types of adhesive sheets having different minimum melt viscosities. That is, the inner through hole can be selectively filled with a resin having a lower minimum melt viscosity. The resin having the lowest minimum melt viscosity is intended to form an insulating layer that retains the insulating layer and is more uniform and has less thickness variation.

2種類の接着剤シートの最低溶融粘度の差は,1,000Pa・s以上あることが好ましい。その差が1,000Pa・s未満の場合,選択的に片方の接着剤シートをスルーホールに流れ込ませることが難しくなる傾向がある。その差が5,000Pa・s以上あると,より選択的に樹脂を流れ込ませることができるのでより好ましい。   The difference in minimum melt viscosity between the two types of adhesive sheets is preferably 1,000 Pa · s or more. When the difference is less than 1,000 Pa · s, it tends to be difficult to selectively flow one adhesive sheet into the through hole. If the difference is 5,000 Pa · s or more, it is more preferable because the resin can flow more selectively.

また,本発明で使用する接着剤シートは,最低溶融粘度が異なる同じ組成の接着剤シートでも構わない。その場合も,最低溶融粘度の差が1,000Pa・s以上あることが好ましく,5,000Pa・s以上の差があることがより好ましい。   Further, the adhesive sheet used in the present invention may be an adhesive sheet having the same composition with different minimum melt viscosities. In this case, the difference in minimum melt viscosity is preferably 1,000 Pa · s or more, and more preferably 5,000 Pa · s or more.

スルーホールへの樹脂の流れ込み方のコントロール方法は,上記のような接着剤シートを用い,かつ加熱・加圧方法を調整することにより実現できる。加圧時期を,接着剤シートの溶融粘度が最低になる温度付近にあわせる二段加圧法を用いることにより,最低溶融粘度が低いほうの樹脂をより多くスルーホール内に流れ込ませることができる。加熱方法は,樹脂の特性に合わせることができ,一定の昇温速度で保持温度まで加熱しても良いし,途中のある温度域で保持する二段加熱法を用いても良い。   The method of controlling how the resin flows into the through hole can be realized by using the adhesive sheet as described above and adjusting the heating / pressurizing method. By using a two-stage pressurization method in which the pressurization time is adjusted to around the temperature at which the melt viscosity of the adhesive sheet becomes the minimum, a resin having a lower minimum melt viscosity can flow into the through hole. The heating method can be adjusted to the characteristics of the resin, and it may be heated to a holding temperature at a constant rate of temperature rise, or a two-stage heating method in which it is held in a certain temperature range may be used.

本発明で使用する樹脂は、従来のガラスクロスを基材としたプリプレグに使用されている樹脂,及びガラスクロス基材を含まない接着フィルムあるいは銅箔付き接着フィルムに使用されている熱硬化性樹脂を使用することが出来る。ここでいう樹脂とは、樹脂、硬化剤、硬化促進剤、カップリング剤(必要に応じて)、希釈剤(必要に応じて)を含むものを意味する。   The resin used in the present invention is a resin used for a prepreg based on a conventional glass cloth, and a thermosetting resin used for an adhesive film not containing a glass cloth base or an adhesive film with a copper foil. Can be used. The resin here means a resin, a curing agent, a curing accelerator, a coupling agent (if necessary), and a diluent (if necessary).

本発明で使用する樹脂の種類としては、例えばエポキシ樹脂、ビストリアジン樹脂、ポリイミド樹脂、フェノール樹脂、メラミン樹脂、けい素樹脂、不飽和ポリエステル樹脂、シアン酸エステル樹脂、イソシアネート樹脂、ポリイミド樹脂またはこれらの種々の変性樹脂類が好適である。この中で、プリント配線板特性上、特にビストリアジン樹脂、エポキシ樹脂が好適である。そのエポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、サリチルアルデヒドノボラック型エポキシ樹脂、ビスフェノールFノボラック型エポキシ樹脂、脂環式エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ヒダントイン型エポキシ樹脂、イソシアヌレート型エポキシ樹脂,脂肪族環状エポキシ樹脂及びそれらのハロゲン化物、水素添加物、及び前記樹脂の混合物が好適である。なかでもビスフェノールAノボラック型エポキシ樹脂またはサリチルアルデヒドノボラック型エポキシ樹脂は耐熱性に優れ好ましい。   Examples of the resin used in the present invention include, for example, epoxy resins, bistriazine resins, polyimide resins, phenol resins, melamine resins, silicon resins, unsaturated polyester resins, cyanate ester resins, isocyanate resins, polyimide resins or these resins. Various modified resins are preferred. Among these, bistriazine resin and epoxy resin are particularly preferable in terms of printed wiring board characteristics. As the epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolak type epoxy resin, salicylaldehyde novolak type epoxy resin, Bisphenol F novolac type epoxy resin, alicyclic epoxy resin, glycidyl ester type epoxy resin, glycidyl amine type epoxy resin, hydantoin type epoxy resin, isocyanurate type epoxy resin, aliphatic cyclic epoxy resin and their halides, hydrogenated products , And mixtures of the resins are preferred. Of these, bisphenol A novolac type epoxy resins or salicylaldehyde novolac type epoxy resins are preferred because of their excellent heat resistance.

本発明で使用する樹脂の硬化剤としては、従来使用しているものが使用でき、樹脂がエポキシ樹脂の場合、例えばジシアンジアミド、ビスフェノールA、ビスフェノールF、ポリビニルフェノール、フェノールノボラック樹脂、ビスフェノールAノボラック樹脂及びこれらのフェノール樹脂のハロゲン化物、水素化物等を使用できる。なかでも、ビスフェノールAノボラック樹脂は耐熱性に優れ、好ましい。硬化剤の前記樹脂に対する割合は、樹脂100重量部に対して、2〜80重量部の範囲が好ましく、さらには、ジシアンジアミドでは、2〜5重量部、それ以外の硬化剤では、20〜70重量部の範囲が好ましい。   As the curing agent for the resin used in the present invention, those conventionally used can be used. When the resin is an epoxy resin, for example, dicyandiamide, bisphenol A, bisphenol F, polyvinylphenol, phenol novolac resin, bisphenol A novolac resin and Halides, hydrides, etc. of these phenol resins can be used. Of these, bisphenol A novolac resins are preferred because of their excellent heat resistance. The ratio of the curing agent to the resin is preferably in the range of 2 to 80 parts by weight with respect to 100 parts by weight of the resin. Furthermore, 2 to 5 parts by weight for dicyandiamide and 20 to 70 parts by weight for other curing agents. A range of parts is preferred.

本発明で使用する硬化促進剤としては、樹脂がエポキシ樹脂の場合、イミダゾール化合物、有機リン化合物、第3級アミン、第4級アンモニウム塩などを使用する。この硬化促進剤の前記樹脂に対する割合は、樹脂100重量部に対して、0.01〜20重量部の範囲が好ましく、0.1〜1.0重量部の範囲がより好ましい。   As the curing accelerator used in the present invention, when the resin is an epoxy resin, an imidazole compound, an organic phosphorus compound, a tertiary amine, a quaternary ammonium salt, or the like is used. The ratio of the curing accelerator to the resin is preferably in the range of 0.01 to 20 parts by weight and more preferably in the range of 0.1 to 1.0 part by weight with respect to 100 parts by weight of the resin.

本発明の熱硬化性樹脂は、溶剤で希釈して樹脂ワニスとして使用することもできる。溶剤には、アセトン、メチルエチルケトン、トルエン、キシレン、メチルイソブチルケトン、酢酸エチル、エチレングリコールモノメチルエーテル、メタノール、エタノール、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等を使用できる。この希釈剤の前記樹脂に対する割合は、従来使用している割合でよく、樹脂100重量部に対して1〜200重量部の範囲が好ましく、30〜100重量部の範囲がさらに好ましい。   The thermosetting resin of the present invention can be diluted with a solvent and used as a resin varnish. As the solvent, acetone, methyl ethyl ketone, toluene, xylene, methyl isobutyl ketone, ethyl acetate, ethylene glycol monomethyl ether, methanol, ethanol, N, N-dimethylformamide, N, N-dimethylacetamide and the like can be used. The ratio of the diluent to the resin may be a ratio conventionally used, preferably 1 to 200 parts by weight, more preferably 30 to 100 parts by weight with respect to 100 parts by weight of the resin.

さらに本発明においては、樹脂中に上記した各成分の他に、必要に応じて公知のカップリング剤、充填剤等を適宜配合してもよい。特に,充填剤を配合した場合には,樹脂の流動性を抑えることができ,最低溶融粘度の調節がしやすい。   Furthermore, in this invention, you may mix | blend a well-known coupling agent, a filler, etc. suitably with resin other than each above-described component as needed. In particular, when a filler is blended, the fluidity of the resin can be suppressed and the minimum melt viscosity can be easily adjusted.

本発明で使用する充填剤は,電気絶縁性のフィラーである。充填剤の種類としては,ホウ酸アルミニウム,ウォラストナイト,チタン酸カリウム,塩基性硫酸マグネシウム,窒化けい素,二酸化けい素(シリカ),α−アルミナ等から選ばれた1種類以上のものを用いることができる。また,有機フィラー等を用いることもできる。   The filler used in the present invention is an electrically insulating filler. As the kind of filler, one or more kinds selected from aluminum borate, wollastonite, potassium titanate, basic magnesium sulfate, silicon nitride, silicon dioxide (silica), α-alumina and the like are used. be able to. Moreover, an organic filler etc. can also be used.

樹脂への電気絶縁性フィラーの配合量は、樹脂固形分100重量部に対し5重量部未満であると,このプリプレグは切断時に樹脂が細かく砕けて飛散しやすくなる等の取り扱い性が悪くなるとともに,配線板にしたときに十分な剛性が得られない。一方充填剤の配合量が350重量部以上であると、熱圧成形時の内層回路の穴埋め性や回路間への樹脂充填性が損なわれ、熱圧成形後の充填剤複合樹脂層中にボイドやかすれが発生しやすくなり、配線板特性を損なう恐れがある。したがって、充填剤の配合量は、樹脂固形分100重量部に対し5〜350重量部が好ましい。さらに、内層回路の穴埋め性や回路間への樹脂充填性に優れ、なおかつ、製造した配線板が従来のガラスクロス使用のプリプレグを用いて製造した配線板と比較し、同等または同等以上の剛性と寸法安定性とワイヤボンディング性を持つことができる理由から、充填剤の配合量は、樹脂固形分100重量部に対し,30〜230重量部であることがより好ましい。   When the blending amount of the electrically insulating filler in the resin is less than 5 parts by weight with respect to 100 parts by weight of the resin solids, this prepreg has poor handling properties such as the resin being finely broken and easily scattered during cutting. , When a wiring board is used, sufficient rigidity cannot be obtained. On the other hand, when the blending amount of the filler is 350 parts by weight or more, the hole filling property of the inner layer circuit at the time of hot pressing and the resin filling property between the circuits are impaired, and voids are formed in the filler composite resin layer after the hot pressing. Fading is likely to occur, and there is a risk of damaging the wiring board characteristics. Therefore, the blending amount of the filler is preferably 5 to 350 parts by weight with respect to 100 parts by weight of the resin solid content. Furthermore, it is excellent in filling the inner layer circuit and filling resin between the circuits, and the manufactured wiring board has the same or equivalent rigidity compared to the wiring board manufactured using the conventional glass cloth prepreg. From the reason that it can have dimensional stability and wire bonding property, the blending amount of the filler is more preferably 30 to 230 parts by weight with respect to 100 parts by weight of the resin solid content.

また,プリント配線板の合成及び耐熱性を更に高めるのに,カップリング剤で表面処理した充填剤を使用することもでき,樹脂との流れ性,結合性が向上できる。このとき使用するカップリング剤はシリコン系,チタン系,アルミニウム系,ジルコニウム系,ジルコアルミニウム系,クロム系,ボロン系,リン系,アミノ酸系などの公知ものを使用できる。   Further, in order to further enhance the synthesis and heat resistance of the printed wiring board, a filler surface-treated with a coupling agent can be used, and the flowability and bonding property with the resin can be improved. As the coupling agent used at this time, known materials such as silicon, titanium, aluminum, zirconium, zircoaluminum, chromium, boron, phosphorus and amino acids can be used.

本発明の接着剤シートは,上記のようにして作製した熱硬化性樹脂に電気絶縁性充填剤を分散させた樹脂を,ガラスクロス,ガラスペーパなどの基材に含浸させ,加熱により前記熱硬化性樹脂組成物を半硬化状態にして得られる。   The adhesive sheet of the present invention is obtained by impregnating a base material such as glass cloth or glass paper with a resin obtained by dispersing an electrically insulating filler in the thermosetting resin produced as described above, and heating the thermosetting resin. It is obtained by making the functional resin composition into a semi-cured state.

また,本発明の接着剤シートは,配合した熱硬化性樹脂組成物をキャリアフィルムの片面に塗布し,加熱により前記熱硬化性樹脂組成物を半硬化状態にした後,キャリアフィルムを除去して得ることもできる。このときのキャリアフィルムとしては,銅箔,アルミ箔などの金属箔,ポリエステルフィルム,ポリイミドフィルム,ポリエチレンテレフタレートフィルム,あるいは前記金属箔及びフィルムの表面を離型剤により処理したものを使用することができる。   In addition, the adhesive sheet of the present invention is obtained by applying the blended thermosetting resin composition to one side of a carrier film, making the thermosetting resin composition semi-cured by heating, and then removing the carrier film. It can also be obtained. As the carrier film at this time, a metal foil such as copper foil or aluminum foil, a polyester film, a polyimide film, a polyethylene terephthalate film, or a film obtained by treating the surface of the metal foil and film with a release agent can be used. .

以下,本発明の実施例および比較例によって本発明をさらに具体的に説明するが,本発明は,これらに制限されるものではない。
(実施例1)
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples of the present invention, but the present invention is not limited thereto.
(Example 1)

《接着剤シートAの調製》
ビスフェノールAノボラック型エポキシ樹脂(エポキシ当量210)100重量部とビスフェノールAノボラック樹脂(エポキシ当量123)100重量部,硬化促進剤としてジシアンジアミド2重量部をMEK80重量部で希釈したワニスに,平均直径0.8μm、平均繊維長20μm,最大長さ30μmのホウ酸アルミニウムウィスカーを樹脂固形分100重量部に対し90重量部になるように配合しホウ酸アルミニウムウィスカー,がワニス中に均一に分散するまで撹拌した。
このワニスを、厚さ18μmの銅箔および厚さ50μmのポリエチレンテレフタレート(PET)フィルムにナイフコータにて塗工し、温度150℃で10分間加熱乾燥して、溶剤を除去するとともに、熱硬化性樹脂を半硬化して、ウィスカ体積分率が30%でウィスカと半硬化状態にあるエポキシ樹脂からなる絶縁層の厚さが50μmの銅箔付き絶縁材料およびPETを剥離により除去して、半硬化状態のエポキシ樹脂からなる厚さが50μmの接着フィルムを作製した。PETに塗布した樹脂を剥離して,最低溶融粘度を測定
(測定機器:レオメトリックサイエンティフィックFC製レオメーター ARES-2K STD-FCO型,昇温法,昇温速度 5.0℃/分)したところ,8,300Pa・sであった。
《接着剤シートBの調製》
ビスフェノールAノボラック型エポキシ樹脂(エポキシ当量210)100重量部とビスフェノールAノボラック樹脂(エポキシ当量123 )100重量部,硬化促進剤としてジシアンジアミド1重量部をMEK150重量部で希釈したワニスに,平均直径0.8μmのシリカフィラーを樹脂固形分100重量部に対し90重量部になるように配合シリカフィラーがワニス中に均一に分散するまで撹拌した。
この樹脂を,公称厚0.06mmのガラスクロス(#1080)に含浸させ,温度150℃で6分間加熱乾燥して、溶剤を除去するとともに、熱硬化性樹脂を半硬化して、フィラー体積分率が30%でフィラーと半硬化状態にあるエポキシ樹脂からなるプリプレグを作製した。このプリプレグの最低溶融粘度を測定(測定機器は同上)したところ,700Pa・sであった。
さらに,絶縁層の厚さが0.2mm,導体用銅箔の厚さが18μmの,両面銅張積層板に,所定の位置に直径0.2mmのドリル加工を行い,スルーホールを作製した。厚さ15μmのめっき処理を行った後,両面の銅箔の不要な箇所をエッチングにより除去して作製した内層回路板の両面に,接着剤シートAおよびBを,絶縁樹脂側が内層回路に向かい合うように重ね,接着剤Bの外側に,18μmの銅箔を介して,プレスを用いて,昇温速度 3.0℃/分,170℃,3MPaの条件で,90分加熱加圧し,内層回路入り多層銅張積層板を得た。なお,このときの加圧のタイミングは,プレス開始後,35分後とし,このときの温度は133℃であった。
(実施例2)
<< Preparation of Adhesive Sheet A >>
A varnish obtained by diluting 100 parts by weight of a bisphenol A novolak type epoxy resin (epoxy equivalent 210) and 100 parts by weight of a bisphenol A novolak resin (epoxy equivalent 123) and 2 parts by weight of dicyandiamide as a curing accelerator with 80 parts by weight of MEK has an average diameter of 0. 8 μm, an average fiber length of 20 μm, and an aluminum borate whisker having a maximum length of 30 μm were blended so as to be 90 parts by weight with respect to 100 parts by weight of the resin solid content, and stirred until the aluminum borate whisker was uniformly dispersed in the varnish. .
The varnish was applied to a copper foil having a thickness of 18 μm and a polyethylene terephthalate (PET) film having a thickness of 50 μm with a knife coater, followed by heating and drying at a temperature of 150 ° C. for 10 minutes to remove the solvent and the thermosetting resin. Is semi-cured, and the insulating material with copper foil having a whisker volume fraction of 30% and the thickness of the insulating layer made of epoxy resin in a semi-cured state with the whisker and PET is removed by peeling, and the semi-cured state An adhesive film having a thickness of 50 μm made of an epoxy resin was prepared. The resin applied to PET is peeled off and the minimum melt viscosity is measured.
(Measurement equipment: Rheometric Scientific FC rheometer ARES-2K STD-FCO, heating method, heating rate 5.0 ° C / min), it was 8,300 Pa · s.
<< Preparation of adhesive sheet B >>
A varnish diluted with 100 parts by weight of a bisphenol A novolac type epoxy resin (epoxy equivalent 210) and 100 parts by weight of a bisphenol A novolak resin (epoxy equivalent 123) and 1 part by weight of dicyandiamide as a curing accelerator with 150 parts by weight of MEK has an average diameter of 0. The 8 μm silica filler was stirred until the compounded silica filler was uniformly dispersed in the varnish so that the amount was 90 parts by weight with respect to 100 parts by weight of the resin solid content.
This resin is impregnated into a glass cloth (# 1080) with a nominal thickness of 0.06 mm, dried by heating at a temperature of 150 ° C. for 6 minutes, the solvent is removed, and the thermosetting resin is semi-cured to obtain a filler volume fraction. A prepreg made of epoxy resin in a semi-cured state with a filler at 30% was produced. The minimum melt viscosity of this prepreg was measured (measuring instrument is the same as above) and found to be 700 Pa · s.
Further, a double-hole copper clad laminate having an insulating layer thickness of 0.2 mm and a conductor copper foil thickness of 18 μm was drilled at a predetermined position with a diameter of 0.2 mm to produce a through hole. After performing plating treatment with a thickness of 15 μm, adhesive sheets A and B are placed on both sides of the inner circuit board produced by removing unnecessary portions of the copper foil on both sides by etching so that the insulating resin side faces the inner circuit Multi-layer copper with inner layer circuit by heating and pressurizing for 90 minutes at a temperature rise rate of 3.0 ° C / min, 170 ° C, 3 MPa using a press through an 18 µm copper foil outside the adhesive B A tension laminate was obtained. The pressurization timing at this time was 35 minutes after the start of pressing, and the temperature at this time was 133 ° C.
(Example 2)

《接着剤シートAの調製》
ビスフェノールAノボラック型エポキシ樹脂(エポキシ当量210)100重量部とビスフェノールAノボラック樹脂(エポキシ当量123 )100重量部,硬化促進剤としてジシアンジアミド2重量部をMEK80重量部で希釈したワニスに,平均直径0.8μm、平均繊維長20μm,最大長さ30μmのホウ酸アルミニウムウィスカーを樹脂固形分100重量部に対し90重量部になるように配合しホウ酸アルミニウムウィスカー,がワニス中に均一に分散するまで撹拌した。
このワニスを、厚さ18μmの銅箔および厚さ50μmのポリエチレンテレフタレート(PET)フィルムにナイフコータにて塗工し、温度150℃で10分間加熱乾燥して、溶剤を除去するとともに、熱硬化性樹脂を半硬化して、ウィスカ体積分率が30%でウィスカと半硬化状態にあるエポキシ樹脂からなる絶縁層の厚さが50μmの銅箔付き絶縁材料およびPETを剥離により除去して、半硬化状態のエポキシ樹脂からなる厚さが50μmの接着フィルムを作製した。PETに塗布した樹脂を剥離して,最低溶融粘度を測定
(測定機器:レオメトリックサイエンティフィックFC製レオメーター ARES-2K STD-FCO型,昇温法,昇温速度 5.0℃/分)したところ,8,300Pa・sであった。
《接着剤シートBの調製》
ビスフェノールAノボラック型エポキシ樹脂(エポキシ当量210)100重量部とビスフェノールAノボラック樹脂(エポキシ当量123 )100重量部,硬化促進剤としてジシアンジアミド1.5重量部をMEK80重量部で希釈したワニスに,平均直径0.8μm、平均繊維長20μm,最大長さ30μmのホウ酸アルミニウムウィスカーを樹脂固形分100重量部に対し90重量部になるように配合し,ホウ酸アルミニウムウィスカーがワニス中に均一に分散するまで撹拌した。
このワニスを、厚さ18μmの銅箔および厚さ50μmのポリエチレンテレフタレート(PET)フィルムにナイフコータにて塗工し、温度150℃で10分間加熱乾燥して、溶剤を除去するとともに、熱硬化性樹脂を半硬化して、ウィスカ体積分率が30%でウィスカと半硬化状態にあるエポキシ樹脂からなる絶縁層の厚さが80μmの銅箔付き絶縁材料およびPETを剥離により除去して、半硬化状態のエポキシ樹脂からなる厚さが80μmの接着フィルムを作製した。PETに塗布した樹脂を剥離して,最低溶融粘度を測定
(測定機器:レオメトリックサイエンティフィックFC製レオメーター ARES-2K STD-FCO型,昇温法,昇温速度 5.0℃/分)したところ,6,300Pa・sであった。
さらに,絶縁層の厚さが0.2mm,導体用銅箔の厚さが18μmの,両面銅張積層板に,所定の位置に直径0.2mmのドリル加工を行い,スルーホールを作製した。厚さ15μmのめっき処理を行った後,両面の銅箔の不要な箇所をエッチングにより除去して作製した内層回路板の両面に,接着剤シートAおよびBを,絶縁樹脂側が内層回路に向かい合うように重ね,接着剤Bの外側に,18μmの銅箔を介して,プレスを用いて,昇温速度 3.0℃/分,170℃,3MPaの条件で,90分加熱加圧し,内層回路入り多層銅張積層板を得た。なお,このときの加圧のタイミングは,プレス開始後,35分後とし,このときの温度は133℃であった。
(実施例3)
<< Preparation of Adhesive Sheet A >>
A varnish obtained by diluting 100 parts by weight of a bisphenol A novolak type epoxy resin (epoxy equivalent 210) and 100 parts by weight of a bisphenol A novolak resin (epoxy equivalent 123) with 2 parts by weight of dicyandiamide as a curing accelerator with 80 parts by weight of MEK has an average diameter of 0. 8 μm, an average fiber length of 20 μm, and an aluminum borate whisker having a maximum length of 30 μm were blended so as to be 90 parts by weight with respect to 100 parts by weight of the resin solid content, and stirred until the aluminum borate whisker was uniformly dispersed in the varnish. .
The varnish was applied to a copper foil having a thickness of 18 μm and a polyethylene terephthalate (PET) film having a thickness of 50 μm with a knife coater, followed by heating and drying at a temperature of 150 ° C. for 10 minutes to remove the solvent and the thermosetting resin. Is semi-cured, and the insulating material with copper foil having a whisker volume fraction of 30% and the thickness of the insulating layer made of epoxy resin in a semi-cured state with the whisker and PET is removed by peeling, and the semi-cured state An adhesive film having a thickness of 50 μm made of an epoxy resin was prepared. The resin applied to PET is peeled off and the minimum melt viscosity is measured.
(Measurement equipment: Rheometric Scientific FC rheometer ARES-2K STD-FCO, heating method, heating rate 5.0 ° C / min), it was 8,300 Pa · s.
<< Preparation of adhesive sheet B >>
Average diameter of varnish diluted with 100 parts by weight of bisphenol A novolac type epoxy resin (epoxy equivalent 210) and 100 parts by weight of bisphenol A novolak resin (epoxy equivalent 123), 1.5 parts by weight of dicyandiamide as a curing accelerator with 80 parts by weight of MEK 0.8 μm, average fiber length 20 μm, maximum length 30 μm aluminum borate whisker is blended so that it becomes 90 parts by weight with respect to 100 parts by weight of resin solid content until aluminum borate whisker is uniformly dispersed in varnish Stir.
The varnish was applied to a copper foil having a thickness of 18 μm and a polyethylene terephthalate (PET) film having a thickness of 50 μm with a knife coater, followed by heating and drying at a temperature of 150 ° C. for 10 minutes to remove the solvent and the thermosetting resin. Is semi-cured, and the insulating material with copper foil having a thickness of 80 μm and the insulating layer made of epoxy resin in a semi-cured state with the whisker volume fraction of 30% is removed by peeling, and the semi-cured state An adhesive film having a thickness of 80 μm made of an epoxy resin was prepared. The resin applied to PET is peeled off and the minimum melt viscosity is measured.
(Measuring instrument: Rheometric Scientific FC rheometer ARES-2K STD-FCO, heating method, heating rate 5.0 ° C / min), it was 6,300 Pa · s.
Further, a double-hole copper clad laminate having an insulating layer thickness of 0.2 mm and a conductor copper foil thickness of 18 μm was drilled at a predetermined position with a diameter of 0.2 mm to produce a through hole. After performing plating treatment with a thickness of 15 μm, adhesive sheets A and B are placed on both sides of the inner circuit board produced by removing unnecessary portions of the copper foil on both sides by etching so that the insulating resin side faces the inner circuit Multi-layer copper with inner layer circuit by heating and pressurizing for 90 minutes at a temperature rise rate of 3.0 ° C / min, 170 ° C, 3 MPa using a press through an 18 µm copper foil outside the adhesive B A tension laminate was obtained. The pressurization timing at this time was 35 minutes after the start of pressing, and the temperature at this time was 133 ° C.
(Example 3)

《接着剤シートAの調製》
ビスフェノールAノボラック型エポキシ樹脂(エポキシ当量210)100重量部とビスフェノールAノボラック樹脂(エポキシ当量123 )100重量部,硬化促進剤としてジシアンジアミド2重量部をMEK80重量部で希釈したワニスに,平均直径0.8μm、平均繊維長20μm,最大長さ30μmのホウ酸アルミニウムウィスカーを樹脂固形分100重量部に対し90重量部になるように配合しホウ酸アルミニウムウィスカー,がワニス中に均一に分散するまで撹拌した。
このワニスを、厚さ18μmの銅箔および厚さ50μmのポリエチレンテレフタレート(PET)フィルムにナイフコータにて塗工し、温度150℃で20分間加熱乾燥して、溶剤を除去するとともに、熱硬化性樹脂を半硬化して、ウィスカ体積分率が30%でウィスカと半硬化状態にあるエポキシ樹脂からなる絶縁層の厚さが50μmの銅箔付き絶縁材料およびPETを剥離により除去して、半硬化状態のエポキシ樹脂からなる厚さが50μmの接着フィルムを作製した。PETに塗布した樹脂を剥離して,最低溶融粘度を測定
(測定機器:レオメトリックサイエンティフィックFC製レオメーター ARES-2K STD-FCO型,昇温法,昇温速度 5.0℃/分)したところ,16,700Pa・sであった。
《接着剤シートBの調製》
ビスフェノールAノボラック型エポキシ樹脂(エポキシ当量210)100重量部とビスフェノールAノボラック樹脂(エポキシ当量123 )100重量部,硬化促進剤としてジシアンジアミド1重量部をMEK150重量部で希釈したワニスに,平均直径0.8μmのシリカフィラーを樹脂固形分100重量部に対し90重量部になるように配合シリカフィラーがワニス中に均一に分散するまで撹拌した。
この樹脂を,公称厚0.06mmのガラスクロス(#1080)に含浸させ,温度150℃で6分間加熱乾燥して、溶剤を除去するとともに、熱硬化性樹脂を半硬化して、フィラー体積分率が30%でフィラーと半硬化状態にあるエポキシ樹脂からなるプリプレグを作製した。このプリプレグの最低溶融粘度を測定(測定機器は同上)したところ,700Pa・sであった。
さらに,絶縁層の厚さが0.2mm,導体用銅箔の厚さが18μmの,両面銅張積層板に,所定の位置に直径0.2mmのドリル加工を行い,スルーホールを作製した。厚さ15μmのめっき処理を行った後,両面の銅箔の不要な箇所をエッチングにより除去して作製した内層回路板の両面に,接着剤シートAおよびBを,絶縁樹脂側が内層回路に向かい合うように重ね,接着剤Bの外側に,18μmの銅箔を介して,プレスを用いて,昇温速度 3.0℃/分,170℃,3MPaの条件で,90分加熱加圧し,内層回路入り多層銅張積層板を得た。なお,このときの加圧のタイミングは,プレス開始後,35分後とし,このときの温度は133℃であった。
(比較例1)
<< Preparation of Adhesive Sheet A >>
A varnish obtained by diluting 100 parts by weight of bisphenol A novolac type epoxy resin (epoxy equivalent 210) and 100 parts by weight of bisphenol A novolak resin (epoxy equivalent 123) with 2 parts by weight of dicyandiamide as a curing accelerator with 80 parts by weight of MEK has an average diameter of 0. 8 μm, an average fiber length of 20 μm, and an aluminum borate whisker having a maximum length of 30 μm were blended so as to be 90 parts by weight with respect to 100 parts by weight of the resin solid content, and stirred until the aluminum borate whisker was uniformly dispersed in the varnish. .
The varnish was applied to a copper foil having a thickness of 18 μm and a polyethylene terephthalate (PET) film having a thickness of 50 μm with a knife coater, and dried by heating at a temperature of 150 ° C. for 20 minutes to remove the solvent, and the thermosetting resin. Is semi-cured, and the insulating material with copper foil having a whisker volume fraction of 30% and the thickness of the insulating layer made of epoxy resin in a semi-cured state with the whisker and PET is removed by peeling, and the semi-cured state An adhesive film having a thickness of 50 μm made of an epoxy resin was prepared. The resin applied to PET is peeled off and the minimum melt viscosity is measured.
(Measuring instrument: Rheometric Scientific FC rheometer ARES-2K STD-FCO, heating method, heating rate 5.0 ° C / min), it was 16,700 Pa · s.
<< Preparation of adhesive sheet B >>
A varnish diluted with 100 parts by weight of a bisphenol A novolac type epoxy resin (epoxy equivalent 210) and 100 parts by weight of a bisphenol A novolak resin (epoxy equivalent 123) and 1 part by weight of dicyandiamide as a curing accelerator with 150 parts by weight of MEK has an average diameter of 0. The 8 μm silica filler was stirred until the compounded silica filler was uniformly dispersed in the varnish so that the amount was 90 parts by weight with respect to 100 parts by weight of the resin solid content.
This resin is impregnated into a glass cloth (# 1080) with a nominal thickness of 0.06 mm, dried by heating at a temperature of 150 ° C. for 6 minutes, the solvent is removed, and the thermosetting resin is semi-cured to obtain a filler volume fraction. A prepreg made of an epoxy resin in a semi-cured state with a filler at 30% was produced. The minimum melt viscosity of this prepreg was measured (measuring instrument is the same as above) and found to be 700 Pa · s.
Further, a double-hole copper-clad laminate with an insulating layer thickness of 0.2 mm and a conductor copper foil thickness of 18 μm was drilled at a predetermined position with a diameter of 0.2 mm to produce a through hole. After performing plating treatment with a thickness of 15μm, adhesive sheets A and B are placed on both sides of the inner circuit board produced by removing unnecessary portions of the copper foil on both sides by etching so that the insulating resin side faces the inner circuit Multi-layered copper with inner layer circuit by heating and pressurizing for 90 minutes under the conditions of a heating rate of 3.0 ° C / min, 170 ° C and 3 MPa using a press through an 18 µm copper foil outside the adhesive B A tension laminate was obtained. The pressurization timing at this time was 35 minutes after the start of pressing, and the temperature at this time was 133 ° C.
(Comparative Example 1)

実施例1において,加熱加圧時の加圧タイミングを,プレス開始直後からとした他は,実施例1と同様の方法で,内層回路入り多層銅張り積層板を得た。
(比較例2)
In Example 1, a multilayer copper-clad laminate with an inner layer circuit was obtained in the same manner as in Example 1 except that the pressurization timing at the time of heating and pressing was set immediately after the start of pressing.
(Comparative Example 2)

実施例1において,接着剤シートAを内装回路板の両面に絶縁層樹脂側が内装回路に向かい合うように重ねた他は,実施例1と同様の方法で,内装回路入り他層銅張り積層板を得た。   In Example 1, except that the adhesive sheet A was stacked on both sides of the internal circuit board so that the insulating layer resin side faced the internal circuit, the other layer copper-clad laminate containing the internal circuit was formed in the same manner as in Example 1. Obtained.

以上の各実施例及び比較例で得られた4層シールド板について、表面粗さを触針式表面粗さ計にて測定した。測定箇所はその直下に内層スルーホールのある部分とない部分とを含む長さ10mmの一直線上の外層表面とした。
また,得られた4層シールド板について,外層回路形成を行い,回路加工後の,ラインの欠落を確認した。
さらに,得られた4層シールド板について,断面観察を行い,どうたい内層スルーホールに流れ込んだ樹脂を確認した。以上の測定結果を表1に示す。
About the 4-layer shield board obtained by the above each Example and the comparative example, the surface roughness was measured with the stylus type surface roughness meter. The measurement location was the outer surface of the outer layer on a straight line of 10 mm in length, including the portion with and without the inner layer through-hole immediately below.
Moreover, the outer layer circuit was formed about the obtained 4 layer shield board, and the missing of the line after circuit processing was confirmed.
Furthermore, the cross section of the obtained four-layer shield plate was observed, and the resin flowing into the inner layer through-hole was confirmed. The above measurement results are shown in Table 1.

Figure 2005123436
Figure 2005123436

Claims (5)

少なくとも2種類の最低溶融粘度が異なる接着剤シート各1枚以上を,加熱,加圧して得られる多層プリント配線板の製造方法。 A method for producing a multilayer printed wiring board obtained by heating and pressing at least two adhesive sheets having different minimum melt viscosities. 接着剤シートの少なくともどちらか一方に,電気絶縁性フィラーを含む熱硬化性樹脂を用いることを特徴とする請求項1に記載の多層プリント配線板の製造方法。 The method for producing a multilayer printed wiring board according to claim 1, wherein a thermosetting resin containing an electrically insulating filler is used for at least one of the adhesive sheets. 各接着シートの最低溶融粘度差が,1,000Pa・s以上あることを特徴とする請求項1または2に記載の多層プリント配線板の製造方法。 The method for producing a multilayer printed wiring board according to claim 1 or 2, wherein the difference in minimum melt viscosity of each adhesive sheet is 1,000 Pa · s or more. 各接着剤シートのどちらか一方の最低溶融粘度が3,000〜20,000Pa・sの範囲にあり,他方が,300〜10,000Pa・sの範囲にあることを特徴とする請求項1〜3に記載の多層プリント配線板の製造方法。 The minimum melt viscosity of either one of the adhesive sheets is in the range of 3,000 to 20,000 Pa · s, and the other is in the range of 300 to 10,000 Pa · s. The manufacturing method of the multilayer printed wiring board as described. 接着剤シートの少なくともどちらか一方が,樹脂付き銅箔を用いることを特徴とする請求項1〜4に記載の多層プリント配線板の製造方法。

The method for producing a multilayer printed wiring board according to claim 1, wherein at least one of the adhesive sheets uses a copper foil with resin.

JP2003357685A 2003-10-17 2003-10-17 Manufacturing method of multilayer printed wiring board Pending JP2005123436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003357685A JP2005123436A (en) 2003-10-17 2003-10-17 Manufacturing method of multilayer printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003357685A JP2005123436A (en) 2003-10-17 2003-10-17 Manufacturing method of multilayer printed wiring board

Publications (1)

Publication Number Publication Date
JP2005123436A true JP2005123436A (en) 2005-05-12

Family

ID=34614508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003357685A Pending JP2005123436A (en) 2003-10-17 2003-10-17 Manufacturing method of multilayer printed wiring board

Country Status (1)

Country Link
JP (1) JP2005123436A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015015979A1 (en) * 2013-08-01 2015-02-05 日東電工株式会社 Production method for semiconductor device, and sealing sheet
WO2015015980A1 (en) * 2013-08-01 2015-02-05 日東電工株式会社 Production method for semiconductor device
JP2015211095A (en) * 2014-04-25 2015-11-24 旭化成イーマテリアルズ株式会社 Laminate, method of manufacturing multilayer printed wiring board and multilayer printed wiring board

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015015979A1 (en) * 2013-08-01 2015-02-05 日東電工株式会社 Production method for semiconductor device, and sealing sheet
WO2015015980A1 (en) * 2013-08-01 2015-02-05 日東電工株式会社 Production method for semiconductor device
JP2015032648A (en) * 2013-08-01 2015-02-16 日東電工株式会社 Semiconductor device manufacturing method
JP2015032647A (en) * 2013-08-01 2015-02-16 日東電工株式会社 Semiconductor device manufacturing method and sealing sheet
JP2015211095A (en) * 2014-04-25 2015-11-24 旭化成イーマテリアルズ株式会社 Laminate, method of manufacturing multilayer printed wiring board and multilayer printed wiring board

Similar Documents

Publication Publication Date Title
TWI410442B (en) A resin composition for an insulating layer of a multilayer printed circuit board
TWI594882B (en) Thermosetting resin composition and prepreg and metal clad laminate using the same
JP5482083B2 (en) LAMINATED BOARD FOR WIRING BOARD AND ITS MANUFACTURING METHOD, PRIMER LAYER RESIN FILM, MULTILAYER WIRING BOARD AND ITS MANUFACTURING METHOD
JPH11140281A (en) Resin composition for copper-clad laminate, copper foil with resin, multilayer copper-clad laminate and multilayer printed circuit board
JP2007051267A (en) Resin composition, prepreg using the same, flame-retardant laminate and printed wiring board
JP4572423B2 (en) Method for producing copper-clad laminate, printed wiring board using the same, and multilayer printed wiring board
JP2003147171A (en) Method for producing insulating resin composition, insulating resin composition, and copper-foil laminated insulating material and copper-clad laminate
JP2005123436A (en) Manufacturing method of multilayer printed wiring board
JP2013035960A (en) Resin composition for printed circuit board, prepreg and laminate
JP3319934B2 (en) Metal foil with resin
JP2000301534A (en) Prepreg, metal-clad laminated board, and printed wiring board using prepreg and laminated board
JP3329922B2 (en) Interlayer adhesive for multilayer printed wiring board, copper foil with the adhesive, and method for manufacturing multilayer printed wiring board using the same
JP5776134B2 (en) Resin composition
JP6191659B2 (en) Resin composition
JP2003198141A (en) Insulating material for multilayer printed wiring board, insulating material clad with metal foil, and multilayer printed wiring board
JPH104270A (en) Method of manufacturing multilayer printed wiring board
JP2008111188A (en) Copper foil for printed circuit board
JP4245197B2 (en) Manufacturing method of prepreg for printed wiring board and metal-clad laminate using the same
JP2003037362A (en) Method of manufacturing multilayer printed wiring board
JP4366785B2 (en) Adhesive sheet, production method thereof, multilayer printed wiring board using the adhesive sheet, and production method thereof
JP2000133900A (en) Pre-preg for printed wiring board
JP2003281940A (en) Insulation resin composition, insulator with copper foil, and laminated plate with copper foil
JP3056678B2 (en) Manufacturing method of multilayer printed wiring board
JPH11279493A (en) Adhesive sheet, metallic foil with adhesive, multilayer board covered with metallic foil, and layered board and printed circuit board covered with metallic foil
JPH104268A (en) Method of manufacturing multilayer printed wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060912

A131 Notification of reasons for refusal

Effective date: 20081211

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20090205

Free format text: JAPANESE INTERMEDIATE CODE: A523

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090804