JP2005121789A - Electroformed nickel belt, method for forming electroformed nickel belt, function separation type organic photoreceptor, photoreceptor unit and image forming apparatus - Google Patents

Electroformed nickel belt, method for forming electroformed nickel belt, function separation type organic photoreceptor, photoreceptor unit and image forming apparatus Download PDF

Info

Publication number
JP2005121789A
JP2005121789A JP2003355024A JP2003355024A JP2005121789A JP 2005121789 A JP2005121789 A JP 2005121789A JP 2003355024 A JP2003355024 A JP 2003355024A JP 2003355024 A JP2003355024 A JP 2003355024A JP 2005121789 A JP2005121789 A JP 2005121789A
Authority
JP
Japan
Prior art keywords
layer
plane
nickel belt
electroformed nickel
peak intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003355024A
Other languages
Japanese (ja)
Inventor
Shoji Ishiwatari
正二 石渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2003355024A priority Critical patent/JP2005121789A/en
Publication of JP2005121789A publication Critical patent/JP2005121789A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the durability of an electroformed nickel belt and to suppress decrease in the productivity of the electroformed nickel belt to the utmost. <P>SOLUTION: In an electroformed nickel belt 14 formed by an electroforming process, the intensity ratio [I(200)/I(111)] of crystalline orientation planes defined by the ratio of the peak intensity I on the (200) plane to the peak intensity I on the (111) plane measured by X-ray diffraction is formed to be 2.5 to 5.0 in a layer 14a in the inner circumference face side and in a layer 14b in the outer circumference face side, and is formed to be 0.5 to 2.0 in an intermediate layer 14c. Thereby, durability against compression and stretching is improved in the layer 14a in the inner circumference face side and in the layer 14b in the outer circumference face side. Although it takes time to form the layer 14a in the inner circumference face side and the layer 14b in the outer circumference face side, it does not take time to form the intermediate layer 14c, which suppresses large increase in the process time of electroforming for forming the electroforming nickel belt 14. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、電鋳ニッケルベルト、電鋳ニッケルベルトの形成方法、機能分離型有機系感光体、感光体ユニット及び画像形成装置に関する。   The present invention relates to an electroformed nickel belt, a method for forming an electroformed nickel belt, a function-separated organic photoreceptor, a photoreceptor unit, and an image forming apparatus.

複写機やレーザープリンターなどの画像形成装置に使用される機能分離型有機系感光体として、電気鋳造処理で形成される電鋳ニッケルベルトを基体とするベルト形状のものが知られている。このようなベルト形状の機能分離型有機系感光体は、外径16〜20mmの複数のローラ上に掛けられ、20〜50Nの張力を付与された状態で回転して画像形成に用いられる。このような機能分離型有機系感光体の基体である電鋳ニッケルベルトは、その膜厚が30μm程度と薄く、しかも可撓性を有するため、取り扱い上での折れ曲がりや金属疲労の蓄積が原因となる亀裂を生じることがあり、そのような亀裂が原因となって形成される画像に欠陥が生じる。このため、電鋳ニッケルベルトの耐久性を十分に高めることが必要である。   2. Description of the Related Art As a function-separated organic photoconductor used for an image forming apparatus such as a copying machine or a laser printer, a belt-shaped one having an electroformed nickel belt formed by electroforming as a base is known. Such a belt-shaped function-separated type organic photoreceptor is used for image formation by being hung on a plurality of rollers having an outer diameter of 16 to 20 mm and rotating under a tension of 20 to 50 N. The electroformed nickel belt, which is the base of such a function-separated organic photoconductor, has a thin film thickness of about 30 μm and is flexible, which is caused by bending during handling and accumulation of metal fatigue. The resulting image may be defective due to such cracks. For this reason, it is necessary to sufficiently enhance the durability of the electroformed nickel belt.

電気鋳造処理で形成される電鋳ニッケルベルトは、生産性の面から電析膜の析出量は毎分1μm程度に設定されており、30μm程度の膜厚の電鋳ニッケルベルトを作製するために30分程度を要している。   In the electroformed nickel belt formed by electroforming, the deposition amount of the electrodeposited film is set to about 1 μm per minute from the viewpoint of productivity, and in order to produce an electroformed nickel belt having a thickness of about 30 μm. It takes about 30 minutes.

従来の電気鋳造処理により毎分1μm程度で析出されるニッケル金属の組織をX線回折での結晶配向面の強度比でみると、柱状組織とされる(111)面のピーク強度Iに対する層状組織とされる(200)面のピーク強度Iで表せる結晶配向面の強度比〔I(200)/I(111)〕は0.35〜0.5の範囲に形成されており、引張りや圧縮力に対して強い層状組織と判断される(200)面のピーク強度Iがやや弱い傾向にある。この(200)面のピーク強度Iを上昇させれば、金属疲労に対する耐久性をより向上させることができるため、(200)面のピーク強度Iの大きい層を、生産効率を余り低下させずに形成することが望まれている。   When the structure of nickel metal deposited at a rate of about 1 μm per minute by conventional electroforming is viewed in terms of the intensity ratio of crystal orientation planes by X-ray diffraction, the layered structure with respect to the peak intensity I of the (111) plane that is a columnar structure The strength ratio [I (200) / I (111)] of the crystal orientation plane expressed by the peak intensity I of the (200) plane is formed in the range of 0.35 to 0.5, and the tensile or compressive force The peak intensity I of the (200) plane that is judged to be a strong lamellar structure tends to be slightly weak. If the peak intensity I of the (200) plane is increased, durability against metal fatigue can be further improved. Therefore, a layer having a large peak intensity I of the (200) plane can be produced without significantly reducing the production efficiency. It is desired to form.

なお、電鋳ニッケルベルトの発明としては様々なものが提案されている(例えば、特許文献1参照)。この特許文献1の発明の電鋳ニッケルベルトでは、X線回折により測定した(111)面でのピーク強度に対する(200)面でのピーク強度の比で表される結晶配向面の強度比が、層全体に亘って0.6以上とされている。   Various inventions for electroformed nickel belts have been proposed (see, for example, Patent Document 1). In the electroformed nickel belt of the invention of this Patent Document 1, the intensity ratio of the crystal orientation plane represented by the ratio of the peak intensity at the (200) plane to the peak intensity at the (111) plane measured by X-ray diffraction is It is 0.6 or more over the entire layer.

特開2002−206188JP 2002-206188

(200)面のピーク強度Iが大きい層の析出は低電流下で行われるため、この(200)面の析出量を増すためには電気鋳造時に通電する電流を低下させる必要があり、通電電流の低下によって単位時間当たりの電析膜の析出量が低下し、例えば、析出量が毎分0.4〜0.6μmとなり、30μm程度の膜厚の電鋳ニッケルベルトを形成するためには50分程度の時間を要する。このため、生産性が低下し、コストアップになるという問題がある。   Since the deposition of the layer having a large peak intensity I on the (200) plane is performed under a low current, in order to increase the deposition amount on the (200) plane, it is necessary to reduce the current applied during electroforming. In order to form an electroformed nickel belt having a film thickness of about 30 μm, for example, the amount of deposition is 0.4 to 0.6 μm / min. It takes about a minute. For this reason, there exists a problem that productivity falls and it becomes a cost increase.

本発明の目的は、電鋳ニッケルベルトの耐久性を向上させ、しかも、その電鋳ニッケルベルトの生産性の低下を極力抑制することである。   An object of the present invention is to improve the durability of an electroformed nickel belt and to suppress the decrease in productivity of the electroformed nickel belt as much as possible.

請求項1記載の発明は、電気鋳造処理で形成される電鋳ニッケルベルトにおいて、X線回折により測定した(111)面のピーク強度Iに対する(200)面のピーク強度Iで表せる結晶配向面の強度比〔I(200)/I(111)〕が、内径面側の層と外径面側の層の層とは2.5〜5.0に形成され、前記内径面側の層と前記外径面側の層とにより挟まれる中間層は0.5〜2.0に形成されていることを特徴とする。   According to the first aspect of the present invention, in an electroformed nickel belt formed by electroforming, the crystal orientation plane represented by the peak intensity I of the (200) plane with respect to the peak intensity I of the (111) plane measured by X-ray diffraction. The strength ratio [I (200) / I (111)] is formed such that the inner diameter side layer and the outer diameter side layer are 2.5 to 5.0, and the inner diameter side layer and the inner diameter side layer The intermediate layer sandwiched between the outer diameter surface side layers is formed to have a thickness of 0.5 to 2.0.

したがって、電鋳ニッケルベルトの内径面側の層と外径面側の層とを結晶配向面の強度比〔I(200)/I(111)〕が2.5〜5.0の範囲で電析させ、その層の金属結晶組織を亀裂に対し強度を有する(200)面のピーク強度Iが大きい層状組織に形成することにより、形成される電鋳ニッケルベルトは圧縮及び引っ張りに対する耐久性が向上する。また、内径面側の層と外径面側の層とに挟まれる中間層を通常の生産工程で形成される結晶配向面の強度比〔I(200)/I(111)〕を0.5〜2.0で形成することで、電鋳処理時間の大幅な増大が抑制される。   Therefore, the inner diameter side layer and the outer diameter side layer of the electroformed nickel belt are electrically charged in the range of the crystallographic plane strength ratio [I (200) / I (111)] of 2.5 to 5.0. The electroformed nickel belt formed has improved durability against compression and tension by forming a layered structure with a high peak strength I on the (200) plane that has strength against cracks. To do. Further, the strength ratio [I (200) / I (111)] of the crystal orientation plane formed by the normal production process is 0.5 for the intermediate layer sandwiched between the inner diameter side layer and the outer diameter side layer. By forming at ~ 2.0, a significant increase in electroforming time is suppressed.

請求項2記載の発明は、請求項1記載の電鋳ニッケルベルトにおいて、前記内径面側と前記外形面側との層の膜厚がそれぞれ全体の膜厚の1/5〜1/3であり、全体の膜厚が30±3μmであることを特徴とする。   According to a second aspect of the present invention, in the electroformed nickel belt according to the first aspect, the film thicknesses of the inner diameter surface side and the outer surface side are each 1/5 to 1/3 of the total film thickness. The total film thickness is 30 ± 3 μm.

したがって、電鋳ニッケルベルトの内径面側の層と外径面側の層とが層状組織となって圧縮及び引っ張りに対する耐久性が向上した層が5〜10μm形成されるので、電鋳ニッケルベルト全体として圧縮及び引っ張りに対する耐久性が向上する。また、形成に時間を要する層の形成が全体の膜厚の2/5〜2/3であるので、電鋳処理時間の大幅な増大が抑制される。   Therefore, since the layer on the inner diameter surface side and the outer diameter surface side layer of the electroformed nickel belt become a layered structure and a layer having improved durability against compression and tension is formed in 5 to 10 μm, the entire electroformed nickel belt As a result, durability against compression and pulling is improved. In addition, since the formation of a layer that requires time for formation is 2/5 to 2/3 of the entire film thickness, a significant increase in electroforming time is suppressed.

請求項3記載の発明は、電気鋳造処理で形成される電鋳ニッケルベルトにおいて、X線回折により測定した(111)面のピーク強度Iに対する(200)面のピーク強度Iで表せる結晶配向面の強度比〔I(200)/I(111)〕が、外径面側の層は2.5〜5.0に形成され、前記外形面側以外は0.5〜2.0に形成されていることを特徴とする。   According to the third aspect of the present invention, in an electroformed nickel belt formed by electroforming, the crystal orientation plane represented by the peak intensity I of the (200) plane with respect to the peak intensity I of the (111) plane measured by X-ray diffraction. The strength ratio [I (200) / I (111)] is formed such that the outer diameter side layer is 2.5 to 5.0 and the outer side is other than 0.5 to 2.0. It is characterized by being.

したがって、電鋳ニッケルベルトの外径面側の層を結晶配向面の強度比〔I(200)/I(111)〕が2.5〜5.0の範囲で電析させ、その層の金属結晶組織を亀裂に対し強度を有する(200)面のピーク強度Iが大きい層状組織に形成することにより、形成される電鋳ニッケルベルトは圧縮及び引っ張りに対する耐久性が向上する。また、外径面側以外は通常の生産工程で形成される結晶配向面の強度比〔I(200)/I(111)〕を0.5〜2.0で形成することで、電鋳処理時間の大幅な増大が抑制される。   Therefore, the outer diameter surface layer of the electroformed nickel belt is electrodeposited in the range of the crystal orientation plane strength ratio [I (200) / I (111)] of 2.5 to 5.0, and the metal of the layer is deposited. By forming the crystal structure into a layered structure having a high peak strength I on the (200) plane having strength against cracking, the formed electroformed nickel belt has improved durability against compression and tension. Further, by forming the strength ratio [I (200) / I (111)] of the crystal orientation plane formed in the normal production process except for the outer diameter surface side at 0.5 to 2.0, electroforming treatment A significant increase in time is suppressed.

請求項4記載の発明は、電気鋳造処理で形成される電鋳ニッケルベルトにおいて、X線回折により測定した(111)面のピーク強度Iに対する(200)面のピーク強度Iで表せる結晶配向面の強度比〔I(200)/I(111)〕が、内径面側の層は2.5〜5.0に形成され、内径面側以外は0.5〜2.0に形成されていることを特徴とする。   The invention according to claim 4 is an electroformed nickel belt formed by an electroforming process. The crystal orientation plane represented by the peak intensity I of the (200) plane with respect to the peak intensity I of the (111) plane measured by X-ray diffraction. The strength ratio [I (200) / I (111)] is formed such that the layer on the inner diameter side is 2.5 to 5.0, and the layer other than the inner diameter side is 0.5 to 2.0. It is characterized by.

したがって、電鋳ニッケルベルトの内径面側の層を結晶配向面の強度比〔I(200)/I(111)〕が2.5〜5.0の範囲で電析させ、その層の金属結晶組織を亀裂に対し強度を有する(200)面のピーク強度Iが大きい層状組織に形成することにより、形成される電鋳ニッケルベルトは圧縮及び引っ張りに対する耐久性が向上する。また、内径面側以外は通常の生産工程で形成される結晶配向面の強度比〔I(200)/I(111)〕を0.5〜2.0で形成することで、電鋳処理時間の大幅な増大が抑制される。   Therefore, the layer on the inner diameter side of the electroformed nickel belt is electrodeposited in the range of the crystal orientation plane strength ratio [I (200) / I (111)] of 2.5 to 5.0, and the metal crystal of the layer is deposited. By forming the structure into a layered structure having a high peak strength I on the (200) plane having strength against cracks, the formed electroformed nickel belt has improved durability against compression and tension. In addition to the inner diameter side, the strength ratio [I (200) / I (111)] of the crystal orientation plane formed in the normal production process is formed at 0.5 to 2.0, so that the electroforming time Is significantly suppressed.

請求項5記載の発明は、請求項3又は4記載の電鋳ニッケルベルトにおいて、結晶配向面の強度比〔I(200)/I(111)〕が2.5〜5.0に形成されている外形面側又は内径面側の膜厚が全体の膜厚の1/2〜2/3であり、全体の膜厚が30±3μmであることを特徴とする。   The invention according to claim 5 is the electroformed nickel belt according to claim 3 or 4, wherein the strength ratio [I (200) / I (111)] of the crystal orientation plane is formed to 2.5 to 5.0. The film thickness on the outer surface side or the inner surface side is ½ to 2/3 of the total film thickness, and the total film thickness is 30 ± 3 μm.

したがって、電鋳ニッケルベルトの内径面側の層と外径面側の層との一方には、層状組織となって圧縮及び引っ張りに対する耐久性が向上した層が15〜20μm形成されるので、電鋳ニッケルベルト全体として圧縮及び引っ張りに対する耐久性が向上する。また、形成に時間を要する層の形成が全体の膜厚の1/2〜2/3であるので、電鋳処理時間の大幅な増大が抑制される。   Therefore, a layer having a layered structure and improved durability against compression and tension is formed on one of the inner diameter side layer and the outer diameter side layer of the electroformed nickel belt. The durability against compression and tension is improved as a whole cast nickel belt. In addition, since the formation of a layer that requires time for formation is 1/2 to 2/3 of the entire film thickness, a significant increase in electroforming time is suppressed.

請求項6記載の発明は、電気鋳造処理で形成される電鋳ニッケルベルトにおいて、X線回折により測定した(111)面のピーク強度Iに対する(200)面のピーク強度Iで表せる結晶配向面の強度比〔I(200)/I(111)〕が2.5〜5.0である複数の層と0.5〜2.0である複数の層とが内径面側から交互に積層されていることを特徴とする。   According to the sixth aspect of the present invention, in the electroformed nickel belt formed by electroforming, the crystal orientation plane represented by the peak intensity I of the (200) plane with respect to the peak intensity I of the (111) plane measured by X-ray diffraction. A plurality of layers having an intensity ratio [I (200) / I (111)] of 2.5 to 5.0 and a plurality of layers of 0.5 to 2.0 are alternately stacked from the inner surface side. It is characterized by being.

したがって、X線回折のピーク強度Iで表せる結晶配向面の強度比〔I(200)/I(111)〕が2.5〜5.0の層を繰返し形成することで、電鋳ニッケルベルトが多層構造となり、圧縮及び引張り力に対する耐久性が向上する。また、電鋳ニッケルベルトの一部を結晶配向面の強度比〔I(200)/I(111)〕が2.5〜5.0の層とし、他の一部を通常の生産工程で形成される結晶配向面の強度比〔I(200)/I(111)〕を0.5〜2.0で形成することで、電鋳処理時間の大幅な増大が抑制される。   Therefore, by repeatedly forming a layer having a crystal orientation plane intensity ratio [I (200) / I (111)] of 2.5 to 5.0 expressed by the peak intensity I of X-ray diffraction, the electroformed nickel belt It becomes a multilayer structure, and durability against compression and tensile force is improved. Further, a part of the electroformed nickel belt is formed into a layer having a crystal orientation plane strength ratio [I (200) / I (111)] of 2.5 to 5.0, and the other part is formed by a normal production process. By forming the strength ratio [I (200) / I (111)] of the crystal orientation plane to be 0.5 to 2.0, a significant increase in electroforming time is suppressed.

請求項7記載の発明は、請求項6記載の電鋳ニッケルベルトにおいて、結晶配向面の強度比〔I(200)/I(111)〕が2.5〜5.0である層の膜厚が2〜4μmであり、全体の膜厚が30±3μmであることを特徴とする。   A seventh aspect of the present invention is the electroformed nickel belt according to the sixth aspect, wherein the thickness ratio of the crystal orientation plane [I (200) / I (111)] is 2.5 to 5.0. Is 2 to 4 μm, and the total film thickness is 30 ± 3 μm.

したがって、結晶配向面の強度比〔I(200)/I(111)〕が2.5〜5.0である層を3〜5層形成することができ、電鋳ニッケルベルトの圧縮及び引張り力に対する耐久性が向上するとともに電鋳処理時間の大幅な増大が抑制される。   Therefore, it is possible to form 3 to 5 layers having a crystal orientation plane strength ratio [I (200) / I (111)] of 2.5 to 5.0, and to compress and pull the electroformed nickel belt. As a result, the electroforming process time is significantly prevented from increasing.

請求項8記載の発明は、電気鋳造処理で形成される電鋳ニッケルベルトにおいて、X線回折により測定した(111)面のピーク強度Iに対する(200)面のピーク強度Iで表せる結晶配向面の強度比〔I(200)/I(111)〕が2.5〜5.0である層と0.5〜2.0である層とが連続したロール状に形成されていることを特徴とする。   The invention according to claim 8 is an electroformed nickel belt formed by electroforming, wherein the crystal orientation plane represented by the peak intensity I of the (200) plane with respect to the peak intensity I of the (111) plane measured by X-ray diffraction. A layer having an intensity ratio [I (200) / I (111)] of 2.5 to 5.0 and a layer of 0.5 to 2.0 are formed in a continuous roll shape. To do.

したがって、結晶配向面の強度比〔I(200)/I(111)〕が2.5〜5.0である層がロール状に連続して形成されることにより、電鋳ニッケルベルトの圧縮及び引張り力に対する耐久性が向上する。また、結晶配向面の強度比〔I(200)/I(111)〕が0.5〜2.0である層も連続してロール状に形成されるため、電鋳処理時間の大幅な増大が抑制される。   Therefore, a layer having a crystal orientation plane strength ratio [I (200) / I (111)] of 2.5 to 5.0 is continuously formed in a roll shape, thereby compressing the electroformed nickel belt. Durability against tensile force is improved. In addition, since the layer having a crystal orientation plane strength ratio [I (200) / I (111)] of 0.5 to 2.0 is also continuously formed in a roll shape, the electroforming time is significantly increased. Is suppressed.

請求項9記載の発明は、請求項8記載の電鋳ニッケルベルトにおいて、結晶配向面の強度比〔I(200)/I(111)〕が2.5〜5.0である層の膜厚が0.05〜0.15μmであり、全体の膜厚が30±3μmであることを特徴とする。   The invention according to claim 9 is the electroformed nickel belt according to claim 8, wherein the thickness ratio of the crystal orientation plane [I (200) / I (111)] is 2.5 to 5.0. Is 0.05 to 0.15 μm, and the total film thickness is 30 ± 3 μm.

したがって、結晶配向面の強度比〔I(200)/I(111)〕が2.5〜5.0である層の膜厚が薄く、この層を形成するために要する時間が短くなり、電鋳処理時間の大幅な増大が抑制される。   Therefore, the layer having a crystal orientation plane strength ratio [I (200) / I (111)] of 2.5 to 5.0 is thin, and the time required to form this layer is shortened. A significant increase in casting processing time is suppressed.

請求項10記載の発明は、電源の陰極に接続されて電解液中に浸漬された円筒状金型母材と、前記電解液中に浸漬された陽極との間に通電して前記円筒状金型母材の表面にニッケルを析出させる電鋳ニッケルベルトの形成方法において、前記円筒状金型母材と前記電解液中に陽極として浸漬された可溶性の活性ニッケルペレットとの間に電析電流密度が2〜4A/mmの電析電流を与えることによりX線回折により測定した(111)面のピーク強度Iに対する(200)面のピーク強度Iで表せる結晶配向面の強度比〔I(200)/I(111)〕が2.5〜5.0の層を前記円筒状金型母材上に形成する工程と、前記円筒状金型母材と前記陽極との間に電析電流密度が4〜6A/mmの電析電流を与えることによりX線回折により測定した(111)面のピーク強度Iに対する(200)面のピーク強度Iで表せる結晶配向面の強度比〔I(200)/I(111)〕が0.5〜2.0の層を前記円筒状金型母材上に形成する工程と、を具備することを特徴とする。 According to a tenth aspect of the present invention, an electric current is passed between a cylindrical mold base material connected to a cathode of a power source and immersed in an electrolytic solution, and an anode immersed in the electrolytic solution. In a method for forming an electroformed nickel belt in which nickel is deposited on the surface of a mold base material, an electrodeposition current density between the cylindrical mold base material and a soluble active nickel pellet immersed as an anode in the electrolyte solution Of the crystal orientation plane expressed by the peak intensity I of the (200) plane with respect to the peak intensity I of the (111) plane measured by X-ray diffraction by applying an electrodeposition current of 2 to 4 A / mm 2 [I (200 ) / I (111)] of 2.5 to 5.0 on the cylindrical mold base material, and the electrodeposition current density between the cylindrical mold base material and the anode. There the X-ray diffraction by providing the conductive析電flow 4~6A / mm 2 A layer having an intensity ratio [I (200) / I (111)] of the crystal orientation plane expressed by the peak intensity I of the (200) plane to the measured peak intensity I of the (111) plane is 0.5 to 2.0. Forming on a cylindrical mold base material.

したがって、円筒状金型母材と陽極との間に電析電流密度2〜4A/mmを通電することにより結晶配向面の強度比〔I(200)/I(111)〕が2.5〜5.0の層が円筒状金型母材上に形成され、円筒状金型母材と陽極との間に電析電流密度4〜6A/mmを通電することにより結晶配向面の強度比〔I(200)/I(111)〕が0.5〜2.0の層が円筒状金型母材上に形成され、電鋳ニッケルベルトの圧縮及び引張り力に対する耐久性の向上と、電鋳処理時間の大幅な増大の抑制とが実現される。 Therefore, by passing an electrodeposition current density of 2 to 4 A / mm 2 between the cylindrical mold base material and the anode, the strength ratio [I (200) / I (111)] of the crystal orientation plane is 2.5. a layer of 5.0 is formed on the cylindrical mold base material, the strength of the crystal orientation surface by energizing the electric析電current density 4~6A / mm 2 between the cylindrical mold base material and the anode A layer having a ratio [I (200) / I (111)] of 0.5 to 2.0 is formed on the cylindrical mold base material, and the durability of the electroformed nickel belt against compression and tensile force is improved. Suppressing a significant increase in electroforming time is realized.

請求項11記載の発明は、請求項10記載の電鋳ニッケルベルトの形成方法において、前記電解液は、スルファミン酸ニッケル450〜500g/l、硼酸30〜40g/l、臭化ニッケル1〜2g/l、第一光沢剤及び析出膜の圧縮応力調整剤としてサッカリン50〜100ppm、第二光沢剤としてアルキンジオール20〜50ppm、界面活性剤としてアルキルベンゼンスルフォン酸塩が0.1〜0.2g/lが添加されていることを特徴とする。   The eleventh aspect of the present invention is the method for forming an electroformed nickel belt according to the tenth aspect, wherein the electrolytic solution comprises nickel sulfamate 450 to 500 g / l, boric acid 30 to 40 g / l, nickel bromide 1 to 2 g / l. l, saccharin 50-100 ppm as the first brightener and compressive stress modifier of the deposited film, alkynediol 20-50 ppm as the second brightener, and alkylbenzene sulfonate 0.1-0.2 g / l as the surfactant It is characterized by being added.

したがって、消耗する金属イオン補給のための陽極溶解剤として臭化ニッケルが作用し、円筒状金属母型から離型するための析出膜の圧縮応力調整剤及び第一光沢剤としてサッカリンが作用し、X線回折のピーク強度Iで表せる結晶配向面の強度比〔I(200)/I(111)〕2.5〜5.0と0.5〜2.0の層状の金属結晶にするための第二光沢剤としてアルキンジオールが作用し、界面活性剤としてアルキルベンゼンスルフォン酸塩が作用し、電鋳ニッケルベルトの圧縮及び引張り力に対する耐久性の向上と、電鋳処理時間の大幅な増大の抑制とが実現される。   Therefore, nickel bromide acts as an anodic solubilizer for replenishing depleted metal ions, saccharin acts as a compressive stress modifier for the deposited film and a first brightener to release from the cylindrical metal matrix, Intensity ratio of crystal orientation plane expressed by peak intensity I of X-ray diffraction [I (200) / I (111)] 2.5 to 5.0 and 0.5 to 2.0 for forming a layered metal crystal Alkynediol acts as the second brightener, alkylbenzene sulfonate acts as the surfactant, improves durability against compression and tensile force of the electroformed nickel belt, and suppresses a significant increase in electroforming time. Is realized.

請求項12記載の発明の機能分離型有機系感光体は、請求項1ないし9のいずれか一記載の電鋳ニッケルベルトと、0.3μm以下の酸化チタン微粒子を光散乱剤としてアルキドとメラミン樹脂溶液に分散して前記電鋳ニッケルベルトの表面に塗膜形成した熱硬化樹脂性下引き層と、無金属フタロシアニンとアゾ顔料の電荷発生剤をブチラール樹脂溶液に分散して前記熱硬化樹脂性下引き層の上に塗膜形成した電荷発生層と、電荷発生剤のスチルベン化合物をポリカーボネート樹脂溶液に混合して前記電荷発生層の上に塗膜形成した電荷輸送層と、を具備する。   A function-separated organic photoconductor according to a twelfth aspect of the invention is an alkyd and melamine resin using the electroformed nickel belt according to any one of the first to ninth aspects and titanium oxide fine particles of 0.3 μm or less as a light scattering agent. A thermosetting resinous subbing layer formed on the surface of the electroformed nickel belt by dispersing in a solution, a metal-free phthalocyanine and an azo pigment charge generating agent dispersed in a butyral resin solution, A charge generating layer formed on the pulling layer; and a charge transporting layer formed on the charge generating layer by mixing a stilbene compound as a charge generating agent in a polycarbonate resin solution.

したがって、この機能分離型有機系感光体は、請求項1ないし9のいずれか一記載の発明と同様の作用を奏する。   Therefore, this function-separated organic photoreceptor exhibits the same action as the invention according to any one of claims 1 to 9.

請求項13記載の発明の感光体ユニットは、請求項12記載の機能分離型有機系感光体と、前記機能分離型有機系感光体の内周面に当接してこの機能分離型有機系感光体を支持する複数のローラと、を具備する。   A photoconductor unit according to a thirteenth aspect of the present invention comprises a function-separated organic photoconductor according to a twelfth aspect, and the function-separated organic photoconductor in contact with an inner peripheral surface of the function-separated organic photoconductor. And a plurality of rollers for supporting.

したがって、この感光体ユニットは、請求項12記載の機能分離型有機系感光体と同様の作用、即ち、請求項1ないし9のいずれか一記載の発明と同様の作用を奏する。   Therefore, this photoconductor unit has the same action as the function-separated organic photoconductor according to claim 12, that is, the same action as the invention according to any one of claims 1 to 9.

請求項14記載の発明の画像形成装置は、請求項13記載の感光体ユニットと、前記機能分離型有機系感光体の外周面を一様に帯電する帯電装置と、一様に帯電された前記機能分離型有機系感光体の外周面に静電潜像を書き込む露光装置と、前記機能分離型有機系感光体の外周面に書き込まれた静電潜像を現像してトナー像を形成する現像装置と、現像されたトナー像を記録媒体に転写する転写装置と、を具備する。   According to a fourteenth aspect of the present invention, there is provided an image forming apparatus according to the thirteenth aspect, the charging device for uniformly charging the outer peripheral surface of the function-separated organic photosensitive member, and the uniformly charged device. An exposure apparatus that writes an electrostatic latent image on the outer peripheral surface of the function-separated organic photoconductor, and a developer that develops the electrostatic latent image written on the outer peripheral surface of the function-separated organic photoconductor to form a toner image And a transfer device that transfers the developed toner image to a recording medium.

したがって、この画像形成装置は、請求項13記載の感光体ユニットと同様の作用、即ち、請求項1ないし9のいずれか一記載の発明と同様の作用を奏する。   Therefore, this image forming apparatus has the same operation as that of the photoconductor unit according to the thirteenth aspect, that is, the same operation as that of the invention according to any one of the first to ninth aspects.

請求項1ないし9のいずれか一記載の発明によれば、電鋳ニッケルベルトの圧縮及び引っ張りに対する耐久性を向上させることができ、しかも、電鋳処理時間の大幅な増大を抑制できる。   According to the invention described in any one of claims 1 to 9, durability against compression and tension of the electroformed nickel belt can be improved, and a significant increase in electroforming time can be suppressed.

請求項10又は11記載の発明によれば、圧縮及び引っ張りに対する耐久性を向上させた電鋳ニッケルベルトを電鋳処理時間の大幅な増大を抑制して製造することができる。   According to invention of Claim 10 or 11, the electrocast nickel belt which improved durability with respect to compression and a tension | tensile_strength can be manufactured, suppressing the great increase in electroforming process time.

請求項12ないし14のいずれか一記載の発明によれば、請求項1ないし9のいずれか一記載の発明と同様の効果を奏することができる。   According to the invention of any one of claims 12 to 14, the same effect as that of the invention of any one of claims 1 to 9 can be obtained.

本発明の一実施の形態を図面に基づいて説明する。図1は画像形成装置であるカラーレーザープリンタ(以下、「プリンタ」という。)の概略構成を示す側面図、図2は機能分離型有機系感光体を示す断面図、図3は電鋳ニッケルベルト及びそれを基体とする機能分離型有機系感光体の製造工程の概略を示す製造工程図、図4は機能分離型有機系感光体に生じる亀裂の様子を説明する斜視図である。   An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a side view showing a schematic configuration of a color laser printer (hereinafter referred to as “printer”) as an image forming apparatus, FIG. 2 is a sectional view showing a function-separated organic photoconductor, and FIG. 3 is an electroformed nickel belt. FIG. 4 is a perspective view for explaining the state of cracks generated in the function-separated organic photoconductor.

このプリンタ1には、本体ケース2内の略中央部に感光体ユニット3が配置され、この感光体ユニット3は、ベルト状の機能分離型有機系感光体4、この機能分離型有機系感光体4を保持するφ16〜20mmの駆動ローラ5、従動ローラ6、テンションローラ7等により構成されている。テンションローラ7には20〜50Nの張力が掛けられて、機能分離型有機系感光体4は線速毎秒100〜200mmで回転駆動される。   In the printer 1, a photoconductor unit 3 is disposed at a substantially central portion in a main body case 2. The photoconductor unit 3 includes a belt-like function-separated organic photoconductor 4, and the function-separated organic photoconductor. 4, a driving roller 5 having a diameter of 16 to 20 mm, a driven roller 6, a tension roller 7, and the like. A tension of 20 to 50 N is applied to the tension roller 7, and the function-separated organic photoconductor 4 is driven to rotate at a linear speed of 100 to 200 mm per second.

感光体ユニット3の周囲には、機能分離型有機系感光体4の外周面を一様に帯電する帯電装置8、一様に帯電された機能分離型有機系感光体4の外周面に静電潜像を書き込む露光装置9、機能分離型有機系感光体4の外周面に書き込まれた静電潜像を現像してトナー像を形成する4つの現像装置10、機能分離型有機系感光体4上のトナー像が中間転写される中間転写ベルト11、中間転写ベルト11上に転写されたトナー像を記録媒体Sに転写する転写装置12等が配置されている。トナー像が転写された記録媒体Sは、定着装置13において加熱、加圧による定着処理が行われ、トナー像が定着された記録媒体Sが排紙部13aに排紙される。   Around the photoreceptor unit 3, a charging device 8 that uniformly charges the outer peripheral surface of the function-separated organic photoconductor 4, and an electrostatic charge on the outer peripheral surface of the uniformly charged function-separated organic photoconductor 4. An exposure device 9 for writing a latent image, four developing devices 10 for developing a latent electrostatic image written on the outer peripheral surface of the function-separated organic photoconductor 4 to form a toner image, and a function-separated organic photoconductor 4 An intermediate transfer belt 11 to which the upper toner image is intermediately transferred, a transfer device 12 for transferring the toner image transferred onto the intermediate transfer belt 11 to the recording medium S, and the like are disposed. The recording medium S to which the toner image has been transferred is subjected to fixing processing by heating and pressing in the fixing device 13, and the recording medium S on which the toner image has been fixed is discharged to the paper discharge unit 13a.

なお、4つの現像装置10にはそれぞれ異なる色(ブラック、シアン、マゼンタ、イエロー)のトナーを収納されており、これらの現像装置10が択一的に駆動されることによりそれぞれ収納するトナーの色のトナー像が形成される。   Each of the four developing devices 10 stores toners of different colors (black, cyan, magenta, yellow), and the toner colors stored when these developing devices 10 are selectively driven. The toner image is formed.

機能分離型有機系感光体4は図2に示すように、電気鋳造処理で形成される電鋳ニッケルベルト14を基体とし、その上に、熱硬化樹脂性下引き層15、電荷発生層16、電荷輸送層17を順に積層することにより形成されている。熱硬化樹脂性下引き層15は、アルキドをメラミン樹脂溶液中に分散して塗膜形成した膜厚3〜8μmの熱硬化樹脂性の層である。電荷発生層16は、フタロシアニン及びアゾ顔料等の電荷発生剤をブチラール樹脂溶液中に分散して塗膜形成した膜厚0.1〜0.5μmの層である。電荷輸送層17は、電荷輸送剤のスチルベン化合物等をポリカーボネート樹脂溶液中に混合して塗膜形成した膜厚20〜30μmの層である。ここで、感光層(熱硬化樹脂性下引き層15、電荷発生層16、電荷輸送層17)は、A4サイズの記録媒体Sで4〜5万枚相当の耐刷耐久性を持っているが、基体である電鋳ニッケルベルト14は、電気鋳造製のニッケル薄膜特有の金属疲労から、耐刷耐久枚数付近で電鋳ニッケルベルト14内に割れを生じ画像欠陥を発生させることがある。   As shown in FIG. 2, the function-separated organic photoreceptor 4 has an electroformed nickel belt 14 formed by electroforming as a base, and a thermosetting resinous undercoat layer 15, a charge generation layer 16, The charge transport layer 17 is formed by sequentially laminating. The thermosetting resinous undercoat layer 15 is a thermosetting resinous layer having a film thickness of 3 to 8 μm formed by coating a film by dispersing alkyd in a melamine resin solution. The charge generation layer 16 is a layer having a film thickness of 0.1 to 0.5 μm formed by coating a charge generation agent such as phthalocyanine and an azo pigment in a butyral resin solution. The charge transport layer 17 is a layer having a film thickness of 20 to 30 μm formed by mixing a stilbene compound as a charge transport agent in a polycarbonate resin solution to form a coating film. Here, the photosensitive layer (thermosetting resinous undercoat layer 15, charge generation layer 16, charge transport layer 17) is A4 size recording medium S and has a printing durability equivalent to 40,000 to 50,000 sheets. The electroformed nickel belt 14 serving as the base may crack in the electroformed nickel belt 14 near the number of printing durability and cause image defects due to the metal fatigue characteristic of the electroformed nickel thin film.

機能分離型有機系感光体4の基体である電鋳ニッケルベルト14は、駆動ローラ5、従動ローラ6、及び、テンションローラ7の外周上で繰返しの回転のため引っ張り力及び圧縮力を受け、金属疲労を起こして亀裂を発生させる。特にローラ5,6,7の外径が15mm以下になると、電鋳ニッケルベルト14の屈曲状態は弾性変形範囲での元に戻る状態から、塑性変形によるクセが混成して金属疲労を生じ易い傾向となり耐久性が低下し易くなる。   The electroformed nickel belt 14 which is the base of the function-separated organic photoconductor 4 is subjected to a tensile force and a compressive force due to repeated rotation on the outer periphery of the driving roller 5, the driven roller 6 and the tension roller 7. Causes fatigue and cracks. In particular, when the outer diameter of the rollers 5, 6 and 7 is 15 mm or less, the bent state of the electroformed nickel belt 14 tends to return from the original state in the elastic deformation range, and the tendency due to plastic deformation is likely to be mixed and metal fatigue tends to occur. And durability tends to be lowered.

機能分離型有機系感光体4の基体としての電鋳ニッケルベルト14は、加熱定着用電気鋳造製ニッケルベルトのように、フッ素樹脂の離型層形成時に300℃以上の高温となる製造条件や、定着時の加熱温度として160〜200℃の使用条件が長時間に亘ることは無いので、電析時の電解液薬品に含まれる硫黄の共析による硫黄脆性から、電鋳ニッケルベルト14が熱的に脆くなる問題は生じ難いが、その電気鋳造条件により、その金属結晶が特有の組織となり金属疲労を起こして亀裂が発生し易くなる傾向を持っている。   The electroformed nickel belt 14 as the base of the function-separated organic photoconductor 4 is manufactured at a temperature of 300 ° C. or higher when a fluororesin release layer is formed, like an electroformed nickel belt for heat fixing, Since the use conditions of 160 to 200 ° C. as the heating temperature at the time of fixing do not last for a long time, the electroformed nickel belt 14 is thermally affected by sulfur embrittlement due to the eutectoid of sulfur contained in the electrolyte chemical during electrodeposition. However, depending on the electrocasting conditions, the metal crystals tend to have a unique structure and tend to cause metal fatigue and cracks.

電気鋳造処理で形成する電鋳ニッケルベルト14を基体とする場合は、その製造条件として電解液組成、及び、電解液組成を安定な状態に維持管理し、電析により消耗する金属イオンの補給を十分確保して電解形成すれば、金属結晶組織の配向状態は電析時の電流密度に左右され、引っ張り及び圧縮力を繰返し受けた場合の膜の耐久性に対し影響を及ぼす。   When the electroformed nickel belt 14 formed by the electroforming process is used as a base, the electrolytic solution composition and the electrolytic solution composition are maintained and managed in a stable state, and replenishment of metal ions consumed by electrodeposition is performed. If sufficient electrolytic formation is ensured, the orientation state of the metal crystal structure depends on the current density during electrodeposition, and affects the durability of the film when repeatedly subjected to tensile and compressive forces.

画像形成装置に搭載され市場にでている機能分離型有機系感光体の基体としての電鋳ニッケルベルトは、電気鋳造処理での電析電流が4〜5A/mmであり、電析膜の析出量は毎分1μm程度で30μmの膜厚に形成されている現状にあり、その金属結晶の配向度合いを、X線回折により測定した(111)面のピーク強度Iに対する(200)面のピーク強度Iで表せる結晶配向面の強度比〔I(200)/I(111)〕が0.35〜0.4の範囲に形成されている。 An electroformed nickel belt as a base of a function-separated organic photoreceptor that is mounted on an image forming apparatus and has a market has an electrodeposition current of 4 to 5 A / mm 2 in an electroforming process. The amount of precipitation is about 1 μm per minute and is formed to a thickness of 30 μm. The degree of orientation of the metal crystal is measured by X-ray diffraction, and the peak of the (200) plane with respect to the peak intensity I of the (111) plane The strength ratio [I (200) / I (111)] of the crystal orientation plane expressed by strength I is formed in the range of 0.35 to 0.4.

結晶配向面の強度比〔I(200)/I(111)〕が0.35〜0.4と小さいのは、電解液組成中の光沢剤が第一光沢剤のみで構成された弱光沢メッキに相当するものであって、結晶配向面の強度比〔I(200)/I(111)〕を0.5〜2.0、或いは、2.5〜5.0の範囲にするには第二光沢剤を併用し、光沢メッキとしないと可能とならない。   The intensity ratio [I (200) / I (111)] of the crystal orientation plane is as small as 0.35 to 0.4 because the brightener in the electrolyte composition is composed of only the first brightener. And the intensity ratio [I (200) / I (111)] of the crystal orientation plane is 0.5 to 2.0, or 2.5 to 5.0. This is not possible without using two brighteners and gloss plating.

第二光沢剤を併用し、光沢メッキにし、電析電流密度を4〜6A/mmにすると結晶配向面の強度比は0.5〜2.0の範囲になり、電析電流密度を2〜4A/mmに低下させると結晶配向面の強度比は2.5〜5.0の範囲になって層状組織が強くなる。電析電流密度を7A/mm以上にすると結晶配向面の強度比は0.3〜0.4の範囲になって層状組織に柱状組織が混成された傾向となり、繰返しの屈曲負荷に対し機械強度が低下することになり、形成される電鋳ニッケルベルトの膜厚方向に柱状組織化されるため1〜5μの突起が形成され易くなる。 When the second brightener is used in combination with bright plating and the electrodeposition current density is 4 to 6 A / mm 2 , the strength ratio of the crystal orientation plane is in the range of 0.5 to 2.0, and the electrodeposition current density is 2 When reduced to ˜4 A / mm 2 , the strength ratio of the crystal orientation plane is in the range of 2.5 to 5.0, and the layered structure becomes stronger. When the electrodeposition current density is 7 A / mm 2 or more, the strength ratio of the crystal orientation plane is in the range of 0.3 to 0.4, and the layered structure tends to be mixed with the columnar structure. The strength is lowered, and a columnar structure is formed in the film thickness direction of the electroformed nickel belt to be formed, so that protrusions of 1 to 5 μ are easily formed.

電析電流密度を4〜6A/mmから2〜4A/mmに低下させると層状組織が強くなり、弾性変形が強くなる金属結晶組織の傾向となるが、電析する膜の形成速度は毎分0.4〜0.6μmとなって生産効率を落とすことになる。そこで本実施の形態では、電析電流密度4〜6A/mmと2〜4A/mmを混成させて電析膜を形成し、X線回折により測定した(111)面のピーク強度Iに対する(200)面のピーク強度Iで表せる結晶配向面の強度比〔I(200)/I(111)〕が2.5〜5.0となる内径面側の層14aと外径面側の層14bとを形成し、内径面側の層14aと外径面側の層14bとにより挟まれる中間層14cを結晶配向面の強度比〔I(200)/I(111)〕が0.5〜2.0となるように形成している。これにより、圧縮及び引っ張りに対する耐久性を向上させるようにし、しかも、電鋳処理時間の大幅な増大を抑制するようにしている。 When the electrodeposition current density is decreased from 4-6 A / mm 2 to 2-4 A / mm 2 , the layered structure becomes stronger and the metal crystal structure becomes more elastically deformed. The production efficiency is lowered by 0.4 to 0.6 μm per minute. Therefore, in the present embodiment, the electrodeposition current densities of 4 to 6 A / mm 2 and 2 to 4 A / mm 2 are mixed to form an electrodeposited film, and the (111) plane peak intensity I measured by X-ray diffraction is measured. The layer 14a on the inner diameter side and the layer on the outer diameter side where the intensity ratio [I (200) / I (111)] of the crystal orientation plane expressed by the peak intensity I of the (200) plane is 2.5 to 5.0 14b, and the intermediate layer 14c sandwiched between the inner surface 14a and the outer surface 14b has a crystal orientation plane strength ratio [I (200) / I (111)] of 0.5 to It is formed to be 2.0. As a result, durability against compression and tension is improved, and a significant increase in electroforming time is suppressed.

図3は、電解液組成中の第一光沢剤に第二光沢剤を併用し、電析電流密度4〜6A/mmと2〜4A/mmとを混成させて電鋳ニッケルベルト14を形成する工程、及び、その電鋳ニッケルベルト14を基体とする機能分離型有機系感光体4の製造工程を表したものである。 FIG. 3 shows that the electroplating nickel belt 14 is obtained by using the second brightener together with the first brightener in the electrolytic solution composition and mixing the electrodeposition current densities 4 to 6 A / mm 2 and 2 to 4 A / mm 2. The process of forming and the manufacturing process of the function-separated organic photoreceptor 4 using the electroformed nickel belt 14 as a base are shown.

スルファミン酸ニッケル液を用いた電気鋳造工程20では、1回の電析膜の形成に30分以上かかるため、SUS製の円筒状金属母型21を時間当たりの生産数に応じて一列に複数本配置する。   In the electroforming process 20 using the nickel sulfamate solution, since it takes 30 minutes or more to form one electrodeposited film, a plurality of SUS cylindrical metal molds 21 are arranged in a line according to the number of production per hour. Deploy.

円筒状金属母型21の下端部には補助電極22が、絶縁材23,24を介して円筒状金属母型本体25の内部に導通して配置され、搬送用のキャリヤ26に容易に着脱可能となるようスライド板27で取付けられ、電気鋳造処理工程の待機位置28に搬送された後、研摩、洗浄、電鋳、予備洗浄、仕上乾燥、離型の各処理工程を経る。   An auxiliary electrode 22 is disposed at the lower end of the cylindrical metal mother die 21 in a conductive manner inside the cylindrical metal mother die body 25 via insulating materials 23 and 24, and can be easily attached to and detached from the carrier 26 for conveyance. After being attached by the slide plate 27 and transported to the standby position 28 of the electroforming process, each process step of polishing, cleaning, electroforming, preliminary cleaning, finish drying, and mold release is performed.

研摩工程(A)では、円筒状金属母型本体25の表面を研摩布29で0.05〜0.1μm以下の鏡面を保って湿式研摩し、電析膜の形成中に電析膜の剥離が起こらないように表面を活性化させる。   In the polishing step (A), the surface of the cylindrical metal matrix body 25 is wet-polished with a polishing cloth 29 while maintaining a mirror surface of 0.05 to 0.1 μm or less, and the electrodeposited film is peeled off during the formation of the electrodeposited film. The surface is activated so as not to occur.

洗浄工程(B)では、研摩残さにより電析膜に突起の形成が起こらないように、加温純水と不織布30とにより活性化面の洗浄をし、円筒状金属母型本体25を40℃に加温する。   In the cleaning step (B), the activated surface is cleaned with warm pure water and the nonwoven fabric 30 so that no projections are formed on the electrodeposited film due to polishing residues, and the cylindrical metal mold body 25 is heated to 40 ° C. Warm up.

電鋳工程(C)では、スルファミン酸ニッケル450〜550g/lの液中に、硼酸30〜40g/l、陽極溶解剤として臭化ニッケル1〜2g/l、第一光沢剤及び析出膜の圧縮応力調整剤としてサッカリン50〜100ppm、第二光沢剤としてアルキンジオール20〜50ppmを添加し、ピット等の欠陥を防止するため界面活性剤としてアルキルベンゼンスルフォン酸塩を0.1〜0.2g/l添加し、液温を55〜60℃に加温して電解液とする。   In the electroforming step (C), boric acid 30 to 40 g / l, nickel bromide 1 to 2 g / l as an anodic dissolving agent, first brightener and compression of the deposited film in a solution of nickel sulfamate 450 to 550 g / l Add saccharin 50-100ppm as stress modifier, alkynediol 20-50ppm as second brightener, add 0.1-0.2g / l of alkylbenzene sulfonate as surfactant to prevent defects such as pits Then, the liquid temperature is heated to 55 to 60 ° C. to obtain an electrolytic solution.

また、電解液のエアー攪拌の効果を高め、電解液中の異物による電析膜表面に突起やピット等の発生を防止するためのイオン透過性の隔膜カソードケース31を用い、その中央で円筒状金属母型21を6〜10rpmで回転させ、円筒状金属母型本体25と陽極板との極間距離を80〜120mmとし、所定の電析電流を与えて所望の結晶配向面の強度比となる層構造として膜厚30±3μmを形成する。   In addition, an ion-permeable diaphragm cathode case 31 is used for enhancing the effect of air stirring of the electrolytic solution and preventing the formation of protrusions and pits on the surface of the electrodeposited film due to foreign matters in the electrolytic solution. The metal mold 21 is rotated at 6 to 10 rpm, the distance between the cylindrical metal mold body 25 and the anode plate is set to 80 to 120 mm, a predetermined electrodeposition current is applied, and the strength ratio of the desired crystal orientation plane is determined. As a layer structure, a film thickness of 30 ± 3 μm is formed.

繰返し行なわれる電鋳により消耗するニッケル金属イオンの補給は、0.01〜0.03%硫黄を含有した8〜12mmの可溶性の活性ニッケルペレットをスライム収納式隔膜32,33で被覆したチタンケース34,35に投入して陽極とし、所望の電析電流密度となる電流を円筒状金属母型本体25との間に供給することで活性ニッケルペレットは電析電流に応じて溶解し、ニッケル金属イオンを補給する。これにより、消耗するニッケル金属イオンの補給をスルファミン酸ニッケル塩の溶解による補給回数が軽減でき、電解液の金属イオンの変動を抑制することができ、電解液組成の維持が安定し管理が容易となる。   Replenishment of nickel metal ions consumed by repeated electroforming is performed by a titanium case 34 in which 8-12 mm soluble active nickel pellets containing 0.01-0.03% sulfur are covered with slime-containing diaphragms 32,33. , 35 is used as an anode, and a current having a desired electrodeposition current density is supplied between the cylindrical metal base body 25 and the active nickel pellets are dissolved in accordance with the electrodeposition current. Replenish. This makes it possible to reduce the number of times nickel metal ions that are consumed are replenished by dissolving the nickel sulfamate, suppress fluctuations in the metal ions in the electrolyte, maintain the electrolyte composition stably, and facilitate management. Become.

円筒状金属母型本体25は、通電軸36と摺動電極37を介して、電源38,39の陰極に接続されている。電解液中のチタンケース34,35には電源38,39から各々に陽極が接続されて所望の電析電流が供給される。   The cylindrical metal master body 25 is connected to the cathodes of the power supplies 38 and 39 via the energizing shaft 36 and the sliding electrode 37. The titanium cases 34 and 35 in the electrolytic solution are connected to anodes from power sources 38 and 39, respectively, and are supplied with a desired electrodeposition current.

例えば、X線回折により測定した(111)面のピーク強度Iに対する(200)面のピーク強度Iで表せる結晶配向面の強度比〔I(200)/I(111)〕が、内径面側の層14aと外径面側の層14bとで2.5〜5.0の範囲であって、内径面側の層14aと外径面側の層14bとで挟まれる中間層14cの結晶配向面の強度比〔I(200)/I(111)〕が0.5〜2.0の範囲に形成された膜厚30±3μmの電鋳ニッケルベルト14を形成する場合には、電源38から電析電流密度2〜4A/mmとなる電流を供給してX線回折の(111)面のピーク強度Iに対する(200)面のピーク強度Iで表せる結晶配向面の強度比〔I(200)/I(111)〕が2.5〜5.0の範囲の膜を内径面側の層14aとして形成し、連続して電源38または電源39から電析電流密度4〜6A/mmとなる電流を供給して中間層14cを形成したあと、連続して電源38または電源39から電析電流密度2〜4A/mmとなる電流を供給して外径面側の層14bを形成する。電解液中で連続して形成することで層毎の界面は活性化しているので各層が遊離することなく膜厚30±3μmの電鋳ニッケルベルト14を得ることができる。 For example, the intensity ratio [I (200) / I (111)] of the crystal orientation plane represented by the peak intensity I of the (200) plane to the peak intensity I of the (111) plane measured by X-ray diffraction is The crystal orientation plane of the intermediate layer 14c is between 2.5 and 5.0 between the layer 14a and the outer diameter side layer 14b and is sandwiched between the inner diameter side layer 14a and the outer diameter side layer 14b. When the electroformed nickel belt 14 having a film thickness of 30 ± 3 μm and having a strength ratio [I (200) / I (111)] of 0.5 to 2.0 is formed, the power source 38 Intensity ratio of crystal orientation plane expressed by peak intensity I of (200) plane with respect to peak intensity I of (111) plane of X-ray diffraction by supplying a current with a deposition current density of 2 to 4 A / mm 2 [I (200) / I (111)] in the range of 2.5 to 5.0 as the inner surface 14a Form, continuously supply 38 or after the formation of the intermediate layer 14c of the power source 39 becomes color electrostatic析電current density 4~6A / mm 2 current is supplied, continuously supply 38 or power supply 39 color electrostatic析電current density A current of 2 to 4 A / mm 2 is supplied to form the outer surface 14b. Since the interface of each layer is activated by continuously forming it in the electrolytic solution, the electroformed nickel belt 14 having a film thickness of 30 ± 3 μm can be obtained without releasing each layer.

電鋳ニッケルベルト14は、一つの電源でも操作可能であるが、電源容量、電源システムによっては電析電流密度を2〜4A/mmと4〜6A/mmとなる電流を単独に供給、または、層構成によって同時に供給する場合には二つの電源方式とする。採用する層構成や電源容量、電源供給システムによって設備対応する。 The electroformed nickel belt 14 can be operated with a single power source, but depending on the power source capacity and power system, the electrodeposition current density is independently supplied with currents of 2 to 4 A / mm 2 and 4 to 6 A / mm 2 , Alternatively, in the case of supplying simultaneously by the layer configuration, two power supply systems are used. The equipment will be supported by the layer structure, power capacity, and power supply system to be adopted.

予備洗浄工程(D)では、円筒状金属母型21に付着した電解液を洗浄除去し、引き上げ時にシャワーをかけて電解液をほぼ完全な状態に除去洗浄し、乾燥工程での純水を汚染しないようにする。   In the pre-cleaning step (D), the electrolytic solution adhering to the cylindrical metal matrix 21 is washed and removed, and a shower is taken during the pulling up to remove and clean the electrolytic solution almost completely, thereby contaminating the pure water in the drying step. Do not.

仕上乾燥工程(E)では、円筒状金属母型本体25の表面に形成された電析膜の純水洗浄と乾燥のため60〜70℃の加温を行ない、引き上げ時にエアーナイフ等で洗浄水を切って乾燥を助長させ、シミ等のない表面を形成する。   In the finish drying step (E), the electrodeposited film formed on the surface of the cylindrical metal mold body 25 is heated to 60 to 70 ° C. for pure water cleaning and drying, and washed with an air knife or the like when being pulled up. To promote drying and form a surface free of stains.

離型工程(F)では、円筒状金属母型本体25に電析した膜厚分布3μm以下に形成された電析膜の両側の外径表面に片側開閉式の離型用治具40を取付けてクランプし、円筒状金属母型本体25の両端部に形成された20〜30mm幅の膜分布3μm以上の膜厚増大部41と、補助電極22上の電流過剰となって不要な電析膜とを、剥離開始用の尖状形状部42に粘着テープを貼付け、円周方向に引き剥がし、円筒状金属母型21を回転させながら膜厚増大部41の全周を切り落とし、離型用治具40を開放し、高圧エアーを円筒状金属母型本体25と切り取られた両端部の圧縮応力を持って剥がれ易くなった電析膜との間に吹付け、徐々に全体を剥離して離型し、受け治具43のクッションスポンジ44上に全面離型と同時に落下させて取り出す。これらの各工程を経て電鋳ニッケルベルト14を製造すれば、電鋳ニッケルベルト14の耐久性において問題となるキンク等の微小な折れ曲りを発生させることなく生産性良く製造することができるようになる。   In the release step (F), one-side open / close-type release jigs 40 are attached to the outer diameter surfaces on both sides of the electrodeposited film formed with a film thickness distribution of 3 μm or less deposited on the cylindrical metal mold body 25. And a film thickness increasing portion 41 having a film distribution of 3 to 30 μm having a width of 20 to 30 mm formed on both ends of the cylindrical metal master body 25 and an unnecessary electrodeposition film due to excessive current on the auxiliary electrode 22 The adhesive tape is applied to the pointed-shaped portion 42 for starting peeling, peeled off in the circumferential direction, and the entire circumference of the film thickness increasing portion 41 is cut off while rotating the cylindrical metal mother die 21. The tool 40 is opened, and high-pressure air is sprayed between the cylindrical metal base body 25 and the electrodeposited film that has been easily peeled off due to the compressive stress at both ends. And drop it onto the cushion sponge 44 of the receiving jig 43 at the same time as the mold release. Start out. If the electroformed nickel belt 14 is manufactured through these steps, the electroformed nickel belt 14 can be manufactured with high productivity without causing a minute bend such as a kink, which is a problem in durability of the electroformed nickel belt 14. Become.

受け治具43に落下させて取り出された電析膜(電鋳ニッケルベルト14)は、プリンタ1の機能分離型有機系感光体4の基体として用いられ、感光層(熱硬化樹脂性下引き層15、電荷発生層16、電荷輸送層17)の塗布と、130〜140℃での焼成が行なわれ、機能分離型有機系感光体4が形成され、プリンタ1で使用するために必要な幅に切断するため切断工程Gを経る。   The electrodeposited film (electroformed nickel belt 14) taken out by dropping on the receiving jig 43 is used as a base of the function-separated organic photoreceptor 4 of the printer 1, and a photosensitive layer (thermosetting resinous undercoat layer). 15, the charge generation layer 16 and the charge transport layer 17) are applied and baked at 130 to 140 [deg.] C. to form the function-separated organic photoconductor 4, which has a width necessary for use in the printer 1. A cutting step G is performed for cutting.

切断工程Gでは、上下に対向する超硬性の切断用金属ローラを用い、機能分離型有機系感光体4の中間工程品4aを、下ローラ45に挿入して乗せ、待機していた上ローラ46を下ローラ45上に移動させて、せん断クリアランス5μmの対向するローラ刃周縁で機能分離型有機系感光体4の中間工程品4aの両端を回転させながら全周を切断し、切り終わり部47の段差を0〜0.05mmにして形成し、裏側に画像形成時の寄り止めガイド等を必要に応じ形成し完成する。また、感光層(熱硬化樹脂性下引き層15、電荷発生層16、電荷輸送層17)の塗布方法によっては電鋳ニッケルベルト14の状態で先に両端部を切断してから感光層を塗布する場合もある。   In the cutting process G, the super-hard cutting metal rollers facing vertically are used, and the intermediate process product 4a of the function-separated organic photoconductor 4 is inserted into the lower roller 45 and placed thereon, and the upper roller 46 that has been waiting is placed. Is moved on the lower roller 45, and the entire periphery is cut while rotating both ends of the intermediate process product 4 a of the function-separated organic photoconductor 4 with the peripheral edge of the opposing roller blade having a shear clearance of 5 μm. A step is formed with a thickness of 0 to 0.05 mm, and a detent guide or the like at the time of image formation is formed on the back side as necessary. Also, depending on the application method of the photosensitive layer (thermosetting resinous undercoat layer 15, charge generation layer 16, charge transport layer 17), the photosensitive layer is applied after first cutting both ends in the state of the electroformed nickel belt 14. There is also a case.

切り終わり部47に、0.1mm以上の段差を生じたままプリンタ1で使用すると、繰り返しの屈曲負荷により、段差部分が亀裂の起点となって破断し易くなり耐久性を低下させるものとなる。   If the cut end portion 47 is used in the printer 1 with a step of 0.1 mm or more, the step portion becomes a crack starting point due to repeated bending load, and the durability is lowered.

この切断工程Gを経た機能分離型有機系感光体4の中間工程品4aは、切断時に両切断面が特に電気鋳造製ニッケル金属に発生しやすい硫黄脆性等の脆さを発現する300℃以上の高温とはならないため、耐久性を低下させることがなく、機能分離型有機系感光体4の完成品とすることができる。   The intermediate process product 4a of the function-separated organic photoconductor 4 that has undergone this cutting step G has a cross-section of 300 ° C. or higher that expresses brittleness such as sulfur embrittlement that tends to occur in electroformed nickel metal at the time of cutting. Since it does not become high temperature, durability is not reduced and the finished product of the function-separated organic photoconductor 4 can be obtained.

プリンタ1での耐刷耐久性は通常A4の記録媒体Sで4〜5万枚の範囲になっているため、機能分離型有機系感光体4の基体は同当又は同当以上の寿命が必要であって、構造上破損しても安全であれば機能分離型有機系感光体4の寿命と同等であってもかまわないが、金属膜である電鋳ニッケルベルト14を基体として使用した機能分離型有機系感光体4では、基体が破損すると破断面が鋭く、思わぬ障害を起こすので基体の耐久性はできるだけ上げておく必要性がある。   Since the printing durability in the printer 1 is usually in the range of 40,000 to 50,000 sheets with the recording medium S of A4, the base of the function-separated organic photoconductor 4 needs to have the same life or longer life. However, if it is safe even if it is structurally damaged, it may be equivalent to the life of the function-separated organic photoconductor 4, but the function separation using the electroformed nickel belt 14 which is a metal film as a base body. In the type organic photoconductor 4, if the substrate is broken, the fracture surface becomes sharp and an unexpected failure occurs. Therefore, it is necessary to increase the durability of the substrate as much as possible.

表1に、実施例1〜5と比較例1〜2との効果を記載する。   In Table 1, the effect of Examples 1-5 and Comparative Examples 1-2 is described.

Figure 2005121789
Figure 2005121789

実施例1では、電鋳液組成を、スルファミン酸ニッケル450〜550g/lの液中に硼酸30〜40g/l、陽極溶解剤として臭化ニッケル1〜2g/l、第一光沢剤及び析出膜の圧縮応力調整剤としてサッカリン50〜100ppm、第二光沢剤としてアルキンジオール20〜50ppmを添加して、ピット等を防止するための界面活性剤としてアルキルベンゼンスルフォン酸塩を0.1〜0.2g/l添加し、液温55〜60℃とした。   In Example 1, the electroforming liquid composition was boric acid 30 to 40 g / l in a solution of nickel sulfamate 450 to 550 g / l, nickel bromide 1 to 2 g / l as an anodic dissolving agent, the first brightener and the deposited film. Saccharin 50 to 100 ppm as a compressive stress modifier and alkynediol 20 to 50 ppm as a second brightener, and 0.1 to 0.2 g / l of alkylbenzene sulfonate as a surfactant for preventing pits and the like 1 was added, and the liquid temperature was adjusted to 55 to 60 ° C.

機能分離型有機系感光体4の基体となる電鋳ニッケルベルト14を、X線回折の(111)面のピーク強度Iに対する(200)面のピーク強度Iで表せる結晶配向面の強度比〔I(200)/I(111)〕が、内径面側の層と外径面側の層とで2.5〜5.0であって、内径面側の層と外径面側の層とで挟まれる中間層の結晶配向面の強度比〔I(200)/I(111)〕が0.5〜2.0に形成された膜厚30±3μmに形成する場合は、電源38から電析電流密度3A/mmとなる電流を供給して、X線回折の(111)面のピーク強度Iに対する(200)面のピーク強度Iで表せる結晶配向面の強度比〔I(200)/I(111)〕が、内径面側で2.5〜5.0の層を全体の膜厚の1/5〜1/3を形成し、連続して電源38又は電源39から、電析電流密度5A/mmとなる電流を供給して、結晶配向面の強度比〔I(200)/I(111)〕が0.5〜2.0の層を中間層として形成したあと、連続して電源38又は電源39から電析電流密度3A/mmとなる電流を供給して、外径面側でX線回折の(111)面のピーク強度Iに対する(200)面のピーク強度Iで表せる結晶配向面の強度比〔I(200)/I(111)〕が2.5〜5.0の層を全体の膜厚の1/5〜1/3を形成する。 The intensity ratio [I of the crystal orientation plane that can be expressed by the peak intensity I of the (200) plane with respect to the peak intensity I of the (111) plane of the X-ray diffraction of the electroformed nickel belt 14 serving as the base of the function-separated organic photoreceptor 4 (200) / I (111)] is 2.5 to 5.0 for the inner diameter side layer and the outer diameter side layer, and the inner diameter side layer and the outer diameter side layer are In the case of forming the film with a thickness ratio of 30 ± 3 μm in which the intensity ratio [I (200) / I (111)] of the sandwiched intermediate layer is 0.5 to 2.0, electrodeposition is performed from the power source 38. By supplying a current having a current density of 3 A / mm 2 , the intensity ratio of the crystal orientation plane expressed by the peak intensity I of the (200) plane with respect to the peak intensity I of the (111) plane of X-ray diffraction [I (200) / I (111)] forms a layer of 2.5 to 5.0 on the inner diameter side to 1/5 to 1/3 of the entire film thickness, and continuously From 38 or power source 39 supplies a current to be conductive析電current density 5A / mm 2, a layer of the intensity ratio of crystal orientation surface [I (200) / I (111 ) ] is 0.5 to 2.0 After forming as an intermediate layer, a current having an electrodeposition current density of 3 A / mm 2 is continuously supplied from the power supply 38 or 39 to the peak intensity I of the (111) plane of X-ray diffraction on the outer diameter surface side. A layer having a crystal orientation plane intensity ratio [I (200) / I (111)] of 2.5 to 5.0 expressed by a peak intensity I of (200) plane is 1/5 to 1/3 of the entire film thickness. Form.

電解液中で連続して形成することで層毎の界面は活性化しているので各層が遊離することなく膜厚30±3μmの電鋳ニッケルベルト14を得ることができる。   Since the interface of each layer is activated by continuously forming it in the electrolytic solution, the electroformed nickel belt 14 having a film thickness of 30 ± 3 μm can be obtained without releasing each layer.

実施例2では、電源38から電析電流密度5A/mmとなる電流を供給して、X線回折の結晶配向面の強度比〔I(200)/I(111)〕が内径面側で0.5〜2.0の層を全体の膜厚の1/2〜1/3となるように形成し、結晶配向面の強度比2.5〜5.0の層を連続して電源38又は電源39から電析電流密度3A/mmとなる電流を供給して全体の膜厚30±3μmの電鋳ニッケルベルト14を得ている。 In Example 2, an electric current with an electrodeposition current density of 5 A / mm 2 is supplied from the power source 38, and the intensity ratio [I (200) / I (111)] of the crystal orientation plane of X-ray diffraction is on the inner diameter side. A layer of 0.5 to 2.0 is formed to be 1/2 to 1/3 of the entire film thickness, and a layer having a crystal orientation plane strength ratio of 2.5 to 5.0 is continuously formed. Alternatively, an electroforming nickel belt 14 having a total film thickness of 30 ± 3 μm is obtained by supplying a current having an electrodeposition current density of 3 A / mm 2 from a power source 39.

実施例3では、同じく、電源38から電析電流密度3A/mmとなる電流を供給して、X線回折の結晶配向面の強度比〔I(200)/I(111)〕が内径面側から2.5〜5.0の層を全体の膜厚の1/2〜2/3となるように形成し、結晶配向面の強度比0.5〜2.0の層を連続して電源38又は電源39から電析電流密度5A/mmとなる電流を供給して全体の膜厚30±3μmの電鋳ニッケルベルト14を得ている。 In Example 3, similarly, an electric current with an electrodeposition current density of 3 A / mm 2 is supplied from the power source 38, and the intensity ratio [I (200) / I (111)] of the crystal orientation plane of X-ray diffraction is the inner surface. A layer of 2.5 to 5.0 is formed from the side so as to be 1/2 to 2/3 of the entire film thickness, and a layer having a crystal orientation plane strength ratio of 0.5 to 2.0 is continuously formed. The electroformed nickel belt 14 having a total film thickness of 30 ± 3 μm is obtained by supplying a current having an electrodeposition current density of 5 A / mm 2 from the power source 38 or the power source 39.

実施例4では、電源38又は電源39から電析電流密度3A/mmとなる電流、及び、電析電流密度5A/mmとなる電流を交互に切替えて供給し、X線回折結晶配向面の強度比〔I(200)/I(111)〕が2.5〜5.0の層を厚み2〜4μmで形成したあと、結晶配向面の強度比0.5〜2.5の層を厚み5〜7μmで形成して複数の層構造とし、膜厚30±3μmの電鋳ニッケルベルト14を得ている。 In Example 4, the power source 38 or the power source 39 alternately supplies a current with an electrodeposition current density of 3 A / mm 2 and a current with an electrodeposition current density of 5 A / mm 2. After forming a layer having a strength ratio [I (200) / I (111)] of 2.5 to 5.0 with a thickness of 2 to 4 μm, a layer having a crystal orientation plane strength ratio of 0.5 to 2.5 is formed. The electroformed nickel belt 14 having a film thickness of 30 ± 3 μm is obtained by forming a thickness of 5 to 7 μm to form a plurality of layers.

実施例5では、電源38から電析電流密度3A/mmとなる電流、及び、電源39から電析電流密度5A/mmとなる電流を連続して供給し、X線回折の結晶配向面の強度比〔I(200)/I(111)〕が2.5〜5.0の層の厚み0.02〜0.13μmと、結晶配向面強度比0.5〜2.0の層の厚み0.15〜2μmを連続してロール形状に重畳形成し、膜厚30±3μmの電鋳ニッケルベルト14を得ている。 In Example 5, a current having an electrodeposition current density of 3 A / mm 2 from a power source 38 and a current having an electrodeposition current density of 5 A / mm 2 from a power source 39 are continuously supplied, and the crystal orientation plane of X-ray diffraction Of the layer having a strength ratio [I (200) / I (111)] of 2.5 to 5.0 and a layer having a crystal orientation plane strength ratio of 0.5 to 2.0. The electroformed nickel belt 14 having a thickness of 30 ± 3 μm is obtained by continuously superposing and forming a thickness of 0.15 to 2 μm in a roll shape.

連続してロール形状に重畳する場合の結晶配向面の強度比〔I(200)/I(111)〕が2.5〜5.0の範囲の層は円筒状金属母型21の回転数を6rpmとすれば厚み0.13μm、10rpmとすれば厚み0.02μmとなる。   A layer having a crystal orientation plane strength ratio [I (200) / I (111)] in the range of 2.5 to 5.0 when continuously superposed on the roll shape has a rotational speed of the cylindrical metal matrix 21. If 6 rpm, the thickness is 0.13 μm, and if 10 rpm, the thickness is 0.02 μm.

比較例1では、電源38又は電源39から電析電流密度5A/mmとなる電流を連続して供給し、X線回折の結晶配向面の強度比〔I(200)/I(111)〕が、0.5〜2.0の単層の膜で、膜厚30±3μmの電鋳ニッケルベルトを得ている。 In Comparative Example 1, a current having an electrodeposition current density of 5 A / mm 2 was continuously supplied from the power source 38 or the power source 39, and the intensity ratio [I (200) / I (111)] of the crystal orientation plane of X-ray diffraction. However, an electroformed nickel belt having a film thickness of 30 ± 3 μm is obtained with a single layer film of 0.5 to 2.0.

比較例2は、現在実用化されている機能分離型有機系感光体の電鋳ニッケルベルトであり、電鋳液組成をスルファミン酸ニッケル450〜550g/l、硼酸40g/l、陽極溶解剤として臭化ニッケル2g/l、第一光沢剤及び析出膜の圧縮応力調整剤としてサッカリンナトリウム50〜100ppm、ナフタレントリスルフォン酸ナトリウム1000〜1500ppm、及び、界面活性剤としてアルキルベンゼンスルフォン酸塩0.1〜0.2g/lを添加し、液温を55〜60℃にし、ニッケル金属イオンの補給は0.01〜0.03%硫黄を含有した8〜12mmの可溶性の活性ニッケルペレットをスライム収納式隔膜35、36で被覆したチタンケース34,35に投入して構成し、電析電流密度5A/mmとなる電流を実施例と同様の6〜10rpmで回転する円筒状金属母型本体25と陽極間に供給して膜厚30±3μmの電鋳ニッケルベルトを得ている。 Comparative Example 2 is an electrocast nickel belt of a function-separated organic photoreceptor that is currently in practical use. The electroforming solution composition is 450 to 550 g / l nickel sulfamate, 40 g / l boric acid, and an odor as an anodic dissolver. 2 g / l of nickel fluoride, 50 to 100 ppm of sodium saccharin as a compressive stress adjusting agent for the first brightener and deposited film, 1000 to 1500 ppm of sodium naphthalene sulfonate, and 0.1 to 0.2 g of alkylbenzene sulfonate as a surfactant / L is added, the liquid temperature is set to 55 to 60 ° C., and nickel metal ions are replenished with soluble active nickel pellets of 8 to 12 mm containing 0.01 to 0.03% sulfur and slime-containing diaphragms 35 and 36. A case where the current is an electrodeposition current density of 5 A / mm 2 is configured by putting it in titanium cases 34 and 35 coated with The same is fed between the cylindrical metal matrix body 25 rotating at 6 to 10 rpm and the anode to obtain an electroformed nickel belt having a film thickness of 30 ± 3 μm.

この電鋳ニッケルベルトでは、層構成は単層であって、表面のX線回折での結晶配向面の強度比〔I(200)/I(111)〕は0.35〜0.4である。   In this electroformed nickel belt, the layer structure is a single layer, and the strength ratio [I (200) / I (111)] of the crystal orientation plane in the surface X-ray diffraction is 0.35 to 0.4. .

以上の実施例1〜5と比較例1〜2の電鋳ニッケルベルトを基体として形成した機能分離型有機系感光体を図1に示したプリンタ1と同じレイアウトの耐久テスト機に感光体ユニットの一部として組み付け、耐久試験を行った。なお、駆動ローラ5、従動ローラ6、テンションローラ7は、それぞれ外径16mmのポリウレタンゴム被覆とし、テンションローラ7により張力20〜50Nを与え、線速200mm/秒で、A4サイズ記録媒体耐刷枚数4〜5万枚相当を回転駆動させた。   The function-separated organic photoconductor formed by using the electroformed nickel belts of Examples 1 to 5 and Comparative Examples 1 and 2 as a base is used in a durability test machine having the same layout as the printer 1 shown in FIG. Assembling as a part, the durability test was done. The driving roller 5, the driven roller 6, and the tension roller 7 are each coated with a polyurethane rubber having an outer diameter of 16 mm. A tension of 20 to 50 N is applied by the tension roller 7, and the A4 size recording medium can be printed at a linear speed of 200 mm / sec. Forty to 50,000 sheets were driven to rotate.

その結果、亀裂の発生し易い両端部の切断段差からは、4〜5万枚相当の回転数では7サンプルともジグザグ形状の亀裂Aの発生はなかった。比較例1、2のサンプルでは、A4サイズ記録媒体5.2〜5.8万枚相当を回転させるとスジ状の亀裂Bが発生し始め、6万枚相当以上の回転数でスジが拡大し、スジ部内が切断された状態となった(図4参照)。実施例1〜5のサンプルでは、6万枚相当の回転数でも画像形成幅内にスジ状の亀裂Bは発生せず、機能分離型有機系感光体の基体としての機能が向上することが判明した。   As a result, no zigzag crack A was generated in any of the seven samples at a rotational speed corresponding to 40,000 to 50,000 sheets from the cut steps at both ends where cracks were likely to occur. In the samples of Comparative Examples 1 and 2, when the A4 size recording medium equivalent to 5.2 to 58,000 sheets was rotated, a streak-like crack B started to occur, and the streak expanded at a rotation speed equivalent to 60,000 sheets or more. Then, the inside of the streak portion was cut (see FIG. 4). In the samples of Examples 1 to 5, it was found that streak-like cracks B did not occur within the image forming width even at a rotational speed equivalent to 60,000 sheets, and the function of the function-separated organic photoreceptor as a substrate was improved. did.

本発明の一実施の形態の画像形成装置であるプリンタの概略構成を示す側面図である。1 is a side view illustrating a schematic configuration of a printer which is an image forming apparatus according to an embodiment of the present invention. 機能分離型有機系感光体を示す断面図である。It is sectional drawing which shows a function separation type organic type photoreceptor. 電鋳ニッケルベルト及びそれを基体とする機能分離型有機系感光体の製造工程の概略を示す製造工程図である。It is a manufacturing process figure which shows the outline of the manufacturing process of an electroformed nickel belt and a function separation type organic type photoreceptor using it as a base. 機能分離型有機系感光体に生じる亀裂の様子を説明する斜視図である。It is a perspective view explaining the mode of the crack which arises in a function separation type organic type photoreceptor.

符号の説明Explanation of symbols

1 画像形成装置
3 感光体ユニット
4 機能分離型有機系感光体
5,6,7 ローラ
8 帯電装置
9 露光装置
10 現像装置
12 転写装置
14 電鋳ニッケルベルト
14a 内径面側の層
14b 外径面側の層
14c 中間層
15 熱硬化樹脂性下引き層
16 電荷発生層
17 電荷輸送層
25 円筒状金型母材
38,39 電源

DESCRIPTION OF SYMBOLS 1 Image forming apparatus 3 Photoreceptor unit 4 Function separation type organic type photoreceptor 5, 6, 7 Roller 8 Charging device 9 Exposure device 10 Developing device 12 Transfer device 14 Electroformed nickel belt 14a Inner diameter side layer 14b Outer diameter side Layer 14c Intermediate layer 15 Thermosetting resinous undercoat layer 16 Charge generation layer 17 Charge transport layer 25 Cylindrical mold base material 38, 39 Power supply

Claims (14)

電気鋳造処理で形成される電鋳ニッケルベルトにおいて、
X線回折により測定した(111)面のピーク強度Iに対する(200)面のピーク強度Iで表せる結晶配向面の強度比〔I(200)/I(111)〕が、内径面側の層と外径面側の層とは2.5〜5.0に形成され、前記内径面側の層と前記外径面側の層とにより挟まれる中間層は0.5〜2.0に形成されていることを特徴とする電鋳ニッケルベルト。
In the electroformed nickel belt formed by electroforming process,
The intensity ratio [I (200) / I (111)] of the crystal orientation plane expressed by the peak intensity I of the (200) plane to the peak intensity I of the (111) plane measured by X-ray diffraction is The outer diameter surface layer is formed at 2.5 to 5.0, and the intermediate layer sandwiched between the inner diameter surface layer and the outer diameter surface layer is formed at 0.5 to 2.0. An electroformed nickel belt.
前記内径面側と前記外形面側との層の膜厚がそれぞれ全体の膜厚の1/5〜1/3であり、全体の膜厚が30±3μmであることを特徴とする請求項1記載の電鋳ニッケルベルト。   2. The film thicknesses of the inner diameter surface side and the outer surface side are 1/5 to 1/3 of the total film thickness, respectively, and the total film thickness is 30 ± 3 μm. The electroformed nickel belt described. 電気鋳造処理で形成される電鋳ニッケルベルトにおいて、
X線回折により測定した(111)面のピーク強度Iに対する(200)面のピーク強度Iで表せる結晶配向面の強度比〔I(200)/I(111)〕が、外径面側の層は2.5〜5.0に形成され、前記外形面側以外は0.5〜2.0に形成されていることを特徴とする電鋳ニッケルベルト。
In the electroformed nickel belt formed by electroforming process,
The intensity ratio [I (200) / I (111)] of the crystal orientation plane expressed by the peak intensity I of the (200) plane to the peak intensity I of the (111) plane measured by X-ray diffraction is a layer on the outer diameter plane side. Is formed at 2.5 to 5.0, and is formed at 0.5 to 2.0 except for the outer surface side.
電気鋳造処理で形成される電鋳ニッケルベルトにおいて、
X線回折により測定した(111)面のピーク強度Iに対する(200)面のピーク強度Iで表せる結晶配向面の強度比〔I(200)/I(111)〕が、内径面側の層は2.5〜5.0に形成され、内径面側以外は0.5〜2.0に形成されていることを特徴とする電鋳ニッケルベルト。
In the electroformed nickel belt formed by electroforming process,
The intensity ratio [I (200) / I (111)] of the crystal orientation plane expressed by the peak intensity I of the (200) plane to the peak intensity I of the (111) plane measured by X-ray diffraction is An electroformed nickel belt formed at 2.5 to 5.0, and formed at 0.5 to 2.0 except for the inner surface side.
結晶配向面の強度比〔I(200)/I(111)〕が2.5〜5.0に形成されている外形面側又は内径面側の膜厚が全体の膜厚の1/2〜2/3であり、全体の膜厚が30±3μmであることを特徴とする請求項3又は4記載の電鋳ニッケルベルト。   The thickness ratio of the crystal orientation plane [I (200) / I (111)] is formed to be 2.5 to 5.0. 5. The electroformed nickel belt according to claim 3, wherein the electrocast nickel belt is 2/3 and the total film thickness is 30 ± 3 μm. 電気鋳造処理で形成される電鋳ニッケルベルトにおいて、
X線回折により測定した(111)面のピーク強度Iに対する(200)面のピーク強度Iで表せる結晶配向面の強度比〔I(200)/I(111)〕が2.5〜5.0である複数の層と0.5〜2.0である複数の層とが内径面側から交互に積層されていることを特徴とする電鋳ニッケルベルト。
In the electroformed nickel belt formed by electroforming process,
The intensity ratio [I (200) / I (111)] of the crystal orientation plane expressed by the peak intensity I of the (200) plane to the peak intensity I of the (111) plane measured by X-ray diffraction is 2.5 to 5.0. A plurality of layers and a plurality of layers of 0.5 to 2.0 are alternately laminated from the inner surface side.
結晶配向面の強度比〔I(200)/I(111)〕が2.5〜5.0である層の膜厚が2〜4μmであり、全体の膜厚が30±3μmであることを特徴とする請求項6記載の電鋳ニッケルベルト。   The film thickness of the layer having a crystal orientation plane strength ratio [I (200) / I (111)] of 2.5 to 5.0 is 2 to 4 μm, and the total film thickness is 30 ± 3 μm. The electroformed nickel belt according to claim 6. 電気鋳造処理で形成される電鋳ニッケルベルトにおいて、
X線回折により測定した(111)面のピーク強度Iに対する(200)面のピーク強度Iで表せる結晶配向面の強度比〔I(200)/I(111)〕が2.5〜5.0である層と0.5〜2.0である層とが連続したロール状に形成されていることを特徴とする電鋳ニッケルベルト。
In the electroformed nickel belt formed by electroforming process,
The intensity ratio [I (200) / I (111)] of the crystal orientation plane expressed by the peak intensity I of the (200) plane to the peak intensity I of the (111) plane measured by X-ray diffraction is 2.5 to 5.0. The electroformed nickel belt is characterized in that the layer and the layer of 0.5 to 2.0 are formed in a continuous roll shape.
結晶配向面の強度比〔I(200)/I(111)〕が2.5〜5.0である層の膜厚が0.05〜0.15μmであり、全体の膜厚が30±3μmであることを特徴とする請求項8記載の電鋳ニッケルベルト。   The film thickness of the layer having a crystal orientation plane strength ratio [I (200) / I (111)] of 2.5 to 5.0 is 0.05 to 0.15 μm, and the total film thickness is 30 ± 3 μm. The electroformed nickel belt according to claim 8, wherein: 電源の陰極に接続されて電解液中に浸漬された円筒状金型母材と、前記電解液中に浸漬された陽極との間に通電して前記円筒状金型母材の表面にニッケルを析出させる電鋳ニッケルベルトの形成方法において、
前記円筒状金型母材と前記電解液中に陽極として浸漬された可溶性の活性ニッケルペレットとの間に電析電流密度が2〜4A/mmの電析電流を与えることによりX線回折により測定した(111)面のピーク強度Iに対する(200)面のピーク強度Iで表せる結晶配向面の強度比〔I(200)/I(111)〕が2.5〜5.0の層を前記円筒状金型母材上に形成する工程と、
前記円筒状金型母材と前記陽極との間に電析電流密度が4〜6A/mmの電析電流を与えることによりX線回折により測定した(111)面のピーク強度Iに対する(200)面のピーク強度Iで表せる結晶配向面の強度比〔I(200)/I(111)〕が0.5〜2.0の層を前記円筒状金型母材上に形成する工程と、
を具備することを特徴とする電鋳ニッケルベルトの形成方法。
Nickel is applied to the surface of the cylindrical mold base by energizing between the cylindrical mold base connected to the cathode of the power source and immersed in the electrolyte and the anode immersed in the electrolyte. In the method of forming the electroformed nickel belt to be deposited,
By applying an electrodeposition current having an electrodeposition current density of 2 to 4 A / mm 2 between the cylindrical mold base material and a soluble active nickel pellet immersed as an anode in the electrolytic solution, X-ray diffraction is performed. A layer having a crystal orientation plane intensity ratio [I (200) / I (111)] of 2.5 to 5.0 expressed by the peak intensity I of the (200) plane to the measured peak intensity I of the (111) plane is 2.5 to 5.0. Forming on a cylindrical mold base material;
An electrodeposition current density of 4 to 6 A / mm 2 is applied between the cylindrical mold base material and the anode to give a peak intensity I of (111) measured by X-ray diffraction (200 A step of forming a layer having a crystal orientation plane intensity ratio [I (200) / I (111)] of 0.5 to 2.0 on the cylindrical mold base material, which can be expressed by a peak intensity I) of the plane;
A method for forming an electroformed nickel belt, comprising:
前記電解液は、スルファミン酸ニッケル450〜500g/l、硼酸30〜40g/l、臭化ニッケル1〜2g/l、第一光沢剤及び析出膜の圧縮応力調整剤としてサッカリン50〜100ppm、第二光沢剤としてアルキンジオール20〜50ppm、界面活性剤としてアルキルベンゼンスルフォン酸塩が0.1〜0.2g/lが添加されていることを特徴とする請求項10記載の電鋳ニッケルベルトの形成方法。   The electrolyte includes 450 to 500 g / l nickel sulfamate, 30 to 40 g / l boric acid, 1 to 2 g / l nickel bromide, 50 to 100 ppm saccharin as a first brightener and a compressive stress regulator for the deposited film, second The method for forming an electroformed nickel belt according to claim 10, wherein 20 to 50 ppm of alkyne diol is added as a brightening agent and 0.1 to 0.2 g / l of alkylbenzene sulfonate is added as a surfactant. 請求項1ないし9のいずれか一記載の電鋳ニッケルベルトと、
0.3μm以下の酸化チタン微粒子を光散乱剤としてアルキドとメラミン樹脂溶液に分散して前記電鋳ニッケルベルトの表面に塗膜形成した熱硬化樹脂性下引き層と、
無金属フタロシアニンとアゾ顔料の電荷発生剤をブチラール樹脂溶液に分散して前記熱硬化樹脂性下引き層の上に塗膜形成した電荷発生層と、
電荷発生剤のスチルベン化合物をポリカーボネート樹脂溶液に混合して前記電荷発生層の上に塗膜形成した電荷輸送層と、
を具備する機能分離型有機系感光体。
An electroformed nickel belt according to any one of claims 1 to 9,
A thermosetting resinous subbing layer in which titanium oxide fine particles of 0.3 μm or less are dispersed in an alkyd and melamine resin solution as a light scattering agent to form a coating on the surface of the electroformed nickel belt;
A charge generation layer in which a metal-free phthalocyanine and an azo pigment charge generation agent are dispersed in a butyral resin solution and formed on the thermosetting resinous undercoat layer;
A charge transport layer in which a stilbene compound as a charge generator is mixed with a polycarbonate resin solution to form a coating on the charge generation layer;
A function-separated organic photoconductor comprising:
請求項12記載の機能分離型有機系感光体と、
前記機能分離型有機系感光体の内周面に当接してこの機能分離型有機系感光体を支持する複数のローラと、
を具備する感光体ユニット。
A function-separated organic photoconductor according to claim 12,
A plurality of rollers in contact with the inner peripheral surface of the function-separated organic photoconductor to support the function-separated organic photoconductor,
A photoreceptor unit.
請求項13記載の感光体ユニットと、
前記機能分離型有機系感光体の外周面を一様に帯電する帯電装置と、
一様に帯電された前記機能分離型有機系感光体の外周面に静電潜像を書き込む露光装置と、
前記機能分離型有機系感光体の外周面に書き込まれた静電潜像を現像してトナー像を形成する現像装置と、
現像されたトナー像を記録媒体に転写する転写装置と、
を具備する画像形成装置。
The photoreceptor unit according to claim 13;
A charging device for uniformly charging the outer peripheral surface of the function-separated organic photoconductor;
An exposure apparatus that writes an electrostatic latent image on the outer peripheral surface of the uniformly charged function-separated organic photoreceptor,
A developing device that develops an electrostatic latent image written on the outer peripheral surface of the function-separated organic photoconductor to form a toner image;
A transfer device for transferring the developed toner image to a recording medium;
An image forming apparatus comprising:
JP2003355024A 2003-10-15 2003-10-15 Electroformed nickel belt, method for forming electroformed nickel belt, function separation type organic photoreceptor, photoreceptor unit and image forming apparatus Pending JP2005121789A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003355024A JP2005121789A (en) 2003-10-15 2003-10-15 Electroformed nickel belt, method for forming electroformed nickel belt, function separation type organic photoreceptor, photoreceptor unit and image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003355024A JP2005121789A (en) 2003-10-15 2003-10-15 Electroformed nickel belt, method for forming electroformed nickel belt, function separation type organic photoreceptor, photoreceptor unit and image forming apparatus

Publications (1)

Publication Number Publication Date
JP2005121789A true JP2005121789A (en) 2005-05-12

Family

ID=34612765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003355024A Pending JP2005121789A (en) 2003-10-15 2003-10-15 Electroformed nickel belt, method for forming electroformed nickel belt, function separation type organic photoreceptor, photoreceptor unit and image forming apparatus

Country Status (1)

Country Link
JP (1) JP2005121789A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007100156A (en) * 2005-10-03 2007-04-19 Ricoh Co Ltd Nickel belt, method for producing the same, photosensitive body and image forming apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007100156A (en) * 2005-10-03 2007-04-19 Ricoh Co Ltd Nickel belt, method for producing the same, photosensitive body and image forming apparatus
JP4714542B2 (en) * 2005-10-03 2011-06-29 株式会社リコー Nickel belt, method for manufacturing the same, photoreceptor, and image forming apparatus

Similar Documents

Publication Publication Date Title
JP2014194522A (en) Base material for fixing belt, fixing belt, fixing device, and image forming apparatus
WO2004079455A1 (en) Basic material for electrophotographic photosensitive body, process for producing the same and electrophotographic photosensitive body employing it
JP2007155859A (en) Fixing device and image forming apparatus with the same
JP2010008994A (en) Toner supplying roller, developing apparatus, and image forming apparatus
JP2005121789A (en) Electroformed nickel belt, method for forming electroformed nickel belt, function separation type organic photoreceptor, photoreceptor unit and image forming apparatus
JP4714542B2 (en) Nickel belt, method for manufacturing the same, photoreceptor, and image forming apparatus
JP4707821B2 (en) Fixing belt and manufacturing method thereof
JP2007078741A (en) Fixing device and image forming apparatus including same
JP4264370B2 (en) SUBSTRATE FOR ELECTROPHOTOGRAPHIC PHOTOSENSITIVE BODY, PROCESS FOR PRODUCING THE SUBSTRATE, ELECTROPHOTOGRAPHIC PHOTOSENSITIVE USING THE SUBSTRATE, ELECTROPHOTOGRAPHIC PHOTOSENSITIVE CARTRIDGE USING THE ELECTROPHOTOGRAPHIC PHOTOSENSOR
JP2005099124A (en) Substrate of separated function organic system belt photoreceptor, method for forming the same and image forming apparatus
EP1055972B1 (en) Cleaning method for the discharge wire of an electrification device
JP4290354B2 (en) Method for producing seamless endless member
JP2006084718A (en) Cylindrical seamless nickel belt, method for manufacturing same, and functionally separated organic photoreceptor
JP2013114145A (en) Electrophotographic photoreceptor, manufacturing method thereof, replaceable imaging unit using photoreceptor, and image forming device
JP2002287483A (en) Developing sleeve and image forming apparatus
JP2007211285A (en) Cylindrical seamless nickel belt and manufacturing method therefor
JP4832099B2 (en) Electroformed cylindrical nickel belt, manufacturing method thereof, heat fixing belt base, heat fixing belt, and electrophotographic apparatus
US8565659B2 (en) Fuser member and method of manufacture
JP5303166B2 (en) Wet image forming apparatus and wet image forming method
JP2001164394A (en) Seamless flexible endless member and producing method therefor
JPH0748691A (en) Seamless flexible endless member and producing device therefor
JPH11160895A (en) Electrophotographic photoreceptor, its production and image forming device
JP2005089790A (en) Seamless belt substrate, production method therefor, and seamless belt for heat fixing
JPH0996974A (en) Fixing film
JP4754258B2 (en) Developer amount regulating blade and developing device

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051021