JP2005121712A - プロジェクタ - Google Patents

プロジェクタ Download PDF

Info

Publication number
JP2005121712A
JP2005121712A JP2003353657A JP2003353657A JP2005121712A JP 2005121712 A JP2005121712 A JP 2005121712A JP 2003353657 A JP2003353657 A JP 2003353657A JP 2003353657 A JP2003353657 A JP 2003353657A JP 2005121712 A JP2005121712 A JP 2005121712A
Authority
JP
Japan
Prior art keywords
temperature
optical device
light source
cooling
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003353657A
Other languages
English (en)
Inventor
Zenta Kosaka
善太 高坂
Nobutoshi Otsuka
信敏 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2003353657A priority Critical patent/JP2005121712A/ja
Publication of JP2005121712A publication Critical patent/JP2005121712A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/16Cooling; Preventing overheating
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/10Projectors with built-in or built-on screen

Abstract

【課題】光学装置の結露の発生を防止することができるプロジェクタを提供すること。
【解決手段】リアプロジェクタは、光学装置の温度を検出する温度センサ、光学装置周辺の空気の温度を検出する温度センサ、光学装置を冷却するためのペルチェ素子を備える。メインスイッチMを切った後、両温度センサで光学装置及び光学装置周辺の空気の温度を検出し、光学装置の温度を検出する温度センサで検出される温度が、光学装置周辺の空気の温度を検出する温度センサで検出される温度以下となる状態を維持し、両センサで検出される温度が常温付近にまで達するように、ペルチェ素子を駆動制御する。
【選択図】 図14

Description

本発明は、プロジェクタに関する。
従来から、光源から出射された光束をダイクロイックミラーによって三原色の赤、緑、青の色光に分離するとともに、三枚の液晶パネルにより各色光毎に画像情報に応じて変調し、画像変調後の各色光を色合成光学装置で合成し、投射レンズを介してカラー画像をスクリーンの前面に拡大投射する、いわゆる三板式のフロント投射式プロジェクタが知られている。
また、光源からの光束を液晶パネルに照射し、この液晶パネルによって画像情報に応じて変調された光束を色合成光学装置で合成し、投射レンズにより拡大して、反射ミラーにより光路を変換させ、スクリーンの背面に導く構造のリアプロジェクタも知られている。
以上のようなプロジェクタでは、光変調装置と色合成光学装置とは一体化された光学装置として構成されており、色合成光学装置の光束入射側端面に液晶パネルを楔状のスペーサやピンスペーサを介して接合固定したものが知られている。
光学装置を構成する光変調装置等の光学素子は、光束の透過、吸収により発熱し、温度が上昇する。そのため、従来から、光変調装置等の光学素子を冷却流体としての空気等により冷却している。具体的には、空気を送気するファンの排気側に、冷却部としてのペルチェ素子を設置し、光学装置周辺の空気の冷却を行い、この冷却された空気を光学装置に送気している(例えば、特許文献1参照)。
特開2000−269674号公報(第2〜第3頁、図1)
このようなプロジェクタでは、プロジェクタの電源を切り、プロジェクタの駆動を停止すると、光学装置の駆動も停止されるので、発熱していた光学装置の液晶パネルや、射出側偏光板等の光学部品の温度が常温にまで低下する。
一方で、プロジェクタの電源を切ることで、ペルチェ素子の駆動も停止されるので、ペルチェ素子により冷却され、常温以下であった光学装置周辺の空気の温度が常温にまで上昇することとなる。
液晶パネル等の光学部品は、急激に温度が低下し、常温以下となった後、徐々に常温になるという温度カーブを描く。また、光学装置周辺の空気の温度は急激に上昇する。そのため、光学装置の液晶パネル等の温度よりも、光学装置周辺の空気の温度が高くなってしまうことがある。
さらに、冷却空気により常温以下に冷却されていた光学装置を構成する部材(例えば、液晶パネルを色合成光学装置に固定するための固定板等)の温度も、ペルチェ素子の駆動の停止により、常温付近にまで上昇することとなるが、光学装置を構成する部材の熱容量によっては、光学装置を構成する部材の温度上昇率よりも光学装置周辺の空気の温度上昇率が高くなってしまうため、光学装置周辺の空気の温度が、光学装置を構成する部材の温度よりも高くなってしまうことがある。
以上のような場合、光学装置を構成する部品(液晶パネル、固定板等)の表面に結露が生じるという問題がある。
本発明の目的は、光学装置の結露の発生を防止することができるプロジェクタを提供することである。
本発明のプロジェクタは、光源と、この光源から射出された光束を画像情報に応じて変調する光変調装置、及びこの光変調装置からの色光を合成する色合成光学装置を有する光学装置と、この光学装置から射出された光学像を投射する投射光学系とを備えるプロジェクタであって、前記光学装置を冷却するために、光学装置に送風される光学装置周辺の流体を冷却する冷却部と、前記光学装置の温度を検出する第一温度検出部と、前記光学装置周辺の前記流体温度を検出する第二温度検出部と、メインスイッチを切り、光源及び光学装置の駆動を停止した後、第二温度検出部で検出される温度が、第一温度検出部で検出される温度以下となる状態を維持しながら、両温度が常温付近まで達するように、前記冷却部を駆動制御する制御部とを備えることを特徴とする。
ここで、プロジェクタとしては、フロント投射式プロジェクタであってもよく、また、リアプロジェクタであってもよい。
また、常温とは、プロジェクタを構成するすべての部品の駆動を停止した状態での平常の温度のことをいい、例えば、プロジェクタの外気温と略等しい温度をいう。
このような本発明では、メインスイッチを切り、光源及び光学装置の駆動を停止した後、光学装置周辺の流体の温度を検出する第二温度検出部で検出される温度が、光学装置の温度を検出する第一温度検出部で検出される温度以下となる状態を維持しながら、両温度が常温付近まで達するように、冷却部を駆動制御する制御部を備えている。
従って、冷却部を駆動制御することにより、光学装置周辺の流体の温度の上昇を緩やかなものとすることができ、光学装置周辺の流体の温度が、光学装置を構成する部品の温度よりも高くなってしまう状態を経ずに、光学装置の温度及び光学装置周辺の流体の温度を常温まで戻すことができるので、光学装置を構成する部品の表面への結露の発生を防止することができる。
本発明では、前記冷却部は、対向配置される一対の伝熱板間に熱電変換材料が介装され、この熱電変換材料に電圧を印加することで、一方の伝熱板が低温部、他方の伝熱板が高温部となる熱電変換素子を含み、低温部となる伝熱板を前記光学装置を冷却する流体の流路に面して設けることにより構成されることが好ましい。
さらに、前記制御部は、前記第一温度検出部で検出される温度カーブに、前記第二温度検出部で検出される温度カーブが倣うように、前記熱電変換素子への印加電圧の制御を行うことが好ましい。
このような本発明によれば、冷却部は、対向配置される一対の伝熱板間に熱電変換材料が介装され、この熱電変換材料に電圧を印加することで、一方の伝熱板が低温部、他方の伝熱板が高温部となる熱電変換素子を備えており、第二温度検出部で検出される温度カーブを第一温度検出部で検出される温度カーブに倣うようにするためには、熱電変換素子への印加電圧の制御を行えばよい。従って、冷却部の制御を容易に行うことができる。
本発明のプロジェクタは、光源と、この光源から射出された光束を画像情報に応じて変調する光変調装置、及びこの光変調装置からの色光を合成する色合成光学装置を有する光学装置と、この光学装置から射出された光学像を投射する投射光学系とを備えるプロジェクタであって、前記光学装置を冷却するために、光学装置に送風される光学装置周辺の流体を冷却する冷却部と、前記光学装置の温度を検出する第一温度検出部と、前記光学装置周辺の前記流体温度を検出する第二温度検出部と、メインスイッチを切り、前記冷却部及び光学装置の駆動を停止した後、第二温度検出部で検出される温度が、第一温度検出部で検出される温度以下となる状態を維持しながら、両温度が常温付近まで達するように、前記光源の光学装置への照射を制御する制御部とを備えることを特徴とする。
ここで、プロジェクタとしては、フロント投射式プロジェクタであってもよく、また、リアプロジェクタであってもよい。
また、常温とは、プロジェクタを構成するすべての部品の駆動を停止した状態での平常の温度のことをいい、例えば、プロジェクタの外気温と略等しい温度をいう。
このような本発明によれば、プロジェクタは、メインスイッチを切り、冷却部及び光学装置の駆動を停止した後、第二温度検出部で検出される温度が、第一温度検出部で検出される温度以下となる状態を維持しながら、両温度を常温付近に達するように光源の照射を制御する制御部を備えている。すなわち、本発明では、光源からの光束の照射により、光学装置を構成する部品の温度を上昇させ、光学装置周辺の流体の温度が、光学装置を構成する部品の温度よりも高くなってしまうことがないように光源の光学装置への照射を制御している。これにより、光学装置を構成する部品の表面への結露の発生を防止することができる。
さらに、本発明では、前記制御部は、一定の光量で光源を駆動させ、光学装置が所定温度以上となった場合に、光源の駆動を停止させることが好ましい。
このような本発明によれば、一定光量で光源を駆動させると、光学装置の温度は、上昇するとともに、常温以上に保たれる。一方で、光学装置周辺の流体は、徐々に常温に向かって上昇していく。従って、光学装置の温度が光学装置周辺の流体の温度を下回ることがない。そして、光学装置の温度が所定温度以上となった時点で光源の駆動をさせると、光学装置の温度は、常温にまで徐々に低下するとともに、光学装置周辺の流体の温度が、常温に達することとなる。
このように、光学装置の温度が光学装置周辺の流体の温度を下回ることがないので、光学装置での結露の発生を防止することができる。
また、本発明では、前記光源は、印加電圧に応じて光量が変化する発光管を有し、前記制御部は、この発光管に対する印加電圧の制御を行ってもよい。
このような本発明によれば、光源の発光管に対する印加電圧の制御を行うことができるので、メインスイッチを切った直後に光源からの光量を最も多くし、徐々に少なくなるように光量を制御することができる。
このようにすることで、光学装置の温度上昇は緩やかになるものの、光学装置の温度は、常温以上となり、光学装置周辺の流体の温度よりも高くなる。そして、光学装置の温度が所定温度以上となった場合に、光源の駆動を停止すると、光学装置の温度は常温まで徐々に低下するものの、光学装置の温度が、光学装置周辺の流体の温度よりも低くなってしまうことがない。従って、これにより、光学装置での結露の発生を防止することができる。
以下、本発明の一実施形態を図面に基づいて説明する。
[1.リアプロジェクタの構成]
図1は、リアプロジェクタ10の正面側斜視図である。図2は、リアプロジェクタ10の背面側斜視図である。図3は、リアプロジェクタ10の内部構造を示す図である。
リアプロジェクタ10は、光源から射出された光束を画像情報に応じて変調して光学像を形成し、この光学像をスクリーン14に拡大投射するものである。このリアプロジェクタ10は、図1〜図3に示すように、筐体としての上部キャビネット11および下部キャビネット31(図1および図2)と、上部キャビネット11の前面に露出して設けられるスクリーン14(図1)と、上部キャビネット11内に配置されるミラー15(図3)と、下部キャビネット31内に配置される光学ユニット40(図3)とで大略構成されている。
なお、リアプロジェクタ10は、上述した構成の他、具体的な説明を省略するが、光学ユニット40等に外部からの電力を供給する電源装置、外部から入力された画像情報に応じて光学ユニット40の駆動制御等を実施する制御基板、これら構成部品を冷却する冷却装置60等も備えている。なお、冷却装置60については、後に詳述する。
[1-1.キャビネットの構成]
図1および図2に示すように、リアプロジェクタ10の外観は、上部キャビネット11および下部キャビネット31から構成され、これらの上部キャビネット11および下部キャビネット31は分離可能に形成されている。
上部キャビネット11は、ミラー15(図3)を収納する縦断面三角形状の筐体であり、ミラー15が取り付けられるミラーケース12(図1および図2)と、このミラーケース12の正面側の開口部周辺に形成されたフレーム枠13(図1)と、このフレーム枠13に取り付けられたスクリーン14(図3)とを備えている。
図4は、ミラーケース12を正面側から見た斜視図である。
ミラーケース12は、図4に示すように、背面壁21、一対の側壁22,23、および底面壁24から構成されている。
背面壁21は、長辺が上方に位置する平面視台形状の形状を有し、後方の下側に向かって傾斜するように形成され、内側端面にてミラー15(図3)を所定角度で支持する。
一対の側壁22,23は、平面視三角形状の形状を有し、背面壁21の両端縁から前方に向けて突出し、後方に向かうにしたがって内側に傾斜するように形成されている。
底面壁24は、一対の側壁22,23に跨って形成され、長辺が前方側に位置する平面視略台形状の形状を有し、後方の上側に向かって傾斜するように形成されている。この底面壁24には、前方側略中央部分に切り欠き24Aと、前方から見て左側に開口部24Bとが形成されている。
フレーム枠13は、矩形枠状に形成され、内側端面にてスクリーン14を所定位置にて保持するものであり、ミラーケース12の前方側端縁にねじ等により固定される。
図5は、下部キャビネット31の正面側斜視図である。
下部キャビネット31は、光学ユニット40、図示しない電源装置、図示しない制御基板、および後述の冷却装置60(図5では図示省略)等を収納する筐体であり、フロントパネル32(図1)と、側部パネル33,34(図2)と、リアパネル35(図2)と、底面部36と、底面部36上に取り付けられ、光学ユニット40、前記電源装置、前記制御基板、および冷却装置60等を下部キャビネット31の所定位置に設置する設置部37とで構成されている。
フロントパネル32は、図1に示すように、平面視矩形形状を有し、左右側には略同寸法の矩形状の開口部38が形成されている。そして、この開口部38の内部には、それぞれ図示しないスピーカが配設されている。
側部パネル33,34は、図2に示すように、平面視台形形状を有し、ミラーケース12の一対の側壁22,23と同様に、後方に向かうにしたがって内側に傾斜するように形成されている。この側部パネル33,34には、それぞれスリット状の開口部が形成されている。そして、側部パネル33に形成された開口部は、内部に冷却空気を導入する吸気口331(図2)であり、側部パネル34に形成された開口部は、内部に導入され内部を冷却した後の空気を排出する排気口341(図2)である。
リアパネル35は、図2に示すように、平面視矩形形状を有し、コンピュータ接続用の接続部や、ビデオ入力端子、オーディオ機器接続端子等の各種の機器接続用端子が設けられている。
底面部36は、図5に示すように、平面視略台形状の形状を有し、リアプロジェクタ10全体を支持する。
設置部37は、下部キャビネット31に設置される各装置を囲うように形成され、各装置を適宜、区画している。
この設置部37において、その上面371は、上部キャビネット11の底面壁24に対応して後方の上側に向かって傾斜するように形成されている。また、この上面371は、正面側から見て略中央部分から左側部分、および正面側から見て右側部分には、それぞれ段付状の段差部371A,371Bが形成されている。
段差部371Aにおいて、右側部分には、切り欠き371A1が形成され、この切り欠き371A1は、設置部37に設置される光学ユニット40(図3)の後述する光学装置の上部位置に対応するとともに、設置部37に設置される光学ユニット40(図3)の後述する投射レンズ46が臨むように形成されている。また、段差部371Aの略中央には、後述する冷却装置60の軸流ファン625およびヒートシンク624(図10)が露出している。
段差部371Bにおいて、底面部分には、切り欠き371B1が形成され、この切り欠き371B1は、設置部37に設置される光学ユニット40(図3)の後述する光源装置上に取り付けられる排気ファン54の吐出口に対向する。
また、段差部371Bにおいて、正面から見て右側部分には、側部パネル34に形成された排気口341(図2)と接続するダクト55の吸気側が接続する。
また、この設置部37において、正面から見て左側の端面には、図5に示すように、設置部37内部に空気を流通させるための孔372が形成されている。この孔372は、光学ユニット40(図3)の後述する光源装置と連通し、前記光源装置に空気を流通可能とする。
図6は、図4に示す上部キャビネット11と図5に示す下部キャビネット31とを組み合わせた図である。
上部キャビネット11と下部キャビネット31とを組み合わせると、図6に示すように、ミラーケース12の底面壁24、および下部キャビネット31の設置部37における上面371に形成された段差部371Aによりダクト25が形成され、底面壁24および段差部371Bによりダクト26が形成される。そして、ダクト25の吸気側は、上面371における切り欠き371A1を介して、下部キャビネット31に設置される光学ユニット40(図3)の後述する光学装置の上部側に対向する。また、ダクト26の吸気側は、上面371における切り欠き371B1(図5)を介して、排気ファン54の吐出口に対向する。
また、上部キャビネット11と下部キャビネット31とを組み合わせると、上部キャビネット11の切り欠き24Aと下部キャビネット31の切り欠き371A1とが対向し、下部キャビネット31に設置される光学ユニット40(図3)の後述する投射レンズからミラー15に向けて投射される映像の光路が形成される。なお、ダクト25の下部には、後述する冷却装置60が配置されている。
[1-2.スクリーンの構成]
スクリーン14は、光学ユニット40の後述する投射レンズで拡大され、ミラー15で反射された光学像を裏面から投影する透過型スクリーンであり、図1に示すように、上部キャビネット11のフレーム枠13によりミラーケース12の正面側に取り付けられる。
このスクリーン14は、例えば、フレネルシート、レンチキュラーシート、保護板等にて構成でき、前記投射レンズから射出されミラー15で反射された光束は、フレネルシートで平行化され、レンチキュラーシートを構成する光学ビーズによって拡散され、表示画像が得られる。
[1-3.ミラーの構成]
ミラー15は、図3に示すように、平面視台形状に形成された一般的なミラーであり、上部キャビネット11の背面壁21の内側に、台形状の長辺が上側となるように傾斜して取り付けられる。このミラー15の傾斜角は、前面側のスクリーン14と光学ユニット40の後述する投射レンズによる映像の反射との設定された位置関係に基づいて設定されている。
[1-4.光学ユニットの構成]
図7は、光学ユニット40を模式的に示す図である。
図7に示すように、光学ユニット40は、光源装置を構成する光源ランプから射出された光束を光学的に処理して画像情報に対応した光学像を形成し、この光学像を拡大投射するユニットである。この光学ユニット40は、図7に示すように、インテグレータ照明光学系41と、色分離光学系42と、リレー光学系43と、光学装置44と、プリズム48と、投射光学系としての投射レンズ46と、ライトガイド47とを備える。
インテグレータ照明光学系41は、光学装置44を構成する後述する3つの液晶パネル441の画像形成領域をほぼ均一に照明するための光学系である。このインテグレータ照明光学系41は、光源装置411と、第1レンズアレイ412と、第2レンズアレイ413と、偏光変換素子414と、重畳レンズ415とを備える。
光源装置411は、放射光源としての光源ランプ(発光管)416と、リフレクタ417とを備え、光源ランプ416から射出された放射状の光線をリフレクタ417で反射して平行光線とし、この平行光線を外部へと射出する。
光源ランプ416としては、高圧水銀ランプを採用している。なお、高圧水銀ランプ以外に、メタルハライドランプやハロゲンランプ等も採用できる。
リフレクタ417としては、放物面鏡を採用している。なお、放物面鏡の代わりに、平行化凹レンズおよび楕円面鏡を組み合わせたものを採用してもよい。
第1レンズアレイ412は、光軸方向から見てほぼ矩形状の輪郭を有する小レンズがマトリクス状に配列された構成を有し、各小レンズは、光源ランプ416から射出された光束を複数の部分光束に分割している。
第2レンズアレイ413は、第1レンズアレイ412と略同様な構成を有しており、小レンズがマトリクス状に配列された構成を有している。この第2レンズアレイ413は、重畳レンズ415とともに、第1レンズアレイ412の各小レンズの像を後述する液晶パネル441上に結像させる機能を有する。
偏光変換素子414は、第2レンズアレイ413と重畳レンズ415との間に配置される。このような偏光変換素子414は、第2レンズアレイ413からの光を略1種類の偏光光に変換するものであり、これにより、光学装置44での光の利用効率が高められている。
具体的に、偏光変換素子414によって略1種類の偏光光に変換された各部分光は、重畳レンズ415によって最終的に光学装置44の後述する液晶パネル441上にほぼ重畳される。偏光光を変調するタイプの液晶パネル441を用いたリアプロジェクタ10では、1種類の偏光光しか利用できないため、他種類のランダムな偏光光を発する光源ランプ416からの光のほぼ半分が利用されない。このため、偏光変換素子414を用いることにより、光源ランプ416から射出された光束を略1種類の偏光光に変換し、光学装置44での光の利用効率を高めている。
なお、このような偏光変換素子414は、例えば特開平8−304739号公報に紹介されている。
色分離光学系42は、2枚のダイクロイックミラー421,422と、反射ミラー423とを備え、ダイクロイックミラー421,422によりインテグレータ照明光学系41から射出された複数の部分光束を赤(R)、緑(G)、青(B)の3色の色光に分離する機能を有している。
リレー光学系43は、入射側レンズ431と、リレーレンズ433と、反射ミラー432,434とを備え、色分離光学系42で分離された色光である赤色光を光学装置44の後述する赤色光用の液晶パネル441Rまで導く機能を有している。
この際、色分離光学系42のダイクロイックミラー421では、インテグレータ照明光学系41から射出された光束の赤色光成分と緑色光成分とが透過するとともに、青色光成分が反射する。ダイクロイックミラー421によって反射した青色光は、反射ミラー423で反射し、フィールドレンズ418を通って、光学装置44の後述する青色光用の液晶パネル441Bに到達する。このフィールドレンズ418は、第2レンズアレイ413から射出された各部分光束をその中心軸(主光線)に対して平行な光束に変換する。他の緑色光用、赤色光用の液晶パネル441G,441Rの光束入射側に設けられたフィールドレンズ418も同様である。
また、ダイクロイックミラー421を透過した赤色光と緑色光のうちで、緑色光は、ダイクロイックミラー422によって反射し、フィールドレンズ418を通って、緑色光用の液晶パネル441Gに到達する。一方、赤色光は、ダイクロイックミラー422を透過してリレー光学系43を通り、さらにフィールドレンズ418を通って、赤色光用の液晶パネル441Rに到達する。
なお、赤色光にリレー光学系43が用いられているのは、赤色光の光路の長さが他の色光の光路長さよりも長いため、光の発散等による光の利用効率の低下を防止するためである。すなわち、入射側レンズ431に入射した部分光束をそのまま、フィールドレンズ418に伝えるためである。なお、リレー光学系43には、3つの色光のうちの赤色光を通す構成としたが、これに限らず、例えば、青色光を通す構成としてもよい。
光学装置44は、入射された光束を画像情報に応じて変調してカラー画像を形成するものであり、色分離光学系42で分離された各色光が入射される3つの入射側偏光板442と、各入射側偏光板442の後段に配置される光変調装置としての3つの液晶パネル441(441R,441G,441B)と、各液晶パネル441の後段に配置される3つの射出側偏光板443と、色合成光学装置としてのクロスダイクロイックプリズム444とを備える。
液晶パネル441(441R,441G,441B)は、例えば、ポリシリコンTFTをスイッチング素子として用いたものである。光学装置44において、色分離光学系42で分離された各色光は、これら3枚の液晶パネル441R,441G,441B、入射側偏光板442、および射出側偏光板443によって画像情報に応じて変調されて光学像を形成する。
入射側偏光板442は、色分離光学系42で分離された各色光のうち、一定方向の偏光光のみ透過させ、その他の光束を吸収するものであり、サファイヤガラス等の基板に偏光膜が貼付されたものである。
射出側偏光板443も、入射側偏光板442と略同様に構成され、液晶パネル441から射出された光束のうち、所定方向の偏光光のみ透過させ、その他の光束を吸収するものである。
これらの入射側偏光板442および射出側偏光板443は、互いの偏光軸の方向が直交するように設定されている。
クロスダイクロイックプリズム444は、射出側偏光板443から射出され、各色光毎に変調された光学像を合成してカラー画像を形成するものである。このクロスダイクロイックプリズム444には、赤色光を反射する誘電体多層膜と青色光を反射する誘電体多層膜とが、4つの直角プリズムの界面に沿って略X字状に設けられ、これらの誘電体多層膜により3つの色光が合成される。
これら光学装置44を構成する液晶パネル441、射出側偏光板443、およびクロスダイクロイックプリズム444は、一体的にユニット化され、光学装置本体45が形成されている。なお、光学装置本体45については、後に詳述する。
プリズム48は、光学装置44の光束射出側に配置され、この光学装置44で形成されたカラー画像を投射レンズ46の方向、すなわち前方向に射出されたカラー画像を上方向へと折り曲げて反射するものである。
投射レンズ46は、プリズム48で反射されたカラー画像を拡大して、ミラー15に投射するものである。この投射レンズ46は、鏡筒内に複数のレンズが収納された組みレンズとして構成されている。
ライトガイド47は、合成樹脂から構成され、上述した各光学系41〜45、48を収納保持するものであり、具体的な図示は省略するが、各光学部品412〜415,418,421〜423,431〜434を上方からスライド式に嵌め込む溝部が形成された下ライトガイドと、前記下ライドガイドの上部の開口側を閉塞する蓋状の上ライトガイドとを備えて構成される。
ここで、ライトガイド47の光学装置44に対応する上部および下部は、図示しない開口が形成されており、これらの開口は、後述する冷却装置の隔壁63と接続される。
[1-5.光学装置本体の構成]
図8は、光学装置本体45を示す分解斜視図である。
図8に示すように、光学装置本体45は、前述の光学部品441,443,444のほかに、保持枠451と、パネルフレーム452,453、固定板454、熱伝導板455,456およびヒートシンク457を備えている。
なお、図8においては、液晶パネル441Gを例示するが、他の液晶パネル441R,441Bにおいても略同じ構成である。
保持枠451は、液晶パネル441Gを保持し、固定板454に取り付けるためのものである。この保持枠451の光束入射側および光束射出側の面には、アルミ等の熱伝導性部材によって形成されたパネルフレーム452,453が取り付けられる。このパネルフレーム452,453は、保持枠451を介して伝導される液晶パネル441Gの熱を放熱する。また、パネルフレーム453は、保持枠451に当接されるとともに、固定板454に当接され、液晶パネル441Gで発生した熱を固定板454に伝導する。また、保持枠451の光束入射面の4隅には、孔451Aが形成されている。
固定板454は、液晶パネル441Gを保持する保持枠451と、クロスダイクロイックプリズム444との間に介在配置されるもので、射出側偏光板443が固定される。この固定板454は、光束入射側の面の4隅に面外方向に突出した突起454Aが形成され、この突起454Aと保持枠451の孔451Aが係合する。
この固定板454に取り付けられる射出側偏光板443の光束射出側面と、固定板454の光束射出側の面および側面とは、略矩形の熱伝導板455および断面略L字状の熱伝導板456を介して接続され、射出側偏光板443の熱が固定板454に伝導される。
また、固定板454にはヒートシンク457が設けられており、このヒートシンク457は、固定板454に伝導された液晶パネル441Gおよび射出側偏光板443の熱を放熱する。
[2.冷却装置]
次に、リアプロジェクタ10の内部の冷却構造を図面に基づいて説明する。
図9は、第1の冷却流路51および第2の冷却流路52を示す図である。具体的に、図9(A)は、リアプロジェクタ10の側方から第1の冷却流路51を見た図であり、図9(B)は、リアプロジェクタ10の正面側から第1の冷却流路51および第2の冷却流路52を見た図である。
図10は、第1の冷却流路51を模式的に示す図である。
図11は、第3の冷却流路53を示す図である。具体的に、図11(A)は、リアプロジェクタ10の側方から第3の冷却流路53を見た図であり、図11(B)は、リアプロジェクタ10の背面側から第3の冷却流路53を見た図である。
リアプロジェクタ10の内部には、図9および図11に示すように、リアプロジェクタ10を構成する光学装置44を主に冷却する第1の冷却流路51と、光学装置44の冷却に供される後述の冷却装置60の高温部6213を主に冷却する第2の冷却流路52と、光源装置411を主に冷却する第3の冷却流路53とが形成されている。
[2-1.第1の冷却流路]
第1の冷却流路51は、光学装置44を冷却する空気の流路である。すなわち、図9および図10に示すように、冷却装置60の隔壁63(図10)に囲まれた空間内に光学装置44が配設され、この空間内の空気を循環させて光学装置44を冷却する流路である。
この冷却装置60は、図10に示すように、光学装置44に冷却空気を送風するシロッコファン61と、このシロッコファン61に吸気される空気を冷却する冷却ユニット62と、これらシロッコファン61および冷却対象である光学装置44を密閉収納する隔壁63とを備えている。
隔壁63は、内部に密閉空間Sを形成し、この密閉空間S内に、前述のように、シロッコファン61および光学装置44が密閉収納される。この隔壁63は、断熱材により形成され、密閉空間S内外が熱的に遮断されている。このような断熱材としては、布、紙、プラスチック、フェルト、ゴム、セメント、ガラス繊維、発泡スチロール、石綿、コルク等の熱伝導性の低い材料を採用することができる。
シロッコファン61は、光学装置44に冷却空気を送風するとともに、密閉空間S内の空気を循環させる送風装置として設けられ、吸気面611が冷却ユニット62に向き、吐出面612が光学装置44に向くように配置される。ここで用いられる送風装置としては、シロッコファンの他に、軸流ファンとする構成も考えられる。しかしながら、シロッコファン61から離れた位置に配置された光学装置44に冷却空気を送風するので、ファンから送風される冷却空気に高い吐出圧が求められる。このため、軸流ファンで高い吐出圧を得るためには、ファンの大型化、または、高回転化を図る必要性があるが、この場合では、ファンによる風切音等の騒音や消費電力が大きくなる。これに対し、シロッコファンを採用した場合では、シロッコファンは送風する空気の吐出圧が高く、また静粛性に優れるので、このような問題がない。このため、本実施形態では、シロッコファンが採用されている。
冷却ユニット62は、シロッコファン61によって光学装置44に供給される空気を冷却する冷却部であり、熱電変換素子としてのペルチェ素子621を含んで構成されている。
ペルチェ素子621は、本実施形態ではπ型のペルチェ素子が採用され、対向配置される一対の伝熱板間に、熱電変換材料としてのP型半導体素子およびN型半導体素子が交互に配置され、この一対の伝熱板の半導体素子当接面には、P型、N型の半導体素子を交互に直列接続するような配線パターンが形成されている。このペルチェ素子621の電圧印加端子6211に電圧を印加すると、接合面の一方の伝熱板の熱が、他方の伝熱板に流れることから、一方の伝熱板、すなわち低温部6212は、熱を吸熱する作用を有し、他方の伝熱板、すなわち高温部6213は、熱を放熱する作用を有する。すなわち、低温部6212により、シロッコファン61に供給される冷却空気を冷却し、この冷却空気から吸熱した熱は、高温部6213により放熱される。
低温部6212には、ヒートシンク622と、このヒートシンク622の端部に取り付けられた補助ファンとしての軸流ファン623とが取り付けられている。ここで、低温部6212は、隔壁63によって形成される密閉空間Sに露出しており、ヒートシンク622および軸流ファン623に関しても、この密閉空間S内に収納される。
ヒートシンク622は、低温部6212の面外方向に突出し、接触する空気の熱交換を促進するフィン状部材である。このヒートシンク622は、低温部6212を覆うように設けられており、これにより、空気との接触面積を大きくして、効率の良い空気の冷却を実現している。
軸流ファン623は、ヒートシンク622と接触して冷却された空気を、シロッコファン61の吸気面611に送風して、シロッコファン61による吸気および吐出をしやすくしている。また、この軸流ファン623は、低温部6212からシロッコファン61の吸気面611までの空間を撹拌して、シロッコファン61に吸気される空気の温度を一定にし、冷気溜まりのような部分的な温度分布が発生しないようにしている。このため、軸流ファン623の吐出面は、シロッコファン61の吸気面611を向くように配置されている。さらに、この軸流ファン623は、密閉空間S内の空気の循環を促進し、密閉空間S内の空気が、滞りなく流通可能にしている。
ペルチェ素子621の高温部6213は、前述のように、下部キャビネット31の段差部371Aに面している。すなわち、高温部6213は、隔壁63の密閉空間Sの外側に露出している。この高温部6213には、低温部6212と略同様の構成で、他のフィン状部材としてのヒートシンク624と、このヒートシンク624に取り付けられた冷却ファンとしての軸流ファン625が設けられている。この軸流ファン625は、低温部6212で密閉空間S内の空気から吸熱され、高温部6213に伝導された熱を冷却するためのものである。このように、空気との接触面積を広げ、熱交換を促進するヒートシンク624とともに、高温部6213の冷却を促進することにより、低温部6212での空気の冷却が促進される。
この冷却ユニット62から、シロッコファン61を介して光学装置44へと流れる第1の冷却流路51中には、温度センサ65(651〜653)が複数箇所設けられている。
詳述すると、温度センサ65は、光学装置44の温度を検出するための第一温度検出部としての温度センサ651と、軸流ファン623とシロッコファン61の吸気面611との間に設置された温度センサ652と、シロッコファン61の吐出面612と光学装置44との間の空間に設けられ、光学装置44の周辺の空気の温度を検出する第二温度検出部としての温度センサ653とを備える。
光学装置44の温度を検出するための温度センサ651は、液晶パネル441の防塵ガラスに取り付けられた温度センサ651Aと、固定板454に取り付けられた温度センサ(図示略)と、射出側偏光板443に取り付けられた温度センサ651Bと、クロスダイクロイックプリズム444に取り付けられた温度センサ651Cとを備える。
これらの温度センサ651〜653は、図12に示すように、前述した制御基板に設けられた制御部7の入力側に接続されている。
この制御部7は、光源ランプ416の駆動制御を行う光源ランプ駆動制御部71と、光学装置44の駆動制御を行う光学装置駆動制御部72と、ペルチェ素子621の駆動制御を行うペルチェ素子駆動制御部73と、シロッコファン61の駆動制御を行うファン駆動制御部74と、温度判定部75と、リアプロジェクタ10のメインスイッチMのON/OFFを判定するON/OFF判定部76とを備える。
光源ランプ駆動制御部71は、ON/OFF判定部76でメインスイッチMがONとなったと検出された場合に、光源ランプ416を駆動させ、OFFとなったと検出された場合に、光源ランプ416の駆動を停止するものである。この光源ランプ駆動制御部71は、図示しないランプ駆動回路を介して光源ランプ416に接続されている。
光学装置駆動制御部72は、ON/OFF判定部76でメインスイッチMがONとなったと検出された場合に、外部から入力される画像情報に応じて光学装置44を駆動し、OFFとなったと検出された場合に、光学装置44の駆動を停止するものである。
ペルチェ素子駆動制御部73は、電圧印加端子6211への電圧の印加を制御するものであり、これにより、ペルチェ素子621の駆動制御を行う。
ファン駆動制御部74は、シロッコファン61を駆動するモータへの印加電圧の出力を調整するものであり、シロッコファン61の駆動制御を行う。
温度判定部75は、ON/OFF判定部76で、メインスイッチMがONであると判定された場合に、温度センサ651からの温度が所定温度(例えば、光学装置44の最適稼働温度)以上であるかどうかを判定するものである。また、詳しくは後述するが、温度判定部75は、ON/OFF判定部76でメインスイッチMがOFFであると判定された場合には、温度センサ651で検出された温度と、温度センサ653で検出された温度との差が所定値以上であるかどうかや、リアプロジェクタ10の外気温を測定する温度センサ(図示略)で検出された温度(常温)と、温度センサ651で検出された温度との差が所定値以下であるかどうか、外気温を測定する温度センサ(図示略)で検出された温度と温度センサ653で検出された温度との差が所定値以下であるかどうか等を判定する。
以上のような、制御部7は、以下のようにして、光学装置44の冷却制御を行う。
温度センサ65の測定結果から、温度判定部75において、光学装置44の温度が、所定の温度、例えば光学装置44の最適稼動温度より高いと判定された場合、ペルチェ素子駆動制御部73により、ペルチェ素子621の電圧印加端子6211に印加する電圧を高め、低温部6212と高温部6213との温度勾配を大きくして低温部6212における冷却空気の熱交換を促進するとともに、ファン駆動制御部74により、シロッコファン61のモータへの印加電圧を高めて光学装置44への送風を強め、光学装置44を通常より強く冷却する。他方、温度判定部75において、光学装置44の温度が最適稼動温度より低いと判定された場合、ペルチェ素子駆動制御部73により、電圧印加端子6211への電圧の印加を抑え、低温部6212と高温部6213との温度勾配を小さくして冷却空気の熱交換を抑制するとともに、ファン駆動制御部74により、シロッコファン61のモータへの印加電圧を弱めて、送風量も抑える。このような冷却装置60の稼動調整を行うことにより、冷却対象である光学装置44の冷却を制御している。
ここで、冷却装置60によって光学装置44を冷却する第1の冷却流路51について総括する。
図9および図10に示すように、隔壁63によって形成された密閉空間S内部の空気は、ペルチェ素子621の低温部6212に取り付けられたヒートシンク622と接することにより、吸熱されて冷却される。この冷却された空気は、軸流ファン623により、矢印511方向に、シロッコファン61の吸気面611に向かって吐出される。
シロッコファン61は、この冷却空気を吸気面611から吸引し、吐出面612から矢印512方向、すなわち、冷却対象である光学装置44に向かって吐出する。シロッコファン61により吐出された冷却空気は、光学装置44の下部に送風され、矢印513で示すように、上方に向かって光学装置44を冷却する。
光学装置44を冷却した空気は、低温部6212に設けられた軸流ファン623により、矢印514方向に吸引される。この過程で、軸流ファン623に吸引される空気は、ヒートシンク622と接触して冷却され、軸流ファン623により、矢印511方向、すなわち、シロッコファン61の吸気面611に送風される。
このように、第1の冷却流路51は、ペルチェ素子621の低温部6212およびヒートシンク622と接触することにより冷却され、光学装置44を冷却する空気が、シロッコファン61および軸流ファン623によって循環する循環流路とされている。
[2-2.第2の冷却流路]
第2の冷却流路52は、前述の冷却ユニット62を構成するペルチェ素子621の高温部6213(図10)を冷却する空気の流路である。この第2の冷却流路52では、高温部6213に設けられた軸流ファン625(図10)が用いられる。
図9に示すように、軸流ファン625によって、高温部6213の冷却に供された空気は、ダクト25内を流通して、ミラーケース12の底面壁24に形成された開口部24Bからミラーケース12内部に吐出される。この空気は、側壁23に沿って上昇し、この上昇する空気に合わせて、背面壁21に沿って図9右方向に流通し、徐々に自然冷却される。
自然冷却された空気は、側壁22に沿って下降し、ミラーケース12の底面壁24に沿って、図9中左方向に流通した後、軸流ファン625の吸気作用によって、切り欠き24Aからダクト25内に吸引され、再びダクト25内を流通する。
このように、第2の冷却流路52は、冷却ユニット62を構成するペルチェ素子621の高温部6213を冷却した空気が、ミラーケース12内を流通して自然冷却され、軸流ファン625によって、再び高温部6213の冷却に供されるという循環流路とされている。
[2-3.第3の冷却流路]
第3の冷却流路53は、光学ユニット40の光源装置411を冷却する冷却空気の流路であり、この第3の冷却流路53では、図11に示すように、光源装置411上に取り付けられる排気ファン54が用いられる。
この排気ファン54は、軸流ファンで構成される。この排気ファン54が駆動することで、図11に示すように、下部キャビネット31の側部パネル33に形成された吸気口331からリアプロジェクタ10外部の空気が内部へと引き寄せられ、下部キャビネット31の設置部37に形成された孔372(図5)を介して光源装置411へと導入される。光源装置411に導入された空気は、排気ファン54により吸い込まれる過程で光源装置411の光源ランプ416およびリフレクタ417を冷却する。排気ファン54に吸い込まれた空気は、ダクト26に吐出され、ダクト26およびダクト55を介して下部キャビネット31の側部パネル33に形成された排気口341からリアプロジェクタ10外部へと排出される。
[3.結露防止構造]
以上のようなリアプロジェクタ10は、結露防止構造を備えている。
前述したように、従来のリアプロジェクタでは、メインスイッチMを切り、リアプロジェクタの駆動を停止すると、光学装置の駆動も停止されるので、発熱していた光学装置の液晶パネル等の光学部品の温度が常温にまで低下する。一方で、リアプロジェクタの電源を切ることで、ペルチェ素子の駆動も停止されるので、光学装置の周辺の空気の温度が常温にまで上昇することとなる。
また、冷却空気により冷却され、常温以下となっていた光学装置を構成する部材、例えば、固定板等の温度も常温付近にまで上昇することとなる。
このような場合、液晶パネルは急激に温度が低下し、常温以下となった後、徐々に常温になるという温度カーブを描くため、図13に示すように、光学装置周辺の空気の温度が、液晶パネルの温度よりも高くなってしまうこともある。
また、光学装置を構成する固定板等の温度上昇率よりも、光学装置周辺の空気の温度上昇率が激しいため、図13に示すように、光学装置周辺の空気の温度が固定板の温度よりも高くなってしまう。
そのため、光学装置を構成する部品(液晶パネル、固定板等)の表面に結露が生じるという問題がある。本実施形態の結露防止構造は、このような結露を防止するためのものであり、前述した冷却装置60の一部を用いて構成されている。
すなわち、本実施形態の結露防止構造は、図12に示すように、前述した温度センサ651、温度センサ653、制御部7の温度判定部75、ON/OFF判定部76、ペルチェ素子駆動制御部73、ファン駆動制御部74、シロッコファン61、ペルチェ素子621を備えている。
図14を参照して結露防止構造の作用について説明する。
リアプロジェクタ10のメインスイッチMを切ると、制御部7のON/OFF判定部76でメインスイッチMが切られたことが検出される(処理S1)。すると、光源ランプ416や、光学装置44等、リアプロジェクタ10を構成する一部への電力の供給が停止され、これらの駆動が停止する(処理S2)。
なお、シロッコファン61及びペルチェ素子621の駆動は維持される。
温度センサ651、温度センサ653では、光学装置44及び光学装置44周辺の空気の温度を検出しつづける(処理S3、処理S4)。
制御部7は、温度センサ651で検出される温度が、温度センサ653で検出される温度よりも高い状態を維持し、両センサで検出される温度が常温付近にまで達するように、ペルチェ素子621を駆動制御する。
なお、ペルチェ素子621の駆動制御を行っている間、シロッコファン61は駆動した状態となっている。
具体的には、まず、制御部7の温度判定部75が、温度センサ651で検出された温度と、温度センサ653で検出された温度との差が所定値以上であるかどうかを判定する(処理S5)。
温度センサ651で検出された温度と温度センサ653で検出された温度との差が所定値未満である場合、すなわち、光学装置44周辺の空気の温度と、光学装置44の温度との差が小さく、光学装置44周辺の空気の温度が光学装置44の温度よりも高くなってしまう可能性が高い場合には、制御部7のペルチェ素子駆動制御部73により、ペルチェ素子621の電圧印加端子6211に印加する電圧が高められる(処理S6)。そして、再度、処理S1〜処理S5が繰りかえされる。
一方、温度センサ651で検出された温度と、温度センサ653で検出された温度との差が所定値以上である場合には、制御部7のペルチェ素子駆動制御部73により、電圧印加端子6211に印加する電圧が下降される(処理S7)。
次に、制御部7の温度判定部75により、温度センサ651及び温度センサ653で検出された温度が常温付近にまで達したか否かを判断する(処理S8)。具体的には、リアプロジェクタ10の外気温を測定する温度センサ(図示略)で検出された温度(常温)と、温度センサ651で検出された温度との差、外気温を測定する温度センサ(図示略)で検出された温度(常温)と温度センサ653で検出された温度との差が所定値以下であるかどうかを判定する。
所定値以下であると判定された場合には、制御部7のペルチェ素子駆動制御部73、ファン駆動制御部74により、シロッコファン61及びペルチェ素子621の駆動が停止される(処理S9)。これにより、リアプロジェクタ10の駆動が完全に終了する。
一方、制御部7の温度判定部75により、所定値を超えると判断された場合には、再度、処理S3〜処理S8までを繰りかえす。
ここで、温度センサ651で検出される液晶パネル441の温度カーブ、固定板454の温度カーブ、射出側偏光板443の温度カーブ、さらに、温度センサ653で検出される光学装置44周辺の空気の温度カーブは、図15に示すようになる。ペルチェ素子621の駆動制御を行ったことで、光学装置44周辺の空気の温度上昇が緩やかになり、光学装置44周辺の空気の温度カーブが、固定板454の温度カーブに倣うように延びている。
これにより、光学装置44周辺の空気の温度が、光学装置44を構成する部品(液晶パネル441、射出側偏光板443、固定板454)の温度を超えることが防止される。
[4.実施形態の効果]
(4-1)本実施形態のリアプロジェクタ10は、光源ランプ416及び光学装置44の駆動を停止した後、光学装置44周辺の空気の温度を検出する温度センサ653で検出された温度が、光学装置44の温度を検出する温度センサ651で検出された温度以下となる状態を維持しながら、両温度が常温付近まで達するように、ペルチェ素子621を駆動制御する制御部7を備えている。
これにより、メインスイッチMを切った後の光学装置44周辺の空気の温度の上昇を緩やかなものとすることができ、光学装置44周辺の空気の温度が、光学装置44を構成する部品(液晶パネル441,固定板454,射出側偏光板443等)の温度よりも高くなってしまう状態を経ずに、光学装置44の温度及び光学装置44周辺の空気の温度を常温まで戻すことができる。これにより、光学装置44を構成する部品の表面への結露の発生を防止することができる。
(4-2)光学装置44の温度を検出する温度センサ651で、検出された温度カーブに、光学装置44周辺の流体の温度を検出する温度センサ653で検出される温度カーブが倣うように、ペルチェ素子621が制御されるため、光学装置44周辺の流体の急激な温度上昇が防止される。これにより、確実に光学装置44を構成する部品表面への結露の発生を防止することができる。
(4-3)さらに、光学装置44周辺の空気を冷却するための冷却部としてペルチェ素子621を採用しているため、光学装置44の温度を検出する温度センサ651で、検出された温度カーブに、光学装置44周辺の流体の温度を検出する温度センサ653で検出される温度カーブが倣うようにするためには、電圧印加端子6211への印加電圧の制御を行えばよいので、制御が容易である。
(4-4)さらに、本実施形態では、制御部7の温度判定部75により、温度センサ651及び温度センサ653で検出された温度が常温付近にまで達したか否か、すなわち、リアプロジェクタ10の外気温を測定する温度センサで検出された温度(常温)と、温度センサ651で検出された温度との差、外気温を測定する温度センサで検出された温度(常温)と、温度センサ653で検出された温度との差が所定値以下であるかどうかを判断し、温度差が所定値以下であると判定された場合には、制御部7のペルチェ素子駆動制御部73、ファン駆動制御部74により、シロッコファン61及びペルチェ素子621の駆動が停止される。従って、メインスイッチMを切った後、作業者が再度、シロッコファン61やペルチェ素子621の駆動を停止させるためのスイッチを切る必要がないので、リアプロジェクタ10の使い勝手を向上させることができる。
(4-5)また、本実施形態の結露防止構造は、光学装置44を冷却するための冷却装置60のシロッコファン61及びペルチェ素子621を用いて構成されているため、結露防止のための新たなファンや、ペルチェ素子等を設置する必要がなく、これにより、部材点数の削減及び製造コストの削減を図ることができる。
[5.第2実施形態]
本発明の第二実施形態について説明する。尚、以下の説明では、既に説明した部分と同一の部分については、同一符号を付してその説明を省略する。
本実施形態と前記実施形態とでは、結露防止構造が異なっている。
本実施形態の結露防止構造は、前述した温度センサ651、温度センサ653、制御部7の温度判定部75、ON/OFF判定部76、光源ランプ駆動制御部71、光源ランプ416を備えている(図12参照)。
前記実施形態では、制御部7の光源ランプ駆動制御部71は、ON/OFF判定部76でメインスイッチMがOFFになったと検出された場合、光源ランプ416の駆動を停止していたが、本実施形態では、メインスイッチMがOFFになったと検出された場合であっても、光源ランプ416を駆動しつづける。
図16を参照して、本実施形態の結露防止構造の作用について説明する。
まず、リアプロジェクタ10のメインスイッチMを切ると、制御部7のON/OFF判定部76でメインスイッチMが切られたことが検出される(処理S21)。すると、シロッコファン61、ペルチェ素子621、光学装置44等のリアプロジェクタ10を構成する一部への電力の供給が停止され、これらの駆動が停止する(処理S22)。
制御部7の光源ランプ駆動制御部71では光源ランプ416を一定の光量で駆動させ続ける。(処理S23)。
さらに、温度センサ651、温度センサ653では、光学装置44及び光学装置44周辺の空気の温度を検出しつづける(処理S24、処理S25)。
そして、温度センサ653で検出される温度が、温度センサ651で検出される温度以下となる状態を維持しながら、両センサで検出される温度が常温付近にまで達するように、光源ランプ駆動制御部71により、光源ランプ416の光学装置44への照射を駆動制御する。
具体的には、光学装置44の温度を上昇させ、温度センサ651で検出される温度が所定温度に達するまで、光源ランプ駆動制御部71により、光源ランプ416を駆動させる。このとき、光源ランプ416からは、一定光量で光束を射出する。
そして、温度判定部75で、光学装置44の温度を検出する温度センサ651の温度が所定温度に達したことが確認されたら(処理S26)、光源ランプ駆動制御部71により、光源ランプ416の駆動を停止する(処理S27)。
ここで、所定の温度とは、光源ランプ416の駆動を停止した際、光学装置44の温度が光学装置44周辺の空気の温度を下回らないような充分に高い温度のことをいう。
この場合、光学装置44の温度及び光学装置44周辺の空気の温度は、図17に示すグラフのように推移する。メインスイッチMを切った後、光学装置44の温度(液晶パネル441、射出側偏光板443、固定板454)は、上昇し常温以上に保たれる。
光学装置44周辺の空気の温度も光源ランプ416の駆動に伴って上昇することとなるが、光学装置44の温度を超えることはない。
光源ランプ416の駆動を停止すると、光学装置44の温度が自然冷却により、低下して常温に達することとなる。光学装置44の周辺の空気の温度はわずかに上昇しつづけ、常温に達することとなる。
なお、温度判定部75で温度センサ651で検出される温度が所定温度に達していないと判定された場合には、光源ランプ416の駆動を維持し(処理S23)、温度センサ651、温度センサ653で、光学装置44及び光学装置44周辺の空気の温度を検出し(処理S24、処理S25)、再度、温度判定部75で判定を行う(処理S26)。
このような本実施形態によれば、以下の効果を奏することができる。
(5-1)本実施形態では、メインスイッチMを切った後、光源ランプ416の駆動により、光学装置44の液晶パネル441や射出側偏光板443の温度を常温以上に保ち、さらに、固定板454の温度を急激に上昇させて常温以上としている。これにより、光学装置44周辺の空気の温度が、光学装置44を構成する部品の温度よりも高くなってしまうことが防止され、光学装置44を構成する部品の表面への結露の発生を防ぐことができる。
(5-2)また、前述したように、本実施形態では、温度センサ651で検出される温度が所定温度に達するまで、光源ランプ416を駆動させ、そして、温度判定部75で温度センサ651の温度が所定温度に達したことが確認されたら、光源ランプ416の駆動を停止し、これにより、結露の発生を防止している。
このように、単に光源ランプ416を所定時間照射することで、結露を防止できるので、結露防止構造を簡単なものとすることができ、さらに、結露防止構造に特別な部材を必要としないので、部材点数の増加等を防止することができる。
(5-3)さらに、温度センサ651で検出される温度が所定温度に達した場合に、光源ランプ416の駆動が停止される構造であるため、メインスイッチMを切った後、作業者が再度、光源ランプ416のスイッチを切る必要がないので、結露防止に手間を要さない。
なお、本発明は前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
例えば、第二実施形態では、光源ランプ416を一定光量で照射し、光学装置44が所定温度に達した場合に、光源ランプ416の駆動を停止していたが、これには限られない。例えば、光源ランプ416を印加電圧に応じて光量が変化するものとし、制御部で光源ランプ416の印加電圧の制御を行うことにより、メインスイッチMを切った直後から、光源ランプ416の光量を徐々に低下させて、光学装置44が所定温度に達した場合に、光源ランプ416の駆動を停止させてもよい。この場合には、図18に示すグラフのように、光学装置44を構成する部品の温度上昇は緩やかになるものの、光学装置44を構成する部品の温度は常温以上に保たれ、光学装置44周辺の空気の温度よりも高くなる。そして、光学装置44の温度が所定温度以上となった場合に、光源ランプ416の駆動を停止しているので、光学装置44を構成する部品の温度は常温まで徐々に低下するものの、光学装置44を構成する部品の温度が、光学装置44周辺の空気の温度よりも低くなってしまうことがない。従って、これにより、光学装置44を構成する部品表面への結露の発生を防止することができる。
また、リアプロジェクタを光源ランプ416の後段に配置された遮光板の開度を調整することで、光源ランプ416から射出された光量を調整する調整部を備えたものとし、制御部で遮光板の開度を調整してもよい。メインスイッチMを切った直後から、遮光板を徐々に閉めていき、光源ランプ416から照射される光量を徐々に低下させて、光学装置44が所定温度に達した場合に、遮光板を完全に閉めるとともに、光源ランプ416の駆動を停止させる。この場合にも、図18のグラフに示すような温度カーブが描かれる。
さらに、前記実施形態では、密閉空間Sを形成する隔壁63は、断熱材によって形成されているとしたが、本発明はこれに限らない。例えば、冷却ユニット62から、シロッコファン61を介して、冷却対象である光学装置44に送風される冷却空気の流路のみが、断熱材で形成された隔壁63によって形成される構成としてもよい。
また、この構成に加えて、光学装置44から冷却ユニット62に流通する冷却空気の流路を形成する隔壁63は、熱伝導性材料によって形成される構成としてもよい。さらに、この熱伝導性部材における壁面、特に、密閉空間S内側の壁面に、密閉空間S外側への放熱を促進するフィン状部材を設けてもよい。この場合、熱伝導材料としては、アルミ等の金属を挙げることができ、また、フィン状部材としては、ヒートシンクを挙げることができる。
このような構成とすれば、光学装置44を冷却した空気の温度が、密閉空間S外部の空気の温度より高い場合に、密閉空間S外部に、光学装置44の冷却に供された空気の熱を放熱することができるので、冷却装置60による光学装置44の冷却効率を向上することができる。なお、光学装置44の冷却に供された空気の温度が、密閉空間S外部の空気の温度より低い場合は、前記実施形態のように、断熱材で形成された隔壁63により密閉空間Sを形成すれば、前述のように、温度の高い外部の空気との熱交換が起こりにくくなるので、冷却装置60による冷却効率を向上することができる。
前記各実施形態では、第2の冷却流路52は、ミラーケース12内を循環する流路としたが、本発明はこれに限らず、リアプロジェクタ10外部に開口する排気口を新たに設けて、冷却ユニット62の高温部6213を冷却した空気をリアプロジェクタ10外部に排気する流路として形成してもよい。
図19には、前記実施形態における第2の冷却流路52の変形である第2の冷却流路52Aを示す図である。
図19に示すように、下部キャビネット31の側部パネル33(図2)には、吸気口331の上部に排気口332が形成されている。この排気口332の形成位置は、ダクト25の形成位置に対応する。また、ダクト25を形成する底面部24には、開口部24Bが形成されておらず、ダクト25は、排気口332によって、リアプロジェクタ10外部に開口している。
このような構成により、前述のペルチェ素子621の高温部6213を冷却した空気の流路である第2の冷却流路52Aは、この高温部6213に設けられた軸流ファン625によって、ダクト25内を流通し、排気口332から、リアプロジェクタ10外部に排気される。
このような構成によれば、高温部6213を冷却し高温となった空気を、リアプロジェクタ10外部に素早く排気できるので、高温部6213の冷却効率を向上することができ、ひいては、冷却装置60による光学装置44の冷却効率を向上することができる。
さらに、前記各実施形態では、光学装置本体45は、光学部品441,443,444のほかに、保持枠451、パネルフレーム452,453、固定板454、熱伝導板455,456およびヒートシンク457を備え、液晶パネル441および射出側偏光板443で発生する熱の放熱を促進する構造としたが、本発明は、このような構造に限らない。すなわち、光学装置本体45として、光学部品441,443,444を備えていれば、他の構成は問わない。例えば、ヒートシンク457を設けない構造としてもよい。なお、前記実施形態で示した光学装置本体45の構造であれば、液晶パネル441および射出側偏光板443の熱を効率良く放熱することができるので、光学装置本体45の機能を損なうことを防ぐことができ、また、冷却装置60による冷却効果を向上することができる。
また、前記各実施形態では、光学装置44周辺の空気を冷却する冷却部として、ペルチェ素子621を採用したが、これには限られない。
さらに、前記実施形態では、3つの光変調装置を用いたリアプロジェクタを採用したが、これに限らず、例えば、1つの光変調装置のみを用いたリアプロジェクタ、2つの光変調装置を用いたリアプロジェクタ、または4つ以上の光変調装置を用いたリアプロジェクタとしてもよい。
また、前記実施形態では、リアプロジェクタを採用したが、本発明はこれに限らず、筐体外部に拡大投射するフロント投射式プロジェクタに採用してもよい。
本発明は、本発明は、リアプロジェクタや、フロント投射式プロジェクタの光学装置の結露防止に利用することができる。
本発明の第一実施形態に係るリアプロジェクタの正面側斜視図。 前記実施形態におけるリアプロジェクタの背面側斜視図。 前記実施形態におけるリアプロジェクタの内部構造を示す図。 前記実施形態におけるミラーケースを正面側から見た斜視図。 前記実施形態における下部キャビネットの正面側斜視図。 図4に示す上部キャビネットと図5に示す下部キャビネット31とを組み合わせた図。 前記実施形態における光学ユニットを模式的に示す図。 前記実施形態における光学装置本体を示す図。 前記実施形態における第1の冷却流路および第2の冷却流路を示す図。 前記実施形態における冷却装置を模式的に示す図。 前記実施形態における第3の冷却流路を示す図。 前記実施形態における制御部を示すブロック図。 従来のプロジェクタのメインスイッチを切った後の光学装置及び光学装置周辺の空気の温度の推移を示す図。 前記実施形態の結露防止構造の作用を示すフローチャート。 前記実施形態のリアプロジェクタのメインスイッチを切った後の光学装置及び光学装置周辺の空気の温度の推移を示す図。 本発明の第二実施形態にかかる結露防止構造の作用を示すフローチャート。 前記実施形態のリアプロジェクタのメインスイッチを切った後の光学装置及び光学装置周辺の空気の温度の推移を示す図。 本発明の変形例におけるメインスイッチを切った後の光学装置及び光学装置周辺の空気の温度の推移を示す図。 前記実施形態の変形例を示す図。
符号の説明
10…リアプロジェクタ(プロジェクタ)、44…光学装置、46…投射レンズ(投射光学系)、61…シロッコファン、65…温度センサ、71…光源ランプ駆動制御部、73…ペルチェ素子駆動制御部、74…ファン駆動制御部、416…光源ランプ、441…液晶パネル(光変調装置)、444…クロスダイクロイックプリズム(色合成光学装置)、621…ペルチェ素子(熱電変換素子)、651…温度センサ(第一温度検出部)、653…温度センサ(第二温度検出部)、M…メインスイッチ

Claims (6)

  1. 光源と、この光源から射出された光束を画像情報に応じて変調する光変調装置、及びこの光変調装置からの色光を合成する色合成光学装置を有する光学装置と、この光学装置から射出された光学像を投射する投射光学系とを備えるプロジェクタであって、
    前記光学装置を冷却するために、光学装置に送風される光学装置周辺の流体を冷却する冷却部と、
    前記光学装置の温度を検出する第一温度検出部と、
    前記光学装置周辺の前記流体温度を検出する第二温度検出部と、
    メインスイッチを切り、光源及び光学装置の駆動を停止した後、第二温度検出部で検出される温度が、第一温度検出部で検出される温度以下となる状態を維持しながら、両温度が常温付近まで達するように、前記冷却部を駆動制御する制御部とを備えることを特徴とするプロジェクタ。
  2. 請求項1に記載のプロジェクタであって、
    前記冷却部は、対向配置される一対の伝熱板間に熱電変換材料が介装され、この熱電変換材料に電圧を印加することで、一方の伝熱板が低温部、他方の伝熱板が高温部となる熱電変換素子を含み、
    低温部となる伝熱板を前記光学装置を冷却する流体の流路に面して設けることにより構成されることを特徴とするプロジェクタ。
  3. 請求項2に記載のプロジェクタであって、
    前記制御部は、前記第一温度検出部で検出される温度カーブに、前記第二温度検出部で検出される温度カーブが倣うように、前記熱電変換素子への印加電圧の制御を行うことを特徴とするプロジェクタ。
  4. 光源と、この光源から射出された光束を画像情報に応じて変調する光変調装置、及びこの光変調装置からの色光を合成する色合成光学装置を有する光学装置と、この光学装置から射出された光学像を投射する投射光学系とを備えるプロジェクタであって、
    前記光学装置を冷却するために、光学装置に送風される光学装置周辺の流体を冷却する冷却部と、
    前記光学装置の温度を検出する第一温度検出部と、
    前記光学装置周辺の前記流体温度を検出する第二温度検出部と、
    メインスイッチを切り、前記冷却部及び光学装置の駆動を停止した後、第二温度検出部で検出される温度が、第一温度検出部で検出される温度以下となる状態を維持しながら、両温度が常温付近まで達するように、前記光源の光学装置への照射を制御する制御部を備えることを特徴とするプロジェクタ。
  5. 請求項4に記載のプロジェクタにおいて、
    前記制御部は、一定の光量で光源を駆動させ、光学装置が所定温度以上となった場合に、光源の駆動を停止させることを特徴とするプロジェクタ。
  6. 請求項4に記載のプロジェクタにおいて、
    前記光源は、印加電圧に応じて光量が変化する発光管を有し、
    前記制御部は、この発光管に対する印加電圧の制御を行うことを特徴とするプロジェクタ。
JP2003353657A 2003-10-14 2003-10-14 プロジェクタ Withdrawn JP2005121712A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003353657A JP2005121712A (ja) 2003-10-14 2003-10-14 プロジェクタ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003353657A JP2005121712A (ja) 2003-10-14 2003-10-14 プロジェクタ

Publications (1)

Publication Number Publication Date
JP2005121712A true JP2005121712A (ja) 2005-05-12

Family

ID=34611883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003353657A Withdrawn JP2005121712A (ja) 2003-10-14 2003-10-14 プロジェクタ

Country Status (1)

Country Link
JP (1) JP2005121712A (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007334039A (ja) * 2006-06-15 2007-12-27 Ulvac Japan Ltd 光源装置及びこれを用いた基板の貼り合わせ方法
JP2008170774A (ja) * 2007-01-12 2008-07-24 Sony Corp 投射型表示装置およびリアプロジェクションテレビジョン装置
KR100904659B1 (ko) 2007-09-17 2009-06-25 (주)보성전자 빔프로젝터의 온/오프 상태확인 및 제어장치
JP2009300947A (ja) * 2008-06-17 2009-12-24 Sanyo Electric Co Ltd 投写型映像表示装置
US7815315B2 (en) 2006-06-15 2010-10-19 Seiko Epson Corporation Cooling device and projector
US7841721B2 (en) 2006-08-31 2010-11-30 Seiko Epson Corporation Projector with a sealed structure having an air-circulation path
EP2284607A1 (en) 2009-07-31 2011-02-16 Seiko Epson Corporation Projector and Control Method
US7926953B2 (en) 2006-06-15 2011-04-19 Seiko Epson Corporation Projector with sealed structure having air circulation path
US8007113B2 (en) 2007-11-29 2011-08-30 Seiko Epson Corporation Projector
JP2016129475A (ja) * 2015-01-06 2016-07-14 三菱電機株式会社 電力供給システム

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007334039A (ja) * 2006-06-15 2007-12-27 Ulvac Japan Ltd 光源装置及びこれを用いた基板の貼り合わせ方法
US7815315B2 (en) 2006-06-15 2010-10-19 Seiko Epson Corporation Cooling device and projector
US7926953B2 (en) 2006-06-15 2011-04-19 Seiko Epson Corporation Projector with sealed structure having air circulation path
US7841721B2 (en) 2006-08-31 2010-11-30 Seiko Epson Corporation Projector with a sealed structure having an air-circulation path
JP2008170774A (ja) * 2007-01-12 2008-07-24 Sony Corp 投射型表示装置およびリアプロジェクションテレビジョン装置
KR100904659B1 (ko) 2007-09-17 2009-06-25 (주)보성전자 빔프로젝터의 온/오프 상태확인 및 제어장치
US8007113B2 (en) 2007-11-29 2011-08-30 Seiko Epson Corporation Projector
JP2009300947A (ja) * 2008-06-17 2009-12-24 Sanyo Electric Co Ltd 投写型映像表示装置
EP2284607A1 (en) 2009-07-31 2011-02-16 Seiko Epson Corporation Projector and Control Method
JP2016129475A (ja) * 2015-01-06 2016-07-14 三菱電機株式会社 電力供給システム

Similar Documents

Publication Publication Date Title
US7926953B2 (en) Projector with sealed structure having air circulation path
US7976171B2 (en) Projector cooling system with time dependent temperature threshold
US6805446B2 (en) Rear projector
KR100643977B1 (ko) 광학 장치 및 이 광학 장치를 구비한 프로젝터
US6793343B2 (en) Projector provided with cooling mechanism
JP2005121250A (ja) 冷却装置およびリアプロジェクタ
JP4046119B2 (ja) 照明装置、プロジェクタ
US10462436B2 (en) Projector
JP2005134858A (ja) 光学装置及びリアプロジェクタ
US6568813B1 (en) Projector having an upper cooling fan
WO2005064397A1 (ja) 光学装置、およびプロジェクタ
TWI418921B (zh) Projectors and control methods
JP2006208488A (ja) リアプロジェクタ
JP2018205462A (ja) プロジェクタ
JP2005121712A (ja) プロジェクタ
JP2016200657A (ja) プロジェクター
JP2005338236A (ja) プロジェクタ
JP2005274731A (ja) 投写型映像表示装置
JP4466147B2 (ja) 光学装置およびプロジェクタ
JP2009042329A (ja) 画像投射装置
JP2006196600A (ja) 電子回路モジュール、および電子機器
JP2005115220A (ja) プロジェクタ
JP2005121249A (ja) 冷却装置およびリアプロジェクタ
JP2007206604A (ja) プロジェクタ
JP3506109B2 (ja) プロジェクタ

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070109