JP2005121611A - Optical probe and manufacturing method for the same - Google Patents

Optical probe and manufacturing method for the same Download PDF

Info

Publication number
JP2005121611A
JP2005121611A JP2003359744A JP2003359744A JP2005121611A JP 2005121611 A JP2005121611 A JP 2005121611A JP 2003359744 A JP2003359744 A JP 2003359744A JP 2003359744 A JP2003359744 A JP 2003359744A JP 2005121611 A JP2005121611 A JP 2005121611A
Authority
JP
Japan
Prior art keywords
optical probe
optical
light
surface roughness
optical waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003359744A
Other languages
Japanese (ja)
Other versions
JP4280599B2 (en
JP2005121611A5 (en
Inventor
Yuichi Miyoshi
裕一 三好
Yoshihiko Kikuchi
良彦 菊地
Shinya Tokito
紳也 時任
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Canon Chemicals Inc
Original Assignee
Canon Inc
Canon Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc, Canon Chemicals Inc filed Critical Canon Inc
Priority to JP2003359744A priority Critical patent/JP4280599B2/en
Publication of JP2005121611A publication Critical patent/JP2005121611A/en
Publication of JP2005121611A5 publication Critical patent/JP2005121611A5/ja
Application granted granted Critical
Publication of JP4280599B2 publication Critical patent/JP4280599B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve excitation efficiency, light-collecting efficiency, surface fixed capability of a protein and analysis accuracy of measurement in an optical probe for measuring, based on an optical technique. <P>SOLUTION: The optical probe 1 comprises an optically transparent synthetic resin, and is provided with a cylindrical optical waveguide 2 and a light-entering/exiting part 3 disposed in an upper part, having a convex lens profile and entering and exiting a light. A flange 4 is provided between the optical waveguide 2 and the light entering/exiting/ part 3 and is used for mounting the optical probe 1 to a measuring apparatus. The optical probe 1 has a controlled surface roughness at a particular region on a surface of the optical waveguide 2, and the surface roughness is made small at the light-entering/exiting sides, and is made large at the tip. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、光学的手法に基づく分析測定装置に用いる光学プローブ及びその製造方法に関するものである。   The present invention relates to an optical probe used in an analytical measurement apparatus based on an optical technique and a method for manufacturing the same.

試料による光の吸収又はその結果生ずる蛍光を、分析手法として利用することは様々な分野において行われ、その多くは光透過性の容器(セル)に試料を入れて、容器の外側から観測を行うものである。しかし、別の手法として光透過性の材料から成る光導波路を光学プローブとし、光を光学プローブに導入し或いは光学プローブから収集して、光学プローブの表面を光学的に観測することも屡々行われている。このような光学プローブは、試料や反応溶液に接触させ、同時に又はその後に適当な光学系と接続され、試料による吸収又は蛍光がモニタされる。   Absorption of light by a sample or the resulting fluorescence is used as an analytical technique in various fields, and most of them are placed in a light-transmitting container (cell) and observed from outside the container. Is. However, as another method, an optical waveguide made of a light-transmitting material is used as an optical probe, and light is introduced into the optical probe or collected from the optical probe to optically observe the surface of the optical probe. ing. Such an optical probe is brought into contact with a sample or a reaction solution, and simultaneously or subsequently connected to an appropriate optical system, and absorption or fluorescence by the sample is monitored.

このうち、一般に蛍光を用いる方法はより高感度であり、特に光学プローブ内の光を内部全反射光とし、その際に光学プローブ表面に発生するエバネッセント波を励起光とする方法は、光学プローブ表面での現象を選択的に観測することができるため、例えば抗原抗体反応に基づく免疫測定法を高感度に行うために用いられる。板状や円柱状の細長い光学プローブは、単位体積当りの内部全反射回数を多くすることが可能であり、効率の良い励起を行うことができる。   Of these, the method using fluorescence is generally more sensitive, and in particular, the method using the light in the optical probe as total internal reflection light and the evanescent wave generated on the optical probe surface at that time as the excitation light, Can be selectively observed, and is used, for example, for highly sensitive immunoassay based on antigen-antibody reaction. A plate-like or columnar elongated optical probe can increase the number of total internal reflections per unit volume, and can perform efficient excitation.

板状の所謂スラブ型の光学プローブを用いる形態は研究用に多用され、数多くの例があるが、特許文献1のようにセルの壁面を兼ねているものは、利便性が高く有用である。円柱状の光学プローブを用いる形態としては、光源又は検出器に直結した光学ファイバの一部をセンサとして用いるものもあるが、特許文献2〜4のようにセンサとして使用する部分が物理的に独立したものがある。   A form using a plate-like so-called slab type optical probe is frequently used for research, and there are many examples. However, the one that also serves as a cell wall as in Patent Document 1 is highly convenient and useful. As a form using a cylindrical optical probe, there is a type in which a part of an optical fiber directly connected to a light source or a detector is used as a sensor. However, as in Patent Documents 2 to 4, a part used as a sensor is physically independent. There is what I did.

以上の例は、装置に対して着脱可能な光学プローブであり、これらは使い捨て性やコストにより、合成樹脂を射出成形などの成形法で加工して作製されることが多い。この際に、射出成形用の型又は型に組み込む駒は、所望の形状に合わせて下穴を加工機で切削し、その後に内表面を研磨して作製する場合が一般的である。   The above examples are optical probes that can be attached to and detached from the apparatus, and these probes are often manufactured by processing a synthetic resin by a molding method such as injection molding due to disposableness and cost. In this case, the injection molding die or the piece incorporated in the die is generally manufactured by cutting the pilot hole with a processing machine in accordance with a desired shape and then polishing the inner surface.

特開昭63−273042号公報JP-A 63-273042 特開平5−5742号公報JP-A-5-5742 米国特許4582809号公報US Pat. No. 4,582,809 米国特許6136611号公報US Pat. No. 6,136,611

しかし上記の型による作製方法では、型内の表面粗さ即ち光学プローブの表面粗さを任意に設定することは困難である。そのため、表面粗さは均一な粗さになるか、又は意図しない部分的な表面の粗さのばらつきが生じている。   However, it is difficult to arbitrarily set the surface roughness in the mold, that is, the surface roughness of the optical probe, in the manufacturing method using the mold described above. For this reason, the surface roughness is uniform, or an unintended partial surface roughness variation occurs.

表面の粗さは、内部全反射光が散乱により外部に漏れる原因となり易く、エバネッセント波を選択的に利用する場合には障害となる。しかし、エバネッセント波ではない通常光を利用したほうが励起効率が良い場合もある。   The roughness of the surface tends to cause the total internal reflection light to leak to the outside due to scattering, and becomes an obstacle when the evanescent wave is selectively used. However, there are cases where the pumping efficiency is better when normal light that is not evanescent waves is used.

また、光学プローブが集光系を兼ねている場合には、蛍光が光学プローブの表面で反射されてしまうことを抑制する効果も期待できる。更に、適度な表面粗さは光学プローブ表面にタンパクなどを固定する場合の助けとなり得る。   In addition, when the optical probe also serves as a condensing system, an effect of suppressing the reflection of fluorescence on the surface of the optical probe can be expected. Furthermore, moderate surface roughness can be helpful when immobilizing proteins or the like on the optical probe surface.

本発明の目的は、上述の問題点を解消し、抗原に対する表面固定能力を向上させ効果的な測定が可能な光学プローブ及びその製造方法を提供することにある。   An object of the present invention is to provide an optical probe capable of solving the above-described problems, improving the surface immobilization ability against an antigen, and performing effective measurement, and a method for manufacturing the same.

上記目的を達成するための本発明に係る光学プローブは、光学的透明材から成り光入出射部と光導波部とを有し、該光導波部の表面の特定個所を所定の表面粗さにしたことを特徴とする。   In order to achieve the above object, an optical probe according to the present invention is made of an optically transparent material, has a light incident / exit portion and an optical waveguide portion, and a specific portion of the surface of the optical waveguide portion has a predetermined surface roughness. It is characterized by that.

また、本発明に係る光学プローブの製造方法は、光学的透明材から成り光入出射部と光導波部とを有し、前記光導波部の表面の特定個所を所定の表面粗さにした光学プローブと同形状のマスタを作製し、該マスタを用いて電解鋳造により加工した駒を組み込んだ金型により射出成形により製造することを特徴とする。   The method of manufacturing an optical probe according to the present invention includes an optical transparent member made of an optically transparent material, having a light incident / exiting portion and an optical waveguide portion, and having a predetermined surface roughness at a specific location on the surface of the optical waveguide portion. A master having the same shape as the probe is manufactured, and manufactured by injection molding using a mold incorporating a piece processed by electrolytic casting using the master.

更に、本発明に係る光学プローブの製造方法は、光学的透明材から成り光入出射部と光導波部とを有する光学プローブの製造に当り、射出成形において保持圧力を制御することにより、前記光導波部の先端側の表面粗さを大きくすることを特徴とする。   Furthermore, the manufacturing method of the optical probe according to the present invention is the manufacturing of an optical probe made of an optically transparent material and having a light incident / exit part and an optical waveguide part. The surface roughness of the front end side of the wave portion is increased.

本発明の光学プローブは、光導波部の表面の特定個所に所定の表面粗さを備えることにより、目的に応じて励起効率、蛍光集光効率、タンパク等の表面固定能力を向上させることができ、これらにより光学的手法、特に蛍光法に基づく分析測定精度の向上を図ることができる。   The optical probe of the present invention has a predetermined surface roughness at a specific location on the surface of the optical waveguide section, so that the excitation efficiency, fluorescence condensing efficiency, surface fixing ability of proteins, etc. can be improved according to the purpose. Thus, it is possible to improve the accuracy of analysis and measurement based on an optical method, particularly a fluorescence method.

また、光学プローブの製造方法によれば、自在に光導波部の表面粗さに変化を付した光学プローブが得られる。   Further, according to the method for manufacturing an optical probe, an optical probe in which the surface roughness of the optical waveguide portion is freely changed can be obtained.

本発明に係る光学プローブは、前記表面粗さは前記光導波部の入出射側では小さく、先端側では大きくしたことを特徴とする。   The optical probe according to the present invention is characterized in that the surface roughness is small on the incident / exit side of the optical waveguide section and large on the distal end side.

本発明に係る光学プローブは、前記光導波部は円柱状又は板状としたことを特徴とする。   The optical probe according to the present invention is characterized in that the optical waveguide section has a cylindrical shape or a plate shape.

本発明に係る光学プローブは、測定装置に対する取付部を設け、該取付部により前記測定装置に着脱自在としたことを特徴とする。   The optical probe according to the present invention is characterized in that a mounting portion for the measuring device is provided, and the mounting portion is detachable from the measuring device.

図1は実施例1の光学プローブ1の側面図であり、光学プローブ1は例えば光学的に透明な合成樹脂材等から成り、主として円柱状の光導波部2と、上部に光を入出射するための凸レンズを有する光入出射部3とから成り、光導波部2と光入出射部3の間には後述する測定装置に装着する際に取付部として使用されるフランジ4が形成されている。   FIG. 1 is a side view of the optical probe 1 according to the first embodiment. The optical probe 1 is made of, for example, an optically transparent synthetic resin material, and mainly enters and exits a cylindrical optical waveguide portion 2 and an upper portion thereof. And a light incident / exit part 3 having a convex lens, and a flange 4 is formed between the optical waveguide part 2 and the light incident / exit part 3 to be used as an attachment part when mounted on a measuring apparatus to be described later. .

この光学プローブ1においては、光導波部2の表面の特定個所に制御された表面粗さを有しており、この表面粗さは光入出射側でより小さく、先端側でより大きくすることが好ましい。   This optical probe 1 has a controlled surface roughness at a specific location on the surface of the optical waveguide section 2, and this surface roughness can be smaller on the light incident / exit side and larger on the tip side. preferable.

光学プローブ1に用いる樹脂材料については、特に限定するものではないが、ポリスチレン、ポリメチルメタクリレート、ポリカーボネートなどが挙げられ、離型剤や外部潤滑剤は、支障のない範囲で用いてもよい。光学プローブ1は光散乱要素を意図的に制御しなければならないので、樹脂中の塵埃や、気泡の原因になる水分など、他の光散乱要素となるものの流入には十分に注意を払う必要がある。   Although it does not specifically limit about the resin material used for the optical probe 1, Polystyrene, polymethylmethacrylate, a polycarbonate etc. are mentioned, You may use a mold release agent and an external lubricant in the range which does not have a trouble. Since the optical probe 1 must intentionally control the light scattering element, it is necessary to pay sufficient attention to the inflow of other light scattering elements such as dust in the resin and moisture that causes bubbles. is there.

光学プローブ1は励起光を内部全反射光として表面に発生させたエバネッセント波による蛍光法に多く用いられる。このような用法に対しては、光学プローブ1の表面の平滑性を最大限に確保することが一般的である。表面の傷や粗さによる光散乱要因は、損失又は迷光となる。   The optical probe 1 is often used in a fluorescence method using an evanescent wave in which excitation light is generated on the surface as internally reflected light. For such usage, it is common to ensure the maximum smoothness of the surface of the optical probe 1. Light scattering factors due to surface scratches and roughness are loss or stray light.

しかし、若干の散乱が支障のない範囲で感度を向上させる場合があることを、本発明者らは見い出している。それは、抗体により抗原を捕捉後に、この抗原に標識抗体を結合する細菌などのサンドイッチ法測定において見られる。その原理は詳細に解明されていないが、図2の説明図は想定される概念を示している。なお、図2は模式的なものであり、細菌、抗体、表面粗さなどの相対的大きさは厳密に描かれていない。   However, the present inventors have found that the sensitivity may be improved within a range where some scattering does not hinder. It is found in sandwich method measurements, such as bacteria that bind the labeled antibody to this antigen after it has been captured by the antibody. The principle has not been elucidated in detail, but the explanatory diagram of FIG. 2 shows the assumed concept. Note that FIG. 2 is schematic, and relative sizes such as bacteria, antibodies, and surface roughness are not drawn strictly.

エバネッセント波は表面から数100nmの範囲Dにしか有効な染み出しがないので、これによる励起は1μmほどもあり、捕捉抗体Eにより捕捉された細菌Fにおいては、通常では(a)に示すように、光導波部2の近くに存在する標識抗体Gしか励起できない。しかし、(b)に示すように光導波部2の表面での粗さによる散乱に由来する漏れ光Hや回折光Iが混在する場合には、これらの光が細菌Fの遠方側まで到達し、多くの標識抗体Gを励起することが可能になると推測される。この際に、結合していない遊離の標識抗体Gや蛍光性の夾雑物を励起してしまう可能性があるが、これらは洗浄操作により軽減することができる。   Since the evanescent wave has an effective exudation only in the range D of several hundreds of nanometers from the surface, the excitation by this is as much as 1 μm. In the bacteria F captured by the capture antibody E, usually, as shown in (a) Only the labeled antibody G existing near the optical waveguide 2 can be excited. However, as shown in (b), when leakage light H and diffracted light I derived from scattering due to roughness on the surface of the optical waveguide 2 are mixed, these lights reach the far side of the bacteria F. It is assumed that many labeled antibodies G can be excited. At this time, unbound free labeled antibody G or fluorescent impurities may be excited, but these can be reduced by a washing operation.

このように表面粗さによる散乱光を積極的に用いれば、光学プローブ1の表面から離れた対象まで励起することは可能である。しかし、散乱光は漏れ光Hや回折光Iであり、励起光の光学プローブ1内の伝播を減衰させることになり、光学プローブ1における励起が可能な表面積は減少することになって、感度を低下させる。   In this way, if the scattered light due to the surface roughness is positively used, it is possible to excite an object far from the surface of the optical probe 1. However, the scattered light is leakage light H or diffracted light I, which attenuates the propagation of the excitation light in the optical probe 1 and reduces the surface area that can be excited in the optical probe 1. Reduce.

このことは、特に光導波部2の入出射側に近い表面において問題であり、入出射側付近で外部に光を漏らし過ぎると、その先の部分が光量不足で測定に寄与しなくなる。従って、表面粗さは、(イ)適当な粗さ成分を均一に分布させるか、(ロ)先端側に入出射側よりも粗い面を用意するという形態で与えることが望ましい。   This is a problem particularly on the surface near the incident / exit side of the optical waveguide section 2. If light is leaked excessively in the vicinity of the incident / exit side, the portion beyond that does not contribute to the measurement due to insufficient light quantity. Therefore, it is desirable to provide the surface roughness in the form of (a) distributing an appropriate roughness component uniformly or (b) providing a surface rougher than the incident / exit side on the tip side.

図3は(ロ)の形態における励起光の経路を示した一例であり、入出射側では内部全反射が主であり、先端側に向かうほど外部に通常光として漏れる割合が高くなる。   FIG. 3 shows an example of the path of the excitation light in the form (b). The internal total reflection is mainly on the incident / exit side, and the rate of leakage as normal light increases toward the distal end side.

このような表面粗さの形態は、励起と集光を兼ねる光学プローブ1に対して有効である。光学プローブ1において励起光の伝播と放出だけを行い、測光を光学プローブ1の外部の例えば横方向から行うタイプの光学系に対しては、粗い表面からの散乱光が迷光となるため、必ずしも有効ではない。また、集光を兼ねる光学プローブ1においては、光学プローブ1の表面の粗さが蛍光の反射を抑制し、光学プローブ1内部への蛍光の取り込みを高める。   Such a form of surface roughness is effective for the optical probe 1 that serves both for excitation and light collection. For an optical system that only propagates and emits excitation light in the optical probe 1 and performs photometry from, for example, the lateral direction outside the optical probe 1, scattered light from a rough surface becomes stray light, so it is not always effective. is not. Moreover, in the optical probe 1 that also serves as a condensing light, the roughness of the surface of the optical probe 1 suppresses the reflection of the fluorescence, and increases the uptake of fluorescence into the optical probe 1.

表面粗さの大きさは、使用する光の波長が目安であり、適度な散乱を得る目的としては、光の波長と同程度又は稍々大きいものが望ましい。波長よりも小さい粗さは散乱には殆ど寄与しないが、タンパクなどの固定における保持力を向上させるためには好適である。また、大き過ぎる粗さは、その点に漏れ光が集中してしまい、全体的な効率を低下させてしまう虞れがある。   The surface roughness is based on the wavelength of light to be used, and for the purpose of obtaining appropriate scattering, it is desirable that the surface roughness be approximately the same as or larger than the wavelength of light. Roughness smaller than the wavelength hardly contributes to scattering, but is suitable for improving the retention in fixing proteins. On the other hand, if the roughness is too large, the leakage light is concentrated at that point, which may reduce the overall efficiency.

光学プローブ1の光導波部2に表面粗さを所望の位置と量で与える方法としては、先ず成形品に対して二次的に与える方法が考えられる。例えば、侵食性を有する溶液に浸漬する方法、研磨、サンドブラストなどが挙げられる。しかし、これらの二次的方法は樹脂製光学プローブ1に対しては材料への損傷が大きい。また、個々の光学プローブ1に二次的方法を行うことは生産性が低く、成形加工時に表面粗さを同時に制御することがより望ましい。   As a method of giving the surface roughness to the optical waveguide portion 2 of the optical probe 1 in a desired position and amount, first, a method of secondarily giving the molded product is conceivable. For example, a method of immersing in an erodible solution, polishing, sandblasting, and the like can be given. However, these secondary methods cause significant damage to the material for the resin optical probe 1. In addition, performing a secondary method on each optical probe 1 is low in productivity, and it is more desirable to simultaneously control the surface roughness during molding.

光学プローブ1の工業的な製造に際しては、特定個所に表面粗さを設けた光学プローブ1と同形状のマスタを作製し、このマスタを用いて電解鋳造加工を行った駒を組み込んだ金型により成形することが例として挙げられる。   In industrial production of the optical probe 1, a master having the same shape as the optical probe 1 having a surface roughness at a specific location is manufactured, and a die that incorporates a piece subjected to electrolytic casting using the master is used. An example is molding.

成形時に表面粗さを所望の位置と量で与えるためには、一般的には型に組み込む駒の内面に施すことになるが、径が小さく深さがあり、光導波部2の長さが長いような穴の内面の微細加工を行い、更に表面粗さを測定することは困難である。従って、成形品の光学プローブ1と同形状の原型つまりマスタを作製し、このマスタに所定形状と所定の表面粗さを与えておき、その後に駒に電解鋳造加工によって転写する方法が有効である。この場合に、マスタの表面加工は外側から行われるので、様々な装置、手法を容易に駆使することが可能となる。   In order to give the surface roughness at a desired position and amount at the time of molding, it is generally applied to the inner surface of the piece incorporated in the mold, but the diameter is small and the depth is long, and the length of the optical waveguide section 2 is long. It is difficult to finely process the inner surface of the hole and measure the surface roughness. Therefore, a method is effective in which a master, that is, a master having the same shape as the optical probe 1 of a molded product is prepared, a predetermined shape and a predetermined surface roughness are given to the master, and then transferred to the piece by electrolytic casting. . In this case, since the surface processing of the master is performed from the outside, various devices and methods can be easily used.

図4はマスタの作製から駒の作製までの2つの工程例を示している。マスタ11の材質は鉄、SUSなどの金属材料、超硬、セラミック等の素材が使用できる。先ず、(a)に示すように素材からマスタ11をバイト12等により機械加工で作製し、それを(b)に示すように所望の表面粗さまで研磨する。研磨剤の種類や粗さを磨く場所で変えたり、磨きの圧量を変えることにより、研磨だけで任意の粗さを与える場合や、シボ加工やホーニング加工で任意の粗さを与えることができる。   FIG. 4 shows two process examples from master production to piece production. The material of the master 11 can be a metal material such as iron or SUS, a material such as cemented carbide or ceramic. First, as shown in (a), a master 11 is made from a material by machining with a cutting tool 12 or the like, and is polished to a desired surface roughness as shown in (b). By changing the type and roughness of the abrasive at the location where it is polished, or by changing the amount of polishing pressure, it is possible to give any roughness only by polishing, or any roughness can be given by embossing or honing. .

別の方法としては、マスタ11を一回り小さく機械加工で作製し、このマスタは(c)に示すように、化学ニッケルメッキや銅系のメッキ層13を付着し、超精密旋削加工機に取り付け、(d)に示すようにダイヤバイト14等で鏡面切削加工を行う方法がある。その際に、任意の場所でバイト送りピッチやバイトの加工量等を変えることで、表面粗さを自在に変化させることが可能である。   As another method, the master 11 is made a little smaller by machining. As shown in (c), the master 11 is attached with a chemical nickel plating or copper plating layer 13 and attached to an ultra-precision turning machine. , (D), there is a method of performing mirror cutting with a diamond tool 14 or the like. At that time, it is possible to freely change the surface roughness by changing the tool feed pitch, the processing amount of the tool, etc. at an arbitrary place.

上記の何れかの方法で作製されたマスタ11を、非接触の粗さ計や形状測定器などで測定評価を行いながら表面粗さの調整をする。その後に(e)に示すようにマスタ11を陰極として電鋳液中で電解鋳造を行うことにより、成形に使用できる穴の開いた電鋳駒15を得る。電解鋳造としては、ニッケル電解鋳造や銅電解鋳造が挙げられる。(f)に示すように作製された駒15の内表面は所望の粗さに仕上げられており、外形加工等を行ってから金型に組み込まれ、射出成形などの成形により成形品の光学プローブ1を得る。   The surface roughness is adjusted while measuring and evaluating the master 11 produced by any one of the above methods using a non-contact roughness meter or a shape measuring instrument. Thereafter, as shown in (e), electrocasting is performed in an electroforming liquid using the master 11 as a cathode, thereby obtaining an electroformed piece 15 having a hole that can be used for molding. Examples of the electrolytic casting include nickel electrolytic casting and copper electrolytic casting. The inner surface of the piece 15 produced as shown in (f) is finished to a desired roughness, and after being subjected to outer shape processing and the like, it is assembled into a mold and molded into an optical probe by molding such as injection molding. Get one.

実際の製造に当っては、マスタ11はNC旋盤加工機により、SUS製の丸材素材をバイト12で旋削加工して所定の形状のものを得た。次に、形状を狂わせることなく、マスタ11表面を研磨した。即ち、紙やすりの粗いものから順に細かくしてゆき、最終的にはダイヤペーストを付着した研磨布で研磨した。この際に、研磨工程中に非接触の粗さ計で評価をしながら、光導波部2の入射部側と先端側の表面粗さを調整した。この調整方法はダイヤペーストの粗さ、及び研磨布の押し付け圧力により行った。   In actual manufacture, the master 11 was turned with a cutting tool 12 from a SUS round material with an NC lathe to obtain a predetermined shape. Next, the surface of the master 11 was polished without changing the shape. That is, the paper was coarsened in order from the coarser one, and finally polished with a polishing cloth to which diamond paste was attached. At this time, the surface roughness on the incident side and the tip side of the optical waveguide 2 was adjusted while evaluating with a non-contact roughness meter during the polishing process. This adjustment method was performed by the roughness of the diamond paste and the pressing pressure of the polishing cloth.

このマスタ11を変形しないように保持して電解鋳造槽に投入し、ニッケル電解鋳造を行った。駒15として十分な厚さのニッケル層が形成されたところで電解鋳造層から取り出し、マスタ11を引き抜いた。駒15の両端加工を行った後に、穴を基準に外形を円筒研削加工機で加工し、射出成形の金型に装填可能な形状とした。   The master 11 was held so as not to be deformed and placed in an electrolytic casting tank, and nickel electrolytic casting was performed. When a nickel layer having a sufficient thickness as the piece 15 was formed, it was taken out from the electrolytic casting layer and the master 11 was pulled out. After both ends of the piece 15 were machined, the outer shape was machined with a cylindrical grinding machine on the basis of the hole, so that it could be loaded into an injection mold.

以上の工程により、光導波部2の個所に因らずに一様な表面粗さ(表面粗さPv=35nm)を有する駒15a、及び個所により表面粗さが異なる2種類の駒15b、15c(入出射側Pv=35nm、先端側Pv=200nmが連続的に変化している)を作製した。   Through the above steps, the piece 15a having a uniform surface roughness (surface roughness Pv = 35 nm) regardless of the location of the optical waveguide section 2, and the two types of pieces 15b, 15c having different surface roughness depending on the location. (Incoming / outgoing side Pv = 35 nm and tip side Pv = 200 nm are continuously changed).

射出成形においては、1点ゲートのコールドランナ方式の金型、及び射出成形機(SG50M、住友重機械工業社製、スクリュー径φ22mm)を使用した。材料はポリスチレン樹脂を80℃、4時間以上乾燥して使用した。これらの3つの駒15a、15b、15cに対し、2種類の保持圧力a、bで成形した成形品の光学プローブ1a、1a、1aの表面粗さPvは、表1に示す通りである。   In the injection molding, a single-point gate cold runner mold and an injection molding machine (SG50M, manufactured by Sumitomo Heavy Industries, Ltd., screw diameter φ22 mm) were used. The material used was a polystyrene resin dried at 80 ° C. for 4 hours or more. Table 1 shows the surface roughness Pv of the optical probes 1a, 1a, 1a of the molded products molded with the two holding pressures a, b for these three pieces 15a, 15b, 15c.

表1
No. 駒の表面粗さ(nm) 保持圧力 成形品の表面粗さ(nm)
[入出射側―先端側] (MPa) [入出射側―先端側]
1a 35―200 a 15―500
1b 35(均一) a 27
1c 35(均一) b 45―220
Table 1
No. Top surface roughness (nm) Holding pressure Surface roughness of molded product (nm)
[Incoming / outgoing side-tip side] (MPa) [Incoming / outgoing side-tip side]
1a 35-200 a 15-500
1b 35 (uniform) a 27
1c 35 (uniform) b 45-220

表1の光学プローブ1a、1b、1cの先端側端面に反射抑制を目的として黒色塗料を塗布し、円柱状部位表面には抗大腸菌O157:H7ポリクローナル抗体を固定した。そして、励起及び測光には図5に示す光学系を用いた。   A black paint was applied to the end faces of the optical probes 1a, 1b, and 1c in Table 1 for the purpose of suppressing reflection, and anti-E. Coli O157: H7 polyclonal antibody was immobilized on the surface of the cylindrical portion. And the optical system shown in FIG. 5 was used for excitation and photometry.

洗浄液は0.5%のポリオキシエチレン(20)ソルビタンモノラウレートを含む0.01Mりん酸緩衝液(pH7.4)を用いた。蛍光標識抗体は抗体にCy5 bisfunctional reactive dye(アマシャムバイオサイエンス社製)を作用させて作製し、洗浄液に2μg/mlで溶解して用いた。検体として、10〜1000000CFU/mlの大腸菌O157:H7を含む溶液を用意し、各光学プローブ1a、1b、1cごとに次のようにして測定を行った。   The washing solution used was 0.01M phosphate buffer (pH 7.4) containing 0.5% polyoxyethylene (20) sorbitan monolaurate. The fluorescence-labeled antibody was prepared by allowing Cy5 bisfunctional reactive dye (Amersham Biosciences) to act on the antibody, and dissolved in the washing solution at 2 μg / ml. A solution containing 10 to 1000000 CFU / ml of E. coli O157: H7 was prepared as a sample, and measurement was performed for each optical probe 1a, 1b, and 1c as follows.

これらの光学プローブ1に対する測定は、光学プローブ1を図5に示す測定ポート21内の挿入部22に挿入し、フランジ4により固定して測定を行った。測定ポート21には、挿入部22に対して送液口23、排液口24が設けられている。   These optical probes 1 were measured by inserting the optical probe 1 into the insertion portion 22 in the measurement port 21 shown in FIG. The measurement port 21 is provided with a liquid supply port 23 and a liquid discharge port 24 with respect to the insertion portion 22.

測定光学系においては、半導体レーザー光源31からの光(635nm)は、レンズ32、ハーフミラー33、レンズ34を通過して光学プローブ1の上方の光入出射部3から入射される。光導波部2において励起された帰還光は、ハーフミラー33で水平方向へ取り出され、フィルタ35、レンズ36を介して分光され、フォトダイオード37で検出される。   In the measurement optical system, light (635 nm) from the semiconductor laser light source 31 passes through the lens 32, the half mirror 33, and the lens 34 and enters from the light incident / exit section 3 above the optical probe 1. The feedback light excited in the optical waveguide unit 2 is extracted in the horizontal direction by the half mirror 33, dispersed through the filter 35 and the lens 36, and detected by the photodiode 37.

測定手順は下記の通りである。
(1)検体溶液1mlを0.1ml/分で測定ポート21内に送液する。
(2)洗浄液2mlを10ml/分で、測定ポート21内に送液する。
(3)標識抗体溶液を測定ポート21内に注入し、5分静置する。
(4)洗浄液2mlを10ml/分で、測定ポート21内に送液する。
(5)測定ポート21内に洗浄液が満たされた状態で、光学系を用いて光学プローブ1に対する励起及び測光する。
(6)測定ポート21内で検体(10倍濃度)に交換し、上記(1)〜(5)を実施する。
The measurement procedure is as follows.
(1) 1 ml of the sample solution is fed into the measurement port 21 at 0.1 ml / min.
(2) 2 ml of the washing solution is fed into the measurement port 21 at 10 ml / min.
(3) The labeled antibody solution is injected into the measurement port 21 and allowed to stand for 5 minutes.
(4) 2 ml of the washing solution is fed into the measurement port 21 at 10 ml / min.
(5) Excitation and photometry of the optical probe 1 are performed using an optical system in a state where the cleaning liquid is filled in the measurement port 21.
(6) The sample (10-fold concentration) is exchanged in the measurement port 21, and the above (1) to (5) are performed.

図6は測定の結果を示し、散乱の起こり易い表面粗さを与えた光学プローブ1aにおいて、低濃度領域で感度が向上している。   FIG. 6 shows the results of the measurement, and the sensitivity is improved in the low concentration region in the optical probe 1a given the surface roughness that is likely to cause scattering.

光学プローブ1の作成において、駒15の内表面粗さを用いない実施例2として、射出成形の成形条件で制御する方法が挙げられ、この方法は円柱状のような細長い形状の成形品に対して有効である。   In the production of the optical probe 1, as a second embodiment in which the inner surface roughness of the piece 15 is not used, there is a method of controlling by molding conditions of injection molding. This method is applied to a long and narrow molded product such as a cylinder. It is effective.

一般に、樹脂を型の穴先端まで完全に充填し、型の表面粗さを転写するには、射出圧量を或る程度高く設定するか、早い速度で樹脂を充填させなければならない。   Generally, in order to completely fill the resin up to the hole tip of the mold and transfer the surface roughness of the mold, it is necessary to set the injection pressure amount to a certain level or to fill the resin at a high speed.

しかし、完全に充填させる成形条件よりも保持圧力を若干下げることにより、溶融樹脂先頭の充填圧力が低くなり、その結果として型の表面粗さよりも成形品の表面を粗くすることが可能である。   However, by slightly lowering the holding pressure from the molding conditions for complete filling, the filling pressure at the beginning of the molten resin is lowered, and as a result, the surface of the molded product can be made rougher than the surface roughness of the mold.

これにより、型のキャビティ側に設定した光学プローブ1の先端側付近の表面に粗さを与えることができる。保持圧力は光学プローブ1の大きさと形状に依存し一義的に決まるものではないが、低過ぎると充填不足のため、全体的に表面粗さが増すことになる。   Thereby, roughness can be given to the surface near the tip side of the optical probe 1 set on the cavity side of the mold. The holding pressure depends on the size and shape of the optical probe 1 and is not uniquely determined. However, if the holding pressure is too low, the entire surface roughness increases due to insufficient filling.

なお、本発明で適用できる光学プローブ1は、図1に示した円柱状の光学プローブ1だけではなく、図7に示すように例えば光学的に透明な樹脂を成形した板状の光学プローブ1’であってもよい。この光学プローブ1’においては底面が光導波部2’となり、底部側面に光入出射部3’が設けられている。なお、Lは試料である。   The optical probe 1 applicable in the present invention is not limited to the cylindrical optical probe 1 shown in FIG. 1, but is also a plate-like optical probe 1 ′ formed by molding, for example, an optically transparent resin as shown in FIG. It may be. In this optical probe 1 ′, the bottom surface is the optical waveguide portion 2 ′, and the light incident / exit portion 3 ′ is provided on the bottom side surface. L is a sample.

実施例における光学プローブの側面図である。It is a side view of the optical probe in an Example. 原理的説明図である。It is a principle explanatory drawing. 光学プローブにおける励起光の経路の説明図である。It is explanatory drawing of the path | route of the excitation light in an optical probe. マスタから駒を作製する工程例の概略図である。It is the schematic of the example of a process which produces a piece from a master. 測定光学系の構成図である。It is a block diagram of a measurement optical system. 実施例における測定結果のグラフ図である。It is a graph of the measurement result in an Example. 板状の光学プローブの断面図である。It is sectional drawing of a plate-shaped optical probe.

符号の説明Explanation of symbols

1、1’ 光学プローブ
2、2’ 光導波部
3、3’ 光入出射部
4 フランジ
11 マスタ
13 メッキ層
15 駒
21 測定ポート
31 半導体レーザー光源
32 ハーフミラー
35 フィルタ
37 フォトダイオード
DESCRIPTION OF SYMBOLS 1, 1 'Optical probe 2, 2' Optical waveguide part 3, 3 'Light incident / exit part 4 Flange 11 Master 13 Plating layer 15 piece 21 Measurement port 31 Semiconductor laser light source 32 Half mirror 35 Filter 37 Photodiode

Claims (6)

光学的透明材から成り光入出射部と光導波部とを有し、該光導波部の表面の特定個所を所定の表面粗さにしたことを特徴とする光学プローブ。   An optical probe comprising an optically transparent material, having a light incident / exiting portion and an optical waveguide portion, and having a specific surface roughness at a specific portion of the surface of the optical waveguide portion. 前記表面粗さは前記光導波部の入出射側では小さく、先端側では大きくしたことを特徴とする請求項1に記載の光学プローブ。   The optical probe according to claim 1, wherein the surface roughness is small on the incident / exit side of the optical waveguide and large on the tip side. 前記光導波部は円柱状又は板状としたことを特徴とする請求項1又は2に記載の光学プローブ。   The optical probe according to claim 1, wherein the optical waveguide portion is formed in a columnar shape or a plate shape. 測定装置に対する取付部を設け、該取付部により前記測定装置に着脱自在としたことを特徴とする請求項1〜3の何れか1つの請求項に記載の光学プローブ。   The optical probe according to any one of claims 1 to 3, wherein a mounting portion for the measuring device is provided, and the mounting portion is detachable from the measuring device. 光学的透明材から成り光入出射部と光導波部とを有し、前記光導波部の表面の特定個所を所定の表面粗さにした光学プローブと同形状のマスタを作製し、該マスタを用いて電解鋳造により加工した駒を組み込んだ金型により射出成形により製造することを特徴とする光学プローブの製造方法。   A master having the same shape as an optical probe, which is made of an optically transparent material, has a light incident / exit portion and an optical waveguide portion, and has a predetermined surface roughness at a specific portion of the surface of the optical waveguide portion, A method of manufacturing an optical probe, wherein the optical probe is manufactured by injection molding using a mold incorporating a piece processed by electrolytic casting. 光学的透明材から成り光入出射部と光導波部とを有する光学プローブの製造に当り、射出成形において保持圧力を制御することにより、前記光導波部の先端側の表面粗さを大きくすることを特徴とする光学プローブの製造方法。   When manufacturing an optical probe made of an optically transparent material and having a light incident / exit section and an optical waveguide section, the surface roughness on the tip side of the optical waveguide section is increased by controlling the holding pressure in injection molding. An optical probe manufacturing method characterized by the above.
JP2003359744A 2003-10-20 2003-10-20 Optical probe Expired - Fee Related JP4280599B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003359744A JP4280599B2 (en) 2003-10-20 2003-10-20 Optical probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003359744A JP4280599B2 (en) 2003-10-20 2003-10-20 Optical probe

Publications (3)

Publication Number Publication Date
JP2005121611A true JP2005121611A (en) 2005-05-12
JP2005121611A5 JP2005121611A5 (en) 2006-11-30
JP4280599B2 JP4280599B2 (en) 2009-06-17

Family

ID=34615867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003359744A Expired - Fee Related JP4280599B2 (en) 2003-10-20 2003-10-20 Optical probe

Country Status (1)

Country Link
JP (1) JP4280599B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015173172A (en) * 2014-03-11 2015-10-01 セイコーインスツル株式会社 Optical sensor
CN112729118A (en) * 2021-01-12 2021-04-30 北京长木谷医疗科技有限公司 Optical positioning probe calibration system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015173172A (en) * 2014-03-11 2015-10-01 セイコーインスツル株式会社 Optical sensor
CN112729118A (en) * 2021-01-12 2021-04-30 北京长木谷医疗科技有限公司 Optical positioning probe calibration system

Also Published As

Publication number Publication date
JP4280599B2 (en) 2009-06-17

Similar Documents

Publication Publication Date Title
KR20050084016A (en) Method for generating electromagnetic field distributions
CN103398974B (en) A kind of Fibre Optical Sensor, preparation method and the system of measurement
CN102077124A (en) Diffraction grating coupler, system and method
CN203479701U (en) Optical fiber sensor and measurement system
CN104677315B (en) Silicon chip surface irregularity degree measuring method
CN104350375A (en) Prism and sensor chip
CN107037059A (en) A kind of detection method of optical material sub-surface crack depth
JP5285471B2 (en) Total reflection illumination type sensor chip, manufacturing method thereof, and sensing method using the same
US9823191B2 (en) Micro-prism test chip
JP4280599B2 (en) Optical probe
Wang et al. Experimental investigation of subsurface damage depth of lapped optics by fluorescent method
EP3203214B1 (en) Prism, prism production method and sensor chip
CN102954950A (en) Biological sensor based on periodical nano medium particles and preparation method of sensor
CN112033931A (en) Optical waveguide, manufacturing method thereof, biosensing system comprising optical waveguide and application of biosensing system
IE20170056A1 (en) Method of correcting signals of surface plasmon resonance sensor
CN113993455A (en) Improvements in or relating to optical elements
van der Bijl et al. In-process monitoring of grinding and polishing of optical surfaces
EP3315277B1 (en) Forming mold, optical element, and method for producing optical element
KR100870131B1 (en) Apparatus and method for simultaneous measurement of critical and surface plasmon resonance angle
Wang et al. Optical subsurface damage evaluation using LSCT
JP2003106992A (en) Measurement chip and its manufacturing method
CN211235513U (en) Super-plane type optical fiber biological adsorption sensor
EP1978350A3 (en) Method for measuring surface plasmon resonance
Meeder et al. Applications of iTIRM
JP2020085813A (en) Device and method for measuring infrared spectrum

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061012

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090310

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090316

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees