JP2005120441A - Optical thin film deposition device, and method therefor - Google Patents

Optical thin film deposition device, and method therefor Download PDF

Info

Publication number
JP2005120441A
JP2005120441A JP2003357672A JP2003357672A JP2005120441A JP 2005120441 A JP2005120441 A JP 2005120441A JP 2003357672 A JP2003357672 A JP 2003357672A JP 2003357672 A JP2003357672 A JP 2003357672A JP 2005120441 A JP2005120441 A JP 2005120441A
Authority
JP
Japan
Prior art keywords
evaporation source
electron beam
film thickness
substrate
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003357672A
Other languages
Japanese (ja)
Other versions
JP4418926B2 (en
Inventor
Osamu Shirai
修 白井
Kazuhiro Takagi
和弘 高木
Yutaka Fuse
豊 布施
Kiyoshi Hosokawa
清 細川
Shigeru Otani
茂 大谷
Toshio Kasahara
敏夫 笠原
Satoshi Imoi
敏 出雲井
Shinya Nakahara
信也 中原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Shinku Co Ltd
Original Assignee
Showa Shinku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Shinku Co Ltd filed Critical Showa Shinku Co Ltd
Priority to JP2003357672A priority Critical patent/JP4418926B2/en
Publication of JP2005120441A publication Critical patent/JP2005120441A/en
Application granted granted Critical
Publication of JP4418926B2 publication Critical patent/JP4418926B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Filters (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a correcting mechanism for deterioration in a film thickness distribution caused by the change of an evaporation coefficient in a film deposition device for a dielectric multilayer film optical filter. <P>SOLUTION: The optical thin film deposition device is provided with: a means for three-dimensionally detecting an electron beam irradiation position, the irradiation width thereof, and the position and shape of the fused part in an evaporation substance; a means for measuring the in-plane film thickness distribution in a film-deposited substrate; a means for controlling the electron beam irradiation position and the irradiation width thereof; and a means for making the position of an evaporation source to the film-deposited substrate variable. The electron beam is controlled in such a manner that the beforehand set electron beam irradiation position and irradiation width are held, the position of the evaporation source is controlled in such a manner that the beforehand set height of the fused face in the evaporation substance is held, and the position of the evaporation source is made variable to the position for uniformizing the in-plane film thickness distribution in the film-deposited substrate. Thus, the film thickness distribution is continuously monitored, and is fed-back to the position of the evaporation source and the irradiation conditions of the electron beam, thus, the uniformity of the film thickness distribution remarkably improves. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は光学薄膜形成用装置に関するものであり、光学薄膜形成用成膜基板内の膜厚分布を向上させ、生産性の高い光学薄膜形成用装置を実現するものである。   The present invention relates to an optical thin film forming apparatus, which improves the film thickness distribution in the optical thin film forming film forming substrate and realizes an optical thin film forming apparatus with high productivity.

高密度波長分割多重伝送方式(以下DWDMと記す)に於いて、波長の多重化及び多重化された光信号の分波には光合分波器が用いられるが、光合分波器内部で使用される誘電体多層膜構造の狭帯域バンド・パス・フィルタ(以下NBPFと記す)に要求される透過帯域幅、平坦度、透過損失、隣接波長との抑圧比等の光学的仕様は、光通信の高速・大容量化実現のために厳しい値となっている。   In a high-density wavelength division multiplexing transmission system (hereinafter referred to as DWDM), an optical multiplexer / demultiplexer is used for wavelength multiplexing and demultiplexing of multiplexed optical signals, but it is used inside the optical multiplexer / demultiplexer. Optical specifications such as transmission bandwidth, flatness, transmission loss, and suppression ratio with adjacent wavelengths required for a dielectric multi-layer narrowband bandpass filter (hereinafter referred to as NBPF) It is a strict value for high speed and large capacity.

前記NBPFは光の干渉を利用した光学薄膜の応用製品のひとつであり、その構造は高・低屈折率誘電体物質を交互に堆積し、層界面からの多重反射を利用して所望のフィルタリング特性を得るものである。図1はNBPFの基本構造であるが、透過波長:λに対して各層の光学膜厚がλ/4、すなわち高屈折率物質(31)と低屈折率物質(32)のペアでλ/2となるよう多層化することにより、層界面からの反射光が同相で加算されて反射帯層(33)となる。反射帯層(33)は2つ存在し、間に光学膜厚がλ/2の整数倍となるスペーサ層(34)を配置して対向させるファブリペロー構造のフィルタとなりキャビティー(36)を形成する。NBPFではファブリペロー構造のフィルタを結合層(35)を介して複数段接続したマルチキャビティー構造とし、その積層数は100層以上の多層膜構造となるものもある。   The NBPF is one of the applications of optical thin film using light interference, and its structure is made by alternately depositing high and low refractive index dielectric materials and using multiple reflections from the layer interface to obtain desired filtering characteristics. Is what you get. FIG. 1 shows the basic structure of NBPF. The optical film thickness of each layer is λ / 4 with respect to the transmission wavelength: λ, that is, λ / 2 for a pair of a high refractive index substance (31) and a low refractive index substance (32). As a result, the reflected light from the layer interface is added in phase to form the reflective band layer (33). There are two reflection band layers (33), and a spacer layer (34) with an optical film thickness of an integral multiple of λ / 2 is placed between them to form a Fabry-Perot structure filter and form a cavity (36). To do. Some NBPFs have a multi-cavity structure in which a plurality of Fabry-Perot filters are connected via a coupling layer (35), and a multilayer structure having 100 or more layers is also available.

実際に合分波器内部で使用されるNBPFは1.4mm角程度のチップであるが、その製造工程に於いては例えばΦ100mm程度の成膜基板に前記誘電体物質を堆積した後、チップ状に切断している。1枚の成膜基板から前記光学的特性を満たすチップをより多く取るためには、基板内の膜厚分布の均一化が極めて重要であり、基板内の膜厚分布は0.01%以下の精度が要求されている。   The NBPF actually used inside the multiplexer / demultiplexer is a chip of about 1.4 mm square. In the manufacturing process, for example, after depositing the dielectric material on a film formation substrate of about Φ100 mm, the chip shape Disconnected. In order to obtain more chips satisfying the optical characteristics from a single film formation substrate, it is extremely important to make the film thickness distribution in the substrate uniform, and the film thickness distribution in the substrate is 0.01% or less. Accuracy is required.

図2に従来のNBPF用真空成膜装置の構成図を示す。真空容器(1)は図示しない油拡散ポンプやクライオポンプ等の真空ポンプにより1×10-5Pa台まで排気される。
基板ドーム(5)中心に取り付けられた成膜基板(6)は、基板内膜厚分布の均一化を図るため、図示しない高速回転機構により基板ドーム(5)と共に1000rpmで回転し(特願2002-207355号)、基板加熱用シースヒーター(7)及びハロゲンヒーター(21)により加熱される。
また、成膜基板(6)の温度は放射型温度計(17)を用いて測定し、実測データは温度調節器(18)に入力され、温度調節器(18)は、予め設定された温度と実測温度を比較・演算し、その結果を基に、成膜基板(6)が電子ビームからの輻射熱やプラズマ発生時の熱を受けても基板温度が常に一定となるようハロゲンヒーター用電力調整器(19)を制御する(特願2002-229025号)。
FIG. 2 shows a configuration diagram of a conventional vacuum film forming apparatus for NBPF. The vacuum container (1) is evacuated to a level of 1 × 10 −5 Pa by a vacuum pump (not shown) such as an oil diffusion pump or a cryopump.
The film formation substrate (6) attached to the center of the substrate dome (5) is rotated at 1000 rpm together with the substrate dome (5) by a high-speed rotation mechanism (not shown) in order to make the film thickness distribution in the substrate uniform (Japanese Patent Application 2002). -207355), heated by a substrate heater sheath heater (7) and a halogen heater (21).
Further, the temperature of the film formation substrate (6) is measured using a radiation type thermometer (17), the actual measurement data is input to the temperature controller (18), and the temperature controller (18) is set at a preset temperature. Compare and calculate the measured temperature and the measured temperature, and based on the results, adjust the power for the halogen heater so that the substrate temperature is always constant even if the deposition substrate (6) receives radiant heat from the electron beam or heat generated during plasma generation. Control (19) (Japanese Patent Application No. 2002-229025).

光学薄膜である誘電体膜の成膜には電子ビーム蒸発源(2)が用いられる。電子ビーム蒸発源(2)と成膜基板(6)の幾何学的配置は、成膜基板(6)内の膜厚分布が均一となるよう最適化されている。
電子ビーム蒸発源(2)による成膜中、高周波電源(22)より出力される高周波電力(周波数:13.56MHz)を直接基板ドーム(5)に印加すると、基板ドーム(5)と蒸発源(2)との空間にグロー放電が発生しプラズマ状態になり、基板ドーム(5)に取り付けられた成膜基板(6)表面には自己誘起された負の直流電界が生じ、その高いエネルギーで高充填密度な薄膜が形成される(特開2001-73136号)。マッチングボックス(23)は高周波電源(22)の出力インピーダンスと負荷である基板ドーム(5)を含む放電機構のインピーダンスの整合をとるものである。
水晶膜厚センサ(4)は蒸発速度を検出し、図示していないが電子ビームコントローラに検出信号をフィードバックし成膜速度を一定に制御している。
An electron beam evaporation source (2) is used to form a dielectric film which is an optical thin film. The geometrical arrangement of the electron beam evaporation source (2) and the film formation substrate (6) is optimized so that the film thickness distribution in the film formation substrate (6) is uniform.
During film formation by the electron beam evaporation source (2), when high frequency power (frequency: 13.56 MHz) output from the high frequency power source (22) is directly applied to the substrate dome (5), the substrate dome (5) and the evaporation source ( 2) Glow discharge is generated in the space and becomes a plasma state, and a self-induced negative DC electric field is generated on the surface of the film formation substrate (6) attached to the substrate dome (5). A thin film having a packing density is formed (Japanese Patent Laid-Open No. 2001-73136). The matching box (23) matches the output impedance of the high-frequency power source (22) and the impedance of the discharge mechanism including the substrate dome (5) as a load.
The quartz film thickness sensor (4) detects the evaporation rate and feeds back a detection signal to an electron beam controller (not shown) to control the film formation rate to a constant value.

光学膜厚計測装置はレーザー光源(11)、光ファイバ(13)、出射筒(14)単色測光用受光器(15)、分光特性測定用受光器(25)、光パワーメータ(27)及びコントローラ(10)部で主に構成されている。レーザー光源(11)から出射されたレーザー光は、デポラライザー(12)、光ファイバ(13)、出射筒(14)、下部覗き窓(8)を介して成膜基板(6)に入射する。成膜基板(6)を透過したレーザー光は、上部覗き窓(9)及び光軸に対して角度:45°の位置に配置された半透明鏡(26)を介し、一方は単色測光用受光器(15)に入射し、電気信号に光電変換される。コントローラ(10)は光電変換された電気信号を演算処理し、透過率がλ/4の極値に達した際、シャッタ(3)を閉じ、成膜を終了させ、順次誘電体物質を積層していく(単色測光法)。   Optical film thickness measuring equipment includes laser light source (11), optical fiber (13), exit tube (14) monochromatic photometer (15), spectroscopic photometer (25), optical power meter (27) and controller Mainly composed of (10) parts. Laser light emitted from the laser light source (11) is incident on the film formation substrate (6) via the depolarizer (12), the optical fiber (13), the emission tube (14), and the lower viewing window (8). Laser light that has passed through the film-forming substrate (6) passes through the upper viewing window (9) and a semi-transparent mirror (26) disposed at an angle of 45 ° with respect to the optical axis. Is incident on the vessel (15) and photoelectrically converted into an electrical signal. The controller (10) performs arithmetic processing on the photoelectrically converted electrical signal, and when the transmittance reaches the extreme value of λ / 4, the shutter (3) is closed, the film formation is terminated, and the dielectric materials are sequentially stacked. (Monochromatic photometry).

もう一方は外乱光カットフィルタ(29)を介して分光特性測定用受光器(25)に入射する。外乱光カットフィルタ(29)はプラズマ生成に伴う発光や電子ビーム蒸着時に発生する光、ハロゲンヒーターが発する光が光雑音として分光特性測定用受光器に入射するのを防いでいる。光パワーメータ(27)は、波長可変レーザーの波長掃引に同期して分光特性測定用受光器(25)出力を計測する。コンピュータ(28)では光パワーメータ(27)の測定データを測定毎に読み込み、NBPFの分光特性シミュレーション結果との比較を逐次行い、成膜中の測定データとシミュレーション結果が一致若しくは近接した際、シャッタ(3)を閉じ、成膜を終了させ、順次誘電体物質を積層していく(分光特性測定法:特願2003-126404号)。
各層の膜厚制御は、単色測光法と分光特性測定法を適宜選択する。
The other is incident on the spectral characteristic measuring light receiver (25) through the disturbance light cut filter (29). The ambient light cut filter (29) prevents light emitted during plasma generation, light generated during electron beam evaporation, and light emitted from a halogen heater from entering the light receiver for measuring spectral characteristics as light noise. The optical power meter (27) measures the output of the spectral characteristic measuring light receiver (25) in synchronization with the wavelength sweep of the wavelength tunable laser. The computer (28) reads the measurement data of the optical power meter (27) for each measurement and sequentially compares it with the NBPF spectral characteristic simulation result. When the measurement data during the film formation and the simulation result match or approach each other, the shutter (3) is closed, film formation is completed, and dielectric materials are sequentially stacked (spectral characteristic measurement method: Japanese Patent Application No. 2003-126404).
For the film thickness control of each layer, a monochromatic photometry method and a spectral characteristic measurement method are appropriately selected.

特願2002−207355Japanese Patent Application No. 2002-207355 特願2002−229025Japanese Patent Application No. 2002-229025

前記した電子ビーム蒸発源(2)と成膜基板(6)の幾何学的配置は、成膜基板内の膜厚分布が均一となるよう配置されている。基板面内の膜厚分布は、図3より

Figure 2005120441
表わされる。ここで、t/t0:規格化膜厚、S:基板、O:蒸発源位置、H:基板の高さ、L:蒸発源と基板間の直線距離、n:蒸発係数、およびα:基板と垂線とLとのなす角である。 The geometrical arrangement of the electron beam evaporation source (2) and the film formation substrate (6) described above is arranged so that the film thickness distribution in the film formation substrate is uniform. Figure 3 shows the film thickness distribution in the substrate surface.
Figure 2005120441
Represented. Where t / t 0 : normalized film thickness, S: substrate, O: evaporation source position, H: substrate height, L: linear distance between evaporation source and substrate, n: evaporation coefficient, and α: substrate And the angle between the perpendicular and L.

前記した基板ドーム(5)に取り付けられている成膜基板(6)は平面基板であるため、図3より、

Figure 2005120441
となり、したがって
Figure 2005120441
となる。Hは成膜基板の高さであり一定となるが、Lはドームが回転することで変化する。
Lは、蒸発源距離:P[mm],ドーム高さ:H[mm],シミュレーションポイント(基板中心からの距離):R[mm]及びドーム回転角度:Φ[rad]により次式で表される。
Figure 2005120441
したがって、(2)、(3)式より
Figure 2005120441
となる。
(4)式より基板面内分布は、蒸発係数:n(蒸発源から蒸発物質がどの程度の広がりを持って蒸発するかを表す)及び基板と蒸発源の幾何学的配置(H:基板高さ、P:蒸発源偏心距離)に依存することが判る。 Since the film formation substrate (6) attached to the substrate dome (5) is a flat substrate, from FIG.
Figure 2005120441
And therefore
Figure 2005120441
It becomes. H is the height of the film formation substrate and is constant, but L changes as the dome rotates.
L is expressed by the following equation using evaporation source distance: P [mm], dome height: H [mm], simulation point (distance from the substrate center): R [mm], and dome rotation angle: Φ [rad]. The
Figure 2005120441
Therefore, from equations (2) and (3)
Figure 2005120441
It becomes.
From the equation (4), the in-plane distribution of the substrate is the evaporation coefficient: n (representing how much the evaporated substance evaporates from the evaporation source) and the geometrical arrangement of the substrate and the evaporation source (H: substrate height) It can be seen that P depends on the evaporation source eccentric distance.

上式を基に蒸発係数を1.8と仮定し、基板高さ:Hと板面内膜厚分布の関係をシミュレーションした結果を図4に示す。図4より成膜基板高さ:約550mm、蒸発源偏心距離:350mmのところで、基板面内分布が0.01%以下の良好な値を取ることが判る。従来の装置では前記シミュレーション結果を基に基板面内分布が良好となる位置に蒸発源を配置していたが、実際の成膜工程に於ける蒸発係数は、蒸発物質に入射する電子ビーム幅や位置及び蒸発物質溶解面高さの違いにより変化し、これらの条件を常時一定に保つ事は難しく、結果的に基板面内分布が悪化し歩留まり低下という製造上の大きな問題を抱えている。   FIG. 4 shows the result of simulating the relationship between the substrate height: H and the in-plane film thickness distribution, assuming that the evaporation coefficient is 1.8 based on the above equation. From FIG. 4, it can be seen that when the height of the deposition substrate is about 550 mm and the evaporation source eccentric distance is 350 mm, the distribution in the substrate surface takes a good value of 0.01% or less. In the conventional apparatus, the evaporation source is arranged at a position where the distribution in the substrate surface is good based on the simulation result. However, the evaporation coefficient in the actual film formation process is the width of the electron beam incident on the evaporation material, It varies depending on the position and the height of the evaporating substance dissolving surface, and it is difficult to keep these conditions constant at all times. As a result, the distribution in the substrate surface is deteriorated, resulting in a large manufacturing problem that the yield is lowered.

本発明は、従来のNBPF用真空成膜装置では、蒸発係数の変化に伴う成膜基板面内での膜厚分布悪化に対する補正機構が無いために生じた問題を、以下の機構を備えることにより解決するものである。   In the conventional vacuum film forming apparatus for NBPF, the present invention has the following mechanism to solve the problem caused because there is no correction mechanism for the film thickness distribution deterioration in the film forming substrate surface due to the change of the evaporation coefficient. It is a solution.

1.蒸発源監視機構
電子ビーム蒸発源の電子ビーム照射位置及び照射幅、蒸発物質溶解部分の位置及び形状を常時監視し、予め決められた幅、位置、高さとの間にずれが生じた場合、修正を行う。
2.膜厚分布測定機構
成膜過程に於ける成膜基板の面内膜厚分布を測定し、基板の面内膜厚分布にずれが生じた場合、 補正を行う。
3.蒸発源位置調整機構
蒸発物質溶解面の高さ及び基板面内膜厚分布にずれが生じた場合、最適な膜厚分布が得られる位置に蒸発源を移動する。
4.水晶膜厚センサ角度調整機構
蒸発源位置が移動しても良好な蒸発速度監視が出来るよう水晶膜厚センサの取り付け角度を可変する。
上記4項目の手段により、従来問題となっていた成膜基板の面内分膜厚布の悪化を飛躍的に向上させることが可能となる。
1. Evaporation source monitoring mechanism Electron beam irradiation position and irradiation width of the electron beam evaporation source, the position and shape of the evaporating substance dissolving part are constantly monitored, and correction is made if there is a deviation between the predetermined width, position and height I do.
2. In-plane film thickness distribution of at deposition substrate in a thickness distribution measurement mechanism deposition process is measured, if the deviation in the in-plane film thickness distribution of the substrate occurs, a correction.
3. Evaporation source position adjustment mechanism When a deviation occurs in the height of the evaporation substance dissolving surface and the film thickness distribution in the substrate surface, the evaporation source is moved to a position where an optimum film thickness distribution is obtained.
4). Crystal film thickness sensor angle adjustment mechanism The crystal film thickness sensor mounting angle is varied so that satisfactory evaporation speed can be monitored even if the evaporation source position moves.
By the means of the above four items, it is possible to dramatically improve the deterioration of the in-plane thickness cloth of the film formation substrate, which has been a problem in the past.

具体的には、電子ビーム照射位置及び照射幅、蒸発物質溶解部分の位置及び形状を3次元的に検出する手段と、成膜基板の面内膜厚分布を測定する手段と、電子ビームの照射位置及び照射幅を制御する手段と、成膜基板に対する蒸発源位置を可変する手段とを備え、予め設定された電子ビーム照射位置及び照射幅を保つよう該電子ビームを制御し、予め設定された蒸発物質溶解面の高さを保つように蒸発源位置を制御し、成膜基板の面内膜厚分布を一様にする位置に蒸該発源位置を可変することを特徴とするものである。   Specifically, means for three-dimensionally detecting the electron beam irradiation position and irradiation width, the position and shape of the evaporated substance dissolving portion, means for measuring the in-plane film thickness distribution of the film formation substrate, and electron beam irradiation A means for controlling the position and irradiation width and a means for changing the position of the evaporation source with respect to the film-forming substrate, and controlling the electron beam so as to maintain the preset electron beam irradiation position and irradiation width; The evaporation source position is controlled so as to maintain the height of the evaporation substance dissolving surface, and the evaporation source position is varied to a position where the in-plane film thickness distribution of the film formation substrate is made uniform. .

本発明で、成膜工程中に蒸発源及び成膜基板の面内膜厚分布を常時監視し、蒸発源位置及び電子ビーム照射条件にフィードバックすることにより、成膜基板の面内膜厚分布を著しく向上させることが可能となった。   In the present invention, the in-plane film thickness distribution of the deposition substrate and the deposition substrate is constantly monitored during the deposition process and fed back to the evaporation source position and the electron beam irradiation conditions. It became possible to improve significantly.

実施例の構成の説明
図5を参照に本発明の実施例を説明する。
図2に示す従来装置と同様のものには同一符号を付して説明を省略する。
同図に示す装置は、蒸発源監視機構である蒸発源カメラ(37)及びコンピュータ(45)と、膜厚分布測定機構である出射筒(14)及び受光器(25)及びコンピュータ(46)と、蒸発源位置を可変する蒸発源位置調整機構(41)と、蒸発物質に照射する電子ビームの照射位置及び照射幅を制御する電子ビームコントローラ(47)と、電子ビーム蒸発源(2)の蒸発速度を監視する水晶膜厚センサ(42)と、蒸発源の制御装置(48)とを具備する。
Explanation of Configuration of Embodiment An embodiment of the present invention will be described with reference to FIG.
Components similar to those of the conventional apparatus shown in FIG.
The apparatus shown in the figure includes an evaporation source camera (37) and a computer (45) as an evaporation source monitoring mechanism, and an emission tube (14), an optical receiver (25) and a computer (46) as a film thickness distribution measuring mechanism. The evaporation source position adjusting mechanism (41) for changing the evaporation source position, the electron beam controller (47) for controlling the irradiation position and irradiation width of the electron beam for irradiating the evaporation substance, and the evaporation of the electron beam evaporation source (2) A crystal film thickness sensor (42) for monitoring the speed and an evaporation source control device (48) are provided.

蒸発源監視機構である蒸発源カメラ(37)及びコンピュータ(45)は、蒸発物質に入射する電子ビーム幅、位置及び蒸発物質溶解面の形状、高さを成膜中常時監視し、制御装置(48)を介して電子ビーム照射位置、照射幅及び蒸発源位置を制御することを特徴とする。
電子ビーム蒸発源(2)は、電子ビームを照射することにより蒸発物質を溶融させ蒸散させるものである。蒸発源カメラ(37)は、蒸発物質の溶融による発光部分を光学的に観測し、コンピュータ(45)に輝度分布を出力する。輝度分布は3次元的に出力し、コンピュータ(45)は溶融部分の位置及び形状を輝度分布から演算する。更に、一定値以上の輝度を有する部分のみを監視することにより、電子ビームの照射位置及び照射幅を演算する。
蒸発源カメラ(37)の光学的観測手段は、光検出機能を有するものであれば特に限定されるものではないが、本実施例では固体撮像素子を用いている。
The evaporation source camera (37) and computer (45), which are evaporation source monitoring mechanisms, constantly monitor the width and position of the electron beam incident on the evaporation substance, the shape and height of the evaporation substance dissolving surface during the film formation, 48), the electron beam irradiation position, irradiation width and evaporation source position are controlled.
The electron beam evaporation source (2) melts and evaporates the evaporated substance by irradiation with an electron beam. The evaporation source camera (37) optically observes the light emission part due to the melting of the evaporation substance, and outputs the luminance distribution to the computer (45). The luminance distribution is output three-dimensionally, and the computer (45) calculates the position and shape of the melted portion from the luminance distribution. Furthermore, the irradiation position and irradiation width of the electron beam are calculated by monitoring only the portion having a luminance of a certain value or more.
The optical observation means of the evaporation source camera (37) is not particularly limited as long as it has a light detection function, but a solid-state image sensor is used in this embodiment.

膜厚分布測定機構である出射筒(14)及び受光器(25)は、成膜基板(6)面に対して平行移動可能なステージ(39,40)上に搭載する。受光器(25)はコンピュータ(46)に接続され、成膜基板(6)の透過光または反射光を出力する。ステージ(39,40)は、真空槽底面及び天井面にそれぞれ配置され、真空槽底面に配された下部ステージ(39)上に出射筒(14)を、真空槽天井面に配された上部ステージ(40)上に受光器(25)を設置する。上下のステージ(39,40)は、出射筒(14)から出射した測定光が常に受光器(15,25)に入射するように操作する。上下のステージ(39,40)を移動させ、成膜基板(6)面内で測定光の照射位置を移動させることにより、コンピュータ(46)は成膜基板(6)の面内膜厚分布を演算する。
図5に示す装置では、測定光の光路上に反射鏡を設け、単色測光用受光器(15)と分光特性測定用受光器(25)にそれぞれ測定光を入射させる構成としている。膜厚分布の測定には、分光特性測定用受光器(25)を用いるが、単色測光用受光器(15)を併せ備えることにより分光特性測定法と単色測光法を適宜選択可能となる。分光特性の測定には、本願出願人の先の発明である特願2003-126404号記載の方法を用いればよい。
同図に示す装置では、上下のステージ(39,40)に出射筒(14)と受光器(25)を搭載して透過率を測定しているが、出射筒と受光器とを同一のステージ上に搭載し、成膜基板に対して所定角度をもって測定光を投光し、反射率を測定してもよい。反射率を測定する場合も、ステージを移動させて成膜基板面に対する測定光の照射位置を移動させ、基板の面内膜厚分布を測定する構成は変わらない。
The emission tube (14) and the light receiver (25), which are film thickness distribution measuring mechanisms, are mounted on a stage (39, 40) that can be translated with respect to the surface of the film formation substrate (6). The light receiver (25) is connected to the computer (46) and outputs transmitted light or reflected light from the film formation substrate (6). The stage (39, 40) is disposed on the bottom surface of the vacuum chamber and the ceiling surface, respectively, and the emission tube (14) is disposed on the lower stage (39) disposed on the bottom surface of the vacuum chamber, and the upper stage is disposed on the ceiling surface of the vacuum chamber. (40) Install the receiver (25) on top. The upper and lower stages (39, 40) are operated so that the measurement light emitted from the emission tube (14) is always incident on the light receiver (15, 25). By moving the upper and lower stages (39, 40) and moving the irradiation position of the measurement light within the surface of the film formation substrate (6), the computer (46) determines the in-plane film thickness distribution of the film formation substrate (6). Calculate.
In the apparatus shown in FIG. 5, a reflecting mirror is provided on the optical path of the measurement light, and the measurement light is incident on each of the monochromatic photometry light receiver (15) and the spectral characteristic measurement light receiver (25). The spectral characteristic measurement light receiver (25) is used for the measurement of the film thickness distribution. However, the spectral characteristic measurement method and the monochromatic photometry method can be appropriately selected by providing the single-color photometry light receiver (15). For the measurement of the spectral characteristics, the method described in Japanese Patent Application No. 2003-126404, which is the invention of the present applicant, may be used.
In the apparatus shown in the figure, the output cylinder (14) and the light receiver (25) are mounted on the upper and lower stages (39, 40) to measure the transmittance, but the output cylinder and the light receiver are mounted on the same stage. The reflectance may be measured by mounting measurement light with a predetermined angle with respect to the film formation substrate. Even in the case of measuring the reflectance, the configuration for measuring the in-plane film thickness distribution of the substrate by moving the stage and moving the irradiation position of the measurement light on the film formation substrate surface remains the same.

蒸発源位置を可変する蒸発源位置調整機構(41)は、上下左右方向に移動可能なステージ上に電子ビーム蒸発源(2)を搭載し、最適な膜厚分布が得られる位置に電子ビーム蒸発源(2)を移動させるものである。電子ビーム蒸発源(2)の移動により、成膜基板(6)と電子ビーム蒸発源(2)との垂直距離(基板の高さ:H)及び成膜基板(6)の回転中心に対する電子ビーム蒸発源(2)の偏心距離(蒸発源偏心距離:P)を設定範囲内の任意の値に変更する。
本実施例では、本願出願人の先の発明である特願2003-195899号に示す蒸発源移動機構を用いるが、所定の真空度を保ったまま蒸発源位置を変更できる構成であれば特願2003-195899号に示す構成に限られるものではない。
The evaporation source position adjusting mechanism (41) that varies the evaporation source position is equipped with an electron beam evaporation source (2) on a stage that can move in the vertical and horizontal directions, and the electron beam evaporation is performed at a position where an optimum film thickness distribution can be obtained. The source (2) is moved. Due to the movement of the electron beam evaporation source (2), the vertical distance (the height of the substrate: H) between the film formation substrate (6) and the electron beam evaporation source (2) and the electron beam with respect to the rotation center of the film formation substrate (6). The eccentric distance (evaporation source eccentric distance: P) of the evaporation source (2) is changed to an arbitrary value within the setting range.
In this embodiment, the evaporation source moving mechanism shown in Japanese Patent Application No. 2003-195899, which is the previous invention of the applicant of the present application, is used. However, if the evaporation source position can be changed while maintaining a predetermined degree of vacuum, the Japanese Patent Application The configuration is not limited to that shown in 2003-195899.

水晶膜厚センサ(42)は、水晶振動子の固有振動数がその質量変化によって変化することを利用したもので、蒸発物質を水晶振動子に堆積させて固有振動周波数を検出し、周波数変化をモニタすることにより蒸発速度を検出するものである。
その構成は、両面に電極を取り付けた水晶振動子と、水晶振動子の電極に交流電圧をかけ圧電効果によって水晶振動子に固有振動を生じさせる発振回路と、固有振動周波数を検出する周波数測定機構と、検出した固有振動数の変化から蒸発源の蒸発速度を算出する計算処理機構とよりなる。
ここで、電子ビーム蒸発源(2)から蒸散する蒸発物質は、Cosθに近似される分布をする。電子ビーム蒸発源(2)の中心に対して水晶振動子板面の角度が異なると、水晶振動子に堆積する蒸発物質の質量が異なり条件が変わってしまうため、電子ビーム蒸発源(2)に対する水晶振動子板面の角度は測定中常に一定に保つ必要がある。
水晶膜厚センサ(42)は、角度調整機構を備え、電子ビーム蒸発源(2)位置が変更されても電子ビーム蒸発源(2)の位置変更に連動して角度を変更可能な構成とする。角度調整機構は、電子ビーム蒸発源(2)に対する水晶板面の角度が常に一定となるように水晶膜厚センサ(42)を制御する。具体的には、電子ビーム蒸発源(2)位置が変更しても常に水晶膜厚センサ(42)が電子ビーム蒸発源(2)の中心に向くようにすればよい。
The quartz film thickness sensor (42) utilizes the fact that the natural frequency of the quartz crystal changes due to its mass change. The evaporating substance is deposited on the quartz crystal to detect the natural frequency, and the frequency change is detected. The evaporation rate is detected by monitoring.
Its structure consists of a crystal unit with electrodes on both sides, an oscillation circuit that generates an intrinsic vibration in the crystal unit by applying an AC voltage to the electrodes of the crystal unit, and a frequency measurement mechanism that detects the natural oscillation frequency. And a calculation processing mechanism for calculating the evaporation rate of the evaporation source from the detected change in the natural frequency.
Here, the evaporation material evaporated from the electron beam evaporation source (2) has a distribution approximated to Cos n θ. If the angle of the crystal resonator plate surface with respect to the center of the electron beam evaporation source (2) is different, the mass of the evaporated substance deposited on the crystal resonator is different and the conditions change. It is necessary to keep the angle of the quartz oscillator plate surface constant during measurement.
The quartz film thickness sensor (42) includes an angle adjustment mechanism, and can change the angle in conjunction with the position change of the electron beam evaporation source (2) even if the position of the electron beam evaporation source (2) is changed. . The angle adjustment mechanism controls the crystal film thickness sensor (42) so that the angle of the crystal plate surface with respect to the electron beam evaporation source (2) is always constant. Specifically, even if the position of the electron beam evaporation source (2) is changed, the quartz film thickness sensor (42) may be always directed to the center of the electron beam evaporation source (2).

次に電子ビーム蒸発源(2)の制御装置(48)について説明する。
制御装置(48)は、蒸発源監視機構及び膜厚測定装置から入力したデータをもとに、電子ビームコントローラ(47)及び蒸発源位置調整機構(41)を操作し、ビーム照射位置、電子ビーム照射幅及び蒸発源位置を変更することを特徴とする。
蒸発源監視機構のコンピュータ(45)は、算出した電子ビーム照射幅及び照射位置、蒸発物質溶融部分の位置及び形状を制御装置(48)に出力する。制御装置(48)は、予め決められた電子ビーム照射幅及び位置との間にずれが生じた場合、電子ビームコントローラ(47)を操作してずれを修正する。また、蒸発物質溶解面の高さにずれが生じた場合、蒸発源位置調整機構(41)で蒸発物質溶解面の高さの修正を行う。修正は、成膜基板(6)と電子ビーム蒸発源(2)との垂直距離(基板の高さ:H)を調整することにより行う。
従来装置では、成膜工程中に蒸発物質溶融面の位置及び形状が変化してしまうという問題があったが、本発明蒸発源監視機構により蒸発物質溶融部分を3次元的に観測することと、制御装置(48)により溶融部分を制御することで、成膜工程中の蒸発係数を極めて安定化することが可能となった。あるいは蒸発係数の変化に合わせて蒸発源位置を変化させ、成膜基板面内における膜厚分布を良好に保つことも可能である。本発明蒸発源カメラ(37)により電子ビーム蒸発源(2)を常時監視し、制御装置(48)により電子ビーム照射条件及び蒸発源位置を操作することで、成膜工程中に所望の成膜条件を得ることが可能となり、成膜基板の面内膜厚分布を向上させることが可能になった。
Next, the control device (48) of the electron beam evaporation source (2) will be described.
The control device (48) operates the electron beam controller (47) and the evaporation source position adjustment mechanism (41) based on the data input from the evaporation source monitoring mechanism and the film thickness measurement device, thereby irradiating the beam irradiation position and the electron beam. The irradiation width and the evaporation source position are changed.
The computer (45) of the evaporation source monitoring mechanism outputs the calculated electron beam irradiation width and irradiation position and the position and shape of the evaporated substance melting portion to the control device (48). When a deviation occurs between the electron beam irradiation width and position determined in advance, the control device (48) operates the electron beam controller (47) to correct the deviation. Further, when the height of the evaporating substance dissolving surface is deviated, the evaporating substance dissolving surface height is corrected by the evaporation source position adjusting mechanism (41). The correction is performed by adjusting the vertical distance (the height of the substrate: H) between the film formation substrate (6) and the electron beam evaporation source (2).
In the conventional apparatus, there has been a problem that the position and shape of the evaporating substance melting surface change during the film forming process. By controlling the melted portion with the control device (48), the evaporation coefficient during the film forming process can be extremely stabilized. Alternatively, the evaporation source position can be changed in accordance with the change of the evaporation coefficient, and the film thickness distribution in the film formation substrate surface can be kept good. By constantly monitoring the electron beam evaporation source (2) with the evaporation source camera (37) of the present invention and operating the electron beam irradiation conditions and evaporation source position with the control device (48), a desired film formation process is performed. The conditions can be obtained, and the in-plane film thickness distribution of the film formation substrate can be improved.

次に、膜厚測定装置のコンピュータ(46)は、成膜基板(6)の面内膜厚分布を制御装置(48)に出力する。制御装置(48)は、基板面内分布にずれが生じている場合、蒸発源位置調整機構(41)を操作して電子ビーム蒸発源(2)の位置を可変し、基板面内分布の補正を行う。補正は、蒸発源位置調整機構(41)により成膜基板(6)と電子ビーム蒸発源(2)との垂直距離(基板の高さ:H)及び、成膜基板(6)の回転中心に対する電子ビーム蒸発源(2)の偏心距離(蒸発源偏心距離:P)を調整することにより行う。   Next, the computer (46) of the film thickness measurement device outputs the in-plane film thickness distribution of the film formation substrate (6) to the control device (48). When the substrate in-plane distribution is deviated, the control device (48) operates the evaporation source position adjusting mechanism (41) to change the position of the electron beam evaporation source (2) to correct the in-plane distribution of the substrate. I do. The correction is performed by the evaporation source position adjusting mechanism (41) with respect to the vertical distance (substrate height: H) between the film formation substrate (6) and the electron beam evaporation source (2) and the rotation center of the film formation substrate (6). This is done by adjusting the eccentric distance (evaporation source eccentric distance: P) of the electron beam evaporation source (2).

制御装置(48)は、蒸発源監視機構のコンピュータ(45)及び膜厚測定装置のコンピュータ(46)から入力するデータと予め設定された値とを比較・演算し、入力値と設定値との差に応じて電子ビームコントローラ(47)及び蒸発源位置調整機構(41)を操作する。
本発明で基板の面内膜厚分布を蒸発源位置にフィードバックして膜厚制御を行うことにより、高精度な膜厚分布を得ることが可能となる。
The control device (48) compares and calculates the data input from the computer (45) of the evaporation source monitoring mechanism and the computer (46) of the film thickness measuring device with a preset value, and calculates the input value and the set value. The electron beam controller (47) and the evaporation source position adjusting mechanism (41) are operated according to the difference.
By controlling the film thickness by feeding back the in-plane film thickness distribution of the substrate to the evaporation source position in the present invention, it is possible to obtain a highly accurate film thickness distribution.

実施例の作用・動作の説明
前記した実施例を基に電子ビーム蒸発源位置を可変し、高・低屈折率の各蒸発物質(高:H[Ta2O5]、低:L[SiO2])の単層成膜時に於ける基板面内膜厚分布を測定した。成膜条件を表1に、結果を図6〜9に示す。膜厚及び屈折率の測定には、分光エリプソメータを使用した。図は、横軸に蒸発源偏心距離(P)を縦軸に膜厚分布及び屈折率分布を示す。

Figure 2005120441
Description of Action and Operation of Embodiments Based on the above- described embodiment, the position of the electron beam evaporation source is varied, and each of the high and low refractive index evaporation materials (high: H [Ta 2 O 5 ], low: L [SiO 2 ]) Was measured for the in-plane film thickness distribution during single layer deposition. The film forming conditions are shown in Table 1, and the results are shown in FIGS. A spectroscopic ellipsometer was used to measure the film thickness and refractive index. In the figure, the abscissa indicates the evaporation source eccentric distance (P), and the ordinate indicates the film thickness distribution and the refractive index distribution.
Figure 2005120441

図6に高屈折率物質であるTa2O5を成膜した際の膜厚分布を、図7に屈折率分布を示す。
図6及び図7より、膜厚・屈折率分布は共に蒸発源偏心距離:350〜430mm間で0.5%以下の良好な結果が得られ、なかでも蒸発源偏心距離:430mm近傍が最も分布が良くなっていると考えられる。蒸発源・基板間高さの違いによる影響は、測定誤差等を考えるとほとんど差違は認められない。
図8に低屈折率物質であるSiO2を成膜した際の膜厚分布を、図9に屈折率分布を示す。
図8及び図9より、偏心距離:430mmで最も良好となり、蒸発源・基板間高さの違いでは、650mmで最も分布が良好となっていることが判る。
FIG. 6 shows a film thickness distribution when Ta 2 O 5 , which is a high refractive index substance, is formed, and FIG. 7 shows a refractive index distribution.
6 and 7, both the film thickness and the refractive index distribution have good results of 0.5% or less between the evaporation source eccentric distance: 350 to 430 mm, and in particular, the distribution near the evaporation source eccentric distance: 430 mm is the most distributed. Seems to be improving. The difference due to the difference in height between the evaporation source and the substrate is hardly recognized in view of measurement errors.
FIG. 8 shows the film thickness distribution when SiO 2 , which is a low refractive index material, is formed, and FIG. 9 shows the refractive index distribution.
8 and 9, it can be seen that the best distribution is obtained when the eccentric distance is 430 mm, and the best distribution is obtained when the height between the evaporation source and the substrate is 650 mm.

次に上記結果を基に両物質とも蒸発源偏心距離:430mm、蒸発源・基板間高さ:650mmの位置に蒸発源を配置し、本発明装置を用いてNBPFの成膜を行った。膜構成は
基板/[HL]H8LH[LH]L[HL]H8LH[LH]/大気
の63層とした(各層の光学膜厚をλ/4とし、それぞれをH,Lとする)。
中心波長分布の結果を図10にまた、比較対照用に従来の中心波長分布を図11に示す。従来の中心波長分布はΦ54内で±2.1nmであるのに対して、本実施例ではΦ60内で±0.2nmと1/10以下の極めて良好な結果が得られた。
Next, based on the above results, the evaporation source was arranged at a position where the evaporation source eccentric distance was 430 mm and the height between the evaporation source and the substrate was 650 mm, and NBPF was formed using the apparatus of the present invention. The film configuration and the substrate / [HL] 7 H8LH [LH ] 7 L [HL] 7 H8LH [LH] 7 / and 63 layers of the atmosphere (the optical thickness of each layer lambda / 4, the respective H, and L ).
FIG. 10 shows the result of the center wavelength distribution, and FIG. 11 shows the conventional center wavelength distribution for comparison. While the conventional center wavelength distribution is ± 2.1 nm within Φ54, in this example, an extremely good result of ± 0.2 nm within Φ60, which is 1/10 or less, was obtained.

上記実施例では、NBPF用真空成膜装置について記載したが、本発明はNBPF用に限定するものではなく、他の真空成膜装置にも転用が可能である。
また、上記実施例では電子ビーム蒸発源を用いたが他の蒸発源を用いることも可能である。
In the above embodiment, the vacuum film forming apparatus for NBPF has been described. However, the present invention is not limited to the NBPF, and can be diverted to other vacuum film forming apparatuses.
Further, although the electron beam evaporation source is used in the above embodiment, other evaporation sources can be used.

NBPFの膜構成の説明図NBPF membrane configuration illustration 従来の装置構成の説明図Explanatory drawing of conventional device configuration 膜厚分布シミュレーションの説明図Illustration of film thickness distribution simulation 膜厚分布のシミュレーション結果Simulation results of film thickness distribution 本発明の装置構成の説明図Explanatory drawing of the device configuration of the present invention Ta2O5単層成膜時の膜厚分布Film thickness distribution during Ta 2 O 5 single layer deposition Ta2O5単層成膜時の屈折率分布Refractive index distribution during Ta 2 O 5 single layer deposition SiO2単層成膜時の膜厚分布Film thickness distribution during SiO 2 single layer deposition SiO2単層成膜時の屈折率分布Refractive index distribution during SiO 2 single layer deposition 本発明の装置を用いた際の基板面内の中心波長内分布データDistribution data in the center wavelength within the substrate surface when the apparatus of the present invention is used 従来の装置を用いた際の基板面内の中心波長内分布データDistribution data in the center wavelength within the substrate surface when using a conventional device

符号の説明Explanation of symbols

1 真空容器
2 電子ビーム蒸発源
3 シャッタ
4 水晶膜厚センサ
5 基板ドーム
6 成膜基板
7 基板加熱用シースヒーター
8 下部覗き窓
9 上部覗き窓
10 コントローラ
11 波長可変レーザー
12 デポラライザー
13 光ファイバ
14 出射筒
15 単色測光用受光器
16 覗き窓
17 放射型温度計
18 温度調節器
19 ハロゲンヒーター用電力調整器
20 低圧導入電極
21 ハロゲンヒーター
22 高周波電源
23 マッチングボックス
24 高圧導入電極
25 分光特性測定用受光器
26 半透明鏡
27 光パワーメータ
28 パーソナルコンピュータ
29 外乱光カットフィルタ
30 基板
31 高屈折率物質
32 低屈折率物質
33 反射帯層
34 スペーサ層
35 結合層
36 キャビティー
37 蒸発源監視カメラ
38 蒸発源監視カメラ取付用フランジ
39 下部ステージ
40 上部ステージ
41 蒸発源位置調整機構
42 角度可変式水晶膜厚センサ
43 半透明鏡ボックス
44 高速回転機構
45 コンピュータ
46 コンピュータ
47 電子ビームコントローラ
48 制御装置
DESCRIPTION OF SYMBOLS 1 Vacuum container 2 Electron beam evaporation source 3 Shutter 4 Quartz film thickness sensor 5 Substrate dome 6 Deposition substrate 7 Substrate heating sheath heater 8 Lower viewing window 9 Upper viewing window 10 Controller 11 Wavelength variable laser 12 Depolarizer 13 Optical fiber 14 Outgoing Tube 15 Monochromatic photometer 16 Viewing window 17 Radiation type thermometer 18 Temperature regulator 19 Halogen heater power regulator 20 Low voltage introduction electrode 21 Halogen heater 22 High frequency power supply 23 Matching box 24 High voltage introduction electrode 25 Light receiver for spectral characteristic measurement 26 Translucent mirror 27 Optical power meter 28 Personal computer 29 Ambient light cut filter 30 Substrate 31 High refractive index material
32 Low refractive index material 33 Reflective band layer 34 Spacer layer 35 Coupling layer 36 Cavity 37 Evaporation source monitoring camera 38 Evaporation source monitoring camera mounting flange
39 Lower stage 40 Upper stage 41 Evaporation source position adjustment mechanism 42 Angle variable crystal film thickness sensor 43 Translucent mirror box 44 High-speed rotation mechanism 45 Computer 46 Computer 47 Electron beam controller 48 Control device

Claims (18)

蒸発物質に電子ビームを照射し、回転する成膜基板に該蒸発物質を堆積させる光学薄膜形成用装置において、該蒸発物質に照射する該電子ビームの照射位置及び照射幅並びに該蒸発物質溶融部分の位置及び形状を常時観測し、観測したデータを制御装置に出力し、該制御装置は予め設定された位置、幅、形状との間にずれが生じた場合、補正を行うことを特徴とする光学薄膜形成用装置。   In an optical thin film forming apparatus that irradiates an evaporating substance with an electron beam and deposits the evaporating substance on a rotating film forming substrate, the irradiation position and irradiation width of the electron beam irradiating the evaporating substance and the evaporating substance melting portion An optical system characterized in that the position and shape are constantly observed, and the observed data is output to a control device, and the control device performs correction when a deviation occurs between a preset position, width, and shape. Thin film forming equipment. 蒸発物質に電子ビームを照射し、回転する成膜基板に該蒸発物質を堆積させる光学薄膜形成用装置において、膜厚測定装置により該成膜基板の面内膜厚分布を測定し、得られた分布データを制御装置に出力し、該制御装置は蒸発源の位置を可変することにより、基板の面内膜厚分布の補正を行うことを特徴とする光学薄膜形成用装置。   In an optical thin film forming apparatus for irradiating an evaporating substance with an electron beam and depositing the evaporating substance on a rotating film forming substrate, the film thickness measuring device measured the in-plane film thickness distribution of the film forming substrate. An apparatus for forming an optical thin film, which outputs distribution data to a control device, and the control device corrects an in-plane film thickness distribution of a substrate by changing a position of an evaporation source. 蒸発物質に電子ビームを照射し、回転する成膜基板に該蒸発物質を堆積させる光学薄膜形成用装置において、
該電子ビームの照射位置及び照射幅並びに該蒸発物質溶解部分の位置及び形状を常時監視する蒸発源監視機構と、
該成膜基板の面内膜厚分布を測定する膜厚測定装置と、
該成膜基板に対する蒸発源位置を可変する蒸発源位置調整機構と、
該電子ビームの照射位置及び照射幅を制御する電子ビームコントローラと
該蒸発源位置調整機構と該電子ビームコントローラとの制御装置とを備え、
該制御装置は、該蒸発源監視機構及び該膜厚測定装置から出力されるデータをもとに、該電子ビームコントローラ及び該蒸発源位置調整機構を操作し、該成膜基板の面内膜厚分布を補正することを特徴とする光学薄膜形成用装置。
In an optical thin film forming apparatus for irradiating an evaporating substance with an electron beam and depositing the evaporating substance on a rotating film forming substrate,
An evaporation source monitoring mechanism for constantly monitoring the irradiation position and irradiation width of the electron beam and the position and shape of the evaporating substance dissolving portion;
A film thickness measuring device for measuring an in-plane film thickness distribution of the film formation substrate;
An evaporation source position adjusting mechanism for changing an evaporation source position with respect to the film formation substrate;
An electron beam controller for controlling the irradiation position and irradiation width of the electron beam, the evaporation source position adjusting mechanism, and a controller for the electron beam controller;
The control device operates the electron beam controller and the evaporation source position adjusting mechanism based on the data output from the evaporation source monitoring mechanism and the film thickness measuring device, and the in-plane film thickness of the deposition substrate. An apparatus for forming an optical thin film characterized by correcting the distribution.
前記蒸発源監視機構は、光検出器を用いて該蒸発物質の発光部分を検知し、該蒸発物質の輝度分布を出力する蒸発源カメラと、前記輝度分布から該電子ビーム照射位置及び照射幅並びに該蒸発物質溶解部分の位置及び形状を演算するコンピュータとにより構成されることを特徴とする請求項3記載の光学薄膜形成用装置。   The evaporation source monitoring mechanism uses an optical detector to detect a light emitting portion of the evaporation substance and output a luminance distribution of the evaporation substance, an electron beam irradiation position and an irradiation width from the luminance distribution, and 4. The apparatus for forming an optical thin film according to claim 3, comprising a computer for calculating a position and a shape of the evaporating substance dissolving portion. 前記蒸発源監視機構は、設定値以上の輝度を有する部分のみを検出することにより該電子ビーム照射位置及及び照射幅を観測することを特徴とする請求項4記載の蒸発源監視機構。   5. The evaporation source monitoring mechanism according to claim 4, wherein the evaporation source monitoring mechanism observes the electron beam irradiation position and irradiation width by detecting only a portion having a luminance equal to or higher than a set value. 前記膜厚測定装置は、該成膜基板面に対して平行移動可能なステージ上に搭載され、該ステージを移動することにより、該成膜基板面内で測定光の照射位置を移動させ、該成膜基板の面内膜厚分布を測定することを特徴とする請求項2乃至3記載の光学薄膜形用装置。   The film thickness measurement apparatus is mounted on a stage that can move in parallel with the film formation substrate surface, and moves the irradiation position of the measurement light within the film formation substrate surface by moving the stage. 4. The optical thin film forming apparatus according to claim 2, wherein an in-plane film thickness distribution of the film formation substrate is measured. 真空槽底面及び天井面にそれぞれ該ステージを設置し、真空槽底面に配した該ステージ上に出射筒を、真空槽天井面に配した該ステージ上に受光器を搭載することを特徴とする請求項6記載の光学薄膜形成用装置。   The stage is installed on the bottom surface of the vacuum chamber and the ceiling surface, the emission tube is mounted on the stage disposed on the bottom surface of the vacuum chamber, and the light receiver is mounted on the stage disposed on the ceiling surface of the vacuum chamber. Item 7. The optical thin film forming apparatus according to Item 6. 前記蒸発源位置調機構は、真空槽内部を気密に保持したまま蒸発源位置を駆動し、該成膜基板と該蒸発源との垂直距離、及び該成膜基板の回転中心に対する該蒸発源の偏心距離を可変することを特徴とする請求項3記載の光学薄膜形成用装置。   The evaporation source position adjusting mechanism drives the evaporation source position while keeping the inside of the vacuum chamber airtight, the vertical distance between the deposition substrate and the evaporation source, and the evaporation source relative to the rotation center of the deposition substrate. 4. The apparatus for forming an optical thin film according to claim 3, wherein the eccentric distance is variable. 前記制御装置は、該蒸発源監視機構より出力される該電子ビーム照射位置及び照射幅のデータを入力し、予め設定した電子ビーム照射位置及び照射幅の値と入力値とを比較・演算し、比較・演算結果をもとに該電子ビームコントローラを操作し、該電子ビーム照射位置及び照射幅を設定値に保つことを特徴とする請求項3記載の光学薄膜形成用装置。   The control device inputs the electron beam irradiation position and irradiation width data output from the evaporation source monitoring mechanism, compares and calculates a preset electron beam irradiation position and irradiation width value and an input value, 4. The apparatus for forming an optical thin film according to claim 3, wherein the electron beam controller is operated based on the comparison / calculation result to maintain the electron beam irradiation position and irradiation width at set values. 前記制御装置は、該蒸発源監視機構より出力される該蒸発物質溶解面の高さを入力し、予め設定した蒸発物質溶解面の高さと入力値とを比較・演算し、比較・演算結果をもとに該蒸発源調整機構を操作し、該蒸発源位置を垂直方向に駆動して設定高さに保つことを特徴とする請求項3記載の光学薄膜形成用装置。   The control device inputs the height of the evaporative substance dissolution surface output from the evaporation source monitoring mechanism, compares and calculates the preset evaporative substance dissolution surface height and the input value, and outputs the comparison and operation result. 4. The apparatus for forming an optical thin film according to claim 3, wherein the evaporation source adjusting mechanism is operated to drive the position of the evaporation source in the vertical direction to maintain the set height. 前記制御装置は、該膜厚測定装置より出力される基板の面内膜厚分布データを入力し、該成膜基板の面内膜厚分布を一様にする位置に該蒸発源調整機構を操作し、蒸発源位置を駆動して、該成膜基板と該蒸発源との垂直距離及び該成膜基板の回転中心に対する該蒸発源の偏心距離を調整することを特徴とする請求項2乃至3記載の光学薄膜形成用装置。   The control device inputs in-plane film thickness distribution data output from the film thickness measurement device, and operates the evaporation source adjustment mechanism at a position to make the in-plane film thickness distribution of the film-forming substrate uniform. The evaporation source position is driven to adjust the vertical distance between the deposition substrate and the evaporation source and the eccentric distance of the evaporation source with respect to the rotation center of the deposition substrate. The apparatus for forming an optical thin film as described. 前記光学薄膜形成用装置は、該蒸発源位置調整機構による蒸発源位置の駆動に連動して駆動する水晶膜厚センサを備え、該水晶膜厚センサは、該蒸発源に対する位置及び角度を常に一定に保つことを特徴とする請求項1乃至3光学薄膜形成用装置。   The optical thin film forming apparatus includes a crystal film thickness sensor that is driven in conjunction with driving of the evaporation source position by the evaporation source position adjusting mechanism, and the crystal film thickness sensor is always constant in position and angle with respect to the evaporation source. The apparatus for forming an optical thin film according to any one of claims 1 to 3. 前記水晶膜厚センサは、角度調整機構を備え、蒸発源位置の移動に連動して角度を変更させ、常に該蒸発源の中心を向くように制御することを特徴とする請求項12記載の光学薄膜形成用装置。   13. The optical system according to claim 12, wherein the quartz film thickness sensor includes an angle adjusting mechanism, and changes the angle in conjunction with the movement of the evaporation source position so as to always face the center of the evaporation source. Thin film forming equipment. 蒸発物質に電子ビームを照射し、回転する成膜基板に該蒸発物質を堆積させる光学薄膜形成用装置の制御システムであって、
電子ビーム照射位置及び照射幅、該蒸発物質溶解面の形状及び位置を3次元的に検出する手段と、
検出したデータを入力する制御装置と、
該電子ビームの照射位置及び照射幅を可変する手段と、
該成膜基板に対する該蒸発源位置を可変する手段とからなり、
該制御装置は、
入力した該データと予め設定された電子ビーム照射位置及び照射幅とを比較・演算し、
比較・演算結果をもとに該電子ビームを制御し、該電子ビーム照射位置及び照射幅を設定値保ち、
入力した該データと予め設定された蒸発物質溶解面の高さとを比較・演算し、
比較・演算結果をもとに該蒸発源位置を制御し、該蒸発物質溶解面の高さを設定値に保つことを特徴とする制御システム。
A control system for an optical thin film forming apparatus that irradiates an evaporating substance with an electron beam and deposits the evaporating substance on a rotating film-forming substrate,
Means for three-dimensionally detecting an electron beam irradiation position and irradiation width, and a shape and position of the evaporating substance dissolving surface;
A control device for inputting the detected data;
Means for varying the irradiation position and irradiation width of the electron beam;
And means for varying the evaporation source position with respect to the film formation substrate,
The control device
Compare and calculate the input data and preset electron beam irradiation position and irradiation width,
Control the electron beam based on the comparison and calculation results, keep the electron beam irradiation position and irradiation width as set values,
Compare and calculate the input data and preset height of the evaporating substance dissolution surface,
A control system characterized in that the evaporation source position is controlled based on a comparison / calculation result, and the height of the evaporation substance dissolving surface is maintained at a set value.
蒸発物質に電子ビームを照射し、回転する成膜基板に該蒸発物質を堆積させる光学薄膜形成用装置の制御システムであって、
該成膜基板の面内膜厚分布を測定する手段と、
測定した該データを入力する制御装置と、
該成膜基板に対する蒸発源位置を可変する手段とからなり、
該制御装置は、
入力した該データと予め設定された成膜基板の面内膜厚分布とを比較・演算し、
成膜基板の面内膜厚分布を一様にするように蒸発源位置を制御することを特徴とする制御システム。
A control system for an optical thin film forming apparatus that irradiates an evaporating substance with an electron beam and deposits the evaporating substance on a rotating film-forming substrate,
Means for measuring an in-plane film thickness distribution of the deposition substrate;
A control device for inputting the measured data;
Comprising means for varying the evaporation source position with respect to the film formation substrate,
The control device
Compare and calculate the input data and the preset in-plane film thickness distribution of the deposition substrate,
A control system for controlling an evaporation source position so as to make the in-plane film thickness distribution of a film formation substrate uniform.
光学薄膜形成の成膜過程において、該蒸発物質に照射する該電子ビームの照射位置及び照射幅並びに該蒸発物質溶融部分の位置及び形状を常時監視し、予め決められた位置、幅、形状との間にずれが生じた場合、電子ビーム照射条件及び蒸発源位置の補正を行うことを特徴とする光学薄膜の形成方法。   In the film formation process of optical thin film formation, the irradiation position and irradiation width of the electron beam irradiating the evaporating substance and the position and shape of the evaporating substance melting portion are constantly monitored, and the predetermined position, width and shape are determined. A method of forming an optical thin film characterized by correcting an electron beam irradiation condition and an evaporation source position when a deviation occurs between them. 光学薄膜形成の成膜過程において、該成膜基板の面内膜厚分布を測定し、得られた分布データから電子ビーム蒸発源の位置を可変し、基板の面内膜厚分布の補正を行うことを特徴とする光学薄膜の形成方法。   In the film formation process of the optical thin film formation, the in-plane film thickness distribution of the film-forming substrate is measured, the position of the electron beam evaporation source is varied from the obtained distribution data, and the in-plane film thickness distribution of the substrate is corrected. A method for forming an optical thin film, comprising: 蒸発物質に電子ビームを照射し、回転する成膜基板に該蒸発物質を堆積させる光学薄膜形成方法において、
該電子ビーム照射位置及び照射幅、該蒸発物質溶解部分の位置及び形状を3次元的に検出する手段と、
該成膜基板の面内膜厚分布を測定する手段と、
該電子ビームの照射位置及び照射幅を制御する手段と、
該成膜基板に対する蒸発源位置を可変する手段とを備え、
予め設定された該電子ビーム照射位置及び照射幅を保つように該電子ビームを制御し、
予め設定された該蒸発物質溶解面の高さを保つように該蒸発源位置を制御し、
該成膜基板の面内膜厚分布を一様にする位置に蒸該発源位置を可変することを特徴とする光学薄膜の形成方法。
In an optical thin film forming method of irradiating an evaporating substance with an electron beam and depositing the evaporating substance on a rotating film forming substrate,
Means for three-dimensionally detecting the electron beam irradiation position and irradiation width, and the position and shape of the evaporating substance dissolving portion;
Means for measuring an in-plane film thickness distribution of the deposition substrate;
Means for controlling the irradiation position and irradiation width of the electron beam;
Means for varying the evaporation source position with respect to the film formation substrate,
Controlling the electron beam to maintain the electron beam irradiation position and irradiation width set in advance,
Controlling the evaporation source position so as to keep the height of the evaporating substance dissolving surface set in advance;
A method of forming an optical thin film, characterized in that the source position is varied to a position where the in-plane film thickness distribution of the film forming substrate is made uniform.
JP2003357672A 2003-10-17 2003-10-17 Optical thin film forming apparatus and method Expired - Fee Related JP4418926B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003357672A JP4418926B2 (en) 2003-10-17 2003-10-17 Optical thin film forming apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003357672A JP4418926B2 (en) 2003-10-17 2003-10-17 Optical thin film forming apparatus and method

Publications (2)

Publication Number Publication Date
JP2005120441A true JP2005120441A (en) 2005-05-12
JP4418926B2 JP4418926B2 (en) 2010-02-24

Family

ID=34614496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003357672A Expired - Fee Related JP4418926B2 (en) 2003-10-17 2003-10-17 Optical thin film forming apparatus and method

Country Status (1)

Country Link
JP (1) JP4418926B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100729096B1 (en) 2006-03-29 2007-06-14 삼성에스디아이 주식회사 Deposition method for vaporizing organic and the deposition apparatus for the same
JP2007291506A (en) * 2006-03-31 2007-11-08 Canon Inc Film deposition method
KR101530033B1 (en) * 2013-12-05 2015-06-19 주식회사 에스에프에이 Thin layers deposition apparatus
KR101530031B1 (en) * 2013-11-26 2015-06-19 주식회사 에스에프에이 Thin layers deposition apparatus and method of thin layers deposition
WO2016003401A1 (en) 2014-06-30 2016-01-07 Halliburton Energy Services, Inc. Deposition of integrated computational elements (ice) using a translation stage
KR20160010096A (en) * 2014-07-18 2016-01-27 주식회사 선익시스템 Apparatus for measuring deposition thickness
KR20190014032A (en) * 2017-07-11 2019-02-11 엘지전자 주식회사 A deposition system
CN111979517A (en) * 2020-08-24 2020-11-24 京东方科技集团股份有限公司 Temperature adjusting method and device and evaporation equipment
CN114481037A (en) * 2022-01-26 2022-05-13 合肥维信诺科技有限公司 Combination measuring instrument, calibration device and evaporation system
US12000061B2 (en) * 2020-04-06 2024-06-04 T.O.S Co., Ltd. Epi-growth apparatus of separate chamber type

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100729096B1 (en) 2006-03-29 2007-06-14 삼성에스디아이 주식회사 Deposition method for vaporizing organic and the deposition apparatus for the same
JP2007291506A (en) * 2006-03-31 2007-11-08 Canon Inc Film deposition method
US7959971B2 (en) 2006-03-31 2011-06-14 Canon Kabushiki Kaisha Film formation method with deposition source position control
KR101530031B1 (en) * 2013-11-26 2015-06-19 주식회사 에스에프에이 Thin layers deposition apparatus and method of thin layers deposition
KR101530033B1 (en) * 2013-12-05 2015-06-19 주식회사 에스에프에이 Thin layers deposition apparatus
EP3129521A4 (en) * 2014-06-30 2017-12-27 Halliburton Energy Services, Inc. Deposition of integrated computational elements (ice) using a translation stage
WO2016003401A1 (en) 2014-06-30 2016-01-07 Halliburton Energy Services, Inc. Deposition of integrated computational elements (ice) using a translation stage
US10316405B2 (en) 2014-06-30 2019-06-11 Halliburton Energy Services, Inc. Deposition of integrated computational elements (ICE) using a translation stage
EP4219788A1 (en) * 2014-06-30 2023-08-02 Halliburton Energy Services, Inc. Deposition of integrated computational elements (ice) using a translation stage
KR20160010096A (en) * 2014-07-18 2016-01-27 주식회사 선익시스템 Apparatus for measuring deposition thickness
KR101593682B1 (en) * 2014-07-18 2016-02-26 주식회사 선익시스템 Apparatus for measuring deposition thickness
KR20190014032A (en) * 2017-07-11 2019-02-11 엘지전자 주식회사 A deposition system
KR102420921B1 (en) 2017-07-11 2022-07-15 엘지전자 주식회사 A deposition system
US12000061B2 (en) * 2020-04-06 2024-06-04 T.O.S Co., Ltd. Epi-growth apparatus of separate chamber type
CN111979517A (en) * 2020-08-24 2020-11-24 京东方科技集团股份有限公司 Temperature adjusting method and device and evaporation equipment
CN111979517B (en) * 2020-08-24 2022-12-20 京东方科技集团股份有限公司 Temperature adjusting method and device and evaporation equipment
CN114481037A (en) * 2022-01-26 2022-05-13 合肥维信诺科技有限公司 Combination measuring instrument, calibration device and evaporation system
CN114481037B (en) * 2022-01-26 2024-05-28 合肥维信诺科技有限公司 Combined measuring instrument, calibrating device and evaporation system

Also Published As

Publication number Publication date
JP4418926B2 (en) 2010-02-24

Similar Documents

Publication Publication Date Title
US7247345B2 (en) Optical film thickness controlling method and apparatus, dielectric multilayer film and manufacturing apparatus thereof
US6646753B2 (en) In-situ thickness and refractive index monitoring and control system for thin film deposition
JP4418926B2 (en) Optical thin film forming apparatus and method
CA2128743C (en) An optical film, an antireflection film, a reflection film, a method for forming the optical film, the antireflection film or the reflection film and an optical device
JP3405562B2 (en) Multilayer film forming apparatus, optical characteristic measuring method and film forming method
JP4530776B2 (en) Multilayer film forming sputtering apparatus and film thickness control method thereof
US20090242543A1 (en) Monitoring Witness Structures for Temperature Control in RTP Systems
JPH05255850A (en) Film forming device for multilayered films and method for measuring optical characteristic and formation of film
JP2006071402A (en) Thickness control method for multilayer film and film forming device
JP4547489B2 (en) Optical thin film forming apparatus equipped with film thickness measuring device and optical thin film forming method
JP2002022936A (en) Method and apparatus for forming film of optical multilayered film filter, and optical thickness gage
JP4235997B2 (en) Optical film thickness measuring method and apparatus
JP4547612B2 (en) Film thickness control method and apparatus, and optical multilayer film manufacturing method
JP2004069490A (en) Film thickness measuring method and device for optical thin film
CN116419986A (en) Film formation control device, film formation device, and film formation method
JP2003029026A (en) Device for deposition of optical thin film, method for depositing film and optical filter
JP2950813B1 (en) Tunable laser light source device
JP2004061810A (en) Method and device for manufacturing multilayered film optical filter
JP2000171630A (en) Formation of multilayered optical thin film
JP2004354372A (en) Optical thin film forming device with film thickness measuring instrument mounted thereon, and optical thin film forming method
JP4418179B2 (en) Thin film forming apparatus and thin film forming method
BE1029160B1 (en) DEPOSIT OF NON-STOICHIOMETRIC METAL COMPOUNDS
JP2010222596A (en) Method and apparatus for forming optical thin film
CN116676582A (en) Direct light control system and method of coating equipment
JP2000171602A (en) Formation of multilayered optical thin films and apparatus for forming multilayered optical thin films

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4418926

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees