JP4235997B2 - Optical film thickness measuring method and apparatus - Google Patents

Optical film thickness measuring method and apparatus Download PDF

Info

Publication number
JP4235997B2
JP4235997B2 JP2003282837A JP2003282837A JP4235997B2 JP 4235997 B2 JP4235997 B2 JP 4235997B2 JP 2003282837 A JP2003282837 A JP 2003282837A JP 2003282837 A JP2003282837 A JP 2003282837A JP 4235997 B2 JP4235997 B2 JP 4235997B2
Authority
JP
Japan
Prior art keywords
film
transmittance
layer
substrate
laser light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003282837A
Other languages
Japanese (ja)
Other versions
JP2005049269A (en
Inventor
修 白井
清 細川
敏夫 笠原
和弘 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Shinku Co Ltd
Original Assignee
Showa Shinku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Shinku Co Ltd filed Critical Showa Shinku Co Ltd
Priority to JP2003282837A priority Critical patent/JP4235997B2/en
Publication of JP2005049269A publication Critical patent/JP2005049269A/en
Application granted granted Critical
Publication of JP4235997B2 publication Critical patent/JP4235997B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Physical Vapour Deposition (AREA)

Description

本発明は薄膜形成用装置に搭載するレーザ光を光源に用いた光学膜厚計測装置に関するものであり、多層膜成膜時の層間でレーザ光の出力を可変させる事によって、高精度の光学膜厚の計測装置を提供しようとするものである。   The present invention relates to an optical film thickness measuring device using a laser beam mounted on an apparatus for forming a thin film as a light source, and a high-precision optical film by varying the output of the laser beam between layers at the time of forming a multilayer film. It is intended to provide a thickness measuring device.

高密度波長分割多重伝送方式(以下DWDMと記す)に於いて、波長の多重化及び多重化された光信号の分波には光合分波器が用いられるが、光合分波器内部で使用される誘電体多層膜構造の狭帯域バンド・パス・フィルタ(以下NBPFと記す)に要求される透過帯域幅、平坦度、透過損失、隣接波長との抑圧比等の光学的仕様は、光通信の高速・大容量化実現のために厳しい値となっている。表1に100GHz(国際電気通信連合:ITUで規定された波長間隔)用NBPFに要求される光学的仕様の一例を示す。透過帯域内の最小透過損失は0.8dB以下が要求され、波形の矩形特性では−0.5dB帯域幅:0.4nm以上、且つ−25dB帯域幅:1.2nm以下が要求されている。   In a high-density wavelength division multiplexing transmission system (hereinafter referred to as DWDM), an optical multiplexer / demultiplexer is used for wavelength multiplexing and demultiplexing of multiplexed optical signals, but it is used inside the optical multiplexer / demultiplexer. Optical specifications such as transmission bandwidth, flatness, transmission loss, and suppression ratio with adjacent wavelengths required for a dielectric multi-layer narrowband bandpass filter (hereinafter referred to as NBPF) It is a strict value to achieve high speed and large capacity. Table 1 shows an example of optical specifications required for NBPF for 100 GHz (International Telecommunication Union: wavelength interval defined by ITU). The minimum transmission loss in the transmission band is required to be 0.8 dB or less, and the rectangular characteristic of the waveform requires −0.5 dB bandwidth: 0.4 nm or more and −25 dB bandwidth: 1.2 nm or less.

Figure 0004235997
Figure 0004235997

前記NBPFは光の干渉を利用した光学薄膜の応用製品のひとつであり、その構造は高・低屈折率誘電体物質を交互に堆積し、層界面からの多重反射を利用して所望のフィルタリング特性を得るものである。図1はNBPFの基本構造であるが、透過波長:λに対して各層の光学膜厚がλ/4、すなわち高屈折率物質(25)と低屈折率物質(26)のペアでλ/2となるよう多層化することにより、層界面からの反射光が同相で加算されて反射帯層(27)となる。反射帯層(27)は2つ存在し、間に光学膜厚がλ/2の整数倍となるスペーサ層(28)を配置して対向させるファブリペロー構造のフィルタとなりキャビティ(29)を形成する。NBPFでは前記光学的仕様を満たすためには、ファブリペロー構造のフィルタを結合層(30)を介して複数段接続したマルチキャビティ構造とし、その積層数は100層以上の多層構造となる。更に、各層の光学膜厚は0.01%以下の精度で制御しなければ、前記した光学的仕様を満足することが出来ない。   The NBPF is one of the applications of optical thin films using light interference, and its structure is made by alternately depositing high and low refractive index dielectric materials and using multiple reflections from the layer interface to obtain the desired filtering characteristics. Is what you get. FIG. 1 shows the basic structure of NBPF. The optical film thickness of each layer is λ / 4 with respect to the transmission wavelength: λ, that is, λ / 2 for a pair of high refractive index material (25) and low refractive index material (26). As a result, the reflected light from the layer interface is added in phase to form the reflective band layer (27). There are two reflection band layers (27), and a spacer layer (28) whose optical film thickness is an integral multiple of λ / 2 is disposed between them to form a Fabry-Perot structure filter facing each other to form a cavity (29). . In order to satisfy the above optical specifications, NBPF has a multi-cavity structure in which a plurality of Fabry-Perot filters are connected via a coupling layer (30), and the number of layers is a multilayer structure of 100 layers or more. Furthermore, the optical specifications described above cannot be satisfied unless the optical film thickness of each layer is controlled with an accuracy of 0.01% or less.

次に各層の光学膜厚制御方法について述べる。屈折率:nの透明基板上に屈折率:nの薄膜を厚さ:dだけ堆積させ、空気中または真空中で波長:λの光を入射した際、エネルギー反射率:Rは次の式で表わされる。

Figure 0004235997
Next, an optical film thickness control method for each layer will be described. Refractive index: n g refractive index on a transparent substrate: n thin film thickness of m: d only deposited, the wavelength in air or in a vacuum: when the incident light of lambda, the energy reflectance: R is the following It is expressed by a formula.
Figure 0004235997

図2は透明基板の屈折率を1.52とした時の光学膜厚:n・dと反射率:Rの関係を示したものである。光の干渉に伴いn<nの場合エネルギー反射率:Rは増加し、n>nの時は反対に減少するが、n・d=λ/4で共に極値となる。このように、光学膜厚:n・dがλ/4の整数倍となる毎にエネルギー反射率(透過率):Rは極値となる。NBPF製造に於ける各層の膜厚制御は、この極値で行われる。 FIG. 2 shows the relationship between the optical film thickness: nm · d and the reflectance: R when the refractive index of the transparent substrate is 1.52. The energy reflectivity: R increases with light interference when n g < nm , and decreases when ng > nm , but both have extreme values when nm · d = λ / 4. Thus, every time the optical film thickness: nm · d becomes an integral multiple of λ / 4, the energy reflectance (transmittance): R becomes an extreme value. The film thickness control of each layer in NBPF manufacturing is performed at this extreme value.

図3に従来の光学膜厚計測装置を具えたNBPF用真空成膜装置の構成図を示す。真空容器(1)は図示していない油拡散ポンプやクライオポンプ等の真空ポンプにより1×10−5Pa台まで排気される。
基板ドーム(5)中心に取り付けられた成膜基板(6)は、基板内膜厚分布の均一化を図るため、図示していない高速回転機構により基板ドーム(5)と共に1000rpmで回転し、基板加熱用シースヒーター(7)及びハロゲンヒーター(21)により加熱される。また、成膜基板(6)の温度は放射型温度計(17)を用いて測定し、実測データは温度調節器(18)に入力され、温度調節器(18)は、予め設定された温度と実測温度を比較・演算し、その結果を基に、成膜基板(6)が電子ビームからの輻射熱やプラズマ発生時の熱を受けても基板温度が常に一定となるようハロゲンヒーター用電力調整器(19)を制御する(特願2002-229025号)。
FIG. 3 shows a configuration diagram of a vacuum film forming apparatus for NBPF provided with a conventional optical film thickness measuring apparatus. The vacuum vessel (1) is evacuated to a level of 1 × 10 −5 Pa by a vacuum pump (not shown) such as an oil diffusion pump or a cryopump.
The film formation substrate (6) attached to the center of the substrate dome (5) is rotated at 1000 rpm together with the substrate dome (5) by a high speed rotation mechanism (not shown) in order to make the film thickness distribution in the substrate uniform. Heated by a heating sheath heater (7) and a halogen heater (21). Further, the temperature of the film formation substrate (6) is measured using a radiation type thermometer (17), the actual measurement data is input to the temperature controller (18), and the temperature controller (18) is set at a preset temperature. Compare and calculate the measured temperature and the measured temperature, and based on the results, adjust the power for the halogen heater so that the substrate temperature is always constant even if the deposition substrate (6) receives radiant heat from the electron beam or heat generated during plasma generation. Control (19) (Japanese Patent Application No. 2002-229025).

光学薄膜である誘電体膜の成膜には電子ビーム蒸発源(2)が用いられる。その際高周波電源(22)より出力される高周波電力(周波数:13.56MHz)を直接基板ドーム(5)に印加すると、基板ドーム(5)と蒸発源(2)との空間にグロー放電が発生しプラズマ状態になり、基板ドーム(5)に取り付けられた成膜基板(6)表面には自己誘起された負の直流電界が生じ、その高いエネルギーで高充填密度な薄膜が形成される。
マッチングボックス(23)は高周波電源(22)の出力インピーダンスと負荷である基板ドーム(5)を含む放電機構のインピーダンスの整合をとるものである。
水晶膜厚センサ(4)は蒸発速度を検出し、図示していないが電子ビーム蒸発源コントローラに検出信号をフィードバックし成膜速度を一定に制御している。
An electron beam evaporation source (2) is used to form a dielectric film which is an optical thin film. At that time, when high frequency power (frequency: 13.56 MHz) output from the high frequency power source (22) is directly applied to the substrate dome (5), glow discharge is generated in the space between the substrate dome (5) and the evaporation source (2). Then, a plasma state occurs, and a self-induced negative DC electric field is generated on the surface of the film formation substrate (6) attached to the substrate dome (5), and a thin film having high energy and high packing density is formed.
The matching box (23) matches the output impedance of the high-frequency power source (22) and the impedance of the discharge mechanism including the substrate dome (5) as a load.
The quartz film thickness sensor (4) detects the evaporation rate and feeds back a detection signal to the electron beam evaporation source controller (not shown) to control the film formation rate to be constant.

光学膜厚計測装置はレーザ光源(11)、光ファイバ(13)、出射筒(14)、受光器(15)及びコントローラ(10)部で主に構成されている。レーザ光源(11)から出射されたレーザ光(単色光)は、デポラライザー(12)、光ファイバ(13)、出射筒(14)、下部覗き窓(8)を介して成膜基板(6)、上部覗き窓(9)を透過し、単色測光用受光器(15)に入射する。成膜基板(6)上に堆積した光学薄膜の膜厚により変化した透過光量は受光器(15)で電気信号に光電変換される。コントローラ(10)は光電変換された電気信号を演算処理し、透過率がλ/4の極値に達した際、シャッタ(3)を閉にし、成膜を終了させ、順次誘電体物質を積層していく。   The optical film thickness measuring device mainly includes a laser light source (11), an optical fiber (13), an emission tube (14), a light receiver (15), and a controller (10). The laser beam (monochromatic light) emitted from the laser light source (11) passes through the depolarizer (12), the optical fiber (13), the emission tube (14), and the lower viewing window (8) to form the film formation substrate (6). Then, the light passes through the upper viewing window (9) and enters the monochromatic photometric light receiver (15). The amount of transmitted light that changes depending on the thickness of the optical thin film deposited on the film formation substrate (6) is photoelectrically converted into an electrical signal by the light receiver (15). The controller (10) performs arithmetic processing on the photoelectrically converted electrical signal, and when the transmittance reaches the extreme value of λ / 4, the shutter (3) is closed, the film formation is terminated, and the dielectric materials are sequentially stacked. I will do it.

特開2001−73136号公報JP 2001-73136 A

図4に27層構成のシングル・キャビティNBPFに於ける各層の透過率変化をシミュレーションした結果を示す。図は、横軸に層番号を、縦軸に透過率を示す。層番号は、基板から数えて何層目であるかを示し、同図に示すシングル・キャビティは反射帯層(層番号:1〜13、15〜27)とスペーサ層(層番号:14)とにより構成される。
NBPF製造時に於ける各層の膜厚制御は前記光学膜厚計測装置を用いるが、前記スペーサ層及びスペーサ層近傍の前記反射帯層での透過率の変化量は、他の反射帯層に比べて極めて小さい。
FIG. 4 shows the result of simulating the change in transmittance of each layer in a single cavity NBPF having a 27-layer structure. In the figure, the horizontal axis represents the layer number, and the vertical axis represents the transmittance. The layer number indicates the number of layers counted from the substrate, and the single cavity shown in the figure is composed of a reflective band layer (layer numbers: 1 to 13, 15 to 27), a spacer layer (layer number: 14) Consists of.
Although the optical film thickness measuring device is used to control the film thickness of each layer at the time of manufacturing NBPF, the amount of change in transmittance in the reflective band layer in the vicinity of the spacer layer and the spacer layer is compared with other reflective band layers. Very small.

図4を参照に透過率の変化量を比較すると、例えば1層目の透過率の変化量は約20%であるのに対して、14層目のスペーサ層では1.65%と1/10以下であることが判る。膜厚制御における極値検出は透過率の変化を監視しているため、透過率の変化量が小さいと極値検出に誤差が生じ易く、結果的にNBPFの光学的特性が悪化するという製造上の大きな問題点を抱えてしまう。
そこでスペーサ層のように透過率の変化量が小さい層の極値検出には、受光器(15)以降の信号処理回路で電気的もしくは演算により透過率の変化量を拡大する手法もあるが、SN比(Signal to Noise ratio)は変わらないため極値検出精度の向上は望めない。
Comparing the amount of change in transmittance with reference to FIG. 4, for example, the amount of change in transmittance of the first layer is about 20%, whereas in the 14th spacer layer, it is 1.65%, which is 1/10. It turns out that it is the following. Since extreme value detection in film thickness control monitors changes in transmittance, if the amount of change in transmittance is small, errors in detection of extreme values are likely to occur, resulting in deterioration in the optical characteristics of NBPF. Will have a big problem.
Therefore, there is a method of expanding the amount of change in transmittance electrically or by calculation in the signal processing circuit after the light receiver (15) for detecting the extreme value of the layer having a small amount of change in transmittance such as the spacer layer. Since the SN ratio (Signal to Noise ratio) does not change, it is not possible to improve the extreme value detection accuracy.

本発明は上記問題点を解決しようとするものであり、透過率の変化量が小さい層に於いて、SN比を向上させ尚かつ透過率の変化量を拡大し、高精度の膜厚制御を行う新方式の光学膜厚計測装置を提供することを目的とするものである。
目的達成のため、成膜基板に照射するレーザ光の出力強度を、成膜工程中任意の値に設定可能な構成とすることを特徴とする。
具体的には、成膜基板にレーザ光を照射するレーザ光源と、レーザ光源の出力制御を行う制御装置とを備え、成膜工程中にレーザ光の照射強度を可変することを特徴とする。レーザ光の出力制御は、各層における透過率または反射率の変化を予め算出し、透過率または反射率の変化量が小さい層を成膜する際にレーザ光源の出力を増大し、透過光量または反射光量を増大させて変化量を拡大し、極値検出を行う。
The present invention is intended to solve the above problems, and in a layer having a small change in transmittance, the SN ratio is improved and the change in transmittance is increased to achieve high-precision film thickness control. An object of the present invention is to provide a new optical film thickness measuring apparatus.
In order to achieve the object, the output intensity of the laser light applied to the deposition substrate can be set to an arbitrary value during the deposition process.
Specifically, a laser light source for irradiating the film formation substrate with laser light and a control device for controlling output of the laser light source are provided, and the irradiation intensity of the laser light is varied during the film formation process. Laser light output control calculates the change in transmittance or reflectance in each layer in advance, increases the output of the laser light source when forming a layer with a small amount of change in transmittance or reflectance, and transmits the amount of transmitted light or reflection. The amount of change is increased by increasing the amount of light, and extreme value detection is performed.

本発明により、レーザ光源の出力を任意の値に設定可能な構成とすることにより、高精度の極値検出を行うことが可能となり、膜厚制御の精度を著しく向上させることが可能となった。   By adopting a configuration in which the output of the laser light source can be set to an arbitrary value according to the present invention, it is possible to detect extreme values with high accuracy and to significantly improve the accuracy of film thickness control. .

図8を参照に本発明実施例を説明する。本発明は、レーザ光源である波長可変レーザ(11)の出力を制御する制御装置(33)を設けたことを特徴とする。その他の構成については図3に示す従来装置と同様であるため、同一符号を付して説明を省略する。以下、レーザ光源の出力制御装置をレーザ光源とは別に設置した例について説明するが、制御装置はレーザ光源に内蔵してもよい。
制御装置(33)は、レーザ光源の出力を成膜工程中任意の値に設定可能な構成とする。レーザ光の出力は、各層における透過率の変化量を予めシミュレーションし、変化量の小さい層では出力を増大するように設定する。
具体的には、スペーサ層及びスペーサ層近傍の反射帯層成膜開始前に、波長可変レーザの出力を増加させておく。
The embodiment of the present invention will be described with reference to FIG. The present invention is characterized in that a control device (33) for controlling the output of the wavelength tunable laser (11) as a laser light source is provided. Since other configurations are the same as those of the conventional apparatus shown in FIG. 3, the same reference numerals are given and description thereof is omitted. Hereinafter, an example in which the laser light source output control device is installed separately from the laser light source will be described. However, the control device may be built in the laser light source.
The control device (33) is configured such that the output of the laser light source can be set to an arbitrary value during the film forming process. The output of the laser light is set so that the amount of change in transmittance in each layer is simulated in advance, and the output is increased in a layer with a small amount of change.
Specifically, the output of the wavelength tunable laser is increased before starting the formation of the spacer layer and the reflection band layer near the spacer layer.

図4を用いてこの動作を説明する。図4より従来法でのスペーサ層(14層目)は、透過率:1.5%から成膜が開始され、3.15%で極値を迎えている。この時の透過率の変化量は1.65%となる。一方スペーサ層開始前に波長可変レーザの出力を例えば10倍に増大した場合、透過率:15%から成膜が開始され、31.5%で極値を迎えるため、透過率の変化量は従来よりも10倍に拡大される。
制御装置(33)を用いて基板に投光するレーザ光の光量を増大させることにより、透過光量が増加し、ノイズを増大させることなく透過率の変化量を拡大することが可能となるため、SN比を向上させ高精度の膜厚測定を行うことが可能となる。
上記実施例では透過率を測定したが、反射率を測定してもよい。
This operation will be described with reference to FIG. As shown in FIG. 4, the spacer layer (14th layer) according to the conventional method starts film formation from a transmittance of 1.5% and reaches an extreme value at 3.15%. The amount of change in transmittance at this time is 1.65%. On the other hand, when the output of the wavelength tunable laser is increased 10 times before the start of the spacer layer, for example, the film formation starts from 15% transmittance and reaches an extreme value at 31.5%. Is magnified 10 times.
By increasing the amount of laser light projected onto the substrate using the control device (33), the amount of transmitted light increases, and the amount of change in transmittance can be increased without increasing noise. It is possible to improve the SN ratio and perform highly accurate film thickness measurement.
Although the transmittance is measured in the above embodiment, the reflectance may be measured.

前記した実施例を基に100GHz用5キャビティ構成のNBPFを作成した。作成したNBPFはTaとSiOの光学薄膜材料を用い、それらの光学膜厚はλ/4(λ:1550nm)で堆積・制御される。TaとSiOの光学膜厚をλ/4とし、それぞれをH,Lとすると膜構成は、基板/{[HL]H8LH[LH]}L{[HL]H8LH[LH]}L{[HL]H8LH[LH]}L{[HL]H8LH[LH]}L{[HL]H8LH[LH]}/大気とした。 An NBPF having a 5-cavity configuration for 100 GHz was prepared based on the above-described embodiment. The produced NBPF uses optical thin film materials of Ta 2 O 5 and SiO 2 , and their optical film thickness is deposited and controlled at λ / 4 (λ: 1550 nm). Assuming that the optical film thicknesses of Ta 2 O 5 and SiO 2 are λ / 4, and H and L respectively, the film configuration is substrate / {[HL] 6 H8LH [LH] 6 } L {[HL] 7 H8LH [LH 7 } L {[HL] 7 H8LH [LH] 7 } L {[HL] 7 H8LH [LH] 7 } L {[HL] 6 H8LH [LH] 6 } / atmosphere.

波長可変レーザの出力は、各キャビティの前半の反射帯層で3回増加させ、後半の反射帯層で3回減少させて元に戻している。各層に於ける波長可変レーザの出力を表2に示す。

Figure 0004235997
The output of the wavelength tunable laser is increased three times in the first reflection band layer of each cavity and decreased three times in the second reflection band layer to return to the original value. Table 2 shows the output of the wavelength tunable laser in each layer.
Figure 0004235997

成膜条件は成膜基板(6)の温度を400℃、真空容器(1)内の真空度は酸素ガスを導入にしてTa成膜時は2.5×10−2Pa,SiO成膜時は1.5×10−2Paに保持され、Ta及びSiOの成膜速度はそれぞれ0.4nm/sec,0.8nm/secとした。 The film formation conditions are as follows: the temperature of the film formation substrate (6) is 400 ° C., and the degree of vacuum in the vacuum vessel (1) is 2.5 × 10 −2 Pa, SiO 2 when forming Ta 2 O 5 by introducing oxygen gas. During film formation, the film was held at 1.5 × 10 −2 Pa, and the film formation rates of Ta 2 O 5 and SiO 2 were set to 0.4 nm / sec and 0.8 nm / sec, respectively.

図5に1キャビティ目の各層における透過光量変化を示す。透過光量は相対的な透過率で示し、成膜開始時のレーザ出力における透過光量を透過率で示した値を基準とする。つまり成膜開始時のレーザ出力(−10dBm)におけるレーザ光を、成膜基板を介さずに受光器に入射させた際の光量を透過率100%とする。図中(32)は14層目のスペーサ層における透過光量の変化を示す。図中(32)に示すスペーサ層では透過率20%から成膜が開始され43%で極値を迎えており、透過率の変化量は23%となり、従来よりも約14倍に拡大されていることが判る。   FIG. 5 shows changes in the amount of transmitted light in each layer of the first cavity. The amount of transmitted light is indicated by relative transmittance, and the value indicating the amount of transmitted light at the laser output at the start of film formation is indicated as a reference. That is, the amount of light when the laser beam at the laser output (−10 dBm) at the start of film formation is incident on the light receiver without passing through the film formation substrate is set to 100% transmittance. In the figure, (32) shows the change in the amount of transmitted light in the 14th spacer layer. In the spacer layer shown in (32) in the figure, the film formation started at 20% transmittance and reached an extreme value at 43%, and the change in transmittance was 23%, which was about 14 times larger than before. I know that.

図6に、本発明膜厚計測装置を用いた成膜終了後大気解放した後、基板中心部の分光特性を測定した結果を示す。図7は、従来の膜厚計測装置を用いた成膜終了後、同様に分光特性を測定した結果を示す。
図6より、本発明膜厚計測装置を用いてスペーサ層及びスペーサ層近傍の反射帯層での透過率の変化量を拡大したことにより、極値の検出精度が向上し、図7に示す従来の膜厚計測装置を用いて成膜を行った結果に比べて極めて良好な光学的特性が得られているのが判る。
FIG. 6 shows the result of measuring the spectral characteristics at the center of the substrate after the film was released using the film thickness measuring apparatus of the present invention and released into the atmosphere. FIG. 7 shows the result of measuring spectral characteristics in the same manner after film formation using a conventional film thickness measuring apparatus.
From FIG. 6, by using the film thickness measuring device of the present invention to increase the amount of change in transmittance in the spacer layer and the reflection band layer in the vicinity of the spacer layer, the extreme value detection accuracy is improved, and the prior art shown in FIG. It can be seen that extremely good optical characteristics are obtained as compared with the result of film formation using this film thickness measuring apparatus.

上記実施例では、NBPF用真空成膜装置について記載したが、本発明はNBPF用に限定するものではなく、他の真空成膜装置にも転用が可能である。
また、上記実施例では光源に波長可変レーザを用いたが、本発明は波長可変レーザに限定するものではなく、他の出力可変可能な光源にも転用が可能である。
In the above embodiment, the vacuum film forming apparatus for NBPF has been described. However, the present invention is not limited to the NBPF, and can be diverted to other vacuum film forming apparatuses.
In the above embodiment, the wavelength tunable laser is used as the light source. However, the present invention is not limited to the wavelength tunable laser, and can be diverted to other light sources with variable output.

NBPFの膜構成の説明図である。It is explanatory drawing of the film | membrane structure of NBPF. 誘電体薄膜の光学膜厚と反射率の関係図である。It is a related figure of the optical film thickness of a dielectric material thin film, and a reflectance. 従来の装置構成の説明図である。It is explanatory drawing of the conventional apparatus structure. 透過率変化のシミュレーションを示したものである。The simulation of the transmittance | permeability change is shown. 本発明の手法を用いて実成膜を行った際の透過率変化を示したものである。The change in transmittance when an actual film is formed using the method of the present invention is shown. 本発明の手法を用いて実成膜を行った後、大気中で測定した分光特性を示したものである。The figure shows the spectral characteristics measured in the air after actual film formation using the method of the present invention. 従来の手法を用いて実成膜を行った後、大気中で測定した分光特性を示したものである。The figure shows the spectral characteristics measured in the air after the actual film formation using the conventional method. 本発明の装置構成の説明図である。It is explanatory drawing of the apparatus structure of this invention.

符号の説明Explanation of symbols

1 真空容器
2 電子ビーム蒸発源
3 シャッタ
4 水晶センサ
5 基板ドーム
6 成膜基板
7 基板加熱用シースヒーター
8 下部覗き窓
9 上部覗き窓
10 コントローラ
11 波長可変レーザ
12 デポラライザー
13 光ファイバ
14 出射筒
15 単色測光用受光器
16 覗き窓
17 放射型温度計
18 温度調節器
19 ハロゲンヒーター用電力調整器
20 低圧導入電極
21 ハロゲンヒーター
22 高周波電源
23 マッチングボックス
24 高圧導入電極
25 高屈折率物質
26 低屈折率物質
27 反射帯層
28 スペーサ層
29 キャビティ
30 結合層
31 基板
32 14層目のスペーサ層における透過率の変化
33 制御装置
DESCRIPTION OF SYMBOLS 1 Vacuum container 2 Electron beam evaporation source 3 Shutter 4 Quartz sensor 5 Substrate dome 6 Deposition substrate 7 Substrate heating sheath heater 8 Lower viewing window 9 Upper viewing window 10 Controller 11 Wavelength variable laser 12 Depolarizer 13 Optical fiber 14 Output tube 15 Monochromatic photometric detector 16 Viewing window 17 Radiation type thermometer 18 Temperature regulator 19 Halogen heater power regulator 20 Low voltage introduction electrode 21 Halogen heater 22 High frequency power supply 23 Matching box 24 High voltage introduction electrode 25 High refractive index material
26 Low refractive index material 27 Reflective band layer 28 Spacer layer 29 Cavity 30 Coupling layer 31 Substrate 32 Change in transmittance in the 14th spacer layer 33 Control device

Claims (2)

多層膜を堆積する成膜基板にレーザ光を投光して該成膜基板の透過率または反射率を測定し、該成膜基板の膜厚を測定する光学薄膜計測方法において、
各層における透過率または反射率の変化を予め算出し、
透過率または反射率の変化量の相対的に小さい層を成膜する際に、該成膜基板に照射する該レーザ光の強度を増大させ、透過光量または反射光量を増大させ、極値検出を行うことを特徴とする光学薄膜計測方法。
In an optical thin film measurement method for measuring the film thickness of the film formation substrate by projecting a laser beam onto the film formation substrate on which the multilayer film is deposited, measuring the transmittance or reflectance of the film formation substrate,
Calculate the change in transmittance or reflectance in each layer in advance,
When forming a layer with a relatively small amount of change in transmittance or reflectance, the intensity of the laser light irradiated to the film-forming substrate is increased, the amount of transmitted light or reflected light is increased, and extreme value detection is performed. An optical thin film measuring method characterized by performing.
成膜基板にレーザ光を投光して該成膜基板の透過率または反射率を測定し、該成膜基板の膜厚を測定する光学薄膜計測装置であって、
該成膜基板に多層膜を成膜する光学薄膜形成用装置に搭載され、
該成膜基板に該レーザ光を照射するレーザ光源と、
該レーザ光源の出力制御を行う制御装置とを備え、
該制御装置は、成膜工程中に該レーザ光の照射強度を可変する光学薄膜計測装置において、
各層における透過率または反射率の変化を予め算出し、
透過率または反射率の変化量の相対的に小さい層を成膜する際に、
該制御装置により該レーザ光源の出力を増大することを特徴とする光学薄膜計測装置。
An optical thin film measuring apparatus for projecting a laser beam onto a film forming substrate to measure the transmittance or reflectance of the film forming substrate and measuring the film thickness of the film forming substrate,
Mounted in an optical thin film forming apparatus for forming a multilayer film on the film formation substrate,
A laser light source for irradiating the film formation substrate with the laser light;
A control device for controlling the output of the laser light source,
The control device is an optical thin film measuring device that varies the irradiation intensity of the laser light during a film forming process.
Calculate the change in transmittance or reflectance in each layer in advance,
When forming a layer with a relatively small amount of change in transmittance or reflectance,
An optical thin film measuring apparatus, wherein the output of the laser light source is increased by the control device.
JP2003282837A 2003-07-30 2003-07-30 Optical film thickness measuring method and apparatus Expired - Lifetime JP4235997B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003282837A JP4235997B2 (en) 2003-07-30 2003-07-30 Optical film thickness measuring method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003282837A JP4235997B2 (en) 2003-07-30 2003-07-30 Optical film thickness measuring method and apparatus

Publications (2)

Publication Number Publication Date
JP2005049269A JP2005049269A (en) 2005-02-24
JP4235997B2 true JP4235997B2 (en) 2009-03-11

Family

ID=34267925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003282837A Expired - Lifetime JP4235997B2 (en) 2003-07-30 2003-07-30 Optical film thickness measuring method and apparatus

Country Status (1)

Country Link
JP (1) JP4235997B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104019754A (en) * 2014-06-21 2014-09-03 浙江天龙胶丸有限公司 Rapid capsule thickness detection device
CN114032508A (en) * 2021-10-22 2022-02-11 武汉理工大学 Device and method for preparing transparent electrode film of photovoltaic cell

Also Published As

Publication number Publication date
JP2005049269A (en) 2005-02-24

Similar Documents

Publication Publication Date Title
TW556004B (en) Methods and apparatus for the production of optical filters
KR100972769B1 (en) Optical film thickness controlling method, optical film thickness controlling apparatus, dielectric multilayer film manufacturing apparatus, and dielectric multilayer film manufactured using the same controlling apparatus or manufacturing apparatus
US6646753B2 (en) In-situ thickness and refractive index monitoring and control system for thin film deposition
TW584742B (en) Multilayer film optical filter, method of producing the same, and optical component using the same
JP4418926B2 (en) Optical thin film forming apparatus and method
JP4235997B2 (en) Optical film thickness measuring method and apparatus
JP4547489B2 (en) Optical thin film forming apparatus equipped with film thickness measuring device and optical thin film forming method
JP3737409B2 (en) Film thickness monitoring apparatus and method
JP2004354372A (en) Optical thin film forming device with film thickness measuring instrument mounted thereon, and optical thin film forming method
JP3737442B2 (en) Film thickness monitoring apparatus and film thickness monitoring method
JP2005107010A (en) Method for manufacturing multilayer optical filter, and multilayer optical filter
JP3737407B2 (en) Film thickness monitoring apparatus and method
JP3737408B2 (en) Film thickness monitoring apparatus and method
JP2003029026A (en) Device for deposition of optical thin film, method for depositing film and optical filter
JP2001215325A (en) Narrow band optical filter and its manufacturing method
JP2004069490A (en) Film thickness measuring method and device for optical thin film
JP2004061810A (en) Method and device for manufacturing multilayered film optical filter
JP4043836B2 (en) Multilayer optical filter manufacturing method and system, and multilayer optical filter
JP3895599B2 (en) Film thickness monitor light wavelength determining method and apparatus, and program
CN116676582A (en) Direct light control system and method of coating equipment
JP3084862B2 (en) Optical film thickness monitor
JP2003215333A (en) Optical film thickness monitor, film forming device with this monitor attached, multi-layered film optical filter, and optical multiplexer/demultiplexer
JP3231299B2 (en) Optical interference filter fabrication method
JPH11246968A (en) Production of optical thin film
JP2000171602A (en) Formation of multilayered optical thin films and apparatus for forming multilayered optical thin films

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081209

R150 Certificate of patent or registration of utility model

Ref document number: 4235997

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131226

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term