JP2005120366A - Method for producing gasoline base, eco-friendly gasoline and method for producing the same - Google Patents

Method for producing gasoline base, eco-friendly gasoline and method for producing the same Download PDF

Info

Publication number
JP2005120366A
JP2005120366A JP2004279115A JP2004279115A JP2005120366A JP 2005120366 A JP2005120366 A JP 2005120366A JP 2004279115 A JP2004279115 A JP 2004279115A JP 2004279115 A JP2004279115 A JP 2004279115A JP 2005120366 A JP2005120366 A JP 2005120366A
Authority
JP
Japan
Prior art keywords
sulfur content
less
naphtha fraction
mass
gasoline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004279115A
Other languages
Japanese (ja)
Other versions
JP4803785B2 (en
Inventor
Yasuhiro Araki
泰博 荒木
Eiji Tanaka
英治 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP2004279115A priority Critical patent/JP4803785B2/en
Publication of JP2005120366A publication Critical patent/JP2005120366A/en
Application granted granted Critical
Publication of JP4803785B2 publication Critical patent/JP4803785B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ECO-friendly gasoline and a method for producing the same, with extremely low sulfur content and reducing effect to the environment, and to provide a method for producing a gasoline base suitable for preparation of ECO-friendly gasoline. <P>SOLUTION: The method for producing the gasoline base having ≤10 mass.ppm of sulfur content, ≥30 mass.% of sulfur content based on thiophenes in the total sulfur content and ≥85 of research octane number, comprises a first process obtaining fluidized catalytically cracked heavy naphtha fraction with 50-120°C of 5% recovered temperature and 150-220°C of 95% recovered temperature by fractionating fluidized catalytically cracked naphtha, and a second process obtaining desulfurized fluidized catalytically cracked heavy naphtha by carrying out a hydrodesulfurization of the fluidized catalytically cracked heavy naphtha fraction having 50-150 mass.ppm of sulfur content and ≤25 vol.% of olefin content obtained in the first process, under a condition which limits reducing rate of olefin content to ≤40%. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、環境への影響を低減するために硫黄分を10質量ppm以下に低減した環境対応ガソリンとその製造方法、および該環境対応ガソリンの調製に好適なガソリン基材の製造方法に関する。   The present invention relates to an environmentally friendly gasoline having a sulfur content reduced to 10 ppm by mass or less in order to reduce the influence on the environment, a method for producing the same, and a method for producing a gasoline base material suitable for the preparation of the environmentally friendly gasoline.

近年、自動車の高性能化に伴って、高い運転性能をもつ高性能ガソリンの需要が増加している。一方、自動車燃料やその燃焼排ガスによる環境汚染が社会問題になってきている。したがって、高い運転性能を維持するとともに、環境負荷の少ない自動車燃料が望まれている。特に、排ガス浄化と燃費改善の観点から、硫黄分の一層の低減が切望されている。   In recent years, the demand for high-performance gasoline having high driving performance has increased with the improvement in performance of automobiles. On the other hand, environmental pollution due to automobile fuel and its combustion exhaust gas has become a social problem. Therefore, an automobile fuel that maintains high driving performance and has a low environmental impact is desired. In particular, further reduction of sulfur content is desired from the viewpoint of exhaust gas purification and fuel efficiency improvement.

JIS K 2202には、リサーチ法オクタン価(RON)が96以上の1号自動車ガソリンと89以上の2号自動車ガソリンが規定されており、前者は高性能なプレミアムガソリンとして、後者はレギュラーガソリンとして市販されている。従来、レギュラーガソリンは、接触改質ガソリン基材、アルキレートガソリン基材、ライトナフサ基材、接触分解ガソリン基材(接触分解ナフサ留分)のような基材を中心に、各種の基材を配合して製造されている。   JIS K 2202 stipulates No. 1 automobile gasoline with a research octane number (RON) of 96 or more and No. 2 automobile gasoline with 89 or more. The former is marketed as high-performance premium gasoline and the latter as regular gasoline. ing. Conventionally, regular gasoline has various base materials such as catalytic reforming gasoline base, alkylate gasoline base, light naphtha base, catalytic cracking gasoline base (catalytic cracking naphtha fraction). It is manufactured by blending.

重質な石油留分を接触分解することによって製造される接触分解ガソリン基材は、他のレギュラーガソリン基材に比べ、経済的に製造できるという利点がある一方、硫黄分を多く含んでいた。その結果、上述のようにして製造されるレギュラーガソリン中の硫黄分の大部分は、接触分解ガソリン基材に由来していた。   The catalytic cracking gasoline base produced by catalytic cracking of a heavy petroleum fraction has an advantage that it can be produced economically compared with other regular gasoline bases, but contains a large amount of sulfur. As a result, most of the sulfur content in the regular gasoline produced as described above was derived from the catalytic cracked gasoline base material.

接触分解ガソリン基材の硫黄分の低減は、高圧水素と触媒の共存下で水素化精製するという公知技術で容易に可能である。その場合は、接触分解ガソリン基材中に多く含まれ、高いRONをもつオレフィン分が水素化されて基材のRONが低下してしまう。そこで、硫黄分の多い重質な接触分解ガソリン基材のみを水素化精製することで全体としてのオレフィン分の低下を防ぐことが行われる。   The sulfur content of the catalytic cracking gasoline base can be easily reduced by a known technique of hydrotreating in the presence of high-pressure hydrogen and a catalyst. In that case, a large amount of the olefin component having a high RON contained in the catalytic cracking gasoline base material is hydrogenated and the RON of the base material is lowered. Accordingly, it is possible to prevent a decrease in the olefin content as a whole by hydrorefining only a heavy catalytic cracked gasoline base material having a high sulfur content.

本発明者は、このような重質な接触分解ガソリン基材の水素化精製を検討したところ、原料油中に含まれていない有機硫黄化合物が精製後の基材に含まれ、この成分が臭気や腐食性に大きな影響を与えていることを見出した。本発明はこのような水素化精製後に発生する有機硫黄化合物による問題を解決して、環境への影響を低減した超低硫黄分の環境対応ガソリンとその製造方法を提供することを目的とするものである。また、本発明は、該環境対応ガソリンの調製に好適なガソリン基材の製造方法を提供することを目的とする。   The present inventor examined the hydrorefining of such a heavy catalytic cracking gasoline base material. As a result, an organic sulfur compound not contained in the raw material oil was contained in the refined base material, and this component was an odor. And found to have a significant effect on corrosivity. An object of the present invention is to solve the problem caused by the organic sulfur compound generated after hydrorefining, and to provide an environment-friendly gasoline having an ultra-low sulfur content with reduced environmental impact and a method for producing the same. It is. Another object of the present invention is to provide a method for producing a gasoline base material suitable for preparing the environmentally friendly gasoline.

本発明者らは、上記課題を解決するために鋭意研究した結果、水素化精製で発生する硫化水素と原料油中のオレフィンが反応することで、新たに有機硫黄化合物が発生しているとの着想を持ち、水素化精製の原料油中に含まれるオレフィン分を限定することで、水素化精製した接触分解ガソリン基材による問題を防止できることを見出した。これらの知見からこの発明に至った。   As a result of earnest research to solve the above problems, the present inventors have found that organic sulfur compounds are newly generated by the reaction of hydrogen sulfide generated by hydrorefining with olefins in the feedstock. It was found that by limiting the olefin content contained in the hydrorefining feedstock, problems due to hydrocracked catalytic cracked gasoline base materials can be prevented. These findings led to this invention.

すなわち、本発明による硫黄分が10質量ppm以下、チオフェン類による硫黄分が全
硫黄分の30質量%以上、かつリサーチオクタン価が85以上であるガソリン基材の製造方法は、流動接触分解ナフサを分留して5%留出温度が50〜120℃、95%留出温度が150〜220℃である接触分解重質ナフサ留分を得る第1工程、及び第1工程で得られた接触分解重質ナフサ留分の硫黄分が50〜150質量ppm、オレフィン分が25容量%以下であり、この接触分解重質ナフサ留分をオレフィン含有量の低減率が40%以下の条件で水素化脱硫して脱硫接触分解重質ナフサ留分を得る第2工程を含む。
好ましくは、上記ガソリン基材の硫黄分は5質量ppm以下であり、また、脱硫接触分解重質ナフサ留分をアルカリ性物質と接触させ、含まれる硫黄分を3質量ppm以下かつチオール類の含有量を1質量ppm以下にする。
That is, the method for producing a gasoline base material having a sulfur content of 10 ppm by mass or less according to the present invention, a sulfur content by thiophenes of 30 mass% or more of the total sulfur, and a research octane number of 85 or more is divided into fluid catalytic cracking naphtha. A first step for obtaining a catalytic cracked heavy naphtha fraction having a 5% distillation temperature of 50 to 120 ° C. and a 95% distillation temperature of 150 to 220 ° C., and the catalytic cracking weight obtained in the first step The sulfur content of the naphtha fraction is 50 to 150 mass ppm, the olefin content is 25% by volume or less, and this catalytic cracked heavy naphtha fraction is hydrodesulfurized under the condition that the reduction rate of the olefin content is 40% or less. A second step of obtaining a desulfurized catalytic cracked heavy naphtha fraction.
Preferably, the sulfur content of the gasoline base is 5 ppm by mass or less, the desulfurization catalytic cracking heavy naphtha fraction is contacted with an alkaline substance, the sulfur content is 3 ppm by mass or less, and the content of thiols. Is 1 mass ppm or less.

さらに、本発明は、上記の製造方法によるガソリン基材と、硫黄分10質量ppm以下の他のガソリン基材とを混合する配合工程を含む、硫黄分が10質量ppm以下、かつリサーチオクタン価が89以上である環境対応ガソリンの製造方法である。   Furthermore, the present invention includes a blending step of mixing the gasoline base material by the above production method with another gasoline base material having a sulfur content of 10 mass ppm or less, the sulfur content is 10 mass ppm or less, and the research octane number is 89. This is a method for producing environmentally friendly gasoline.

また、本発明による環境対応ガソリンは、全硫黄分が10質量ppm以下、チオール類による硫黄分とチオフェン類による硫黄分の合計が50質量%以上を占め、かつリサーチ法オクタン価が89〜96である。また、チオフェン類による硫黄分が全硫黄分の30質量%以上を占めることが好ましく、オレフィン含有量が10〜30容量%であることがさらに好ましい。   In addition, the environmentally friendly gasoline according to the present invention has a total sulfur content of 10 mass ppm or less, a total of 50 mass% or more of sulfur content of thiols and sulfur content of thiophenes, and a research octane number of 89 to 96. . Moreover, it is preferable that the sulfur content by thiophene occupies 30 mass% or more of a total sulfur content, and it is further more preferable that olefin content is 10-30 volume%.

本発明によれば、流動接触分解ナフサから炭素数5以下のオレフィンのほとんどを含まず、炭素数7以上のオレフィン分のほとんどを含む重質ナフサ留分と、炭素数5以下のオレフィン分のほとんどを含み炭素数7以上のオレフィンをほとんど含まない軽質ナフサ留分に分け、重質ナフサ留分のみを水素化脱硫するので、精製された脱硫重質ナフサ留分には、炭素数5以下の脂肪族チオールはほとんど含まれることなく、このような硫黄化合物による臭気や腐食性の問題を回避できる。
また、本発明によれば、水素化脱硫にかける原料中のオレフィン分を25容量%以下とすることで、オレフィンと脱硫によって生成する硫化水素によるメルカプタン再生成反応を抑制し、オクタン価ロスを最小限しながら、生成油中の硫黄分を10質量ppm以下、さらには5ppm質量以下にもすることが可能である。
According to the present invention, a heavy naphtha fraction containing most of the olefins having 7 or more carbon atoms and most of the olefins having 5 or less carbon atoms, and most of the olefins having 7 or more carbon atoms are contained from the fluid catalytic cracking naphtha. Is divided into light naphtha fractions containing almost no olefins containing 7 or more carbon atoms, and only the heavy naphtha fractions are hydrodesulfurized. Therefore, the refined desulfurized heavy naphtha fraction contains fat with 5 or less carbon atoms. Almost no group thiol is contained, and odor and corrosive problems due to such sulfur compounds can be avoided.
In addition, according to the present invention, by reducing the olefin content in the raw material to be subjected to hydrodesulfurization to 25% by volume or less, mercaptan regeneration reaction by olefin and hydrogen sulfide produced by desulfurization is suppressed, and octane loss is minimized. However, the sulfur content in the product oil can be reduced to 10 ppm by mass or less, and further to 5 ppm by mass or less.

〔水素化精製によって生成するチオール類の形態〕
接触分解ナフサを水素化精製によって脱硫処理すると硫化水素が発生する。接触分解ナフサにはオレフィンが含まれているため、オレフィンと硫化水素が反応しチオールが生成する。接触分解ナフサには元々チオールが含まれるが、チオールは非常に反応性が高く水素化精製による脱硫処理によって容易に脱硫されるため、脱硫接触分解ナフサに含まれるチオールは、水素化精製中に硫化水素とオレフィンとが反応して生成したものがほとんどである。接触分解ナフサには通常炭素数4〜12のオレフィンが含まれているため、接触分解ナフサを水素化精製処理すると炭素数4〜12のチオールが生成する。チオール類は、ガソリン中の悪臭物質の1つであり、チオール類の沸点が低いほど悪臭が強い。チオール類は炭素数が小さいほど沸点が低いため、炭素数5以下のチオールは特に悪臭が強い。チオール類は、オレフィンと硫化水素が反応して容易に生成するため、接触分解ナフサを水素化脱硫処理する前に、炭素数5以下のオレフィンを軽質ナフサ留分として分留して除去することによって、脱硫接触分解ナフサ中の炭素数5以下のチオール生成を抑制することができる。
[Forms of thiols produced by hydrorefining]
Hydrogen sulfide is generated when catalytic cracking naphtha is desulfurized by hydrorefining. Since catalytic cracking naphtha contains olefin, olefin and hydrogen sulfide react to generate thiol. Although thiol is originally contained in catalytic cracking naphtha, thiol is very reactive and easily desulfurized by desulfurization by hydrorefining, so thiol contained in desulfurizing catalytic cracking naphtha is sulfided during hydrorefining. Most of them are produced by reaction of hydrogen and olefins. Since the catalytic cracking naphtha usually contains an olefin having 4 to 12 carbon atoms, when the catalytic cracking naphtha is hydrorefined, a thiol having 4 to 12 carbon atoms is generated. Thiols are one of the malodorous substances in gasoline. The lower the boiling point of thiols, the stronger the malodor. Since thiols have a lower boiling point as the carbon number is smaller, thiols having 5 or less carbon atoms have a particularly strong odor. Thiols are easily generated by the reaction of olefin and hydrogen sulfide. Therefore, before hydrocracking the catalytic cracked naphtha, olefins having 5 or less carbon atoms are fractionated and removed as a light naphtha fraction. The generation of thiol having 5 or less carbon atoms in the desulfurization catalytic cracking naphtha can be suppressed.

チオール類を大別すると、鎖状パラフィンにSH基が付加した鎖状チオール類、環状パラフィンにSH基が付加した脂環式チオール類、芳香環に直接SH基が付加した芳香族チオール類に分けられる。このうち、水素化精製処理によって生成するのは、鎖状チオール類と脂環式チオール類であり、ここではこれらを合わせて脂肪族チオール類と呼ぶ。   The thiols are roughly classified into chain thiols with SH group added to chain paraffin, alicyclic thiols with SH group added to cyclic paraffin, and aromatic thiols with SH group added directly to the aromatic ring. It is done. Of these, chain thiols and alicyclic thiols are generated by hydrorefining treatment, and these are collectively referred to as aliphatic thiols here.

〔接触分解プロセス〕
接触分解ナフサを製造するプロセスは、接触分解装置、運転条件および用いる触媒を特に限定するものでなく、公知の任意の製造プロセスを採用できる。接触分解装置は、無定形シリカアルミナ、ゼオライトなどの触媒を使用して、軽油から減圧軽油までの石油留分の他、重油間接脱硫装置から得られる間脱軽油、重油直接脱硫装置から得られる直脱重油、常圧残さ油などを接触分解して高オクタン価ガソリン基材を得る装置である。例えば石油学会編「新石油精製プロセス」に記載のあるUOP接触分解法、フレキシクラッキング法、ウルトラ・オルソフロー法、テキサコ流動接触分解法などの流動接触分解法、RCC法、HOC法などの残油流動接触分解法などがある。また、21st JPI Petroleum Refining Conference “Recent Progress in Petroleum Process Technology”, p.113-158 (2002)、Sulphur, 268, 35, (2000)、“Production of Low Sulfur Gasoline and Diesel Fuels: Tier 2 and Beyond”, Petroleum Refining Technology Seminar, p.4-24 (August 2001)、特開平6−277519に開示されているような、脱硫効果の高い接触分解触媒や脱硫効果をもった添加剤を接触分解触媒に添加して用いることもできる。
[Catalytic decomposition process]
The process for producing the catalytic cracking naphtha is not particularly limited to the catalytic cracking apparatus, the operating conditions and the catalyst to be used, and any known production process can be adopted. The catalytic cracking unit uses a catalyst such as amorphous silica alumina, zeolite, etc., in addition to petroleum fractions from light oil to vacuum gas oil, while being obtained from heavy oil indirect desulfurization unit, it can be obtained directly from degassing oil or heavy oil direct desulfurization unit. This is a device that obtains a high octane gasoline base material by catalytic cracking of degassed oil, atmospheric residue oil and the like. For example, UOP catalytic cracking method, flexi cracking method, ultra-orthoflow method, fluid catalytic cracking method such as Texaco fluid catalytic cracking method, RCC method, HOC method, etc. Examples include fluid catalytic cracking. Also, 21st JPI Petroleum Refining Conference “Recent Progress in Petroleum Process Technology”, p.113-158 (2002), Sulfur, 268, 35, (2000), “Production of Low Sulfur Gasoline and Diesel Fuels: Tier 2 and Beyond” , Petroleum Refining Technology Seminar, p.4-24 (August 2001), JP-A-6-277519, catalytic cracking catalyst having high desulfurization effect and additive having desulfurization effect are added to catalytic cracking catalyst It can also be used.

〔接触分解原料油〕
原油を常圧蒸留して得られる常圧蒸留残油、常圧蒸留残油を減圧蒸留して得られる留出油留分である減圧軽油、原油を常圧蒸留して得られる留出油留分のうちの直留軽油留分、常圧蒸留残渣油を減圧蒸留して得られる減圧蒸留残渣油を熱分解して得られる熱分解重質軽油留分等を硫黄分4000質量ppm以下、特には2000質量ppm以下、窒素分
1000質量ppm以下、特には500質量ppm以下となるように水素化精製処理したものが好ましく用いられる。また、接触分解プロセスで得られるガソリン留分より沸点の高いライトサイクルオイルや水素化分解プロセスで得られる減圧蒸留残油留分、またはそれらを水素化精製処理したものも好ましく用いられる。硫黄分、窒素分、バナジウム分、ニッケル分の含有量が比較的低い原油の場合は、直留軽油、減圧軽油、常圧蒸留残油、減圧残油を水素化精製せずに、接触分解原料油としてまたはその一部として用いることもできる。
[Catalytic cracking feedstock]
An atmospheric distillation residue obtained by atmospheric distillation of crude oil, a vacuum gas oil that is a distillate fraction obtained by vacuum distillation of atmospheric distillation residue, a distillate distillation obtained by atmospheric distillation of crude oil Among the fractions, a pyrolysis heavy gas oil fraction obtained by pyrolyzing a vacuum distillation residue oil obtained by distilling an atmospheric distillation residue oil under reduced pressure, a sulfur content of 4000 mass ppm or less, particularly Is preferably subjected to a hydrorefining treatment so as to have 2000 ppm by mass or less and a nitrogen content of 1000 ppm by mass or less, particularly 500 ppm by mass or less. Further, a light cycle oil having a boiling point higher than that of the gasoline fraction obtained by the catalytic cracking process, a vacuum distillation residue fraction obtained by the hydrocracking process, or a product obtained by hydrotreating them is also preferably used. For crude oils with relatively low sulfur, nitrogen, vanadium, and nickel content, the raw material for catalytic cracking can be obtained without hydrorefining straight-run gas oil, vacuum gas oil, atmospheric distillation residue, or vacuum residue. It can also be used as oil or as part of it.

〔第1工程〕
接触分解装置で処理した後に得られる生成物は、軽質ガス、流動接触分解ナフサ、ライトサイクルオイル、ヘビーサイクルオイル、コークである。これら生成物のうち、コーク以外は蒸留塔で蒸留し、各留分が得られる。本発明の第1工程では、流動接触分解ナフサから炭素数5以下のオレフィンのほとんどを含む軽質ナフサ留分と、炭素数5以下のオレフィンを実質的に含まない重質ナフサ留分を分取する。接触分解装置の生成物から軽質ナフサ留分と重質ナフサ留分を直接に分留してもよいし、一旦、これらを含む留分を分留した後、さらに分留して軽質ナフサ留分と重質ナフサ留分に分けてもよい。
[First step]
The products obtained after processing in the catalytic cracker are light gas, fluid catalytic cracking naphtha, light cycle oil, heavy cycle oil, coke. Of these products, those other than coke are distilled in a distillation column to obtain each fraction. In the first step of the present invention, a light naphtha fraction containing most of olefins having 5 or less carbon atoms and a heavy naphtha fraction substantially free of olefins having 5 or less carbon atoms are separated from fluid catalytic cracking naphtha. . A light naphtha fraction and a heavy naphtha fraction may be directly fractionated from the product of the catalytic cracker, or after fractionating a fraction containing these fractions, the fraction is further fractionated to obtain a light naphtha fraction. And heavy naphtha fraction.

接触分解重質ナフサ留分には必然的にオレフィン分が含まれるが、水素化脱硫におけるオクタン価ロスを抑制するため含まれるオレフィン分を25容量%以下、好ましくは20容量%以下とする必要がある。
さらに、重質ナフサ留分には、流動接触分解ナフサに含まれる炭素数5以下のオレフィンの0〜10容量%、特には0〜5容量%が含まれることが好ましく、また、炭素数7以上のオレフィンは50〜100容量%、特には75〜100容量%含まれることが好ましい。軽質ナフサ留分には、流動接触分解ナフサに含まれる炭素数5以下のオレフィンの90〜100容量%以上、特には95〜100容量%以上が含まれることが好ましく、炭素
数7以上のオレフィンは0〜50容量%、特には0〜25容量%含まれることが好ましい。
通常、軽質ナフサ留分は、5%留出温度が25〜50℃、95%留出温度が60〜120℃、特には75〜100℃であり、重質ナフサ留分は、5%留出温度が50〜120℃、特には80〜120℃、95%留出温度が150〜220℃、特には170〜220℃であることが好ましい。重質ナフサ留分に炭素数5以下のオレフィンが多く含まれると、第2工程で得られる重質ナフサ留分中に炭素数5以下のチオール類が多く含まれてしまう。炭素数5以下のチオール類は沸点が比較的低く、揮発性が高い上、悪臭が強いため、炭素数5以下のチオール類がガソリン中に含まれないよう、炭素数5以下のオレフィンが重質ナフサ留分に入らないよう分留するのが好ましく、重質ナフサ留分中の炭素数5以下のオレフィンは1.4容量%以下、特には1.0容量%以下、さらには0.5容量%以下であ
るのが好ましい。
The catalytic cracked heavy naphtha fraction inevitably contains an olefin, but the olefin content must be 25% by volume or less, preferably 20% by volume or less in order to suppress the octane loss in hydrodesulfurization. .
Further, it is preferable that the heavy naphtha fraction contains 0 to 10% by volume, particularly 0 to 5% by volume, of the olefin having 5 or less carbon atoms contained in the fluid catalytic cracking naphtha, and 7 or more carbon atoms. The olefin is preferably contained in an amount of 50 to 100% by volume, particularly 75 to 100% by volume. It is preferable that the light naphtha fraction contains 90 to 100% by volume or more, particularly 95 to 100% by volume or more of the olefin having 5 or less carbon atoms contained in the fluid catalytic cracking naphtha. It is preferably contained in an amount of 0 to 50% by volume, particularly 0 to 25% by volume.
Usually, the light naphtha fraction has a 5% distillation temperature of 25 to 50 ° C., a 95% distillation temperature of 60 to 120 ° C., particularly 75 to 100 ° C., and a heavy naphtha fraction has a 5% distillation temperature. It is preferable that the temperature is 50 to 120 ° C., particularly 80 to 120 ° C., and the 95% distillation temperature is 150 to 220 ° C., particularly 170 to 220 ° C. If the heavy naphtha fraction contains a large amount of olefins having 5 or less carbon atoms, the heavy naphtha fraction obtained in the second step will contain many thiols having 5 or less carbon atoms. Thiols with 5 or less carbon atoms have a relatively low boiling point, high volatility, and strong odor, so olefins with 5 or less carbon atoms are heavy so that gasoline with 5 or less carbon atoms is not included in gasoline. It is preferable to perform fractional distillation so that it does not enter the naphtha fraction. The olefin having 5 or less carbon atoms in the heavy naphtha fraction is 1.4% by volume or less, particularly 1.0% by volume or less, and further 0.5 volume. % Or less is preferable.

炭素数7以上のオレフィンは軽質ナフサ留分にあまり含まれない方が好ましい。炭素数7以上のオレフィンが軽質ナフサ留分に多く含まれると、軽質ナフサ留分の硫黄濃度が高くなり、軽質ナフサ留分の脱硫が必要となるが、このとき軽質ナフサ留分に含まれる硫黄化合物は多くが脱硫されにくいチオフェン類硫黄化合物であるため、オクタン価ロスを伴わずに脱硫するのが困難になる。軽質ナフサ留分中の炭素数7以上のオレフィンは10容量%以下、特には5容量%以下、さらには3容量%以下であるのが好ましい。   It is preferable that olefins having 7 or more carbon atoms are not included in the light naphtha fraction. If olefins with 7 or more carbon atoms are contained in the light naphtha fraction, the sulfur concentration in the light naphtha fraction increases, and desulfurization of the light naphtha fraction is required. At this time, sulfur contained in the light naphtha fraction Since most of the compounds are thiophene sulfur compounds that are not easily desulfurized, it is difficult to desulfurize without loss of octane number. The olefin having 7 or more carbon atoms in the light naphtha fraction is preferably 10% by volume or less, particularly 5% by volume or less, and more preferably 3% by volume or less.

〔軽質ナフサ留分からチオール類を減じる処理〕
軽質ナフサ留分については、硫黄分が10質量ppm未満かつチオールによる硫黄分が1.5質量ppm未満であれば特に何らかの処理を行う必要はない。チオールによる硫黄
分が1.5質量ppm以上の場合は、チオールによる硫黄分が1.5質量ppm未満となるよう、チオールを減ずる処理をするのが好ましい。チオールを減ずる処理については、チオールによる硫黄分を除去する方法と、チオールをチオールではない別の物質に重質化する方法がある。
チオールによる硫黄分を除去する方法としてはペトロテック17 (11), 974 (1994) や講談社サイエンティフィク社「石油精製プロセス」(1998) 記載の抽出型のスイートニング
プロセス、抽出酸化型のスイートニングプロセス、あるいは、硫黄化合物の吸着または収着機能をもった脱硫剤と接触分解軽質ナフサ留分を接触させる方法があげられる。チオールをチオールではない別の物質に重質化する方法としては、ペトロテック17 (11), 974 (1994) や講談社サイエンティフィク社「石油精製プロセス」(1998) 記載の酸化型のスイ
ートニングプロセスや、チオール類を接触分解ナフサ中のジオレフィンやオレフィンと反応させて重質化させる方法が好ましい方法としてあげられる。チオール類を減ずる処理は分留する前でも後でもどちらでもよいが、重質化によってチオール類を減じる場合には分留する前の方が、軽質ナフサ留分中の硫黄分を減じることができるため、なお一層好ましい。
軽質ナフサ留分の硫黄分が10質量ppm以上の場合は、脱硫重質ナフサ留分と混合した後の脱硫接触分解ナフサの硫黄分が20質量ppm以下、好ましくは10質量ppm以下となるよう任意の方法で脱硫処理をするのが好ましい。脱硫処理としては、特に限定はしないが、硫黄化合物の吸着または収着機能をもった脱硫剤と軽質ナフサ留分を接触させる方法や抽出によって軽質ナフサ留分から硫黄化合物を選択的に除去する方法が好ましい方法として挙げられる。触媒と水素の存在下で、軽質ナフサ留分を水素化精製処理する方法も挙げられるが、高圧の水素の存在下では、オレフィンが水素化されやすく、得られるガソリン基材のRONが低下しやすい。そのため、脱硫処理は、水素が実質的に存在しない状態、または水素分圧1MPa未満で行うことが好ましい。
[Treatment to reduce thiols from light naphtha fraction]
As for the light naphtha fraction, if the sulfur content is less than 10 ppm by mass and the sulfur content by thiol is less than 1.5 ppm by mass, no particular treatment is required. When the sulfur content by thiol is 1.5 mass ppm or more, it is preferable to reduce the thiol so that the sulfur content by thiol is less than 1.5 mass ppm. Regarding the treatment for reducing thiol, there are a method of removing sulfur content by thiol and a method of making thiol heavy by another substance that is not thiol.
Extraction-type sweetening process and extraction-oxidation-type sweetening described in Petrotech 17 (11), 974 (1994) and Kodansha Scientific Co., Ltd. “Oil Refining Process” (1998) Examples thereof include a process or a method in which a desulfurization agent having an adsorption or sorption function for sulfur compounds and a catalytically cracked light naphtha fraction are brought into contact with each other. As a method of making thiol into another substance that is not thiol, there is an oxidation-type sweetening process described in Petrotech 17 (11), 974 (1994) and Kodansha Scientific “Oil Refining Process” (1998). In addition, a method of reacting thiols with a diolefin or olefin in catalytic cracking naphtha to make it heavy is a preferable method. The treatment for reducing thiols can be performed either before or after fractional distillation. However, when the thiols are reduced by heavyization, the sulfur content in the light naphtha fraction can be reduced before fractional distillation. Therefore, it is still more preferable.
When the sulfur content of the light naphtha fraction is 10 ppm by mass or more, the sulfur content of the desulfurized catalytic cracked naphtha after mixing with the desulfurized heavy naphtha fraction is 20 ppm by mass or less, preferably 10 ppm by mass or less. It is preferable to perform the desulfurization treatment by the method. The desulfurization treatment is not particularly limited, but there are a method of contacting a light naphtha fraction with a desulfurization agent having adsorption or sorption function of a sulfur compound and a method of selectively removing the sulfur compound from the light naphtha fraction by extraction. It is mentioned as a preferable method. A method of hydrotreating a light naphtha fraction in the presence of a catalyst and hydrogen is also mentioned, but in the presence of high-pressure hydrogen, olefins are easily hydrogenated, and the RON of the resulting gasoline base material is likely to be reduced. . Therefore, the desulfurization treatment is preferably performed in a state where hydrogen is not substantially present or in a hydrogen partial pressure of less than 1 MPa.

〔第2工程〕
本発明の第2工程では第1工程で得られた重質ナフサ留分を水素化脱硫処理して、第三
工程に供する脱硫重質ナフサ留分を得る。水素化脱硫処理は、重質ナフサ留分と水素化脱硫触媒を高圧水素の存在下で接触させるものであるが、オレフィン含有量の低減率を40%以下とする条件で行う。水素化脱硫触媒は、アルミナなどの無機多孔質担体にモリブデン、ニッケル、コバルト、リンのうち少なくとも1種を担持した触媒が好ましく用いられる。好ましい反応条件は、反応温度150〜350℃、反応圧力0.1〜4.0MPa、LHSV1.0〜10h−1、H/OIL=50〜1000N
L/Lである。特に好ましい反応条件は、反応温度200〜300℃、反応圧力1.0〜
2.5MPa、LHSV2.0〜6.0h−1、H/OIL=100〜500NL/Lで
ある。
[Second step]
In the second step of the present invention, the heavy naphtha fraction obtained in the first step is hydrodesulfurized to obtain a desulfurized heavy naphtha fraction used in the third step. The hydrodesulfurization treatment is performed by bringing the heavy naphtha fraction and the hydrodesulfurization catalyst into contact with each other in the presence of high-pressure hydrogen, and the olefin content reduction rate is 40% or less. As the hydrodesulfurization catalyst, a catalyst in which at least one of molybdenum, nickel, cobalt, and phosphorus is supported on an inorganic porous carrier such as alumina is preferably used. Preferred reaction conditions are a reaction temperature of 150 to 350 ° C., a reaction pressure of 0.1 to 4.0 MPa, LHSV 1.0 to 10 h −1 , H 2 / OIL = 50 to 1000 N.
L / L. Particularly preferable reaction conditions are a reaction temperature of 200 to 300 ° C. and a reaction pressure of 1.0 to 1.0.
2.5 MPa, LHSV 2.0 to 6.0 h −1 , H 2 / OIL = 100 to 500 NL / L.

重質ナフサ留分の硫黄分は50〜150質量ppm、特には50〜100質量ppmが好ましい。重質ナフサ留分の硫黄分が多いと、シビアーな水素化精製を強いられてオクタン価ロスが大きくなり好ましくない。   The sulfur content of the heavy naphtha fraction is preferably 50 to 150 mass ppm, particularly 50 to 100 mass ppm. If the heavy naphtha fraction has a high sulfur content, severe hydrorefining is forced and the octane loss is increased, which is not preferable.

水素化脱硫処理に用いる原料油として、接触分解ナフサ以外に硫黄分を高濃度に含む他のガソリン相当留分の油も選択することができる。具体的には、常圧蒸留装置から留出する直留ナフサ、熱分解装置から留出する熱分解ナフサ、脱ろう装置から留出する脱ろうナフサ、直接脱硫装置から留出する直脱ナフサ、間接脱硫装置から留出する間脱ナフサなどがあげられる。これらは分留する前の接触分解ナフサに混合してもよいし、分留後の重質ナフサ留分に混合してもよいが、重質ナフサ留分の硫黄分が200質量ppm以下、さらには150質量ppm以下になるよう混合するのが好ましい。分留する前にチオール類を減じる処理を行う場合は、その前に混合するのが好ましい。   As the feed oil used for the hydrodesulfurization treatment, other gasoline equivalent fraction oil containing a high concentration of sulfur can be selected in addition to catalytic cracking naphtha. Specifically, straight naphtha distilled from an atmospheric distillation unit, thermal naphtha distilled from a pyrolysis unit, dewaxed naphtha distilled from a dewaxing device, direct desulfurization naphtha distilled from a direct desulfurization unit, For example, denaphtha is used while distilling from the indirect desulfurization unit. These may be mixed with the catalytic cracking naphtha before fractionation, or may be mixed with the heavy naphtha fraction after fractionation, but the sulfur content of the heavy naphtha fraction is 200 mass ppm or less, It is preferable to mix so that it may become 150 mass ppm or less. When performing the process which reduces thiols before fractional distillation, it is preferable to mix before that.

脱硫重質ナフサ留分の硫黄分は10質量ppm以下にする。硫黄化合物別には、チオール類は10質量ppm以下、特には3質量ppm以下、さらには1.5質量ppm以下で
あることが好ましい。炭素数7以上の脂肪族チオールは0.1〜10質量ppm、特には
0.1〜2.5質量ppmが好ましい。炭素数6以下の脂肪族チオールは0.1〜10質量
ppm、特には0.1〜2質量ppmが好ましい。脱硫重質ナフサ留分中の脂肪族チオー
ルを0.1質量ppm未満にすると、水素化精製処理におけるRONが著しく低下し好ま
しくない。
The sulfur content of the desulfurized heavy naphtha fraction is 10 ppm by mass or less. By sulfur compound, the thiols are preferably 10 ppm by mass or less, particularly 3 ppm by mass or less, and more preferably 1.5 ppm by mass or less. The aliphatic thiol having 7 or more carbon atoms is preferably from 0.1 to 10 ppm by mass, particularly preferably from 0.1 to 2.5 ppm by mass. The aliphatic thiol having 6 or less carbon atoms is preferably 0.1 to 10 ppm by mass, particularly preferably 0.1 to 2 ppm by mass. When the aliphatic thiol in the desulfurized heavy naphtha fraction is less than 0.1 mass ppm, RON in the hydrorefining treatment is remarkably lowered, which is not preferable.

〔脱硫重質ナフサ留分からチオール類を減じる処理〕
脱硫重質ナフサ留分からチオール類を減じる方法は、特に限定はしないが、水素化脱硫以外の方法であり、チオール類を選択的に減じることが好ましい。具体的には、アルカリ性物質と接触させて脱硫重質ナフサ留分中のチオール類をスイートニングする方法や硫黄化合物の吸着または収着機能をもった脱硫剤と脱硫重質ナフサ留分を接触させる方法によってチオール類を選択的に除去する方法が好ましい方法として挙げられる。
[Treatment to reduce thiols from desulfurized heavy naphtha fraction]
The method for reducing thiols from the desulfurized heavy naphtha fraction is not particularly limited, but is a method other than hydrodesulfurization, and it is preferable to selectively reduce thiols. Specifically, a method of sweetening thiols in a desulfurized heavy naphtha fraction by contacting with an alkaline substance, or a desulfurizing agent having a sulfur compound adsorption or sorption function and a desulfurized heavy naphtha fraction are contacted. A preferable method is a method of selectively removing thiols by a method.

従来から石油精製においては、チオール類を処理して製品を無臭化するためのスイートニングが行われており、ペトロテック17 (11), 974 (1994) や講談社サイエンティフィク社「石油精製プロセス」(1998) 記載のマーロックス法などが好ましく用いられる。スイ
ートニングにおいては、オレフィン類はそのまま保持されるのでRONは減少しない。ただし、脱硫重質ナフサ留分には炭素数が7以上の重質なチオールが多く含まれているが、このようなチオールは従来のマーロックス法などでは反応性が低く、十分に転化できない可能性がある。その場合には、重質なチオールが除去できるスイートニングプロセスを選択する必要がある。具体的には、NPRA 2000 Annual Meeting AM-00-54記載のMERIC
AT−IIプロセスなどが挙げられる。
Conventionally, in petroleum refining, sweetening has been performed to treat thiols to make the product non-brominated, such as Petrotech 17 (11), 974 (1994) and Kodansha Scientific “Oil Refining Process”. The Marlox method described in (1998) is preferably used. In sweetening, since olefins are retained as they are, RON does not decrease. However, the desulfurized heavy naphtha fraction contains a lot of heavy thiols with 7 or more carbon atoms, but such thiols have low reactivity by the conventional Marlox method and may not be converted sufficiently. There is. In that case, it is necessary to select a sweetening process capable of removing heavy thiols. Specifically, MERIC described in NPRA 2000 Annual Meeting AM-00-54
AT-II process and the like.

チオール類は苛性ソーダやアンモニア等のアルカリ性物質の存在によってジスルフィド類に転化する。このとき、添加剤や触媒を用いることによって転化効率を向上させることができる。また、抽出型のスイートニングプロセスはチオール類をアルカリ性物質と反応
させ、油分から分離できるため、油中の硫黄分を減ずることができる。
なお、脱硫重質ナフサ留分からチオール類を減じる処理を行った場合、チオール低減処理後の脱硫重質ナフサ留分に含まれる硫黄分は、10質量ppm以下、さらには5質量ppm以下、特には3質量ppm以下が好ましい。また、チオール類の含有量は、3質量ppm以下、さらには2質量ppm以下、特には1質量ppm以下が好ましい。
Thiols are converted to disulfides by the presence of alkaline substances such as caustic soda and ammonia. At this time, conversion efficiency can be improved by using an additive and a catalyst. In addition, since the extraction type sweetening process allows thiols to react with an alkaline substance and be separated from the oil, the sulfur content in the oil can be reduced.
In addition, when the process which reduces thiols from a desulfurization heavy naphtha fraction is performed, the sulfur content contained in the desulfurization heavy naphtha fraction after the thiol reduction treatment is 10 mass ppm or less, more preferably 5 mass ppm or less. 3 mass ppm or less is preferable. Further, the content of thiols is preferably 3 mass ppm or less, more preferably 2 mass ppm or less, and particularly preferably 1 mass ppm or less.

〔多孔質脱硫剤による処理〕
吸着または収着機能をもった脱硫剤と脱硫重質ナフサ留分を接触させる方法を用いる場合の脱硫剤としては、硫黄化合物に対する吸着または収着機能を有するものであれば特に限定はない。銅、亜鉛、ニッケルおよび鉄から選ばれる少なくとも1種を含む多孔質脱硫剤が好ましく用いられる。好ましい脱硫剤は、銅などの金属成分を0.5〜85重量%、
特には1〜80重量%含有する。脱硫剤の製造方法は特に限定されないが、アルミナのような多孔質担体に銅などの金属成分を含浸、担持して、焼成する製造方法や共沈法によって銅などの金属成分とアルミニウムなどの成分とを沈殿させて成形、焼成等の工程を経る製造方法が、好ましい方法として挙げられる。また、成形、焼成された脱硫剤にさらに金属成分を含浸、担持して、焼成してもよい。脱硫剤は、焼成されたものをそのまま用いてもよいし、水素雰囲気下で処理して用いてもよい。脱硫剤の比表面積は、50m/g以上、特には200〜600m/gが好ましい。脱硫剤の組成や製造方法は特に限定されないが、特許第3324746号公報、特許第3230864号公報、および特開平11−61154号公報に開示されているような脱硫剤が好ましいものとして挙げられる。
[Treatment with porous desulfurization agent]
The desulfurization agent in the case of using a method of contacting a desulfurization agent having an adsorption or sorption function with a desulfurized heavy naphtha fraction is not particularly limited as long as it has an adsorption or sorption function for a sulfur compound. A porous desulfurization agent containing at least one selected from copper, zinc, nickel and iron is preferably used. A preferred desulfurizing agent is 0.5 to 85% by weight of a metal component such as copper,
In particular, 1 to 80% by weight is contained. The method for producing the desulfurizing agent is not particularly limited, but a metal component such as copper and a component such as aluminum by a production method or a coprecipitation method in which a porous carrier such as alumina is impregnated with a metal component such as copper and supported. A preferable method is a production method in which the above is precipitated and subjected to steps such as molding and baking. Alternatively, the molded and fired desulfurizing agent may be further impregnated and supported with a metal component and fired. The desulfurization agent may be used as it is, or may be used after being treated in a hydrogen atmosphere. The specific surface area of the desulfurizing agent, 50 m 2 / g or more, particularly 200~600m 2 / g are preferred. The composition and production method of the desulfurizing agent are not particularly limited, and preferred desulfurizing agents are those disclosed in Japanese Patent No. 3324746, Japanese Patent No. 3230864, and Japanese Patent Laid-Open No. 11-61154.

脱硫処理は、バッチ式で行っても、流通式で行っても構わないが、脱硫剤を充填した固定床脱硫塔に脱硫重質ナフサ留分を流通させて行うことが、脱硫剤と得られる脱硫重質ナフサ留分の分離が簡便にできるので好ましい。脱硫処理する温度は、15〜400℃の範囲から選ぶことができ、好ましくは80〜380℃の範囲から選ぶとよい。水素を共存させて脱硫処理を行ってもよい。ただし、オレフィンが水素化され、得られるガソリン基材のRONが低下することを避けるため、水素分圧は1MPa未満とすることが好ましく、さらには0.6MPa未満とすることが好ましい。固定床流通式で脱硫剤と軽質ナフサ留
分を接触させて脱硫処理を行う場合、LHSVは、0.01〜10000h−1の範囲か
ら選ぶことが好ましい。
The desulfurization treatment may be performed in a batch system or a flow system, but it is possible to obtain a desulfurization agent by performing a desulfurization heavy naphtha fraction through a fixed bed desulfurization tower filled with a desulfurization agent. This is preferable because the desulfurized heavy naphtha fraction can be easily separated. The temperature for the desulfurization treatment can be selected from the range of 15 to 400 ° C, and preferably from the range of 80 to 380 ° C. The desulfurization treatment may be performed in the presence of hydrogen. However, the hydrogen partial pressure is preferably less than 1 MPa, and more preferably less than 0.6 MPa in order to avoid hydrogenation of the olefin and a decrease in RON of the resulting gasoline base material. When the desulfurization treatment is performed by contacting the desulfurizing agent and the light naphtha fraction in a fixed bed flow type, the LHSV is preferably selected from the range of 0.01 to 10,000 h −1 .

〔第三工程に用いる他のガソリン基材〕
本発明で、軽質ナフサ留分、脱硫重質ナフサ留分に第三工程にて混合される他のガソリン基材としては、接触改質ガソリン基材、アルキレートガソリン基材、直留ナフサを脱硫処理した基材、およびメチルt−ブチルエーテル(MTBE)、エチルt−ブチルエーテル(ETBE)、t−アミルエチルエーテル(TAEE)、エタノール、メタノール等の含酸素ガソリン基材等、公知のガソリン基材を用いることができる。混合される他のガソリン基材は、硫黄分が10質量ppm以下であることが好ましく、さらには5質量ppm以下であることが好ましい。他のガソリン基材の硫黄分が10質量ppmを超えると、軽質ナフサ留分、脱硫重質ナフサ留分への配合量が制約され好ましくない。
[Other gasoline base materials used in the third step]
In the present invention, as other gasoline base materials mixed in the third step with light naphtha fraction and desulfurized heavy naphtha fraction, catalytic reforming gasoline base material, alkylate gasoline base material, straight-run naphtha is desulfurized. Treated base materials and known gasoline base materials such as methyl t-butyl ether (MTBE), ethyl t-butyl ether (ETBE), t-amyl ethyl ether (TAEE), and oxygen-containing gasoline base materials such as ethanol and methanol are used. be able to. The other gasoline base material to be mixed preferably has a sulfur content of 10 mass ppm or less, and more preferably 5 mass ppm or less. When the sulfur content of other gasoline bases exceeds 10 ppm by mass, the blending amount into the light naphtha fraction and the desulfurized heavy naphtha fraction is restricted, which is not preferable.

好ましい配合量は、軽質ナフサ留分を20〜60容量%特には30〜50容量%、脱硫重質ナフサ留分を25〜65容量%特には35〜55容量%、接触改質ガソリン基材を5〜50容量%特には10〜40容量%、脱硫処理した直留ナフサなどの他の基材50容量%以下、特には5〜35容量%である。   Preferred blending amounts are 20 to 60% by volume of light naphtha fraction, particularly 30 to 50% by volume, 25 to 65% by volume of desulfurized heavy naphtha fraction, particularly 35 to 55% by volume, and a catalytically modified gasoline base. 5 to 50% by volume, particularly 10 to 40% by volume, and 50% by volume or less of other base materials such as desulfurized straight run naphtha, particularly 5 to 35% by volume.

〔他の成分〕
さらに、本発明のガソリン組成物には、当業界で公知の燃料油添加剤の1種又は2種以上を必要に応じて配合することができる。これらの配合量は適宜選べるが、通常は添加剤の合計配合量を0.1重量%以下に維持することが好ましい。本発明のガソリンで使用可
能な燃料油添加剤を例示すれば、フェノール系、アミン系などの酸化防止剤、シッフ型化合物、チオアミド型化合物などの金属不活性化剤、有機リン系化合物などの表面着火防止剤、コハク酸イミド、ポリアルキルアミン、ポリエーテルアミンなどの清浄分散剤、多価アルコール又はそのエーテルなどの氷結防止剤、有機酸のアルカリ金属塩又はアルカリ土類金属塩、高級アルコールの硫酸エステルなどの助燃剤、アニオン系界面活性剤、カチオン系界面活性剤、両性界面活性剤などの帯電防止剤、アゾ染料などの着色剤を挙げることができる。
[Other ingredients]
Furthermore, the gasoline composition of the present invention may contain one or more fuel oil additives known in the art as needed. Although these compounding quantities can be selected suitably, it is preferable to maintain the total compounding quantity of an additive to 0.1 weight% or less normally. Examples of fuel oil additives that can be used in the gasoline of the present invention include phenolic, amine-based antioxidants, Schiff-type compounds, metal deactivators such as thioamide-type compounds, and organic phosphorus-based surfaces. Anti-ignition agent, detergent / dispersant such as succinimide, polyalkylamine, polyetheramine, anti-icing agent such as polyhydric alcohol or its ether, alkali metal salt or alkaline earth metal salt of organic acid, sulfuric acid of higher alcohol Examples include an auxiliary combustor such as an ester, an anionic surfactant, a cationic surfactant, an antistatic agent such as an amphoteric surfactant, and a colorant such as an azo dye.

〔環境対応ガソリン〕
本発明による環境対応ガソリンは、全硫黄分が10質量ppm以下、好ましく5質量ppm以下であり、好ましくは、チオール類による硫黄分とチオフェン類による硫黄分の合計が全硫黄分の50質量%以上を占め、さらには、チオフェン類による硫黄分が全硫黄分の30質量%以上を占めることが好ましい。また、炭素数7以上の脂肪族チオールによる硫黄分がチオール類による硫黄分の50質量%以上を占め、かつリサーチ法オクタン価が89〜96である。好ましくは、ドクター試験が陰性であり、および/または、酸化防止剤を30質量ppm以上含み銅板腐食試験による評価が1以下である。
[Environmentally friendly gasoline]
The environmentally friendly gasoline according to the present invention has a total sulfur content of 10 mass ppm or less, preferably 5 mass ppm or less, and preferably the total sulfur content of thiols and sulfur content of thiophenes is 50 mass% or more of the total sulfur content. Furthermore, it is preferable that the sulfur content by thiophenes occupy 30% by mass or more of the total sulfur content. Moreover, the sulfur content by aliphatic thiol having 7 or more carbon atoms occupies 50 mass% or more of the sulfur content by thiols, and the research octane number is 89-96. Preferably, the doctor test is negative and / or the antioxidant is contained in an amount of 30 ppm by mass or more, and the evaluation by the copper plate corrosion test is 1 or less.

好ましくは、50容量%留出温度が105℃以下、好ましくは80〜100℃であり、オレフィン分が10容量%以上、好ましくは10〜30容量%である。硫黄分は0.1〜
10質量ppmが好ましい。硫黄化合物別には、チオール類は3.0質量ppm以下、特
には1.5質量ppm以下であることが好ましい。炭素数7以上の脂肪族チオールは全チ
オール類のうち50質量%以上であるのが好ましい。炭素数7以上の脂肪族チオールを全チオール類中の50質量%未満とすることはRONを大幅に損ない好ましくない。炭素数6以下の脂肪族チオールは、1.5質量ppm以下、特には1.0質量ppm以下が好ましい。
Preferably, the 50 volume% distillation temperature is 105 ° C. or less, preferably 80 to 100 ° C., and the olefin content is 10 volume% or more, preferably 10 to 30 volume%. Sulfur content is 0.1
10 mass ppm is preferred. For each sulfur compound, the thiols are preferably 3.0 ppm by mass or less, particularly 1.5 ppm by mass or less. The aliphatic thiol having 7 or more carbon atoms is preferably 50% by mass or more of all thiols. Setting the aliphatic thiol having 7 or more carbon atoms to less than 50% by mass in the total thiols is not preferable because RON is significantly impaired. The aliphatic thiol having 6 or less carbon atoms is preferably 1.5 mass ppm or less, particularly preferably 1.0 mass ppm or less.

以下に、本発明を実施例に基づいてより詳細に説明するが、本発明は、これらに限定されるものではない。なお、本実施例では、密度はJIS K 2249に、蒸留性状はJIS K 2254に、また、蒸気圧はJIS K 2258に準拠して測定した。硫黄分はJIS K 2541の微量電量滴定式酸化法によって測定した。硫黄化合物の含有量(硫黄換算)は、化学発光によって硫黄化合物を選択的に検出、定量するANTEK製硫黄化学発光検出器を備えた島津製作所製ガスクロマトグラフ装置を用いて、ガスクロマトグラフ法で測定した。炭化水素成分組成およびRONは、ヒューレットパッカード社製PIONA装置を用いて、ガスクロマトグラフ法で測定した。ドクター試験はJIS K
2276に、銅板腐食はJIS K 2513に準拠して測定した。
Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited thereto. In this example, the density was measured according to JIS K 2249, the distillation property was measured according to JIS K 2254, and the vapor pressure was measured according to JIS K 2258. The sulfur content was measured by the microcoulometric titration method of JIS K2541. The content of sulfur compounds (in terms of sulfur) was measured by gas chromatography using a Shimadzu gas chromatograph equipped with an ANTEK sulfur chemiluminescence detector that selectively detects and quantifies sulfur compounds by chemiluminescence. . The hydrocarbon component composition and RON were measured by a gas chromatograph method using a PIONA device manufactured by Hewlett-Packard Company. Doctor test is JIS K
In 2276, copper plate corrosion was measured according to JIS K2513.

中東系原油の減圧軽油留分を水素化精製処理したものと常圧蒸留残渣を水素化精製処理したものを主たる原料油とする流動接触分解で得られたナフサ留分Aを、酸化型のスイートニング装置によって処理してナフサ留分Bを得た。これらの留分の性状を表1、2に示す。ナフサ留分Bを分留し、軽質ナフサ留分Cと重質ナフサ留分Dを得た。これらの留分の性状を表3、4に示す。ここで、スイートニング処理は、UOP社のマーロックスプロセスによって行った。   A naphtha fraction A obtained by fluid catalytic cracking using a hydrorefined gas oil fraction of Middle Eastern crude oil hydrotreated and a hydrorefined residue of atmospheric distillation residue as the main feed oil, is an oxidized sweet The naphtha fraction B was obtained by processing with a ning apparatus. The properties of these fractions are shown in Tables 1 and 2. Naphtha fraction B was fractionated to obtain light naphtha fraction C and heavy naphtha fraction D. The properties of these fractions are shown in Tables 3 and 4. Here, the sweetening process was performed by the Marlocks process of UOP.

Figure 2005120366
Figure 2005120366

Figure 2005120366
Figure 2005120366

Figure 2005120366
Figure 2005120366

Figure 2005120366
Figure 2005120366

Figure 2005120366
Figure 2005120366

Figure 2005120366
Figure 2005120366

この重質ナフサ留分Dをコバルト、モリブデンおよびリンをアルミナに担持した触媒(コバルト含有量2.4質量%、モリブデン含有量9.4質量%、リン含有量2.0質量%)
を用い、反応温度250℃、反応圧力1.0MPa、LHSV=5.0h−1、H/OIL=307NL/Lの条件下にて水素化脱硫を行い、脱硫重質ナフサ留分Gを得た。この留分の性状を表7、8に示す。
This heavy naphtha fraction D is a catalyst in which cobalt, molybdenum and phosphorus are supported on alumina (cobalt content 2.4% by mass, molybdenum content 9.4% by mass, phosphorus content 2.0% by mass)
Is used for hydrodesulfurization under conditions of a reaction temperature of 250 ° C., a reaction pressure of 1.0 MPa, LHSV = 5.0 h −1 , H 2 / OIL = 307 NL / L, and a desulfurized heavy naphtha fraction G is obtained. It was. Properties of this fraction are shown in Tables 7 and 8.

Figure 2005120366
Figure 2005120366

Figure 2005120366
Figure 2005120366

この脱硫重質ナフサ留分G、軽質ナフサ留分Cと、さらに表9に性状を示す他のガソリン基材(脱硫ナフサL、接触改質中質油M、接触改質重質油N、アルキレートガソリンO)を表10の配合量で配合し、酸化防止剤10質量ppm、着色剤、清浄分散剤を加え無鉛ガソリン組成物Pを得た。酸化防止剤としては、ACTEL社製AO−550を用いた。無鉛ガソリン組成物Pの性状を表11および12に示す。   This desulfurized heavy naphtha fraction G, light naphtha fraction C, and other gasoline base materials having properties shown in Table 9 (desulfurized naphtha L, catalytic reforming medium oil M, catalytic reforming heavy oil N, al Chelated gasoline O) was blended in the blending amounts shown in Table 10, and 10 mass ppm of antioxidant, a colorant and a cleaning dispersant were added to obtain an unleaded gasoline composition P. As the antioxidant, AO-550 manufactured by ACTEL was used. Properties of the unleaded gasoline composition P are shown in Tables 11 and 12.

Figure 2005120366
Figure 2005120366

Figure 2005120366
Figure 2005120366

実施例1と同じ重質ナフサ留分Dを反応温度240℃とする以外は実施例1と同様に水素化脱硫を行い、脱硫重質ナフサ留分Hを得た。この脱硫重質ナフサ留分H、軽質ナフサ留分Cと、さらに実施例1と同じ他のガソリン基材を表10の配合量で配合し、酸化防止剤100質量ppm、着色剤、清浄分散剤を加え無鉛ガソリン組成物Qを得た。脱硫重質ナフサ留分H、および無鉛ガソリン組成物Qの性状を表7、8、11および12に示す。   Hydrodesulfurization was performed in the same manner as in Example 1 except that the same heavy naphtha fraction D as in Example 1 was set at a reaction temperature of 240 ° C., and a desulfurized heavy naphtha fraction H was obtained. This desulfurized heavy naphtha fraction H, light naphtha fraction C, and another gasoline base material similar to that of Example 1 were blended in the blending amounts shown in Table 10, antioxidant 100 mass ppm, colorant, detergent dispersant Was added to obtain an unleaded gasoline composition Q. Properties of desulfurized heavy naphtha fraction H and unleaded gasoline composition Q are shown in Tables 7, 8, 11 and 12.

Figure 2005120366
Figure 2005120366

Figure 2005120366
Figure 2005120366

実施例2と同様の方法によって得られた脱硫重質ナフサ留分H100ccを12規定の水酸化ナトリウム溶液100ccに加え、室温で30分撹拌しながら接触させた後、油分を抽出処理して脱硫重質ナフサ留分Iを得た。この脱硫重質ナフサ留分I、軽質ナフサ留分Cと、さらに実施例1と同じ他のガソリン基材を表10の配合量で配合し、実施例1と同様に酸化防止剤10質量ppm、着色剤、清浄分散剤を加え無鉛ガソリン組成物Rを得た。脱硫重質ナフサ留分I、および無鉛ガソリン組成物Rの性状を表7、8、11および12に示す。   Desulfurized heavy naphtha fraction H100 cc obtained by the same method as in Example 2 was added to 100 cc of 12N sodium hydroxide solution and brought into contact with stirring at room temperature for 30 minutes, and then the oil was extracted and desulfurized heavy. A quality naphtha fraction I was obtained. This desulfurized heavy naphtha fraction I, light naphtha fraction C, and another gasoline base material similar to that in Example 1 were blended in the blending amounts shown in Table 10, and 10 mass ppm of antioxidant as in Example 1, A colorant and a detergent / dispersant were added to obtain an unleaded gasoline composition R. Properties of desulfurized heavy naphtha fraction I and unleaded gasoline composition R are shown in Tables 7, 8, 11 and 12.

実施例2と同様の方法によって得られた脱硫重質ナフサ留分H100ccを酸化銅−アルミナ系脱硫剤(銅を金属原子として7.6質量%含有)20gと、室温で、2時間、フ
ラスコ中で攪拌混合処理した後、脱硫剤を濾別して脱硫重質ナフサ留分Jを得た。この脱硫重質ナフサ留分J、軽質ナフサ留分Cと、さらに実施例1と同じ他のガソリン基材を表10の配合量で配合し、実施例1と同様に酸化防止剤10質量ppm、着色剤、清浄分散剤を加え無鉛ガソリン組成物Sを得た。脱硫重質ナフサ留分J、および無鉛ガソリン組成物Sの性状を表7、8、11および12に示す。
Desulfurized heavy naphtha fraction H100cc obtained by the same method as in Example 2 and 20 g of a copper oxide-alumina desulfurizing agent (containing 7.6% by mass of copper as a metal atom) at room temperature for 2 hours in a flask Then, the desulfurization agent was filtered off to obtain a desulfurized heavy naphtha fraction J. This desulfurized heavy naphtha fraction J, light naphtha fraction C, and another gasoline base material similar to that in Example 1 were blended in the blending amounts shown in Table 10, and in the same manner as in Example 1, 10 mass ppm of antioxidant, A colorant and a detergent / dispersant were added to obtain an unleaded gasoline composition S. Properties of the desulfurized heavy naphtha fraction J and the unleaded gasoline composition S are shown in Tables 7, 8, 11 and 12.

比較例1Comparative Example 1

実施例1と同じナフサ留分Bを分留し、軽質ナフサ留分Eと重質ナフサ留分Fを得た。軽質ナフサ留分Eと重質ナフサ留分Fの性状と成分組成を表5、6に示す。このうち、重質ナフサ留分Fを実施例2と同様に水素化脱硫を行い、脱硫重質ナフサ留分Kを得た。この脱硫重質ナフサ留分K、軽質ナフサ留分Eと、さらに実施例1と同じ他のガソリン基材を表10の配合量で配合し、酸化防止剤100質量ppm、着色剤、清浄分散剤を加え無鉛ガソリン組成物Tを得た。脱硫重質ナフサ留分K、および無鉛ガソリン組成物Tの性状を表7、8、11および12に示す。   The same naphtha fraction B as in Example 1 was fractionated to obtain a light naphtha fraction E and a heavy naphtha fraction F. Tables 5 and 6 show properties and composition of light naphtha fraction E and heavy naphtha fraction F. Among these, the heavy naphtha fraction F was hydrodesulfurized in the same manner as in Example 2 to obtain a desulfurized heavy naphtha fraction K. This desulfurized heavy naphtha fraction K, light naphtha fraction E, and another gasoline base material similar to that in Example 1 were blended in the blending amounts shown in Table 10, antioxidant 100 mass ppm, colorant, detergent dispersant Was added to obtain an unleaded gasoline composition T. Properties of desulfurized heavy naphtha fraction K and unleaded gasoline composition T are shown in Tables 7, 8, 11 and 12.

実施例1と同じ重質ナフサ留分Dを実施例2と同様に水素化脱硫を行い、脱硫重質ナフサ留分Hを得た。この脱硫重質ナフサ留分H、軽質ナフサ留分Cと、さらに実施例1と同じ他のガソリン基材を表10の配合量で配合し、実施例1と同様に酸化防止剤10質量ppm、着色剤、清浄分散剤を加え無鉛ガソリン組成物Uを得た。脱硫重質ナフサ留分H、および無鉛ガソリン組成物Uの性状を表7、8、11および12に示す。   The same heavy naphtha fraction D as in Example 1 was hydrodesulfurized in the same manner as in Example 2 to obtain a desulfurized heavy naphtha fraction H. The desulfurized heavy naphtha fraction H, the light naphtha fraction C, and another gasoline base material similar to that in Example 1 were blended in the blending amounts shown in Table 10, and 10 mass ppm of antioxidant as in Example 1, A colorant and a cleaning dispersant were added to obtain an unleaded gasoline composition U. Properties of the desulfurized heavy naphtha fraction H and unleaded gasoline composition U are shown in Tables 7, 8, 11 and 12.

実施例1で用いた脱硫重質ナフサ留分Gを、さらに実施例3と同じ方法でスイートニングして、すなわち、脱硫重質ナフサ留分G100ccを12規定の水酸化ナトリウム溶液100ccに加え、室温で30分撹拌しながら接触させた後、油分を抽出処理して、硫黄分をさらに低減した脱硫重質ナフサ留分Xを得た。この脱硫重質ナフサ留分Xと、軽質ナフサ留分C、および表9の他のガソリン基材を表10の配合量で配合し、実施例1と同様に酸化防止剤10質量ppm、着色剤、清浄分散剤を加え無鉛ガソリン組成物Vを得た。脱硫重質ナフサ留分X及び無鉛ガソリン組成物Vの性状と成分組成を表7、8、11および12に示す。   The desulfurized heavy naphtha fraction G used in Example 1 was further sweetened by the same method as in Example 3, that is, desulfurized heavy naphtha fraction G100 cc was added to 100 cc of 12N sodium hydroxide solution, Then, the oil component was extracted to obtain a desulfurized heavy naphtha fraction X with further reduced sulfur content. This desulfurized heavy naphtha fraction X, light naphtha fraction C, and other gasoline base materials in Table 9 were blended in the blending amounts in Table 10, and 10 mass ppm of antioxidant and colorant in the same manner as in Example 1. Then, a detergent dispersant was added to obtain an unleaded gasoline composition V. Tables 7, 8, 11 and 12 show the properties and component compositions of desulfurized heavy naphtha fraction X and unleaded gasoline composition V.

実施例と比較例を比べるとわかるように、接触分解ナフサ中のC5オレフィンの5%以下が重質ナフサ留分に含まれるように分留し、重質ナフサ留分のみを脱硫することによって、脱硫接触分解ナフサに含まれるチオール類は臭気が比較的弱い炭素数7以上の脂肪族チオール類が50%以上となる。したがって、これを混ぜたガソリンは、炭素数6以下の脂肪族チオール類を多く含むガソリンに比べて臭気が弱くなる。またドクター試験も陰性となることがわかる。たとえ実施例5のように陽性であっても、実施例2に示すように酸化防止剤の添加量を調節することによって容易に陰性にすることができ、本発明の環境への影響を低減した超低硫黄分の環境対応ガソリンの商品価値を向上することができる。   As can be seen by comparing the examples and comparative examples, by fractionating so that 5% or less of the C5 olefin in the catalytic cracking naphtha is contained in the heavy naphtha fraction, by desulfurizing only the heavy naphtha fraction, The thiols contained in the desulfurized catalytic cracking naphtha are 50% or more of aliphatic thiols having a relatively weak odor and having 7 or more carbon atoms. Therefore, gasoline mixed with this has a weaker odor than gasoline containing a large amount of aliphatic thiols having 6 or less carbon atoms. The doctor test is also negative. Even if it is positive as in Example 5, it can be easily made negative by adjusting the amount of addition of antioxidant as shown in Example 2, and the environmental impact of the present invention was reduced. The product value of environmentally friendly gasoline with ultra-low sulfur content can be improved.

Claims (7)

流動接触分解ナフサを分留して5%留出温度が50〜120℃、95%留出温度が150〜220℃である接触分解重質ナフサ留分を得る第1工程、及び
第1工程で得られた接触分解重質ナフサ留分の硫黄分が50〜150質量ppm、オレフィン分が25容量%以下であり、この接触分解重質ナフサ留分をオレフィン含有量の低減率が40%以下の条件で水素化脱硫して脱硫接触分解重質ナフサ留分を得る第2工程
を含む、硫黄分が10質量ppm以下、チオフェン類による硫黄分が全硫黄分の30質量%以上、かつリサーチオクタン価が85以上であるガソリン基材の製造方法。
In a first step and a first step, a fluid catalytic cracking naphtha is fractionated to obtain a catalytic cracking heavy naphtha fraction having a 5% distillation temperature of 50 to 120 ° C and a 95% distillation temperature of 150 to 220 ° C. The obtained catalytic cracked heavy naphtha fraction has a sulfur content of 50 to 150 mass ppm and an olefin content of 25% by volume or less. The catalytic cracked heavy naphtha fraction has an olefin content reduction rate of 40% or less. Including a second step of hydrodesulfurizing under conditions to obtain a desulfurized catalytic cracking heavy naphtha fraction, the sulfur content is 10 mass ppm or less, the sulfur content by thiophenes is 30 mass% or more of the total sulfur, and the research octane number is The manufacturing method of the gasoline base material which is 85 or more.
硫黄分が5質量ppm以下である請求項1に記載のガソリン基材の製造方法。   The method for producing a gasoline base material according to claim 1, wherein the sulfur content is 5 ppm by mass or less. 脱硫接触分解重質ナフサ留分をアルカリ性物質と接触させ、含まれる硫黄分を3質量ppm以下かつチオール類の含有量を1質量ppm以下にする請求項1または2記載のガソリン基材の製造方法。   The method for producing a gasoline base material according to claim 1 or 2, wherein the desulfurization catalytic cracking heavy naphtha fraction is brought into contact with an alkaline substance so that the contained sulfur content is 3 mass ppm or less and the thiol content is 1 mass ppm or less. . 請求項1〜3のいずれかに記載の製造方法によるガソリン基材と、硫黄分10質量ppm以下の他のガソリン基材とを混合する配合工程を含む、硫黄分が10質量ppm以下、かつリサーチオクタン価が89以上である環境対応ガソリンの製造方法。   A sulfur content of 10 mass ppm or less, comprising a blending step of mixing the gasoline base material according to any one of claims 1 to 3 with another gasoline base material with a sulfur content of 10 mass ppm or less, and research. A method for producing environmentally friendly gasoline with an octane number of 89 or more. 全硫黄分が10質量ppm以下、かつチオール類による硫黄分とチオフェン類による硫黄分の合計が全硫黄分の50質量%以上を占め、かつリサーチ法オクタン価が89〜96である環境対応ガソリン。   An environmentally friendly gasoline having a total sulfur content of 10 ppm by mass or less, a total sulfur content of thiols and a sulfur content of thiophenes accounting for 50 mass% or more of the total sulfur content, and a research octane number of 89 to 96. チオフェン類による硫黄分が全硫黄分の30質量%以上を占める請求項5に記載の環境対応ガソリン。   The environmentally friendly gasoline according to claim 5, wherein the sulfur content of thiophenes accounts for 30% by mass or more of the total sulfur content. さらに、オレフィン含有量が10〜30容量%である請求項5または6に記載の環境対応ガソリン。   Furthermore, the environmentally friendly gasoline according to claim 5 or 6, wherein the olefin content is 10 to 30% by volume.
JP2004279115A 2003-09-26 2004-09-27 Method for producing gasoline base material, environmentally friendly gasoline, and method for producing the same Active JP4803785B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004279115A JP4803785B2 (en) 2003-09-26 2004-09-27 Method for producing gasoline base material, environmentally friendly gasoline, and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003335742 2003-09-26
JP2003335742 2003-09-26
JP2004279115A JP4803785B2 (en) 2003-09-26 2004-09-27 Method for producing gasoline base material, environmentally friendly gasoline, and method for producing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009283274A Division JP5036074B2 (en) 2003-09-26 2009-12-14 Environmentally friendly gasoline

Publications (2)

Publication Number Publication Date
JP2005120366A true JP2005120366A (en) 2005-05-12
JP4803785B2 JP4803785B2 (en) 2011-10-26

Family

ID=34622093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004279115A Active JP4803785B2 (en) 2003-09-26 2004-09-27 Method for producing gasoline base material, environmentally friendly gasoline, and method for producing the same

Country Status (1)

Country Link
JP (1) JP4803785B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008208209A (en) * 2007-02-26 2008-09-11 Idemitsu Kosan Co Ltd Gasoline composition
JP2008297471A (en) * 2007-05-31 2008-12-11 Idemitsu Kosan Co Ltd Method for production of catalytically reformed gasoline
CN106520180A (en) * 2017-01-06 2017-03-22 中国石油大学(华东) Method for reducing olefin content of catalytically cracked gasoline
CN106753506A (en) * 2017-01-06 2017-05-31 中国石油大学(华东) The method that formaldehyde and liquefied gas synthesize antiknock component

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08209154A (en) * 1995-02-03 1996-08-13 Mitsubishi Oil Co Ltd Desulfurization of catalytic cracking gasoline
JPH0940972A (en) * 1995-07-26 1997-02-10 Mitsubishi Oil Co Ltd Desulfurization of catalytically cracked gasoline
JP2003183676A (en) * 2001-12-21 2003-07-03 Nippon Oil Corp Method for producing low-sulfur gasoline
JP2005120344A (en) * 2003-09-26 2005-05-12 Japan Energy Corp Environment-considerate gasoline and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08209154A (en) * 1995-02-03 1996-08-13 Mitsubishi Oil Co Ltd Desulfurization of catalytic cracking gasoline
JPH0940972A (en) * 1995-07-26 1997-02-10 Mitsubishi Oil Co Ltd Desulfurization of catalytically cracked gasoline
JP2003183676A (en) * 2001-12-21 2003-07-03 Nippon Oil Corp Method for producing low-sulfur gasoline
JP2005120344A (en) * 2003-09-26 2005-05-12 Japan Energy Corp Environment-considerate gasoline and method for producing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008208209A (en) * 2007-02-26 2008-09-11 Idemitsu Kosan Co Ltd Gasoline composition
JP2008297471A (en) * 2007-05-31 2008-12-11 Idemitsu Kosan Co Ltd Method for production of catalytically reformed gasoline
CN106520180A (en) * 2017-01-06 2017-03-22 中国石油大学(华东) Method for reducing olefin content of catalytically cracked gasoline
CN106753506A (en) * 2017-01-06 2017-05-31 中国石油大学(华东) The method that formaldehyde and liquefied gas synthesize antiknock component
CN106520180B (en) * 2017-01-06 2018-10-19 中国石油大学(华东) A method of reducing catalytic cracking gasoline olefine content

Also Published As

Publication number Publication date
JP4803785B2 (en) 2011-10-26

Similar Documents

Publication Publication Date Title
JP5219247B2 (en) Method for producing low sulfur cracking gasoline base and unleaded gasoline composition
JP5024884B2 (en) Unleaded gasoline composition and method for producing the same
CN110655954A (en) Ultra-deep desulfurization method for residual oil hydrogenated diesel oil
JP4803785B2 (en) Method for producing gasoline base material, environmentally friendly gasoline, and method for producing the same
JP4626950B2 (en) Eco-friendly gasoline and method for producing the same
JP4658491B2 (en) Production method of environment-friendly diesel oil
JP5036074B2 (en) Environmentally friendly gasoline
JP2003183676A (en) Method for producing low-sulfur gasoline
JP4371937B2 (en) Method for producing catalytic cracking gasoline base and unleaded gasoline composition using the same
JP3825878B2 (en) A heavy oil composition with good storage stability
JP4632738B2 (en) Unleaded gasoline composition and method for producing the same
JP3825876B2 (en) A heavy oil composition with good storage stability, hue stability and oil permeability
JP2009263681A (en) Process for producing catalytically cracked gasoline base and unleaded gasoline composition using the same
JP2004269871A (en) Unleaded gasoline composition and preparation process thereof
JP4633409B2 (en) Gasoline composition
CN103562358A (en) Gas oil composition and method for producing same
JP4371925B2 (en) Unleaded gasoline composition and method for producing the same
JPH08218082A (en) Diesel light oil composition
JP2002146365A (en) Method for producing desulfurized light oil and the resultant light oil
JP3825875B2 (en) A heavy oil composition for heating having good storage stability, hue stability and oil permeability
JP4599545B2 (en) Method for producing unleaded gasoline composition
JP4553352B2 (en) Gasoline composition
JP3825877B2 (en) A heavy oil composition for heating with good storage stability
JP2008056773A (en) Process for producing gasoline base
JP2006063263A (en) Gasoline composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091214

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110808

R150 Certificate of patent or registration of utility model

Ref document number: 4803785

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250