JP2005118742A - Manufacturing method of exhaust gas clarification catalyst - Google Patents

Manufacturing method of exhaust gas clarification catalyst Download PDF

Info

Publication number
JP2005118742A
JP2005118742A JP2003359119A JP2003359119A JP2005118742A JP 2005118742 A JP2005118742 A JP 2005118742A JP 2003359119 A JP2003359119 A JP 2003359119A JP 2003359119 A JP2003359119 A JP 2003359119A JP 2005118742 A JP2005118742 A JP 2005118742A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
nox
noble metal
supported
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003359119A
Other languages
Japanese (ja)
Other versions
JP4172370B2 (en
Inventor
Yasuaki Nakano
泰彰 仲野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003359119A priority Critical patent/JP4172370B2/en
Publication of JP2005118742A publication Critical patent/JP2005118742A/en
Application granted granted Critical
Publication of JP4172370B2 publication Critical patent/JP4172370B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing an exhaust gas clarification catalyst that is highly endurable and a NO<SB>x</SB>occlusion-reduction type. <P>SOLUTION: The manufacturing method of the exhaust gas clarification comprises the following processes; (a) a catalyst carrying layer is formed on a carrier substrate; (b) a noble metal catalyst is impregnated into and supported by the catalyst carrying layer; (c) a catalyst carrying layer is formed on the catalyst carrying layer by which the noble metal catalyst is supported; (d) the noble metal catalyst is impregnated into and supported by the catalyst carrying layer; and (e) the NO<SB>x</SB>occluding material entirely impregnated and supported on the layers. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、排ガス浄化用触媒の製造方法に関する。詳細には、自動車等の内燃機関から排出される排ガスを浄化する、NOx吸蔵還元型の排ガス浄化用触媒の製造方法に関する。   The present invention relates to a method for producing an exhaust gas purifying catalyst. More specifically, the present invention relates to a method for producing a NOx occlusion reduction type exhaust gas purifying catalyst that purifies exhaust gas discharged from an internal combustion engine such as an automobile.

従来より、自動車の排ガス浄化用触媒として、排ガス中のCO及びHCの酸化とNOxの還元を同時に行って浄化する三元触媒が用いられている。このような三元触媒としては、例えばコージエライト等の担体基材にγ−アルミナからなる担持層を形成し、この担持層に白金(Pt)、パラジウム(Pd)、ロジウム(Rh)等の触媒貴金属を担持させたものが広く知られている。   Conventionally, as a catalyst for exhaust gas purification of automobiles, a three-way catalyst for purifying by simultaneously oxidizing CO and HC in exhaust gas and reducing NOx has been used. As such a three-way catalyst, for example, a carrier layer made of γ-alumina is formed on a carrier substrate such as cordierite, and a catalytic noble metal such as platinum (Pt), palladium (Pd), rhodium (Rh) is formed on this carrier layer. A material that supports is widely known.

一方、近年、地球環境保護の観点から、自動車等の内燃機関から排出される排ガス中の二酸化炭素(CO2)が問題とされ、その解決策として酸素過剰雰囲気において燃料を燃焼させる、いわゆるリーンバーンが提案されている。このリーンバーンにおいては、燃費が向上するために燃料の使用量が低減され、その結果、燃焼排ガスであるCO2の発生を抑制することができる。 On the other hand, in recent years, from the viewpoint of protecting the global environment, carbon dioxide (CO 2 ) in exhaust gas discharged from internal combustion engines such as automobiles has become a problem. As a solution, so-called lean burn that burns fuel in an oxygen-excess atmosphere. Has been proposed. In this lean burn, since the fuel consumption is improved, the amount of fuel used is reduced, and as a result, the generation of CO 2 as combustion exhaust gas can be suppressed.

ところが従来の三元触媒は、空燃比(A/F)が理論空燃比(ストイキ)において排ガス中のCO、HC、NOxを同時に酸化・還元し、浄化するものであって、リーンバーン時の排ガスの酸素過剰雰囲気においてはCO及びHCを浄化する酸化反応が活発である反面、NOxを浄化する還元反応は不活発となり、NOxを浄化することができない。   However, the conventional three-way catalyst is one that simultaneously oxidizes, reduces, and purifies CO, HC, NOx in the exhaust gas when the air-fuel ratio (A / F) is the stoichiometric air-fuel ratio (stoichiometric). In an oxygen-excess atmosphere, the oxidation reaction for purifying CO and HC is active, while the reduction reaction for purifying NOx is inactive, and NOx cannot be purified.

そこでリーンバーンにおいて、常時は酸素過剰のリーン条件で燃焼させ、一時的にストイキ〜リッチ条件とすることにより排ガスを還元雰囲気としてNOxを浄化するシステムが開発された。このシステムにおいて、リーン雰囲気においてNOxを吸蔵し、ストイキ〜リッチ雰囲気において吸蔵されたNOxを放出するNOx吸蔵材を用いたNOx吸蔵還元型の排ガス浄化用触媒が提案されている。このような触媒を用いれば、空燃比をリーン側からパルス状にストイキ〜リッチ側となるように制御することにより、リーン側ではNOxがNOx吸蔵材に吸蔵され、それがストイキ〜リッチ側において放出されてHCやCO等の還元性成分と反応して浄化されるため、リーンバーンエンジンからの排ガスであってもNOxを効率よく浄化することができる。   Therefore, in lean burn, a system has been developed that purifies NOx using exhaust gas as a reducing atmosphere by always burning under lean conditions with excess oxygen and temporarily changing to stoichiometric to rich conditions. In this system, a NOx occlusion reduction type exhaust gas purification catalyst using a NOx occlusion material that occludes NOx in a lean atmosphere and releases NOx occluded in a stoichiometric to rich atmosphere has been proposed. If such a catalyst is used, the air-fuel ratio is controlled from the lean side so as to change from the lean side to the stoichiometric to rich side, so that NOx is occluded by the NOx occlusion material on the lean side and released on the stoichiometric to rich side. Further, since it is purified by reacting with reducing components such as HC and CO, NOx can be efficiently purified even with exhaust gas from a lean burn engine.

ところが、燃料中には微量ながら硫黄成分が含まれており、これが燃焼時に酸化し、又は触媒上で酸化されてSOxが生成する。このSOxは酸性であり、一方NOx吸蔵材は塩基性であり、従ってSOxはNOx吸蔵材と反応して硫酸塩を形成する。その結果、NOx吸蔵材のNOx吸蔵能力が失われ、NOx浄化能が低下することになる。この現象はNOx吸蔵材の硫黄被毒として知られている。   However, the fuel contains a small amount of a sulfur component, which is oxidized during combustion or oxidized on the catalyst to generate SOx. This SOx is acidic, while the NOx occlusion material is basic, so SOx reacts with the NOx occlusion material to form sulfate. As a result, the NOx storage capacity of the NOx storage material is lost, and the NOx purification capacity is reduced. This phenomenon is known as sulfur poisoning of NOx storage materials.

この問題を解決するため、担持層を上層と下層の二層構造とし、上層のPt濃度を下層のPt濃度よりも高くし、上層においてSOxを効果的に補足する触媒が提案されている(例えば、特許文献1参照)。   In order to solve this problem, a catalyst has been proposed in which the support layer has a two-layer structure of an upper layer and a lower layer, the Pt concentration in the upper layer is higher than the Pt concentration in the lower layer, and SOx is effectively supplemented in the upper layer (for example, , See Patent Document 1).

特開2001−70790号公報JP 2001-70790 A

ところが、NOx吸蔵材を担持させたNOx吸蔵還元型の排ガス浄化用触媒において、NOx吸蔵材は初期には担持層全体に担持されているが、触媒の劣化とともに外部に飛散したり、もしくは基材方向に移動する傾向にある。この傾向はNOx吸蔵材のうち、特にカリウムにおいて顕著に見出されている。一方、貴金属触媒は主に担持層の表面近傍に担持されているため、劣化後のNOx吸蔵材の移動によって、貴金属触媒とNOx吸蔵材の間の距離が大きくなり、NOx吸蔵還元反応を行い難くなるという問題がある。   However, in the NOx occlusion reduction type exhaust gas purifying catalyst carrying the NOx occlusion material, the NOx occlusion material is initially carried on the entire carrying layer, but is scattered to the outside as the catalyst deteriorates, or the substrate It tends to move in the direction. This tendency is noticeable especially in potassium among NOx storage materials. On the other hand, since the noble metal catalyst is mainly supported in the vicinity of the surface of the supporting layer, the distance between the noble metal catalyst and the NOx storage material increases due to the movement of the deteriorated NOx storage material, and it is difficult to perform the NOx storage reduction reaction. There is a problem of becoming.

一方、上記特許文献1に記載の触媒は、表面近傍のみならず、担持層の担体基材側の下層にもPtが担持されているが、この下層は、アルミナ粉末にPtをあらかじめ担持させ、このPt担持アルミナ粉末を含むスラリーを基材にウォッシュコートすることによって形成している。ところが、このPt担持アルミナ粉末を製造する際に焼成を行う必要があるため、得られる触媒においてPtの活性が十分でないことがあるという問題がある。   On the other hand, in the catalyst described in Patent Document 1, Pt is supported not only in the vicinity of the surface but also in the lower layer of the support layer on the side of the support base material, but this lower layer preloads Pt on alumina powder, The slurry containing the Pt-supported alumina powder is formed by wash-coating the substrate. However, since it is necessary to perform calcination when producing this Pt-supported alumina powder, there is a problem that the activity of Pt may not be sufficient in the obtained catalyst.

従って、本発明は、劣化後も十分な性能を示す、NOx吸蔵還元型の排ガス浄化用触媒の製造方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide a method for producing a NOx occlusion reduction type exhaust gas purifying catalyst that exhibits sufficient performance even after deterioration.

上記問題点を解決するために本発明によれば、以下の工程
(a)担体基材上に触媒担持層を形成すること、
(b)前記触媒担持層に貴金属触媒を含浸担持させること、
(c)前記貴金属触媒を担持させた触媒担持層上に触媒担持層を形成すること、
(d)前記触媒担持層に貴金属触媒を含浸担持させること、及び
(e)NOx吸蔵材を全体に含浸担持させること
を含む排ガス浄化用触媒の製造方法が提供される。
In order to solve the above problems, according to the present invention, the following steps are performed.
(a) forming a catalyst support layer on a support substrate;
(b) impregnating and supporting a noble metal catalyst on the catalyst supporting layer,
(c) forming a catalyst supporting layer on the catalyst supporting layer supporting the noble metal catalyst;
(d) impregnating and supporting a noble metal catalyst on the catalyst supporting layer; and
(e) A method for producing an exhaust gas purifying catalyst comprising impregnating and supporting a NOx occlusion material as a whole is provided.

本発明の方法によれば、貴金属触媒が担持層の表面のみならず内部にも含浸担持により担持されているため、触媒の劣化後にNOx吸蔵材が基材方向に移動しても貴金属触媒との近接配置が維持され、NOxの吸蔵放出が可能となる。   According to the method of the present invention, since the noble metal catalyst is supported not only on the surface of the support layer but also on the inside by impregnation support, even if the NOx occlusion material moves in the direction of the substrate after the deterioration of the catalyst, The close arrangement is maintained, and NOx can be occluded and released.

以下、図面を参照して本発明を説明する。図1は、本発明の方法の工程を示す図である。本発明の方法において、まず担体基材11上に触媒担持層12を形成する(図1(a))。担体基材11としては、コーディエライト等の耐熱性セラミックスからなるモノリス担体基材、金属箔製のメタル担体基材等が用いられる。触媒担持層12は酸化物多孔質体より構成され、このような酸化物多孔質体としては、アルミナ、シリカ、ジルコニア、シリカ−アルミナ、ゼオライト等が用いられる。この触媒担持層12は、従来の一般的方法によって形成することができ、例えば、アルミナ等の酸化物に、アルミナゾル等のバインダと、適切な粘度となる量の水を加え、これらを混合してスラリーを調製し、このスラリーに担体基材上を浸漬し、基材表面に酸化物をウォッシュコートし、乾燥、焼成することによって形成される。この触媒担持層12の厚み(コート量)は、50〜200g/Lとすることが好ましい。   The present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing the steps of the method of the present invention. In the method of the present invention, first, a catalyst support layer 12 is formed on a support substrate 11 (FIG. 1 (a)). As the carrier substrate 11, a monolith carrier substrate made of heat-resistant ceramics such as cordierite, a metal carrier substrate made of metal foil, and the like are used. The catalyst support layer 12 is composed of an oxide porous body. As such an oxide porous body, alumina, silica, zirconia, silica-alumina, zeolite, or the like is used. The catalyst support layer 12 can be formed by a conventional general method. For example, an oxide such as alumina is added with a binder such as alumina sol and water having an appropriate viscosity, and these are mixed. It is formed by preparing a slurry, immersing the carrier substrate in this slurry, wash-coating the oxide on the surface of the substrate, drying and firing. The thickness (coat amount) of the catalyst support layer 12 is preferably 50 to 200 g / L.

次に、こうして形成された触媒担持層12に貴金属触媒13を担持させる(図1(b))。この貴金属触媒としては、従来三元触媒として用いられている貴金属、例えば白金、ロジウム、パラジウム、イリジウム、銀等が例示され、これらの1種又は複数種を用いることができる。この貴金属触媒の担持量は、触媒担持層に対して0.1〜10wt%とすることが好ましい。0.1wt%未満では十分な触媒活性が得られず、10wt%を越えても活性向上はわずかであり、高価となるのみであるからである。この貴金属触媒の担持は、例えば、触媒担持層12を貴金属触媒の水溶液、例えば白金の場合、ジニトロジアミン白金や塩化白金等の白金化合物の水溶液に浸漬し、乾燥、焼成することにより行われる。   Next, the noble metal catalyst 13 is supported on the catalyst support layer 12 thus formed (FIG. 1B). Examples of the noble metal catalyst include noble metals conventionally used as a three-way catalyst, such as platinum, rhodium, palladium, iridium, silver, and the like, and one or more of these can be used. The amount of the noble metal catalyst supported is preferably 0.1 to 10 wt% with respect to the catalyst supporting layer. If the amount is less than 0.1 wt%, sufficient catalytic activity cannot be obtained, and if it exceeds 10 wt%, the activity is only slightly improved and only expensive. The noble metal catalyst is supported, for example, by immersing the catalyst support layer 12 in an aqueous solution of a noble metal catalyst, such as platinum, an aqueous solution of a platinum compound such as dinitrodiamine platinum or platinum chloride, and drying and firing.

次に、こうして貴金属触媒13を担持させた触媒担持層12上に、上記と同様にして、触媒担持層14を形成し(図1(c))、この触媒担持層14に貴金属触媒15を担持させる(図1(d))。触媒担持層14は触媒担持層12と同一の材料から形成してもよく、あるいは異なる材料から形成してもよく、その厚み(コート量)も同様に50〜200g/Lとすることが好ましい。また、貴金属触媒15は貴金属触媒13と同一であっても異なっていてもよく、その担持量は、触媒担持層に対して0.1〜10wt%とすることが好ましい。   Next, the catalyst supporting layer 14 is formed on the catalyst supporting layer 12 supporting the noble metal catalyst 13 in this manner (FIG. 1 (c)), and the noble metal catalyst 15 is supported on the catalyst supporting layer 14. (FIG. 1 (d)). The catalyst support layer 14 may be formed of the same material as the catalyst support layer 12 or may be formed of a different material, and the thickness (coating amount) is preferably 50 to 200 g / L. Further, the noble metal catalyst 15 may be the same as or different from the noble metal catalyst 13, and the supported amount is preferably 0.1 to 10 wt% with respect to the catalyst supporting layer.

図示していないが、必要に応じて、図1(c)及び図1(d)に示す工程を繰り返し、3層以上の触媒担持層を積層してもよい。   Although not shown, if necessary, the steps shown in FIG. 1 (c) and FIG. 1 (d) may be repeated to laminate three or more catalyst support layers.

最後に、このように形成した触媒担持層の積層体全体にNOx吸蔵材を担持させる。このNOx吸蔵材としては、アルカリ金属、アルカリ土類金属、及び希土類元素から選ばれる少なくとも1種を用いることができる。アルカリ金属としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、フランシウムが例示される。アルカリ土類金属としては、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウムが例示される。また希土類元素としては、スカンジウム、イットリウム、ランタン、セリウム、プラセオジム、ネオジム等が例示される。このNOx吸蔵材の担持量は触媒担持層全体に対して0.5〜10wt%とすることが好ましい。このNOx吸蔵材も従来の方法によって、例えばNOx吸蔵材の水溶液に浸漬し、乾燥、焼成することによって担持することができる。   Finally, the NOx occlusion material is supported on the entire stack of the catalyst support layers thus formed. As the NOx storage material, at least one selected from alkali metals, alkaline earth metals, and rare earth elements can be used. Examples of the alkali metal include lithium, sodium, potassium, rubidium, cesium, and francium. Examples of the alkaline earth metal include beryllium, magnesium, calcium, strontium, and barium. Examples of rare earth elements include scandium, yttrium, lanthanum, cerium, praseodymium, neodymium, and the like. The amount of the NOx occlusion material supported is preferably 0.5 to 10 wt% with respect to the entire catalyst support layer. This NOx occlusion material can also be supported by a conventional method, for example, by immersing it in an aqueous solution of NOx occlusion material, drying and firing.

本発明の方法により、貴金属触媒を担持層の表面のみならず、内部にも担持させることができる。このように担持層の内部にも貴金属触媒を担持させたのは以下の理由による。   By the method of the present invention, the noble metal catalyst can be supported not only on the surface of the support layer but also on the inside. The reason why the noble metal catalyst is supported in the support layer as described above is as follows.

従来のNOx吸蔵還元型排ガス浄化用触媒は、担体基材上に、NOx吸蔵材と触媒貴金属を担持させた担持層が設けられている。この触媒を内燃機関の排気通路内に配置すれば、担持層は実際にNOxの捕捉・放出作用を行うがこの捕捉・放出作用の詳細なメカニズムについては明らかでない部分もある。しかしながらこの捕捉・放出作用は図2に示すようなメカニズムで行われているものと考えられる。   A conventional NOx occlusion reduction type exhaust gas purifying catalyst is provided with a support layer on which a NOx occlusion material and a catalyst noble metal are supported on a carrier base material. If this catalyst is arranged in the exhaust passage of the internal combustion engine, the carrier layer actually performs the trapping / releasing action of NOx, but there are some unclear parts about the detailed mechanism of the trapping / releasing action. However, it is considered that this capturing / releasing action is performed by the mechanism shown in FIG.

流入排気の平均空燃比が理論空燃比よりもかなりリーンになると流入する排気中の酸素濃度が大巾に増大し、図2(a)に示されるようにこれら酸素O2がO2 -又はO2-の形で貴金属触媒21の表面に付着する。一方、流入する排気中のNOは貴金属触媒21の表面上でO2 -又はO2-と反応し、NO2となる(2NO+O2→2NO2)。次いで生成されたNO2の一部は貴金属触媒上でさらに酸化されつつ、図2(a)に示されるように硝酸イオンNO3 -の形で拡散し、NOx吸蔵材22と反応し、硝酸塩としてNOxがNOx吸蔵材に吸蔵される。 When the average air-fuel ratio of the inflowing exhaust gas becomes considerably leaner than the stoichiometric air-fuel ratio, the oxygen concentration in the inflowing exhaust gas greatly increases. As shown in FIG. 2 (a), these oxygen O 2 is O 2 or O 2. It adheres to the surface of the noble metal catalyst 21 in the form of 2- . On the other hand, NO in the inflowing exhaust gas reacts with O 2 or O 2− on the surface of the noble metal catalyst 21 to become NO 2 (2NO + O 2 → 2NO 2 ). Next, a part of the generated NO 2 is further oxidized on the noble metal catalyst, diffuses in the form of nitrate ions NO 3 as shown in FIG. 2 (a), reacts with the NO x storage material 22, and becomes nitrate. NOx is stored in the NOx storage material.

流入する排気中の酸素濃度が高い限り貴金属触媒21の表面でNO2が生成され、NOx吸蔵材22のNOx吸蔵容量が飽和しない限りNO2及び硝酸イオンNO3 -が生成される。これに対して流入する排気中の酸素濃度が低下してNO2の生成量が低下すると反応が逆方向(NO3 -→NO2)に進み、斯くしてNOx吸蔵材22内の硝酸イオンNO3 -がNO2の形で放出される。すなわち、流入する排気中の酸素濃度が低下するとNOx吸蔵材22からNOxが放出されることになる。流入する排気のリーンの度合が低くなれば流入する排気中の酸素濃度が低下し、従って流入する排気のリーンの度合を低くすればNOx吸蔵材22からNOxが放出されることになる。 As long as the oxygen concentration in the inflowing exhaust gas is high, NO 2 is generated on the surface of the noble metal catalyst 21, and NO 2 and nitrate ions NO 3 are generated unless the NOx storage capacity of the NOx storage material 22 is saturated. In contrast, when the oxygen concentration in the inflowing exhaust gas decreases and the amount of NO 2 generated decreases, the reaction proceeds in the reverse direction (NO 3 → NO 2 ), and thus the nitrate ion NO in the NOx storage material 22. 3 - is released in the form of NO 2 . That is, when the oxygen concentration in the inflowing exhaust gas decreases, NOx is released from the NOx storage material 22. If the leanness of the inflowing exhaust gas is lowered, the oxygen concentration in the inflowing exhaust gas is lowered. Therefore, if the leanness of the inflowing exhaust gas is lowered, NOx is released from the NOx storage material 22.

一方、このとき流入排気平均空燃比をリッチ側に移行させると、特に理論空燃比よりもリッチにすると排気中には多量のHC、COが含まれ、これらHC、COは貴金属触媒21上の酸素O2 -又はO2-と反応して酸化される。また、流入排気平均空燃比をリッチ側に移行させると、特に理論空燃比よりもリッチにすると流入する排気中の酸素濃度が極度に低下するためにNOx吸蔵材22からNO2が放出され、このNO2は図2(b)に示されるようにHC、COと反応して還元される。このようにして貴金属触媒21の表面上にNO2が存在しなくなるとNOx吸蔵材22から次から次へとNO2が放出される。従って流入排気平均空燃比を理論空燃比よりもリッチにすると短時間のうちに担持層からNOxが放出されることになる。なお、流入排気平均空燃比がリーンであってもNOx吸蔵材22からNOxが放出され、放出されたNOxが還元されうる。 On the other hand, if the inflow exhaust average air-fuel ratio is shifted to the rich side at this time, particularly if it is made richer than the stoichiometric air-fuel ratio, the exhaust contains a large amount of HC and CO. These HC and CO are oxygen on the noble metal catalyst 21. O 2 - or O 2- of reacting with oxidized. Further, when the inflow exhaust gas average air-fuel ratio is shifted to the rich side, particularly when the inflow exhaust gas average air-fuel ratio is made richer than the stoichiometric air-fuel ratio, the oxygen concentration in the inflowing exhaust gas extremely decreases, so that NO 2 is released from the NOx storage material 22. As shown in FIG. 2 (b), NO 2 reacts with HC and CO and is reduced. When NO 2 no longer exists on the surface of the noble metal catalyst 21 in this way, NO 2 is released from the NOx storage material 22 to the next. Therefore, when the inflow exhaust average air-fuel ratio is made richer than the stoichiometric air-fuel ratio, NOx is released from the carrier layer in a short time. Note that even if the inflow exhaust average air-fuel ratio is lean, NOx is released from the NOx storage material 22, and the released NOx can be reduced.

通常運転時、内燃機関で燃焼される混合気の空燃比はリーンに維持されており、したがってこのとき触媒に流入する排気の空燃比はリーンとなる。その結果、排気中のNOxがNOx吸蔵材22内に捕捉され、大気中に排出されるのが阻止される。   During normal operation, the air-fuel ratio of the air-fuel mixture combusted in the internal combustion engine is maintained lean, so that the air-fuel ratio of the exhaust gas flowing into the catalyst at this time is lean. As a result, NOx in the exhaust is trapped in the NOx storage material 22 and is prevented from being discharged into the atmosphere.

ところが、NOx吸蔵材、特にカリウムは、触媒の劣化とともに担持層中を基材方向に移動することがわかった。一方、貴金属触媒は、排ガスとの接触効率を高めるため、担持層の最表層(20〜50μm)に担持されており、従って、劣化とともに貴金属触媒とNOx吸蔵材の間の距離が大きくなってしまう。その結果、図2に示すNOxの吸蔵還元反応が行い難くなる。   However, it has been found that NOx occlusion materials, particularly potassium, move in the support layer in the direction of the substrate as the catalyst deteriorates. On the other hand, the noble metal catalyst is supported on the outermost layer (20 to 50 μm) of the support layer in order to increase the contact efficiency with the exhaust gas. Therefore, the distance between the noble metal catalyst and the NOx storage material increases with deterioration. . As a result, the NOx occlusion reduction reaction shown in FIG. 2 becomes difficult to perform.

そこで、この問題を解決するために本発明の方法によれば、貴金属触媒を担持層の表面のみならず、内部にも担持させているため、劣化によってNOx吸蔵材が担持層中を基材側に移動しても、貴金属触媒との近接配置を維持することができ、NOxの吸蔵還元反応を維持することができるのである。   Therefore, in order to solve this problem, according to the method of the present invention, since the noble metal catalyst is supported not only on the surface of the support layer but also on the inside, the NOx occlusion material passes through the support layer on the substrate side due to deterioration. Even if it moves to, it can maintain the proximity arrangement with the noble metal catalyst and can maintain the NOx occlusion reduction reaction.

実施例1
アルミナ粉末200gにイオン交換水200gを加え、コーティング用スラリーを調製した。このスラリーにコージェライト製モノリス基材を浸漬し、取り出した後、余分なスラリーを吹き払い、温度250℃で乾燥させ、次いで500℃で2時間焼成し担持層を形成した。アルミナのコート量は、モノリス基材1リットルあたり100gであった。次いで、この担持層をジニトロアンミン白金硝酸水溶液に浸漬して白金を担持させた。白金の担持量は0.5wt%であった。
Example 1
200 g of ion-exchanged water was added to 200 g of alumina powder to prepare a coating slurry. A cordierite monolith substrate was immersed in this slurry and taken out, and then the excess slurry was blown off, dried at a temperature of 250 ° C., and then fired at 500 ° C. for 2 hours to form a support layer. The amount of alumina coated was 100 g per liter of monolith substrate. Next, this supporting layer was immersed in a dinitroammine platinum nitric acid aqueous solution to support platinum. The amount of platinum supported was 0.5 wt%.

次に、上記と同様にして、アルミナの触媒担持層を100g/Lで形成し、この担持層に白金を1wt%担持させた。   Next, in the same manner as described above, an alumina catalyst support layer was formed at 100 g / L, and 1 wt% of platinum was supported on this support layer.

最後に、この基材上に形成された担持層を酢酸カリウム水溶液に浸漬し、取り出した後、余分なスラリーを吹き払い、温度250℃で乾燥させ、次いで500℃で2時間焼成し、NOx吸蔵材としてのカリウムを全体に担持させた。このカリウムの担持量は5wt%であった。   Finally, the support layer formed on this base material is immersed in an aqueous potassium acetate solution and taken out. Then, excess slurry is blown off, dried at a temperature of 250 ° C., and then baked at 500 ° C. for 2 hours to store NOx. Potassium as a material was supported throughout. The amount of potassium supported was 5 wt%.

比較例1
市販の活性アルミナ粉末をPtジニトロジアンミン水溶液中に分散させ、攪拌しながら2時間放置して、アルミナ粉末240gあたり1.8gの白金を担持した。この粉末は、120℃で乾燥した後、500℃で1時間大気中で焼成した。実施例1と同じモノリス基材に、前記の白金担持アルミナ粉末を含むスラリーをウォッシュコートした。コート量は、触媒容積1リットル当たり200gであり、白金濃度は1.5wt%であった。このモノリス触媒に、さらにNOx吸蔵材として触媒容積1リットル当たり5wt%のカリウムを担持させた。
Comparative Example 1
Commercially available activated alumina powder was dispersed in an aqueous solution of Pt dinitrodiammine and allowed to stand for 2 hours with stirring to carry 1.8 g of platinum per 240 g of alumina powder. The powder was dried at 120 ° C. and then calcined in the air at 500 ° C. for 1 hour. The same monolith substrate as in Example 1 was wash coated with the slurry containing the platinum-supported alumina powder. The amount of coating was 200 g per liter of catalyst volume, and the platinum concentration was 1.5 wt%. This monolith catalyst was further loaded with 5 wt% potassium per liter of catalyst volume as a NOx storage material.

浄化性能の評価
こうして得られた排ガス浄化用触媒(5万km相当劣化品)をマルチコンバータに装填し、希薄燃焼式エンジンの排気系に設置し、排気温度(入りガス温度)400℃、希薄燃焼中A/F=30にリッチスパイク(A/F=11.5相当)を60秒間に1回打ち込んだときのNOx浄化率を測定した。この結果を図3に示す。
Evaluation of purification performance The exhaust gas purification catalyst (deteriorated equivalent to 50,000 km) obtained in this way is loaded into a multi-converter and installed in the exhaust system of a lean-burn engine. Exhaust temperature (inlet gas temperature) 400 ° C, lean-burn The NOx purification rate when a rich spike (corresponding to A / F = 11.5) was driven once in 60 seconds at medium A / F = 30 was measured. The result is shown in FIG.

図3に示す結果より明らかなように、本発明の方法により得られた排ガス浄化用触媒は、従来の触媒に対して良好なNOx浄化率を示した。   As is clear from the results shown in FIG. 3, the exhaust gas purification catalyst obtained by the method of the present invention showed a better NOx purification rate than the conventional catalyst.

本発明の方法の工程を示す図である。It is a figure which shows the process of the method of this invention. NOxの補足・放出メカニズムを説明する図である。It is a figure explaining the supplement and release mechanism of NOx. NOx浄化率を示すグラフである。It is a graph which shows a NOx purification rate.

符号の説明Explanation of symbols

11…担体基材
12、14…触媒担持層
13、15…貴金属触媒
21…貴金属触媒
22…NOx吸蔵材
DESCRIPTION OF SYMBOLS 11 ... Carrier base material 12, 14 ... Catalyst support layer 13, 15 ... Precious metal catalyst 21 ... Precious metal catalyst 22 ... NOx storage material

Claims (1)

排ガス浄化用触媒の製造方法であって、以下の工程
(a)担体基材上に触媒担持層を形成すること、
(b)前記触媒担持層に貴金属触媒を含浸担持させること、
(c)前記貴金属触媒を担持させた触媒担持層上に触媒担持層を形成すること、
(d)前記触媒担持層に貴金属触媒を含浸担持させること、及び
(e)NOx吸蔵材を全体に含浸担持させること
を含む排ガス浄化用触媒の製造方法。
A method for producing an exhaust gas purification catalyst comprising the following steps:
(a) forming a catalyst support layer on a support substrate;
(b) impregnating and supporting a noble metal catalyst on the catalyst supporting layer,
(c) forming a catalyst supporting layer on the catalyst supporting layer supporting the noble metal catalyst;
(d) impregnating and supporting a noble metal catalyst on the catalyst supporting layer; and
(e) A method for producing an exhaust gas purifying catalyst, comprising impregnating and supporting the entire NOx storage material.
JP2003359119A 2003-10-20 2003-10-20 Method for producing exhaust gas purification catalyst Expired - Fee Related JP4172370B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003359119A JP4172370B2 (en) 2003-10-20 2003-10-20 Method for producing exhaust gas purification catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003359119A JP4172370B2 (en) 2003-10-20 2003-10-20 Method for producing exhaust gas purification catalyst

Publications (2)

Publication Number Publication Date
JP2005118742A true JP2005118742A (en) 2005-05-12
JP4172370B2 JP4172370B2 (en) 2008-10-29

Family

ID=34615449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003359119A Expired - Fee Related JP4172370B2 (en) 2003-10-20 2003-10-20 Method for producing exhaust gas purification catalyst

Country Status (1)

Country Link
JP (1) JP4172370B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010501337A (en) * 2006-08-21 2010-01-21 ビーエーエスエフ、カタリスツ、エルエルシー Layered catalyst composite material
JP2015100787A (en) * 2013-11-28 2015-06-04 マツダ株式会社 Production method of catalyst for exhaust gas purification

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010501337A (en) * 2006-08-21 2010-01-21 ビーエーエスエフ、カタリスツ、エルエルシー Layered catalyst composite material
JP2015100787A (en) * 2013-11-28 2015-06-04 マツダ株式会社 Production method of catalyst for exhaust gas purification

Also Published As

Publication number Publication date
JP4172370B2 (en) 2008-10-29

Similar Documents

Publication Publication Date Title
JP3358766B2 (en) Exhaust gas purification catalyst
JPH10263416A (en) Exhaust gas purifying catalyst
JP4228278B2 (en) Exhaust gas purification catalyst
JP2013176774A (en) Catalytic trap
JP2009285604A (en) Catalyst for cleaning exhaust gas
JP2009273986A (en) Exhaust gas cleaning catalyst
JP3685463B2 (en) Exhaust gas purification catalyst
KR20080066944A (en) Exhaust gas clean-up system and exhaust gas clean-up method
JP4450984B2 (en) Exhaust gas purification catalyst
JP3589383B2 (en) Exhaust gas purification catalyst
JP2010017694A (en) NOx ABSORBING CATALYST FOR REDUCTION
JP3532979B2 (en) Exhaust gas purification catalyst
JP4810947B2 (en) Control method for internal combustion engine
JP5328133B2 (en) Exhaust gas purification catalyst
JP4172370B2 (en) Method for producing exhaust gas purification catalyst
JP4793316B2 (en) Sulfur storage catalyst
JP3775080B2 (en) Exhaust gas purification catalyst
JP2006233774A (en) Exhaust emission control device and exhaust emission control method
JP4479418B2 (en) Exhaust gas purification catalyst
JP6569637B2 (en) Exhaust gas purification device for internal combustion engine
EP1080783A2 (en) Layered catalyst for purifying exhaust gas
JP4225099B2 (en) Exhaust gas purification catalyst, exhaust gas purification device, and exhaust gas purification method
JP2009248057A (en) Catalyst for exhaust gas purification
JP3812791B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP3596246B2 (en) Exhaust gas purification catalyst and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080722

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080804

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees