JP2005116415A - Laminated body - Google Patents

Laminated body Download PDF

Info

Publication number
JP2005116415A
JP2005116415A JP2003351398A JP2003351398A JP2005116415A JP 2005116415 A JP2005116415 A JP 2005116415A JP 2003351398 A JP2003351398 A JP 2003351398A JP 2003351398 A JP2003351398 A JP 2003351398A JP 2005116415 A JP2005116415 A JP 2005116415A
Authority
JP
Japan
Prior art keywords
titanium oxide
titanium
thin film
dye
oxide particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003351398A
Other languages
Japanese (ja)
Other versions
JP4637470B2 (en
Inventor
Seiichi Onoe
誠一 尾上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SK Kaken Co Ltd
Original Assignee
SK Kaken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SK Kaken Co Ltd filed Critical SK Kaken Co Ltd
Priority to JP2003351398A priority Critical patent/JP4637470B2/en
Publication of JP2005116415A publication Critical patent/JP2005116415A/en
Application granted granted Critical
Publication of JP4637470B2 publication Critical patent/JP4637470B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laminated body for a semiconductor electrode capable of being manufactured in a low-temperature area of 0-300 °C, and having sufficient substrate adhesion. <P>SOLUTION: In this laminated body wherein a thin titanium oxide film is formed on a conductive substrate, the thin titanium oxide thin film comprises 60-99 wt.% of titanium oxide particles and 1-40 wt.% of titanium hydroxide. When forming the thin titanium oxide film form, a mixed-solution in which anatase titanium oxide particles with primary particle diameters of 1-200 nm are dispersed in an aqueous medium of pH 0.5 to 3.0 containing titanium hydroxide and/or titanium hydroxide precursor is applied to the conductive substrate and dried at 0-300 °C. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、色素増感太陽電池における半導体電極として好適に使用できる積層体に関するものである。   The present invention relates to a laminate that can be suitably used as a semiconductor electrode in a dye-sensitized solar cell.

近年、光触媒技術に対して大きな関心が寄せられており、種々の研究が行われている。特に、優れた光触媒活性を有する酸化チタンについては、有害有機物の分解、大気汚染物質の除去、殺菌・抗菌等を目的とした分野において実用化検討が進んでいる。
このような光触媒の具体的な応用例としては、例えば、建物等の外壁に酸化チタン光触媒を固定化し、太陽光のもとで空気汚染物質を除去する方法(特開平6―315614号公報)、病院内の壁等に酸化チタンを固定化して細菌等を死滅させる方法(特開平7―102678号公報)、排水中に酸化チタン触媒の粉末を分散させ、紫外線ランプの光を照射して水中の汚物を分解する方法(特開平5―92192号公報)、蛍光ランプあるいは照明器具の清掃メンテナンスを軽減するために光触媒による自浄作用を利用する方法(特開平9―129012号公報)等が挙げられる。この他、鏡、レンズ、ガラス窓等の曇り止め、建物物外壁や土木構造物における汚染防止等への応用についても検討が行われている。
In recent years, there has been a great interest in photocatalytic technology, and various studies have been conducted. In particular, with regard to titanium oxide having excellent photocatalytic activity, practical studies are proceeding in fields aimed at decomposition of harmful organic substances, removal of air pollutants, sterilization, antibacterial activity, and the like.
As a specific application example of such a photocatalyst, for example, a method of fixing a titanium oxide photocatalyst on an outer wall of a building or the like and removing air pollutants under sunlight (Japanese Patent Laid-Open No. 6-315614), A method of killing bacteria by immobilizing titanium oxide on hospital walls, etc. (Japanese Patent Laid-Open No. 7-102678), dispersing titanium oxide catalyst powder in waste water, and irradiating with UV lamp light Examples include a method for decomposing filth (Japanese Patent Laid-Open No. 5-92192), a method using a self-cleaning action by a photocatalyst to reduce cleaning maintenance of a fluorescent lamp or a lighting fixture (Japanese Patent Laid-Open No. 9-129002), and the like. In addition, the application to anti-fogging of mirrors, lenses, glass windows, etc., and the prevention of contamination of building outer walls and civil engineering structures is also being studied.

光触媒は上述のような特性を有するものであるが、最近では、その光起電力作用も注目されている。この光起電力作用を利用したものに、色素増感型太陽電池がある(特開2000−294814号公報(特許文献1)等)。
このような色素増感型太陽電池では、色素が吸着された酸化チタン薄膜が半導体電極として使用される。この色素吸着酸化チタン薄膜に太陽光等の光が照射されると、その光は色素へ吸収され、光を吸収した色素は励起される。励起された色素は、速やかに酸化チタンへ電子を渡し、電子は酸化チタン中を伝い、電極へと流れる。電子を放出した後、正電荷を持つ色素は電解質より電子を受け取って中性に戻る。以上のように、色素増感太陽電池では、半導体電極が負極、対向電極が正極として動作する。
Photocatalysts have the characteristics described above, but recently, their photovoltaic action has also attracted attention. There is a dye-sensitized solar cell using this photovoltaic action (Japanese Patent Laid-Open No. 2000-294814 (Patent Document 1) and the like).
In such a dye-sensitized solar cell, a titanium oxide thin film on which a dye is adsorbed is used as a semiconductor electrode. When the dye-adsorbed titanium oxide thin film is irradiated with light such as sunlight, the light is absorbed by the dye, and the dye that has absorbed the light is excited. The excited dye quickly passes electrons to the titanium oxide, and the electrons travel through the titanium oxide and flow to the electrode. After releasing the electrons, the positively charged dye receives electrons from the electrolyte and returns to neutral. As described above, in the dye-sensitized solar cell, the semiconductor electrode operates as a negative electrode and the counter electrode operates as a positive electrode.

特開2000−294814号公報JP 2000-294814 A

通常、色素増感型太陽電池における半導体電極は、透明基板にチタンアルコキシド等の溶液を塗布した後、焼成する方法によって製造されている。このような製造方法によれば、焼成工程を経て酸化チタン多孔質膜が形成され、高温焼成によって基板への付着力も発現される。
しかし、上述の製造方法では、300℃〜800℃程度の温度領域での焼成工程が必須となるため、エネルギー消費量が増大し、環境負荷も大きくなる。また、製造コストの点においても不利となる。さらに、透明基板としては、高温焼成に耐え得る材質のものを使用しなければならず、実用上、ガラス板以外の基板への適用は困難である。
本発明は、このような問題点に鑑みなされたもので、0℃〜300℃という低温領域で製造でき、かつ、十分な基板付着性を有する半導体電極用積層体を得ることを目的とするものである。
Usually, a semiconductor electrode in a dye-sensitized solar cell is manufactured by a method in which a transparent substrate is coated with a solution such as titanium alkoxide and then baked. According to such a manufacturing method, a porous titanium oxide film is formed through a baking process, and adhesion to the substrate is also expressed by high-temperature baking.
However, in the manufacturing method described above, a firing step in the temperature range of about 300 ° C. to 800 ° C. is essential, so that the energy consumption increases and the environmental load increases. Further, it is disadvantageous in terms of manufacturing cost. Furthermore, the transparent substrate must be made of a material that can withstand high-temperature firing, and is practically difficult to apply to substrates other than glass plates.
The present invention has been made in view of such problems, and an object of the present invention is to obtain a laminated body for a semiconductor electrode that can be manufactured in a low temperature range of 0 ° C. to 300 ° C. and has sufficient substrate adhesion. It is.

本発明者は上記目的を達成するため鋭意研究を行なった結果、60〜99重量%の酸化チタン粒子と1〜40重量%の水酸化チタンによって、導電性基板上に酸化チタン薄膜を形成して得られる積層体に想到し、本発明を完成させるに至った。   As a result of diligent research to achieve the above object, the present inventor formed a titanium oxide thin film on a conductive substrate with 60 to 99% by weight of titanium oxide particles and 1 to 40% by weight of titanium hydroxide. The inventors have come up with the resulting laminate and have completed the present invention.

すなわち、本発明は下記の特徴を有するものである。
1.導電性基板上に酸化チタン薄膜が形成された積層体であって、
該酸化チタン薄膜が、60〜99重量%の酸化チタン粒子と1〜40重量%の水酸化チタンによって形成されていることを特徴とする積層体。
2.酸化チタン薄膜が、水酸化チタン及び/または水酸化チタン前躯体を含むpH0.5〜3.0の水系媒体に酸化チタン粒子が分散された酸化チタン薄膜形成用組成物を、0〜300℃で乾燥させて得られるものである1.記載の積層体。
3.酸化チタン粒子として、一次粒子径1〜200nmのアナターゼ型酸化チタン粒子を含む1.または2.に記載の積層体。
4.水酸化チタン前躯体が、チタンアルコキシド、チタン塩、及びチタン錯体から選ばれる1種以上である1.〜3.のいずれかに記載の積層体。
5.導電性基板が、表面に導電性金属酸化物を有する高分子フィルムである1.〜4.のいずれかに記載の積層体。
That is, the present invention has the following characteristics.
1. A laminate in which a titanium oxide thin film is formed on a conductive substrate,
A laminate comprising the titanium oxide thin film formed of 60 to 99% by weight of titanium oxide particles and 1 to 40% by weight of titanium hydroxide.
2. A composition for forming a titanium oxide thin film in which titanium oxide particles are dispersed in an aqueous medium having a pH of 0.5 to 3.0 containing titanium hydroxide and / or a titanium hydroxide precursor. 1. Obtained by drying The laminated body of description.
3. 1. Titanium oxide particles include anatase-type titanium oxide particles having a primary particle diameter of 1 to 200 nm. Or 2. The laminated body as described in.
4). 1. The titanium hydroxide precursor is at least one selected from titanium alkoxides, titanium salts, and titanium complexes. ~ 3. The laminated body in any one of.
5). 1. The conductive substrate is a polymer film having a conductive metal oxide on the surface. ~ 4. The laminated body in any one of.

本発明によれば、基板への十分な付着性を有する酸化チタン薄膜積層体を、0〜300℃という低温領域で製造できる。そのため、エネルギー消費量を抑え、環境への負荷が軽減でき、製造コストを抑制することもできる。
さらに、透明基板として、PET等の高分子フィルムを採用することが可能となる。このような透明基板を使用すれば、フレキシブルな半導体電極が得られ、半導体電極の軽量化、薄膜化を図ることができ、基板が割れるという心配もなくなる。
According to this invention, the titanium oxide thin film laminated body which has sufficient adhesiveness to a board | substrate can be manufactured in the low-temperature area | region of 0-300 degreeC. Therefore, energy consumption can be reduced, environmental load can be reduced, and manufacturing costs can be reduced.
Furthermore, a polymer film such as PET can be employed as the transparent substrate. If such a transparent substrate is used, a flexible semiconductor electrode can be obtained, the semiconductor electrode can be reduced in weight and thickness, and there is no concern that the substrate will break.

以下、本発明をその実施の形態に基づき詳細に説明する。   Hereinafter, the present invention will be described in detail based on the embodiments.

本発明積層体は、導電性基板上に酸化チタン薄膜が形成されたものであり、色素増感型太陽電池の半導体電極として好適に使用することができる。   The laminate of the present invention has a titanium oxide thin film formed on a conductive substrate, and can be suitably used as a semiconductor electrode of a dye-sensitized solar cell.

[導電性基板]
本発明積層体における導電性基板は、導電性を有し、かつ太陽光等の光が透過可能な透明性を有するものが使用できる。このような導電性基板は、例えば、透明基板に導電性化合物を蒸着または積層させることによって得ることができる。
導電性化合物としては、例えば、酸化スズ、フッ素ドープ酸化スズ、酸化インジウム、酸化スズドープ酸化インジウム、アンチモンドープ酸化スズ、アルミニウムドープ酸化亜鉛等を用いることができる。また、透明と導電性を損なわない範囲内であれば、各種金属を用いることもできる。
基板としては、ガラス板、高分子フィルム等が挙げられる。このうち、本発明では、特に高分子フィルムが好適である。基材として高分子フィルムを使用することにより、積層体のフレキシブル性が高まり、軽量化、薄膜化を図ることもできる。また、基板が割れるという心配もなくなる。
[Conductive substrate]
As the conductive substrate in the laminate of the present invention, a conductive substrate having transparency that allows light such as sunlight to pass through can be used. Such a conductive substrate can be obtained, for example, by depositing or laminating a conductive compound on a transparent substrate.
As the conductive compound, for example, tin oxide, fluorine-doped tin oxide, indium oxide, tin oxide-doped indium oxide, antimony-doped tin oxide, aluminum-doped zinc oxide, or the like can be used. Moreover, various metals can also be used as long as the transparency and conductivity are not impaired.
Examples of the substrate include a glass plate and a polymer film. Among these, in the present invention, a polymer film is particularly suitable. By using a polymer film as a base material, the flexibility of the laminate is enhanced, and the weight and thickness can be reduced. Also, there is no need to worry about the substrate breaking.

高分子フィルムとしては、可視光透過率が高く、柔軟性に富むものであれば、特に制限されずに使用することができる。具体的には、例えばポリエチレンテレフタレート、ポリエチレンナフタレート、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリアリレート、ポリカーボネート、ポリイミド、ポリエーテルサルフォン、ポリサルフォン、ノルボルネン等を用いることができる。高分子フィルムの厚さは、通常10〜300μm、好ましくは20〜100μmである。高分子フィルムの厚さが大きすぎる場合は、柔軟性が低下する傾向となる。高分子フィルムの厚さが小さすぎる場合は、強度が不十分となるため、実用的ではない。また、導電性化合物を均一に積層することが困難となるおそれもある。
導電性化合物を透明基板の表面に蒸着および/または積層させる際には、表面抵抗値を低く保つことができる範囲内で、可視光透過率を低下させないように注意する必要がある。具体的に、表面抵抗値は、10Ω・cm以下であることが好ましい。表面抵抗値が10Ω・cmよりも大きくなると、光電変換作用により発生した電子が電極を伝達し難くなる。また、可視光透過率は、70%以上であることが好ましく、この値より低くなる場合は、色素増感型太陽電池において十分な性能を得ることができない。
The polymer film can be used without particular limitation as long as it has high visible light transmittance and high flexibility. Specifically, for example, polyethylene terephthalate, polyethylene naphthalate, polyetheretherketone, polyetherimide, polyarylate, polycarbonate, polyimide, polyethersulfone, polysulfone, norbornene and the like can be used. The thickness of the polymer film is usually 10 to 300 μm, preferably 20 to 100 μm. When the thickness of the polymer film is too large, the flexibility tends to decrease. When the thickness of the polymer film is too small, the strength becomes insufficient, and thus it is not practical. In addition, it may be difficult to uniformly laminate the conductive compound.
When depositing and / or laminating the conductive compound on the surface of the transparent substrate, care must be taken not to reduce the visible light transmittance within a range where the surface resistance value can be kept low. Specifically, the surface resistance value is preferably 10 2 Ω · cm or less. When the surface resistance value is larger than 10 2 Ω · cm, it is difficult for electrons generated by the photoelectric conversion action to be transmitted through the electrode. Further, the visible light transmittance is preferably 70% or more. When the visible light transmittance is lower than this value, sufficient performance cannot be obtained in the dye-sensitized solar cell.

[酸化チタン薄膜]
本発明積層体における酸化チタン薄膜は、酸化チタン粒子と水酸化チタンによって形成されるものである。
酸化チタン薄膜中の酸化チタン粒子は、太陽光等の光を吸収した色素で励起された電子を、電極へ受け渡す役割を担う成分である。
酸化チタン粒子としては、アナターゼ型酸化チタン及び/またはルチル型酸化チタンが使用できるが、光起電力が高いアナターゼ型酸化チタンが必須成分として含まれていることが望ましい。ルチル型酸化チタンのみを用いると光起電力が低くなり、太陽電池へ応用した場合に、十分な性能が得られ難くなる。
酸化チタン粒子全体に対するアナターゼ型酸化チタン粒子の比率は、40〜100重量%であることが好ましく、より好ましくは50〜90重量%、さらに好ましくは60〜90重量%である。アナターゼ型酸化チタン粒子の比率がこのような範囲内であれば、色素で励起された電子が伝達されやすくなり、良好な光電変換効果を示す。
[Titanium oxide thin film]
The titanium oxide thin film in the laminate of the present invention is formed by titanium oxide particles and titanium hydroxide.
Titanium oxide particles in the titanium oxide thin film are components that play a role of transferring electrons excited by a dye that has absorbed light such as sunlight to the electrode.
As the titanium oxide particles, anatase-type titanium oxide and / or rutile-type titanium oxide can be used, but it is desirable that anatase-type titanium oxide having a high photovoltaic power is contained as an essential component. If only rutile titanium oxide is used, the photovoltaic power will be low, and it will be difficult to obtain sufficient performance when applied to solar cells.
The ratio of anatase-type titanium oxide particles to the entire titanium oxide particles is preferably 40 to 100% by weight, more preferably 50 to 90% by weight, and still more preferably 60 to 90% by weight. When the ratio of the anatase-type titanium oxide particles is within such a range, electrons excited by the dye are easily transmitted, and a good photoelectric conversion effect is exhibited.

酸化チタン粒子としては、その一次粒子径が1〜200nmであることが好ましく、より好ましくは3〜50nm、さらに好ましくは5〜30nmである。一次粒子径が小さすぎる場合は、酸化チタン薄膜が緻密になる傾向があり、色素の吸着量が著しく減少してしまう。一次粒子径が大きすぎる場合は、酸化チタン粒子の表面積が小さくなり、色素の吸着量が小さくなってしまう。   As a titanium oxide particle, it is preferable that the primary particle diameter is 1-200 nm, More preferably, it is 3-50 nm, More preferably, it is 5-30 nm. When the primary particle size is too small, the titanium oxide thin film tends to be dense, and the amount of dye adsorbed is significantly reduced. When the primary particle diameter is too large, the surface area of the titanium oxide particles becomes small, and the amount of dye adsorbed becomes small.

酸化チタン薄膜における水酸化チタンは、酸化チタン粒子をつなぎ合せる結合剤として作用し、さらには電子を効率良く電極へ伝えるという役割を担う成分である。
このような水酸化チタンは、水酸化チタン前駆体を加水分解及び/または熱分解させて得ることができる。水酸化チタン前駆体としては、チタニウムメトキシド、チタニウムエトキシド、チタニウムプロポキシド、チタニウムブトキシド等のチタンアルコキシド、硫酸チタン、四塩化チタン、硝酸チタン、酢酸チタン等のチタン塩、チタニウムアセテート等のチタン錯体等が挙げられ、特にチタンアルコキシドが好適である。
Titanium hydroxide in the titanium oxide thin film is a component that acts as a binder for joining titanium oxide particles together and further plays a role of efficiently transmitting electrons to the electrode.
Such titanium hydroxide can be obtained by hydrolyzing and / or thermally decomposing a titanium hydroxide precursor. Titanium hydroxide precursors include titanium alkoxides such as titanium methoxide, titanium ethoxide, titanium propoxide, and titanium butoxide, titanium salts such as titanium sulfate, titanium tetrachloride, titanium nitrate, and titanium acetate, and titanium complexes such as titanium acetate. In particular, titanium alkoxide is preferable.

本発明における酸化チタン薄膜では、酸化チタン粒子の構成比率を通常60〜99重量%、好ましくは70〜90重量%とする。水酸化チタンの構成比率は、通常1〜40重量%、好ましくは10〜30重量%、である。酸化チタン粒子の構成比率が60重量%よりも小さい場合は、酸化チタン薄膜の抵抗値が高くなり、電子が伝わりにくくなる。酸化チタン粒子の構成比率が99重量%よりも大きい場合は、酸化チタン薄膜にクラックが生じやすく、薄膜形成が困難となる。   In the titanium oxide thin film in the present invention, the constituent ratio of the titanium oxide particles is usually 60 to 99% by weight, preferably 70 to 90% by weight. The composition ratio of titanium hydroxide is usually 1 to 40% by weight, preferably 10 to 30% by weight. When the constituent ratio of the titanium oxide particles is smaller than 60% by weight, the resistance value of the titanium oxide thin film becomes high and electrons are hardly transmitted. When the constituent ratio of the titanium oxide particles is larger than 99% by weight, the titanium oxide thin film is likely to be cracked, and it is difficult to form the thin film.

本発明における酸化チタン薄膜は、水酸化チタン及び/または水酸化チタン前躯体を含む水系媒体に酸化チタン粒子が分散された酸化チタン薄膜形成用組成物(以下単に「薄膜形成用組成物」という)を、導電性基板上に塗布・乾燥することによって得ることができる。
ここで、水系媒体は、水酸化チタン前躯体を水、または水と水溶性有機溶剤の混合液に添加することによって得ることができる。水酸化チタン前駆体の反応性、安定性等の点では、水と水溶性有機溶剤の混合液への添加が望ましい。水溶性有機溶剤としては、アルコール等が好適である。
水溶性有機溶剤と水との混合比率(重量比率)は、通常1:0.05〜5、好ましくは1:0.5〜3である。
水系媒体のpHは、通常0.5〜3.0、好ましくは0.5〜2.0に調整する。水系媒体のpHをこのような範囲に調製することによって、水酸化チタンまたは水酸化チタン前駆体の凝集を抑制し、分散性を高めることができる。pHが0.5よりも低い場合は、導電性基板を劣化させるおそれがある。pHが3.0よりも高い場合は、基板への付着性が不十分となり、また酸化チタン薄膜にクラックが生じるおそれもある。
The titanium oxide thin film in the present invention is a composition for forming a titanium oxide thin film in which titanium oxide particles are dispersed in an aqueous medium containing titanium hydroxide and / or a titanium hydroxide precursor (hereinafter simply referred to as “thin film forming composition”). Can be obtained by coating and drying on a conductive substrate.
Here, the aqueous medium can be obtained by adding the titanium hydroxide precursor to water or a mixture of water and a water-soluble organic solvent. In view of the reactivity and stability of the titanium hydroxide precursor, it is desirable to add water and a water-soluble organic solvent to the mixed solution. As the water-soluble organic solvent, alcohol or the like is preferable.
The mixing ratio (weight ratio) of the water-soluble organic solvent and water is usually 1: 0.05 to 5, preferably 1: 0.5 to 3.
The pH of the aqueous medium is usually adjusted to 0.5 to 3.0, preferably 0.5 to 2.0. By adjusting the pH of the aqueous medium to such a range, aggregation of titanium hydroxide or titanium hydroxide precursor can be suppressed and dispersibility can be improved. If the pH is lower than 0.5, the conductive substrate may be deteriorated. When the pH is higher than 3.0, adhesion to the substrate becomes insufficient, and cracks may occur in the titanium oxide thin film.

このような水系媒体に対し、酸化チタン粒子を混合・分散することによって、薄膜形成用組成物が得られる。水系媒体と酸化チタン粒子の混合方法は、特に限定されず公知の方法を適宜用いることができる。例えば、乳鉢による混合、あるいはディスパー、ビーズミル、ボールミル、ペイントシェーカー等による方法等を用いることができる。この中でも、特に遊星ボールミルは、短時間で高分散できる点で好適である。   A thin film-forming composition can be obtained by mixing and dispersing titanium oxide particles in such an aqueous medium. A mixing method of the aqueous medium and the titanium oxide particles is not particularly limited, and a known method can be appropriately used. For example, mixing with a mortar or a method using a disper, bead mill, ball mill, paint shaker, or the like can be used. Among these, the planetary ball mill is particularly preferable in that it can be highly dispersed in a short time.

薄膜形成用組成物においては、酸化チタン粒子の分散性を向上させるために、分散剤を混合することもできる。また、その他の添加剤、例えば消泡剤、増粘剤、防腐剤、抗菌剤等を混合してもよい。但し、添加剤を混合する場合は、酸化チタン薄膜の物性を阻害しないように留意する必要がある。   In the composition for forming a thin film, a dispersant may be mixed in order to improve the dispersibility of the titanium oxide particles. Moreover, you may mix other additives, such as an antifoamer, a thickener, antiseptic | preservative, an antibacterial agent. However, when mixing an additive, it is necessary to pay attention not to disturb the physical properties of the titanium oxide thin film.

薄膜形成用組成物の導電性基材への塗布方法は、特に限定されず、公知の方法を用いることができ、例えば、スプレー法、スプレー熱分解法、スキージ法、ドクターブレード法、ディップコート法、スクリーン印刷法、インクジェット法、スピンコーター法、ロールコーター法、カレンダーロール法等が挙げられる。   The method for applying the thin film-forming composition to the conductive substrate is not particularly limited, and a known method can be used. For example, a spray method, a spray pyrolysis method, a squeegee method, a doctor blade method, a dip coating method. , Screen printing method, ink jet method, spin coater method, roll coater method, calendar roll method and the like.

薄膜形成用組成物の乾燥温度は、通常0〜300℃、好ましくは0〜150℃、より好ましくは5〜100℃、さらに好ましくは5〜80℃である。乾燥温度が300℃を超えると、基板が高分子フィルムである場合に、フィルムが湾曲、もしくは、劣化、溶融してしまう可能性がある。特に、乾燥温度が300℃以上になると、ほとんどの高分子フィルムは熱分解してしまう。
本発明では、上述のような乾燥条件によって薄膜形成用組成物を成膜させることができるが、必要に応じ、後処理として紫外線、マイクロ波等の照射を行ってもよい。このような後処理を行うことにより、残存有機物が分解され、半導体電極としての性能を高めることができる。
酸化チタン薄膜の膜厚は、通常1〜100μm、好ましくは5〜50μmである。
The drying temperature of the composition for forming a thin film is usually 0 to 300 ° C, preferably 0 to 150 ° C, more preferably 5 to 100 ° C, and further preferably 5 to 80 ° C. When the drying temperature exceeds 300 ° C., the film may be curved, deteriorated, or melted when the substrate is a polymer film. In particular, when the drying temperature is 300 ° C. or higher, most polymer films are thermally decomposed.
In the present invention, the thin film-forming composition can be formed under the above-described drying conditions, but irradiation with ultraviolet rays, microwaves, or the like may be performed as a post-treatment as necessary. By performing such post-treatment, the remaining organic matter is decomposed and the performance as a semiconductor electrode can be improved.
The film thickness of the titanium oxide thin film is usually 1 to 100 μm, preferably 5 to 50 μm.

本発明積層体においては、酸化チタン薄膜の光電変換作用を向上させるために、上記酸化チタン薄膜に、他の金属酸化物半導体層を積層させてもよい。これにより、系内に流れる電子の逆電流を防止することが可能なり、光電変換作用の性能を向上させることができる。金属酸化物としては、例えば、酸化亜鉛、酸化タンタル、酸化二オブ、酸化スズを用いることができ、また、過酸化チタンのような過酸化物や、酸素欠損型金属酸化物等を用いてもよい。これら金属酸化物の積層方法は、公知の方法を用いることができ、スプレー法、ディップ法、スプレー熱分解法、スキージ法、ドクターブレード法、ディップコート法、スクリーン印刷法、インクジェット法、スピンコーター法、ロールコーター法、カレンダーロール法等を用いることができる。   In this invention laminated body, in order to improve the photoelectric conversion effect | action of a titanium oxide thin film, you may laminate | stack another metal oxide semiconductor layer on the said titanium oxide thin film. Thereby, it becomes possible to prevent the reverse current of the electrons flowing in the system, and the performance of the photoelectric conversion action can be improved. As the metal oxide, for example, zinc oxide, tantalum oxide, niobium oxide, tin oxide can be used, and a peroxide such as titanium peroxide or an oxygen deficient metal oxide can also be used. Good. As a method for laminating these metal oxides, known methods can be used. Spray method, dipping method, spray pyrolysis method, squeegee method, doctor blade method, dip coating method, screen printing method, ink jet method, spin coater method A roll coater method, a calendar roll method or the like can be used.

[色素増感型太陽電池]
本発明の積層体を太陽電池として用いる場合には、光増感色素を吸着させる必要がある。この光増感色素は、可視光を吸収して電子を励起させ、その電子を酸化チタンへ伝達させる機能を有するものである。
光増感色素としては、このような機能を有するものであれば特に限定されずに使用することができる。このような光増感色素としては、有機色素、金属錯体等が挙げられる。
有機色素としては、例えば、メタルフリーフタロシアニン、シアニン系色素、メロシアニン系色素、キサンテン系色素、トリフェニルメタン色素を用いることができる。このうち、シアニン系色素としては、具体的に「NK1194」、「NK3422」(いずれも日本感光色素研究所(株)製)等が挙げられる。メロシアニン系色素としては、具体的に「NK2426」、「NK2501」(いずれも日本感光色素研究所(株)製)等が挙げられる。キサンテン系色素としては、ウラニン、エオシン、ローズベンガル、ローダミンBジブロムフルオレセイン等が挙げられる。トリフェニルメタン色素としては、マラカイトグリーン、クリスタルバイオレット等が挙げられる。
金属錯体としては、例えば、銅フタロシアニン、チタニルフタロシアニン、クロロフィル、ヘミン、特開平1−220380号公報、特公平5−504023号公報に記載のルテニウム、オスミウム、鉄、亜鉛、の錯体を用いることができる。このような金属錯体は、光増感、耐久性に優れているため好適に使用することができる。
光増感色素の分子中にカルボキシル基、ヒドロキシアルキル基、スルホン基、カルボキシアルキル基の官能基を有するものは、酸化チタンへ吸着されやすい点で好適である。
[Dye-sensitized solar cell]
When using the laminated body of this invention as a solar cell, it is necessary to adsorb | suck a photosensitizing dye. This photosensitizing dye has a function of absorbing visible light to excite electrons and transmitting the electrons to titanium oxide.
Any photosensitizing dye can be used without particular limitation as long as it has such a function. Examples of such a photosensitizing dye include organic dyes and metal complexes.
Examples of organic dyes that can be used include metal-free phthalocyanine, cyanine dyes, merocyanine dyes, xanthene dyes, and triphenylmethane dyes. Among these, specific examples of cyanine dyes include “NK1194” and “NK3422” (both manufactured by Nippon Photosensitivity Laboratories). Specific examples of merocyanine dyes include “NK2426” and “NK2501” (both manufactured by Nippon Photosensitive Dye Research Co., Ltd.). Examples of xanthene dyes include uranin, eosin, rose bengal, rhodamine B dibromofluorescein and the like. Examples of triphenylmethane dyes include malachite green and crystal violet.
As the metal complex, for example, a complex of copper phthalocyanine, titanyl phthalocyanine, chlorophyll, hemin, ruthenium, osmium, iron, zinc described in JP-A-1-220380 and JP-B-5-504023 can be used. . Since such a metal complex is excellent in photosensitization and durability, it can be suitably used.
Those having a functional group such as a carboxyl group, a hydroxyalkyl group, a sulfone group, and a carboxyalkyl group in the molecule of the photosensitizing dye are preferable in that they are easily adsorbed to titanium oxide.

光増感色素を酸化チタン薄膜に吸着させるには、光増感色素を溶媒に溶解させた溶液中に、常温または加熱下で酸化チタン薄膜積層体を浸漬すればよい。前記溶液の溶媒としては、光増感色素が溶解可能なものであれば特に限定されず、具体的には、水、アルコール、トルエン、ジメチルホルムアミド等を用いることができる。   In order to adsorb the photosensitizing dye to the titanium oxide thin film, the titanium oxide thin film laminate may be immersed in a solution in which the photosensitizing dye is dissolved in a solvent at room temperature or under heating. The solvent of the solution is not particularly limited as long as the photosensitizing dye can be dissolved. Specifically, water, alcohol, toluene, dimethylformamide, or the like can be used.

光増感色素の酸化チタン薄膜への吸着量は、酸化チタン薄膜の表面積によって異なるが、酸化チタン薄膜へ単分子吸着されていることが好ましい。色素の吸着量が、単分子吸着を超える場合、色素が光を遮断してしまい、光カットフィルターとして作用し、光の入射面から深さ方向にある酸化チタン薄膜へ光が到達せず、光電変換作用が低下してしまう。また、色素の吸着量が、単分子吸着よりも少ない場合は、色素で励起される電子の数が少なくなり、光電変換作用が低下するため好ましくない。   The amount of the photosensitizing dye adsorbed on the titanium oxide thin film varies depending on the surface area of the titanium oxide thin film, but it is preferable that the single molecule adsorbed on the titanium oxide thin film. If the amount of dye adsorbed exceeds single molecule adsorption, the dye will block the light and act as a light cut filter, so that light will not reach the titanium oxide thin film in the depth direction from the light incident surface, The conversion effect is reduced. In addition, when the amount of dye adsorbed is smaller than that of single molecule adsorption, the number of electrons excited by the dye decreases, and the photoelectric conversion action is lowered, which is not preferable.

色素増感型太陽電池は、上述のように本発明積層体に光増感色素を吸着させたものを半導体電極とし、その対極として白金、銀、金等の金属を蒸着した導電性高分子フィルムを用い、さらに両電極の隙間に電解質を介在させることによって作製することができる。
電解質としては、通常色素増感型太陽電池に用いられているものを使用することができる。具体的には、例えばI-/I3 -系や、Br-/Br3 -系、キノン/ハイドロキノン系等が挙げられる。このような電解質は、公知の方法によって得ることができ、例えば、I-/I3 -系の電解質は、ヨウ素のアンモニウム塩とヨウ素を混合することによって得ることができる。
The dye-sensitized solar cell is a conductive polymer film in which a photosensitizing dye is adsorbed to the laminate of the present invention as described above as a semiconductor electrode, and a metal such as platinum, silver, or gold is deposited as a counter electrode. And by interposing an electrolyte in the gap between both electrodes.
As the electrolyte, those usually used in dye-sensitized solar cells can be used. Specifically, for example, I - / I 3 - system, Br - / Br 3 - system, quinone / hydroquinone system. Such an electrolyte can be obtained by a known method. For example, an I / I 3 system electrolyte can be obtained by mixing an ammonium salt of iodine and iodine.

以下に実施例及び比較例を示し、本発明の特徴をより明確にする。   Examples and Comparative Examples are shown below to clarify the features of the present invention.

(実施例1)
イソプロピルアルコール100重量部にチタンアルコキシドを1重量部混合して得られた溶液を、これと同重量の水に滴下、攪拌した後、1N硝酸を用いて水溶液のpHを2.0に調製して、水酸化チタン溶液を作製した。この水酸化チタン溶液に対し、酸化チタン粒子1を混合、攪拌することにより、酸化チタンペーストを調整した。ここで、酸化チタン粒子1は、酸化チタン粒子1と水酸化チタンとの重量比率が97重量%:3重量%となるように混合した。
以上の方法によって得られた酸化チタンペーストを、導電性高分子フィルム1(40mm×20mm)にスキージ法で塗布し、50℃で3時間乾燥して膜厚20μmの酸化チタン薄膜を形成させ、積層体を得た。この積層体は、繰返し湾曲させても酸化チタン薄膜が剥れたり、割れたりすることはなく、十分なフレキシブル性を有していた。
得られた積層体を、色素1のエタノール溶液に12時間浸漬した後、50℃で12時間乾燥させて色素吸着積層体を得た。
次いで、色素吸着積層体に、白金を蒸着した導電性高分子フィルム1を、酸化チタン薄膜と白金が向かい合うように貼り合わせ、太陽電池セルを作製した。このとき、スペーサーとして、厚さ50μmの両面テープを用いた。この太陽電池セルの隙間に電解質1を注入して、太陽電池を得た。
このようにして作製した太陽電池について、性能評価を行った。性能評価においては、300Wのハロゲンランプを照射し、そのときの開放電圧及び短絡電流を、テスターを用いて測定した。その結果、開放電圧は480mV、短絡電流は4.6mAであった。
(Example 1)
A solution obtained by mixing 1 part by weight of titanium alkoxide with 100 parts by weight of isopropyl alcohol was dropped into the same weight of water and stirred, and then the pH of the aqueous solution was adjusted to 2.0 using 1N nitric acid. A titanium hydroxide solution was prepared. The titanium oxide paste was prepared by mixing and stirring the titanium oxide particles 1 in the titanium hydroxide solution. Here, the titanium oxide particles 1 were mixed so that the weight ratio of the titanium oxide particles 1 and the titanium hydroxide was 97 wt%: 3 wt%.
The titanium oxide paste obtained by the above method is applied to the conductive polymer film 1 (40 mm × 20 mm) by a squeegee method and dried at 50 ° C. for 3 hours to form a titanium oxide thin film having a thickness of 20 μm. Got the body. Even when this laminate was repeatedly bent, the titanium oxide thin film did not peel off or cracked, and had sufficient flexibility.
The obtained laminate was immersed in an ethanol solution of Dye 1 for 12 hours and then dried at 50 ° C. for 12 hours to obtain a dye-adsorbed laminate.
Next, the conductive polymer film 1 on which platinum was vapor-deposited was bonded to the dye-adsorbed laminate so that the titanium oxide thin film and the platinum faced each other, thereby producing a solar battery cell. At this time, a double-sided tape having a thickness of 50 μm was used as a spacer. The electrolyte 1 was injected into the gap between the solar cells to obtain a solar cell.
Performance evaluation was performed about the solar cell produced in this way. In the performance evaluation, a 300 W halogen lamp was irradiated, and the open circuit voltage and short circuit current at that time were measured using a tester. As a result, the open circuit voltage was 480 mV and the short circuit current was 4.6 mA.

なお、実施例においては以下の材料を使用した。
・酸化チタン粒子1:アナターゼ型酸化チタン(一次粒子径10nm)
・酸化チタン粒子2:アナターゼ・ルチル混合酸化チタン(一次粒子径20nm)
・チタンアルコキシド:チタニウムイソプロポキシド
・導電性高分子フィルム1:ITO蒸着PETフィルム(表面抵抗値10Ω・cm、膜厚110μm)
・導電性高分子フィルム2:ITO蒸着PETフィルム(表面抵抗値20Ω・cm、膜厚110μm)
・色素1:メロシアニン
・電解質1:0.5M LiI+0.05M I2 /3−メトキシプロピオニトリル溶液
In the examples, the following materials were used.
-Titanium oxide particles 1: Anatase type titanium oxide (primary particle diameter 10 nm)
Titanium oxide particles 2: Anatase / rutile mixed titanium oxide (primary particle size 20 nm)
・ Titanium alkoxide: Titanium isopropoxide ・ Conductive polymer film 1: ITO vapor-deposited PET film (surface resistance 10 Ω · cm, film thickness 110 μm)
-Conductive polymer film 2: ITO-deposited PET film (surface resistance 20 Ω · cm, film thickness 110 μm)
Dye 1: Merocyanine Electrolyte 1: 0.5 M LiI + 0.05 M I 2 / 3-methoxypropionitrile solution

(実施例2)
水酸化チタン溶液のpHを1.0とした以外は、実施例1と同様の方法で、太陽電池を作製した。このようにして作製した太陽電池の開放電圧は502mV、短絡電流は3.8mAであった。
(Example 2)
A solar cell was produced in the same manner as in Example 1 except that the pH of the titanium hydroxide solution was 1.0. The solar cell thus fabricated had an open circuit voltage of 502 mV and a short circuit current of 3.8 mA.

(実施例3)
酸化チタン1に代えて、酸化チタン2を用いた以外は、実施例1と同様の方法で太陽電池を作製した。このようにして作製した太陽電池の開放電圧は482mV、短絡電流は4.0mAであった。
(Example 3)
A solar cell was produced in the same manner as in Example 1 except that titanium oxide 2 was used instead of titanium oxide 1. The solar cell thus fabricated had an open circuit voltage of 482 mV and a short circuit current of 4.0 mA.

(実施例4)
酸化チタン1の混合比率を、60重量%とした以外は、実施例1と同様な手法で太陽電池を作製した。この様にして作製した太陽電池の開放電圧は、490mV、短絡電流は、3.6mAであった。
Example 4
A solar cell was produced in the same manner as in Example 1 except that the mixing ratio of titanium oxide 1 was 60% by weight. The solar cell thus produced had an open circuit voltage of 490 mV and a short circuit current of 3.6 mA.

(実施例5)
導電性高分子フィルム1を導電性高分子フィルム2に代えた以外は、実施例1と同様の方法で太陽電池を作製した。このようにして作製した太陽電池の開放電圧は476mV、短絡電流は3.2mAであった。
(Example 5)
A solar cell was produced in the same manner as in Example 1 except that the conductive polymer film 1 was replaced with the conductive polymer film 2. The solar cell thus fabricated had an open circuit voltage of 476 mV and a short circuit current of 3.2 mA.

(参考例1)
水酸化チタン溶液のpHを3.2とした以外は、実施例1と同様な手法で太陽電池を作製した。この水溶液を導電性高分子フィルムに塗布すると、酸化チタン薄膜にクラックが生じ、膜が形成されなかった。
(Reference Example 1)
A solar cell was produced in the same manner as in Example 1 except that the pH of the titanium hydroxide solution was 3.2. When this aqueous solution was applied to the conductive polymer film, a crack was generated in the titanium oxide thin film, and no film was formed.

(参考例2)
酸化チタン1の混合比率を10重量%とした以外は、実施例1と同様の手法で太陽電池を作製した。このようにして作製した太陽電池の開放電圧は300mV、短絡電流は100μAであり、短絡電流が著しく低くなってしまい、太陽電池として用いるには実用的でなかった。
(Reference Example 2)
A solar cell was produced in the same manner as in Example 1 except that the mixing ratio of titanium oxide 1 was 10% by weight. The solar cell thus fabricated had an open voltage of 300 mV and a short-circuit current of 100 μA, and the short-circuit current was extremely low, which was not practical for use as a solar cell.

Claims (5)

導電性基板上に酸化チタン薄膜が形成された積層体であって、
該酸化チタン薄膜が、60〜99重量%の酸化チタン粒子と1〜40重量%の水酸化チタンによって形成されていることを特徴とする積層体。
A laminate in which a titanium oxide thin film is formed on a conductive substrate,
A laminate comprising the titanium oxide thin film formed of 60 to 99% by weight of titanium oxide particles and 1 to 40% by weight of titanium hydroxide.
酸化チタン薄膜が、水酸化チタン及び/または水酸化チタン前躯体を含むpH0.5〜3.0の水系媒体に酸化チタン粒子が分散された酸化チタン薄膜形成用組成物を、0〜300℃で乾燥させて得られるものである請求項1記載の積層体。 A composition for forming a titanium oxide thin film in which titanium oxide particles are dispersed in an aqueous medium having a pH of 0.5 to 3.0 containing titanium hydroxide and / or a titanium hydroxide precursor. The laminate according to claim 1, which is obtained by drying. 酸化チタン粒子として、一次粒子径1〜200nmのアナターゼ型酸化チタン粒子を含む請求項1または2に記載の積層体。 The laminate according to claim 1 or 2, comprising anatase-type titanium oxide particles having a primary particle diameter of 1 to 200 nm as titanium oxide particles. 水酸化チタン前躯体が、チタンアルコキシド、チタン塩、及びチタン錯体から選ばれる1種以上である請求項1〜3のいずれかに記載の積層体。 The laminate according to any one of claims 1 to 3, wherein the titanium hydroxide precursor is one or more selected from titanium alkoxides, titanium salts, and titanium complexes. 導電性基板が、表面に導電性金属酸化物を有する高分子フィルムである請求項1〜4のいずれかに記載の積層体。 The laminate according to any one of claims 1 to 4, wherein the conductive substrate is a polymer film having a conductive metal oxide on the surface.
JP2003351398A 2003-10-09 2003-10-09 Manufacturing method of laminate Expired - Fee Related JP4637470B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003351398A JP4637470B2 (en) 2003-10-09 2003-10-09 Manufacturing method of laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003351398A JP4637470B2 (en) 2003-10-09 2003-10-09 Manufacturing method of laminate

Publications (2)

Publication Number Publication Date
JP2005116415A true JP2005116415A (en) 2005-04-28
JP4637470B2 JP4637470B2 (en) 2011-02-23

Family

ID=34542645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003351398A Expired - Fee Related JP4637470B2 (en) 2003-10-09 2003-10-09 Manufacturing method of laminate

Country Status (1)

Country Link
JP (1) JP4637470B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006049311A (en) * 2004-07-20 2006-02-16 Konarka Technologies Inc Photoreactive layer containing macro-particles
JP2006339074A (en) * 2005-06-03 2006-12-14 Gunze Ltd Manufacturing method for dye-sensitized solar cell
WO2010050575A1 (en) 2008-10-29 2010-05-06 富士フイルム株式会社 Dye, photoelectric conversion element and photoelectrochemical cell each comprising the dye, and process for producing dye
WO2010117062A1 (en) * 2009-04-09 2010-10-14 東洋製罐株式会社 Electrode used in dye-sensitized solar cell, and coating composition used for producing the electrode
JP2010262919A (en) * 2009-04-09 2010-11-18 Toyo Seikan Kaisha Ltd Coating composition for forming porous photoelectric conversion layer, and forming method for porous photoelectric conversion layer
JP2011009119A (en) * 2009-06-26 2011-01-13 Toyo Seikan Kaisha Ltd Electrode used for dye-sensitized solar cell
EP2302650A2 (en) 2009-09-28 2011-03-30 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
EP2306479A2 (en) 2009-09-28 2011-04-06 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
WO2011083688A1 (en) * 2010-01-08 2011-07-14 日立造船株式会社 Method for manufacturing dye-sensitized solar cell
WO2012101939A1 (en) * 2011-01-24 2012-08-02 ソニー株式会社 Dye-sensitized solar cell and method for manufacturing same
WO2013094653A1 (en) * 2011-12-19 2013-06-27 大日本印刷株式会社 Dye-sensitized solar cell element, dye-sensitized solar cell module, method for manufacturing dye-sensitized solar cell element, and oxide semiconductor electrode substrate
JP2014053150A (en) * 2012-09-06 2014-03-20 Sharp Corp Photoelectric conversion element and photoelectric conversion module
WO2014129575A1 (en) 2013-02-22 2014-08-28 富士フイルム株式会社 Photoelectric conversion element, method for manufacturing photoelectric conversion element and dye-sensitized solar cell

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000294814A (en) * 1999-04-08 2000-10-20 Idemitsu Kosan Co Ltd Photochemically sensitized optical semiconductor and photochemically sensitized solar battery using the same
JP2001085076A (en) * 1999-09-10 2001-03-30 Fuji Photo Film Co Ltd Photoelectric transducer and photocell
JP2002280327A (en) * 2001-03-21 2002-09-27 Lintec Corp Fabrication of semiconductor electrode and photochemical battery
JP2003281947A (en) * 2002-03-25 2003-10-03 Tayca Corp Low temperature synthesizing of conductive titanium oxide porous thick film
JP2005085500A (en) * 2003-09-04 2005-03-31 Tsukasa Yoshida Manufacturing method of dye-sensitized solar cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000294814A (en) * 1999-04-08 2000-10-20 Idemitsu Kosan Co Ltd Photochemically sensitized optical semiconductor and photochemically sensitized solar battery using the same
JP2001085076A (en) * 1999-09-10 2001-03-30 Fuji Photo Film Co Ltd Photoelectric transducer and photocell
JP2002280327A (en) * 2001-03-21 2002-09-27 Lintec Corp Fabrication of semiconductor electrode and photochemical battery
JP2003281947A (en) * 2002-03-25 2003-10-03 Tayca Corp Low temperature synthesizing of conductive titanium oxide porous thick film
JP2005085500A (en) * 2003-09-04 2005-03-31 Tsukasa Yoshida Manufacturing method of dye-sensitized solar cell

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006049311A (en) * 2004-07-20 2006-02-16 Konarka Technologies Inc Photoreactive layer containing macro-particles
JP2006339074A (en) * 2005-06-03 2006-12-14 Gunze Ltd Manufacturing method for dye-sensitized solar cell
EP2845882A2 (en) 2008-10-29 2015-03-11 Fujifilm Corporation Dye, Photoelectric Conversion Element and Photoelectrochemical Cell
WO2010050575A1 (en) 2008-10-29 2010-05-06 富士フイルム株式会社 Dye, photoelectric conversion element and photoelectrochemical cell each comprising the dye, and process for producing dye
WO2010117062A1 (en) * 2009-04-09 2010-10-14 東洋製罐株式会社 Electrode used in dye-sensitized solar cell, and coating composition used for producing the electrode
JP2010262919A (en) * 2009-04-09 2010-11-18 Toyo Seikan Kaisha Ltd Coating composition for forming porous photoelectric conversion layer, and forming method for porous photoelectric conversion layer
JP2011009119A (en) * 2009-06-26 2011-01-13 Toyo Seikan Kaisha Ltd Electrode used for dye-sensitized solar cell
EP2302650A2 (en) 2009-09-28 2011-03-30 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
EP2306479A2 (en) 2009-09-28 2011-04-06 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
WO2011083688A1 (en) * 2010-01-08 2011-07-14 日立造船株式会社 Method for manufacturing dye-sensitized solar cell
CN102687337A (en) * 2010-01-08 2012-09-19 日立造船株式会社 Method for manufacturing dye-sensitized solar cell
JP2011142027A (en) * 2010-01-08 2011-07-21 Hitachi Zosen Corp Method of manufacturing dye-sensitized solar cell
WO2012101939A1 (en) * 2011-01-24 2012-08-02 ソニー株式会社 Dye-sensitized solar cell and method for manufacturing same
WO2013094653A1 (en) * 2011-12-19 2013-06-27 大日本印刷株式会社 Dye-sensitized solar cell element, dye-sensitized solar cell module, method for manufacturing dye-sensitized solar cell element, and oxide semiconductor electrode substrate
JP2013127923A (en) * 2011-12-19 2013-06-27 Dainippon Printing Co Ltd Dye-sensitized solar cell element, dye-sensitized solar cell module, method for manufacturing dye-sensitized solar cell element, and oxide semiconductor electrode substrate
JP2014053150A (en) * 2012-09-06 2014-03-20 Sharp Corp Photoelectric conversion element and photoelectric conversion module
WO2014129575A1 (en) 2013-02-22 2014-08-28 富士フイルム株式会社 Photoelectric conversion element, method for manufacturing photoelectric conversion element and dye-sensitized solar cell

Also Published As

Publication number Publication date
JP4637470B2 (en) 2011-02-23

Similar Documents

Publication Publication Date Title
Yu et al. High-performance TiO2 photoanode with an efficient electron transport network for dye-sensitized solar cells
JP4392741B2 (en) Photoelectric cell
JP5191647B2 (en) Titanium oxide film, titanium oxide film electrode film structure, and dye-sensitized solar cell
JP5314253B2 (en) Photoelectric cell
JP4637470B2 (en) Manufacturing method of laminate
JP2003217688A (en) Dye-sensitized photoelectric converter
JP2002184475A (en) Method of manufacturing semiconductor electrode and photochemical battery
JP2006313656A (en) Photoelectric conversion device and photovoltaic generator using the same
JP2011165469A (en) Semiconductor electrode layer, method of manufacturing the same, and electrochemical device
JP5199587B2 (en) Photoelectric cell and method for manufacturing the same
JP5348962B2 (en) Photoelectric cell manufacturing method
JP5354960B2 (en) Paint for forming porous metal oxide semiconductor film for photoelectric cell and photoelectric cell
JP5503143B2 (en) Paint for forming porous metal oxide semiconductor film and photoelectric cell
JP2003308892A (en) Organic pigment sensitizing metal oxide semiconductor electrode and organic pigment sensitizing solar battery
KR101166515B1 (en) Photoelectrode for dye-sensitized solar cell, preparing method of the same, and dye-sensitized solar cell having the same
JP5426865B2 (en) Photoelectric cell and coating material for forming porous metal oxide semiconductor film for photoelectric cell
JP2006073488A (en) Dye-sensitized solar cell and manufacturing method thereof
Chen et al. Electron transport dynamics in TiO2 films deposited on Ti foils for back-illuminated dye-sensitized solar cells
JP5332739B2 (en) Photoelectric conversion element and solar cell
JP4236715B2 (en) Manufacturing method of semiconductor for photoelectric conversion material
JP2002280087A (en) Optical electrode and dye sensitized solar battery provided with the same
JP2009218218A (en) Photoelectric cell
JP4808560B2 (en) Titanium oxide particle-containing composition, method for producing photoelectrode, and method for producing solar cell
JP4684572B2 (en) Carbon electrode and manufacturing method thereof, carbon electrode manufacturing material, and dye-sensitized solar cell provided with carbon electrode
Sarode et al. Thickness dependent optical and eosin-Y sensitized solar cells characteristics of nc-a TiO2 films

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees