WO2013094653A1 - Dye-sensitized solar cell element, dye-sensitized solar cell module, method for manufacturing dye-sensitized solar cell element, and oxide semiconductor electrode substrate - Google Patents

Dye-sensitized solar cell element, dye-sensitized solar cell module, method for manufacturing dye-sensitized solar cell element, and oxide semiconductor electrode substrate Download PDF

Info

Publication number
WO2013094653A1
WO2013094653A1 PCT/JP2012/082963 JP2012082963W WO2013094653A1 WO 2013094653 A1 WO2013094653 A1 WO 2013094653A1 JP 2012082963 W JP2012082963 W JP 2012082963W WO 2013094653 A1 WO2013094653 A1 WO 2013094653A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide semiconductor
dye
electrode substrate
solar cell
sensitized solar
Prior art date
Application number
PCT/JP2012/082963
Other languages
French (fr)
Japanese (ja)
Inventor
美帆 佐々木
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Publication of WO2013094653A1 publication Critical patent/WO2013094653A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention can provide a dye-sensitized solar cell element excellent in design and the dye-sensitized solar cell element, and a method for producing a dye-sensitized solar cell element capable of simplifying the production process.
  • the present invention also relates to a dye-sensitized solar cell module and an oxide semiconductor electrode substrate.
  • Dye-sensitized solar cells are being considered for application to electronic devices where there is a strong demand for miniaturization and low power consumption.
  • the dye-sensitized solar cell As a main power source or auxiliary power source for an electronic device, it is expected to eliminate the need for charging the electronic device or lengthen the charge cycle. Since such an electronic device is for personal use, the design is an important factor. Accordingly, development of products using dye-sensitized solar cells having excellent design properties for these needs is also being studied.
  • a dye-sensitized solar cell excellent in design is examined.
  • a transparent electrode layer is formed on a transparent substrate, and a pattern of a dye-carrying semiconductor is formed by carrying a dye on the porous oxide semiconductor following the pattern formation of the porous oxide semiconductor on the transparent electrode layer.
  • support semiconductor which has a mutually different color by performing 2 times or more is disclosed. This method makes it possible to express a pattern such as a specific character, symbol, or figure, but it is necessary to form a pattern of the dye-carrying semiconductor at least twice, and the manufacturing process is complicated. There was a problem.
  • the photoelectric conversion layer is screen-printed a plurality of times using a plurality of masks having different patterns, and the pigment is adsorbed by changing the thickness of the photoelectric conversion layer for each region, thereby transmitting incident light.
  • a dye-sensitized solar cell excellent in design with different shades of color for each region based on the difference in rate With the above method, a pattern using color shading can be expressed, but there is a problem that the screen printing needs to be performed a plurality of times and the manufacturing process is complicated.
  • Patent Document 3 a porous titanium oxide layer made of titanium oxide fine particles and carrying a dye sensitizer is classified into the type, thickness, laminated structure of the dye sensitizer, the particle diameter of the titanium oxide fine particles, or the above
  • the kind of dye sensitizer, the thickness, the laminated structure, the particle size of the titanium oxide fine particles, or the case where the titanium oxide fine particles are composed of two or more types of titanium oxide fine particles having different particle sizes It is necessary to appropriately adjust the blending ratio and the like, and development of a method for producing a dye-sensitized solar cell that is simpler and excellent in design is demanded. Further, in the above method, since a plurality of types of titanium oxide fine particles are used, further improvement in cost is required.
  • the present invention has been made in view of the above problems, a dye-sensitized solar cell element having excellent design properties, a simple manufacturing process, and high power generation efficiency, and a dye-sensitized dye using the same.
  • the main object of the present invention is to provide an oxide semiconductor electrode substrate used in a dye-sensitized solar cell element, a method for producing the dye-sensitized solar cell element, and a dye-sensitized solar cell element.
  • the present invention provides a first electrode base material having a function as an electrode, and a surface of an oxide semiconductor film formed on the first electrode base material and containing metal oxide semiconductor fine particles.
  • an oxide semiconductor electrode substrate having an oxide semiconductor layer carrying a dye sensitizer and a counter electrode substrate having at least a second electrode base material having a function as an electrode are the oxide semiconductor layer and The dye-sensitized solar cell element, wherein the second electrode base material is disposed so as to face each other, and an electrolyte layer including a redox pair is formed between the oxide semiconductor electrode substrate and the counter electrode substrate.
  • the dye-sensitized solar cell element, wherein the oxide semiconductor layer has at least two regions having different thicknesses and different transmittances, and the at least two regions are integrally formed. I will provide a.
  • the oxide semiconductor layer has at least two regions having different film thicknesses and transmittances, thereby expressing color shading corresponding to the difference between the film thicknesses and transmittances of the at least two regions. It becomes possible. That is, by using the oxide semiconductor layer, a dye-sensitized solar cell element excellent in design can be obtained.
  • the present invention provides a first electrode substrate having a function as an electrode, and a dye sensitizer on the surface of an oxide semiconductor film formed on the first electrode substrate and containing metal oxide semiconductor fine particles.
  • An oxide semiconductor electrode substrate having a held oxide semiconductor layer and a counter electrode substrate having a second electrode base material having at least a function as an electrode are opposed to the oxide semiconductor layer and the second electrode base material.
  • the present invention provides a dye-sensitized solar cell element characterized by having at least two regions having different film thicknesses and different pore diameters, and wherein the at least two regions are composed of particle groups having the same composition.
  • the oxide semiconductor layer has at least two regions having different film thicknesses and pore diameters, thereby expressing the color shading corresponding to the difference between the film thicknesses and the pore diameters of the at least two regions. It becomes possible. That is, by using the oxide semiconductor layer, a dye-sensitized solar cell element excellent in design can be obtained. Moreover, in order to obtain the dye-sensitized solar cell element which has the outstanding design property because the particle
  • the present invention provides a first electrode substrate having a function as an electrode, and a dye sensitizer on the surface of an oxide semiconductor film formed on the first electrode substrate and containing metal oxide semiconductor fine particles.
  • An oxide semiconductor electrode substrate having a held oxide semiconductor layer and a counter electrode substrate having a second electrode base material having at least a function as an electrode are opposed to the oxide semiconductor layer and the second electrode base material.
  • an electrolyte layer including a redox pair is formed between the oxide semiconductor electrode substrate and the counter electrode substrate, and the oxide semiconductor layer has a different thickness and a different transmittance.
  • a dye-sensitized solar cell module comprising a plurality of dye-sensitized solar cell elements, each having at least two regions, which are integrally formed with at least two regions. .
  • the oxide semiconductor layer has at least two regions having different film thicknesses and transmittances, thereby expressing color shading corresponding to the difference between the film thicknesses and transmittances of the at least two regions. It becomes possible. That is, by using the oxide semiconductor layer, a dye-sensitized solar cell module excellent in design can be obtained.
  • the present invention provides a first electrode substrate having a function as an electrode, and a dye sensitizer on the surface of an oxide semiconductor film formed on the first electrode substrate and containing metal oxide semiconductor fine particles.
  • An oxide semiconductor electrode substrate having a held oxide semiconductor layer and a counter electrode substrate having a second electrode base material having at least a function as an electrode are opposed to the oxide semiconductor layer and the second electrode base material.
  • an electrolyte layer including a redox pair is formed between the oxide semiconductor electrode substrate and the counter electrode substrate, and the oxide semiconductor layer has at least two different thicknesses and different pore diameters.
  • a dye-sensitized solar cell module comprising a plurality of dye-sensitized solar cell elements each having two regions, wherein the at least two regions are composed of a group of particles having the same composition. Offer To.
  • the oxide semiconductor layer has at least two regions having different film thicknesses and pore diameters, thereby expressing the color shading corresponding to the difference between the film thicknesses and the pore diameters of the at least two regions. It becomes possible. That is, by using the oxide semiconductor layer, a dye-sensitized solar cell module excellent in design can be obtained. Further, in order to obtain a dye-sensitized solar cell module having an excellent design property because the particles constituting the at least two regions in the oxide semiconductor layer have the same composition, a plurality of types of particles having different compositions Since it is not necessary to use different for each area, the cost can be reduced as compared with the conventional case.
  • This invention is a manufacturing method of the dye-sensitized solar cell element which manufactures the dye-sensitized solar cell element mentioned above, Comprising: The said oxide containing the said metal oxide semiconductor fine particle on the said 1st electrode base material An oxide semiconductor electrode substrate forming step of forming the oxide semiconductor electrode substrate by forming a semiconductor film and forming the oxide semiconductor layer having the dye sensitizer carried on the surface of the oxide semiconductor film. A counter electrode substrate preparation step for preparing the counter electrode substrate having the second electrode base material, and the oxide semiconductor electrode substrate and the counter electrode substrate so as to face each other with the electrolyte layer therebetween.
  • the oxide semiconductor electrode substrate forming step partially pressurizes the oxide semiconductor film or the oxide semiconductor film
  • the oxide semiconductor electrode substrate forming step includes either a step of partially pressing the oxide semiconductor film or a step of partially pressing the oxide semiconductor film with a different pressure.
  • a pressurized region and a non-pressed region, or a region pressurized with one pressure and a region pressurized with a pressure different from the one pressure can be formed, respectively.
  • the oxide semiconductor film is pressurized, the pore diameter of the oxide semiconductor film is reduced. Therefore, each region in the oxide semiconductor film can produce a difference in pore diameter of the oxide semiconductor film by an amount corresponding to the presence or absence of pressurization or the magnitude of the pressure to be applied.
  • the dye sensitizer By supporting the dye sensitizer on the film, it is possible to make a difference in the transmittance of each region.
  • the step of pressurizing the oxide semiconductor film improves the adhesion between the oxide semiconductor electrode substrate and the first electrode base material, and makes it possible to manufacture a dye-sensitized solar cell element having high power generation efficiency.
  • the present invention provides a first electrode substrate having a function as an electrode, and a dye sensitizer on the surface of an oxide semiconductor film formed on the first electrode substrate and containing metal oxide semiconductor fine particles.
  • the oxide semiconductor layer includes at least two regions having different thicknesses and different transmittances, and the at least two regions are integrally formed.
  • An oxide semiconductor electrode substrate is provided.
  • the oxide semiconductor layer has at least two regions having different film thicknesses and transmittances, thereby expressing color shading corresponding to the difference between the film thicknesses and transmittances of the at least two regions. It becomes possible. That is, by using the oxide semiconductor layer, an oxide semiconductor electrode substrate with excellent design can be obtained.
  • the present invention provides a first electrode base material having a function as an electrode, and an oxide semiconductor film including metal oxide semiconductor fine particles formed on the first electrode base material and carrying a dye sensitizer.
  • An oxide semiconductor electrode substrate, wherein the oxide semiconductor layer has at least two regions having different thicknesses and different pore diameters, and the at least two regions are composed of a particle group having the same composition I will provide a.
  • the oxide semiconductor layer has at least two regions having different film thicknesses and pore diameters, thereby expressing the color shading corresponding to the difference between the film thicknesses and the pore diameters of the at least two regions. It becomes possible. That is, by using the oxide semiconductor layer, an oxide semiconductor electrode substrate with excellent design can be obtained. Further, in the oxide semiconductor layer, the particles constituting the at least two regions have the same composition, whereby a dye-sensitized solar cell element having excellent design properties is obtained using the oxide semiconductor electrode substrate. For this reason, since it is not necessary to use different types of particles having different compositions for each region, the cost can be reduced as compared with the prior art.
  • the dye-sensitized solar cell element having excellent design and high power generation efficiency, the dye-sensitized solar cell module using the same, and the dye-sensitized solar cell element are used.
  • An oxide semiconductor electrode substrate that can be provided can be provided.
  • the manufacturing method of the dye-sensitized solar cell element which can manufacture the said dye-sensitized solar cell element simply can be provided.
  • the dye-sensitized solar cell element the dye-sensitized solar cell module, the method for producing the dye-sensitized solar cell element, and the oxide acid conductor electrode substrate of the present invention will be described in detail.
  • Dye-sensitized solar cell element of the present invention has two aspects. Hereinafter, the first aspect and the second aspect will be described separately.
  • the dye-sensitized solar cell element of this aspect is a 1st electrode base material provided with the function as an electrode, and the oxide semiconductor formed on the said 1st electrode base material and containing a metal oxide semiconductor fine particle
  • An oxide semiconductor electrode substrate having an oxide semiconductor layer carrying a dye sensitizer on the surface of the film, and a counter electrode substrate having at least a second electrode base material having a function as an electrode,
  • the semiconductor layer and the second electrode base material are disposed so as to face each other, and an electrolyte layer including a redox pair is formed between the oxide semiconductor electrode substrate and the counter electrode substrate,
  • the oxide semiconductor layer has at least two regions having different thicknesses and different transmittances, and the at least two regions are integrally formed.
  • FIG. 1A is a schematic plan view showing an example of the dye-sensitized solar cell element of this embodiment
  • FIG. 1B is a cross-sectional view taken along the line AA in FIG. 1 (c) is an enlarged view of a region D in FIG. 1 (b).
  • the dye-sensitized solar cell element 100 of this embodiment is formed on the first electrode base material 10 and the first electrode base material 10, and is made of metal.
  • An oxide semiconductor electrode substrate 1 having an oxide semiconductor layer 13 in which a dye sensitizer is supported on the surface of an oxide semiconductor film containing oxide semiconductor fine particles, and the oxide semiconductor layer 13 are formed so as to cover the oxide semiconductor layer 13 and are oxidized and reduced.
  • the oxide semiconductor layer 13 has an electrolyte layer 2 including a pair, and a counter electrode substrate 3 formed so as to face the oxide semiconductor electrode substrate 1 with the electrolyte layer 2 interposed therebetween and having a second electrode base material.
  • the oxide semiconductor layer 13 has at least two regions having different thicknesses and different transmittances. Therefore, in the dye-sensitized solar cell element 100 shown in FIG. 1, the oxide semiconductor layer 13 includes a region having a film thickness of 13a and a region having a film thickness of 13b as shown in FIG. It has.
  • region whose film thickness is 13a is equivalent to the area
  • region whose film thickness is 13b is equivalent to the character part of "DNP" shown in Fig.1 (a).
  • the two regions, ie, the region having a film thickness of 13 a and the region having a film thickness of 13 b are formed integrally, and an interface exists between the two regions. do not do.
  • the oxide semiconductor layer constituting the dye-sensitized solar cell element has at least two regions having different thicknesses and transmittances, the thicknesses and transmittances of the at least two regions are increased. It is possible to express the shade of the color corresponding to the difference. That is, in the oxide semiconductor layer, the transmittance of a region with a small thickness is high, while the transmittance of a region with a large thickness is low. As described above, the transmittance of the oxide semiconductor layer varies depending on the film thickness, and the color tone of a region having a high haze rate becomes thin due to white turbidity, while the color tone of a region having a low haze rate becomes dark.
  • the oxide semiconductor electrode substrate, the electrolyte layer, and the counter electrode substrate that constitute the dye-sensitized solar cell element of this embodiment will be described.
  • An oxide semiconductor electrode substrate constituting the dye-sensitized solar cell element of the present embodiment is formed on a first electrode base material having a function as an electrode, and the first electrode base material, It has an oxide semiconductor layer in which a dye sensitizer is supported on the surface of an oxide semiconductor film containing metal oxide semiconductor fine particles.
  • the oxide semiconductor layer used for such an oxide semiconductor electrode substrate has at least two regions with different film thicknesses and different transmittances, it is possible to express color shading.
  • the oxide semiconductor electrode substrate it is possible to obtain a dye-sensitized solar cell element excellent in design.
  • constituent members of the oxide semiconductor electrode substrate will be described.
  • the oxide semiconductor layer in this embodiment is formed on the first electrode substrate described later, and is dye-sensitized on the surface of the oxide semiconductor film containing metal oxide semiconductor fine particles. The drug is carried.
  • the oxide semiconductor layer has at least two regions with different thicknesses and different transmittances. Hereinafter, the fact that the oxide semiconductor layer has at least two regions having different thicknesses will be described with reference to the drawings.
  • FIG. 2 is a schematic cross-sectional view showing an example of the dye-sensitized solar cell element of this embodiment.
  • the oxide semiconductor layer 13 has three regions having film thicknesses 13c, 13d, and 13e. The three regions are thicker in the order of 13c ⁇ 13d ⁇ 13e, and the transmittances differ from each other due to the difference in film thickness.
  • a method for forming the oxide semiconductor layer having at least two regions having different thicknesses and transmittances is not particularly limited.
  • the oxide semiconductor film is applied with different pressures.
  • the oxide semiconductor layer is formed by forming the oxide semiconductor layer, and then the oxide semiconductor layer is pressurized with a different pressure.
  • the transmittance of a region where the oxide semiconductor film or the oxide semiconductor layer is pressurized is increased. That is, when the oxide semiconductor layer having at least two regions having different thicknesses and transmittances is formed by pressurization, the pore diameter in the region where the oxide semiconductor layer is thin is reduced. The transmittance will be higher than before pressurization. Therefore, in the dye-sensitized solar cell element 100 of FIG. 2, the haze ratio in the region where the film thickness is 13c is high, the color tone is cloudy and looks the thinnest, while the haze in the region where the film thickness is 13e. The rate will be low and the color will appear darkest. 2 that are not described in FIG. 2 can be the same as those in FIG.
  • the oxide semiconductor layer used in this embodiment includes at least two regions having different thicknesses, and includes one region having one thickness and another thickness different from the one thickness.
  • the film thickness difference with the region is not particularly limited as long as the desired design or the like can be expressed using color shading, but for example, within a range of 0.01 ⁇ m to 10 ⁇ m. Preferably, it is preferably within the range of 0.1 ⁇ m to 5 ⁇ m, and particularly preferably within the range of 0.5 ⁇ m to 3 ⁇ m.
  • the film thickness difference here refers to a difference in film thickness between two regions which are adjacent to each other and have different film thicknesses in the oxide semiconductor layer.
  • adjacent to each other refers to a state in which two target areas are in contact with each other without interposing other areas. That is, in the case of the oxide semiconductor layer 13 in the dye-sensitized solar cell 100 of FIG. 2, it indicates the difference between the film thickness 13c and the film thickness 13d, or the difference between the film thickness 13d and the film thickness 13e. For example, it does not indicate the difference in film thickness in regions that are not adjacent to each other, such as the difference between the film thickness 13c and the film thickness 13e.
  • the thickness of the oxide semiconductor layer used in this embodiment can be appropriately determined according to the use of the dye-sensitized solar cell element of this embodiment, and is not particularly limited.
  • the thickness of the thinnest region of the oxide semiconductor layer is preferably, for example, in the range of 0.1 ⁇ m to 50 ⁇ m, and more preferably in the range of 0.3 ⁇ m to 30 ⁇ m. In particular, it is preferably in the range of 1 ⁇ m to 20 ⁇ m.
  • the thickness of the oxide semiconductor layer is thinner than the above range, it may not be a highly efficient dye-sensitized solar cell element, whereas if it is thicker than the above range, This is because the transmittance of the oxide semiconductor layer is lowered, the color itself cannot be seen, and an excellent design property may not be obtained.
  • the above thickness refers to the total thickness of all the layers.
  • the oxide semiconductor layer in this embodiment includes at least two regions having different thicknesses. That is, the oxide semiconductor layer has an uneven shape on the surface.
  • the uneven shape is appropriately adjusted according to the design of characters, patterns, and the like represented by the difference in film thickness of the oxide semiconductor layer.
  • Examples of the cross-sectional shape of the concave portion of the oxide semiconductor layer include a polygonal shape, a circular shape, and a tapered shape.
  • the oxide semiconductor layer used in this embodiment includes at least two regions having different transmittances, one region having one transmittance, and another region having another transmittance different from one.
  • the transmittance difference with the region is not particularly limited as long as a desired design or the like can be expressed by using the color shade due to the transmittance difference, but is preferably 2% or more, for example. Of these, 3% or more is preferable, and 5% or more is particularly preferable. When the transmittance difference is within the above range, the color density can be sufficiently expressed at the interface of the regions having different transmittances, and excellent design properties can be obtained.
  • the transmittance difference here refers to a difference in transmittance between regions adjacent to each other in the oxide semiconductor layer including at least two regions having different transmittances.
  • adjacent to each other refers to a state in which two target areas are in contact with each other without interposing other areas. That is, in the case of the oxide semiconductor layer 13 in the dye-sensitized solar cell 100 of FIG. 2, the transmittance difference between the region having the film thickness 13c and the region having the film thickness 13d, or the region having the film thickness 13d This refers to the difference in transmittance with the region having the film thickness 13e.
  • the transmittance of the regions that are not adjacent to each other such as the difference in transmittance between the region with the film thickness 13c and the region with the film thickness 13e. It does not indicate a difference.
  • the transmittance of the oxide semiconductor layer used in this embodiment is appropriately adjusted according to the use of the dye-sensitized solar cell element of this embodiment, the size of the particles used, the dispersion method, and the like, and is particularly limited.
  • the transmittance of the thinnest region of the oxide semiconductor layer is preferably in the range of 5% to 99%, for example. In particular, it is preferably in the range of 10% to 90%, and particularly preferably in the range of 20% to 80%. Note that the transmittance here refers to the transmittance with respect to light incident on the oxide semiconductor layer.
  • the transmittance of the oxide semiconductor layer is a value measured using a haze meter (HGM-2K) manufactured by Suga Test Instruments Co., Ltd. in the visible light region.
  • the transmittance difference of the oxide semiconductor layer is a value obtained by subtracting the value measured by the above method.
  • the oxide semiconductor layer used in this embodiment is formed by integrally forming at least two regions having different film thicknesses and transmittances as described above.
  • integrally formed means a state where a thick film region and a thin film region are formed without having an interface, and in the thick film region, the thickness direction In other words, this indicates a state in which no interface exists.
  • the oxide semiconductor layer 13 has regions having film thicknesses of 13c, 13d, and 13e, respectively, as described above. These adjacent regions on the first electrode substrate 10 do not have an interface in the surface direction of the dye-sensitized solar cell element 100, and are formed integrally.
  • the oxide semiconductor layer in this embodiment may be a single layer as shown in FIG. 2, or a plurality of oxide semiconductor layers in the thickness direction of the dye-sensitized solar cell element as shown in FIG. Layers may be laminated.
  • the oxide semiconductor layer 13 used in this embodiment is integrally formed even when the oxide semiconductor layer 13 includes two layers, an oxide semiconductor layer 13A and an oxide semiconductor layer 13B. It has been done. In other words, the oxide semiconductor layer 13A and the oxide semiconductor layer 13B themselves do not have an interface in the thickness direction of the dye-sensitized solar cell element 100 of this embodiment.
  • the oxide semiconductor layer used in this embodiment has at least two regions with different film thicknesses and different transmittances, and is particularly limited as long as each layer is integrally formed.
  • at least two regions having different thicknesses and transmittances in the oxide semiconductor layer may have different pore diameters, and each region may be composed of a particle group having the same composition.
  • the particles have the same composition means that when the oxide semiconductor layer is composed of one kind of particle group, the average particle diameter of each particle group in at least two regions in the oxide semiconductor layer is equal to one.
  • the average particle size of each particle group and the mixing ratio thereof are the same.
  • the average particle diameter of the particle group constituting the oxide semiconductor layer is at least 2 different in film thickness and transmittance in the oxide semiconductor layer. Match in two areas.
  • the method for measuring the average particle diameter of the particle group include laser analysis and three-dimensional image analysis. The laser analysis method is effective when the measurement target is in an ink state, and the three-dimensional image analysis method is effective when the measurement target is in a film state. In addition to the particle size distribution measurement, these measurement methods can also measure the mixing ratio of each particle.
  • the mixing ratio of each particle group is the same means that at least two regions having different thicknesses and transmittances in the oxide semiconductor layer have the same ratio in the two or more types of particle groups. It refers to being composed.
  • the oxide semiconductor layer used in this embodiment includes at least two regions having different transmittances, and the at least two regions may have different pore diameters.
  • the pore diameters of the at least two regions are different, the difference in pore diameter between one region having one pore diameter and another region having another pore diameter different from one pore diameter is as described above.
  • the transmittance can be varied depending on the difference in pore diameter, and as a result, a desired design or the like can be expressed using color shading in at least two regions having different pore diameters.
  • the difference in pore diameter refers to the difference in pore diameter between adjacent areas in the oxide semiconductor layer having at least two areas having different pore diameters.
  • adjacent to each other refers to a state in which two target areas are in contact with each other without interposing other areas. That is, in the case of the oxide semiconductor layer 13 in the dye-sensitized solar cell 100 of FIG.
  • the difference between the pore diameter in the region having the film thickness 13c and the pore diameter in the region having the film thickness 13d, or the film thickness 13d is the difference between the pore diameter of the region that is and the pore diameter of the region that is the film thickness 13e.
  • the difference between the pore diameter of the region that is the film thickness 13c and the pore diameter of the region that is the film thickness 13e is As such, it does not indicate a difference in pore diameter between regions that are not adjacent to each other.
  • the difference in pore diameter By making the difference in pore diameter within the above range, it is possible to have a difference in transmittance due to the difference in pore diameter, and as a result, it is possible to sufficiently represent the color shade at the interface of the regions having different pore diameters, Excellent design properties can be obtained.
  • a difference in the haze ratio of the oxide semiconductor layer can be given due to a difference in pore diameter of the oxide semiconductor layer. That is, in the oxide semiconductor layer, the haze ratio can be increased in a region where the pore diameter is relatively large, and the haze ratio can be decreased in a region where the pore diameter is relatively small.
  • the haze ratio is a ratio between the parallel light transmittance and the diffuse light transmittance in the incident light.
  • the difference in haze ratio in this embodiment varies depending on the above-described difference in pore diameter, the material of the oxide semiconductor layer, and the like. For example, it is preferably in the range of 0.05 to 99. It is preferably in the range of 1 to 50, particularly preferably in the range of 0.3 to 30.
  • the haze ratio is a value measured using a haze meter (HGM-2K) manufactured by Suga Test Instruments Co., Ltd.
  • the pore diameter of the oxide semiconductor layer used in this embodiment is appropriately adjusted according to the use of the dye-sensitized solar cell element of this embodiment, and is not particularly limited.
  • the pore diameter of the thinnest region of the oxide semiconductor layer is preferably in the range of, for example, 1 nm to 80 nm, and more preferably in the range of 3 nm to 50 nm. It is particularly preferable that the thickness is in the range of 5 nm to 30 nm.
  • the pore diameter refers to the maximum peak of the pore diameter.
  • the pore diameter of the oxide semiconductor layer can be measured using a highly accurate fully automatic gas adsorption device (BELSORP 28SA manufactured by Nippon Bell Co., Ltd.). Note that nitrogen gas can be used as the adsorption gas.
  • oxide semiconductor film and the dye sensitizer constituting the oxide semiconductor layer will be described.
  • the oxide semiconductor film used in this embodiment is formed on the first electrode substrate and contains metal oxide semiconductor fine particles.
  • the metal oxide semiconductor fine particles contained in the oxide semiconductor film will be described.
  • the metal oxide semiconductor fine particles used in this embodiment are not particularly limited as long as they are made of a metal oxide having semiconductor characteristics.
  • the metal oxide constituting the metal oxide semiconductor fine particles used in this embodiment include TiO 2 , ZnO, SnO 2 , ITO, ZrO 2 , MgO, Al 2 O 3 , CeO 2 , Bi 2 O 3 , and Mn. 3 O 4 , Y 2 O 3 , WO 3 , Ta 2 O 5 , Nb 2 O 5 , La 2 O 3 and the like can be mentioned.
  • the average particle diameter of the metal oxide semiconductor particles used in this embodiment is usually preferably in the range of 1 nm to 10 ⁇ m, particularly preferably in the range of 10 nm to 1000 nm.
  • the oxide semiconductor film used in this embodiment may contain an optional component in addition to the metal oxide semiconductor fine particles.
  • an optional component contained in the oxide semiconductor film for example, a resin can be given. This is because when the resin is contained in the oxide semiconductor film, the brittleness of the oxide semiconductor film used in this embodiment can be improved.
  • Examples of the resin that can be used for the oxide semiconductor film in this embodiment include polyvinyl pyrrolidone, ethyl cellulose, caprolactan, and the like.
  • the oxide semiconductor layer used in this embodiment is one in which a dye sensitizer is supported on the surface of the oxide semiconductor film described above.
  • the dye sensitizer used in this embodiment will be described.
  • the dye sensitizer used in this embodiment is not particularly limited as long as it can absorb light and generate an electromotive force.
  • a dye sensitizer include organic dyes and metal complex dyes.
  • the organic dyes include acridine, azo, indigo, quinone, coumarin, merocyanine, phenylxanthene, indoline, and carbazole dyes. In this embodiment, among these organic dyes, a coumarin dye is preferably used.
  • the metal complex dye it is preferable to use a ruthenium dye, and it is particularly preferable to use a ruthenium bipyridine dye and a ruthenium terpyridine dye which are ruthenium complexes. This is because such a ruthenium complex has a wide wavelength range of light to be absorbed, so that the wavelength range of light that can be photoelectrically converted can be greatly expanded.
  • Examples of the dye sensitizer used in this embodiment include any hue such as a ruthenium complex having a yellow to green hue, a coumarin organic dye having a red hue, and a merocyanine organic dye having a blue hue. Therefore, it is possible to obtain an oxide semiconductor layer having a vivid color tone by supporting these dye sensitizers on the metal oxide semiconductor fine particles.
  • the first electrode base material used in this embodiment is not particularly limited as long as it has at least a function as an electrode. Moreover, at least any one of the 1st electrode base material used for this aspect and the 2nd electrode base material used for the counter-electrode board
  • the metal substrate used in this embodiment is not particularly limited as long as it has a metal layer. Specifically, there are a case where only a metal layer is provided and a case where a base material and a metal layer disposed on the base material are provided. Hereinafter, each case will be described.
  • the metal layer is not particularly limited as long as it can be used as a metal substrate, may have flexibility, or does not have flexibility. It may be a thing.
  • Examples of the metal layer having flexibility include metal foil.
  • the presence or absence of the said flexibility can be judged by performing the metal material bending test method of JISZ2248, and determining whether it bends when a force of 5 ⁇ 10 3 N is applied.
  • the metal material used for the metal foil include Cu, Al, Ti, Cr, W, Mo, Pt, Ta, Nb, Zr, Zn, and a simple substance such as Fe, and SUS or the like.
  • An alloy etc. are mentioned, Among these, it is preferable to use Ti etc. with high heat resistance.
  • the thickness of such a metal foil is preferably in the range of 5 ⁇ m to 1000 ⁇ m, more preferably in the range of 10 ⁇ m to 500 ⁇ m, and still more preferably in the range of 20 ⁇ m to 200 ⁇ m.
  • a metal substrate can be mentioned as a metal layer which does not have flexibility. Since the metal material used for such a metal substrate can be the same as the metal material used for the metal foil described above, the description thereof is omitted here.
  • the metal layer examples include a metal thin film and a metal plate. In this case, a metal thin film is more preferable.
  • the metal layer disposed on the base material can be etched and formed into a pattern, etc., so that by using a metal thin film as the metal layer, etching can be performed. The metal layer can be easily patterned.
  • the thickness of such a metal thin film is preferably in the range of 0.005 ⁇ m to 1 ⁇ m, more preferably in the range of 0.010 ⁇ m to 0.5 ⁇ m, and particularly preferably in the range of 0.020 ⁇ m to 0.3 ⁇ m.
  • the metal material used for the metal thin film can be the same as the metal material used for the metal foil described in the section “(i) In the case of having only a metal layer”. .
  • a transparent inorganic substrate or a transparent resin substrate can be used.
  • a base material composed of a resin having general transparency can be used, for example, a base material composed of a resin such as polyethylene terephthalate, polyester naphthalate, or polycarbonate. it can.
  • the transparent inorganic substrate include a synthetic quartz substrate and a glass substrate. The thickness of the transparent substrate is preferably in the range of 5 ⁇ m to 2000 ⁇ m.
  • the transparent conductive substrate used for this aspect has a base material and a transparent conductive film.
  • the base material and the transparent conductive film used in this embodiment will be described.
  • the dye-sensitized solar cell element of this embodiment is disposed on a light receiving surface that receives sunlight, it is necessary to have transparency to sunlight. It is what is done.
  • the detailed description of the base material can be the same as that described in the section “(a) Metal substrate (ii) When having a base material and a metal layer disposed on the base material”. The description here is omitted.
  • the transparent conductive film is formed on the substrate.
  • the transparent conductive film is not particularly limited as long as it has desired transparency and has desired conductivity.
  • Examples of the material used for the transparent conductive film include metal oxides and conductive polymer materials.
  • Examples of the metal oxide include SnO 2 , ZnO, a compound in which tin is added to indium oxide (ITO), a compound in which zinc oxide is added to indium oxide (IZO), and the like.
  • the conductive polymer material include polythiophene, polyaniline, polypyrrole, polyethylenedioxythiophene, and derivatives thereof. Moreover, these can also be used in mixture of 2 or more types.
  • the total light transmittance of the transparent conductive film is preferably 85% or more, and more preferably 90% or more.
  • the method for measuring the total light transmittance of the transparent conductive film here is the same as the method for measuring the transmittance described in the above section “1. Oxide Semiconductor Electrode Substrate (1) Oxide Semiconductor Layer”. it can.
  • the sheet resistance of the transparent conductive film is preferably 500 ⁇ / ⁇ or less, and more preferably 300 ⁇ / ⁇ or less.
  • the transparent conductive film may be composed of a single layer or may be composed of a plurality of layers.
  • the film thickness of the transparent conductive film is usually preferably in the range of 5 nm to 2000 nm, particularly preferably in the range of 10 nm to 1000 nm.
  • Electrolyte Layer The electrolyte layer used in this embodiment is formed between the above-described oxide semiconductor electrode substrate and a counter electrode substrate described later, and includes a redox pair. Hereinafter, the electrolyte layer used in this embodiment will be described.
  • the redox couple used in the electrolyte layer in this embodiment is not particularly limited as long as it is used in a dye-sensitized solar cell element.
  • a combination of iodine and iodide can be mentioned.
  • the ratio of the redox couple in the electrolyte layer is preferably in the range of 1% by mass to 50% by mass, and more preferably in the range of 5% by mass to 35% by mass.
  • the electrolyte layer may be an electrolyte layer having any form of gel, solid, or liquid.
  • a physical gel or a chemical gel may be used.
  • the physical gel is gelled near room temperature due to physical interaction
  • the chemical gel is a gel formed by chemical bonding by a crosslinking reaction or the like.
  • acetonitrile, methoxyacetonitrile, propylene carbonate or the like is used as a solvent
  • an ionic liquid containing a redox couple or an imidazolium salt as a cation is used as a solvent. can do.
  • the electrolyte layer when it is in a solid state, it may be any material that does not include a redox pair and functions as a hole transporting agent.
  • a hole transporting agent including CuI, polypyrrole, polythiophene, etc. There may be.
  • the thickness of such an electrolyte layer is not particularly limited, but it is preferable that the oxide semiconductor layer is porous having communication holes. In the case where a layer is formed, it is preferably in the range of 2 ⁇ m to 100 ⁇ m including the thickness of the oxide semiconductor layer, and more preferably in the range of 2 ⁇ m to 50 ⁇ m.
  • the film thickness is smaller than the above range, the oxide semiconductor layer and the counter electrode substrate are likely to come into contact with each other, causing a short circuit.
  • the film thickness is thicker than the above range, the internal resistance is increased. This is because it leads to performance degradation.
  • the counter electrode substrate used in this embodiment has a second electrode base material having at least a function as an electrode, and is arranged so that the above-described oxide semiconductor layer and the second electrode base material face each other. Is. Hereinafter, the counter electrode substrate used in this embodiment will be described.
  • the second electrode substrate used in this embodiment is not particularly limited as long as it has at least a function as an electrode. Moreover, at least any one of the 2nd electrode base material used for this aspect and the 1st electrode base material used for the oxide semiconductor layer side board
  • the counter electrode substrate used in this embodiment has a catalyst layer formed as necessary.
  • the catalyst layer used in this embodiment will be described.
  • the dye-sensitized solar cell element of this embodiment can be made more excellent in power generation efficiency.
  • a catalyst layer include, for example, an embodiment in which Pt is vapor-deposited on the counter electrode substrate, polyethylene dioxythiophene (PEDOT), polystyrene sulfonic acid (PSS), polyaniline (PA), paratoluene sulfonic acid (PTS). ) And a mixture thereof, an embodiment of forming a catalyst layer can be mentioned, but is not limited thereto.
  • the film thickness of such a catalyst layer is preferably in the range of 5 nm to 500 nm, more preferably in the range of 10 nm to 300 nm, and particularly preferably in the range of 15 nm to 100 nm.
  • a dye-sensitized solar cell element includes a first electrode base material having a function as an electrode, and an oxide semiconductor formed on the first electrode base material and including metal oxide semiconductor fine particles.
  • An oxide semiconductor electrode substrate having an oxide semiconductor layer carrying a dye sensitizer on the surface of the film, and a counter electrode substrate having at least a second electrode base material having a function as an electrode, The semiconductor layer and the second electrode base material are disposed so as to face each other, and an electrolyte layer including a redox pair is formed between the oxide semiconductor electrode substrate and the counter electrode substrate,
  • the oxide semiconductor layer has at least two regions having different film thicknesses and different pore diameters, and the at least two regions are composed of particle groups having the same composition.
  • the oxide semiconductor layer has at least two regions having different film thicknesses and pore diameters, thereby expressing the color shading corresponding to the difference between the film thicknesses and the pore diameters of the at least two regions. It becomes possible. That is, by using the oxide semiconductor layer, a dye-sensitized solar cell element excellent in design can be obtained. Moreover, according to this aspect, since the particles constituting at least two regions having different film thicknesses and pore diameters in the oxide semiconductor layer have the same composition, the dye-sensitized solar cell element having excellent design properties Therefore, since it is not necessary to use a plurality of types of particles having different compositions, the cost can be reduced as compared with the conventional case.
  • the particles constituting at least two regions of the oxide semiconductor layer have the same composition, it is not necessary to provide the coating process of the oxide semiconductor film forming coating solution a plurality of times in the manufacturing process. There is no need to use different types of particles for each region, and a dye-sensitized solar cell element having excellent design properties can be easily produced.
  • the method for producing the dye-sensitized solar cell element of the present invention will be described in detail in the section “III. Method for producing dye-sensitized solar cell element” described later.
  • the oxide semiconductor electrode substrate, the electrolyte layer, and the counter electrode substrate that constitute the dye-sensitized solar cell element of this embodiment will be described.
  • An oxide semiconductor electrode substrate constituting the dye-sensitized solar cell element of the present embodiment is formed on a first electrode base material having a function as an electrode, and the first electrode base material, It has an oxide semiconductor layer in which a dye sensitizer is supported on the surface of an oxide semiconductor film containing metal oxide semiconductor fine particles.
  • Such an oxide semiconductor electrode substrate has different pore diameters depending on the film thickness of the oxide semiconductor layer. As a result, a difference in transmittance can be provided, and color shading can be expressed. Therefore, by using the oxide semiconductor electrode substrate, there is an effect that a dye-sensitized solar cell element excellent in design can be obtained.
  • constituent members of the oxide semiconductor electrode substrate will be described.
  • Oxide semiconductor layer The oxide semiconductor film in this aspect is formed on the 1st electrode base material mentioned later, and contains metal oxide semiconductor fine particles.
  • the oxide semiconductor layer has at least two regions having different film thicknesses and different pore diameters, and the at least two regions are composed of particle groups having the same composition.
  • the oxide semiconductor layer in this embodiment is particularly limited as long as it has at least two regions having different film thicknesses and different pore sizes, and the at least two regions are composed of particle groups having the same composition. It is not a thing. Note that the oxide semiconductor layer has at least two regions having different thicknesses and pore diameters, and the detailed description about the fact that the at least two regions are composed of a particle group having the same composition, etc.
  • the first electrode base material used in this embodiment is not particularly limited as long as it has at least a function as an electrode. Moreover, at least any one of the 1st electrode base material used for this aspect and the 2nd electrode base material used for the counter-electrode board
  • Electrolyte Layer The electrolyte layer used in this embodiment is formed between the above-described oxide semiconductor electrode substrate and a counter electrode substrate described later, and includes a redox pair. In addition, about the electrolyte layer used for this aspect, since it can be made to be the same as that of the description of the said "A. 1st aspect 2. Electrolyte layer”, description here is abbreviate
  • the counter electrode substrate used in this embodiment has a second electrode base material having at least a function as an electrode, and is arranged so that the above-described oxide semiconductor layer and the second electrode base material face each other. Is.
  • substrate used for this aspect since it can be made to be the same as that of what was described in the term of the said "A. 1st aspect 3.
  • substrate description here is abbreviate
  • Dye-sensitized solar cell module The dye-sensitized solar cell module of the present invention has two aspects. Hereinafter, the third mode and the fourth mode will be described separately.
  • a dye-sensitized solar cell module includes a first electrode base material having a function as an electrode, and an oxide semiconductor formed on the first electrode base material and including metal oxide semiconductor fine particles.
  • An oxide semiconductor electrode substrate having an oxide semiconductor layer carrying a dye sensitizer on the surface of the film, and a counter electrode substrate having at least a second electrode base material having a function as an electrode, The semiconductor layer and the second electrode base material are disposed so as to face each other, and an electrolyte layer including a redox pair is formed between the oxide semiconductor electrode substrate and the counter electrode substrate.
  • a plurality of dye-sensitized solar cell elements each having at least two regions having different film thicknesses and different transmittances and having the at least two regions formed integrally are connected in series or in parallel.
  • the oxide semiconductor layer constituting the dye-sensitized solar cell element has at least two regions having different thicknesses and transmittances, the thicknesses and transmittances of the at least two regions are increased. It is possible to express the shade of the color corresponding to the difference. That is, in the oxide semiconductor layer, the transmittance of a region with a small thickness is high, while the transmittance of a region with a large thickness is low. As described above, the oxide semiconductor layer has a difference in transmittance depending on the film thickness, and the color tone of a region having a high haze rate becomes thin due to white turbidity, while the color tone of a region having a low haze rate becomes dark. Therefore, by using the oxide semiconductor layer, a dye-sensitized solar cell element excellent in design can be obtained, and a dye excellent in design can be obtained by connecting the dye-sensitized solar cell elements. A sensitized solar cell module can be obtained.
  • the aspect in which a plurality of dye-sensitized solar cell elements are connected in this aspect is particularly limited as long as desired design and electromotive force can be obtained by the dye-sensitized solar cell module of this aspect. It is not something.
  • Such an embodiment may be an embodiment in which the dye-sensitized solar cell elements are connected in series, or an embodiment in which the dye-sensitized solar cell elements are connected in parallel.
  • the aspect in which a plurality of the dye-sensitized solar cell elements are connected may be an aspect in which a plurality of the dye-sensitized solar cell elements are formed between a pair of substrates.
  • the said dye-sensitized solar cell element formed independently may be the aspect connected with external wiring etc.
  • the dye-sensitized solar cell module of this aspect is a 1st electrode base material provided with the function as an electrode, and the oxide semiconductor formed on the said 1st electrode base material and containing a metal oxide semiconductor fine particle
  • An oxide semiconductor electrode substrate having an oxide semiconductor layer carrying a dye sensitizer on the surface of the film, and a counter electrode substrate having at least a second electrode base material having a function as an electrode, The semiconductor layer and the second electrode base material are disposed so as to face each other, and an electrolyte layer including a redox pair is formed between the oxide semiconductor electrode substrate and the counter electrode substrate.
  • a plurality of dye-sensitized solar cell elements each having at least two regions having different film thicknesses and different pore diameters, wherein the at least two regions are composed of particles having the same composition are connected in series or in parallel. is there.
  • the oxide semiconductor layer has at least two regions having different film thicknesses and pore diameters, thereby expressing the color shading corresponding to the difference between the film thicknesses and the pore diameters of the at least two regions. It becomes possible. That is, by using the oxide semiconductor layer, a dye-sensitized solar cell module excellent in design can be obtained. In addition, since the particles constituting at least two regions having different film thicknesses and pore diameters in the oxide semiconductor layer have the same composition, in order to obtain a dye-sensitized solar cell module having excellent design properties Since it is not necessary to use a plurality of types of particles having different values, the cost can be reduced as compared with the prior art.
  • the particles constituting at least two regions of the oxide semiconductor layer have the same composition, it is not necessary to provide the coating process of the coating solution for forming the oxide semiconductor film multiple times in the manufacturing process. It is not necessary to use different types of particles for each, and a dye-sensitized solar cell module having excellent design can be easily manufactured.
  • the dye-sensitized solar cell module of this embodiment can be the same as that described in the above section “A. Third Embodiment”, so description thereof is omitted here.
  • the method for producing the dye-sensitized solar cell element of the present invention is a dye-sensitized method for producing the dye-sensitized solar cell element according to the first and second aspects described above.
  • Type solar cell element manufacturing method wherein an oxide semiconductor film containing metal oxide semiconductor fine particles is formed on a first electrode substrate, and a dye sensitizer is carried on the surface of the oxide semiconductor film
  • an oxide semiconductor electrode substrate forming step for forming the oxide semiconductor electrode substrate, a counter electrode substrate preparing step for preparing the counter electrode substrate having the second electrode base material,
  • a dye-sensitized solar cell element assembly step for assembling a dye-sensitized solar cell element by disposing the oxide semiconductor electrode substrate and the counter electrode substrate so as to face each other with the electrolyte layer interposed therebetween, Oxide semiconductor electrode group
  • the plate forming step includes a pressing step of either partially pressing the oxide semiconductor film or partially pressing the oxide semiconductor film with a different pressure. is there.
  • FIG. 4 is a schematic process diagram showing an example of a method for producing a dye-sensitized solar cell element of the present invention.
  • an oxide semiconductor film is formed by forming an oxide semiconductor film 11 containing metal oxide semiconductor fine particles on a first electrode substrate 10.
  • Step (FIG. 4A) pressurizing step of applying pressure to the oxide semiconductor film 11 using the mold 4 (FIG. 4B), and the surface of the pressurized oxide semiconductor film 11
  • An oxide semiconductor electrode substrate forming step having an oxide semiconductor layer forming step FIG.
  • the oxide semiconductor film 11 in the oxide semiconductor film 11, a region pressurized with one pressure and a region pressurized with another pressure different from the one pressure
  • the oxide semiconductor film may be partially pressurized to form a pressurized region and a non-pressurized region in the oxide semiconductor film.
  • the oxide semiconductor electrode substrate forming step includes either a step of partially pressing the oxide semiconductor film or a step of partially pressing the oxide semiconductor film with a different pressure.
  • a pressurized region and a non-pressed region, or a region pressurized with one pressure and a region pressurized with a pressure different from the one pressure can be formed, respectively.
  • the oxide semiconductor film has a small pore size when pressurized. Accordingly, each region in the oxide semiconductor film can have a difference in pore diameter corresponding to the presence or absence of pressurization or the magnitude of the pressure to be pressed, and thus the transmittance in each region is different. It becomes possible. That is, since it is possible to represent the shade of the color corresponding to the difference in the transmittance of each region, it is possible to manufacture a dye-sensitized solar cell element excellent in design.
  • the oxide semiconductor film 11 is formed even when the oxide semiconductor film 11 formed on the first electrode substrate 10 is composed of a plurality of layers (here, two layers 11A and 11B). Can give a difference in the pore diameter of the particles corresponding to the presence or absence of pressurization or the magnitude of the pressurization pressure, thereby making it possible to make a difference in the transmittance of each region. That is, by supporting the dye sensitizer 12 on the oxide semiconductor film 11 having regions where the pore diameter and transmittance of the particles are different, colors corresponding to the difference in the pore diameter and transmittance of the particles in each region. This makes it possible to manufacture the dye-sensitized solar cell element 100 having excellent design properties.
  • this invention can integrate each layer by a pressurization process (FIG.5 (b)). That is, as shown in FIGS. 5A to 5C, generation of a gap or the like at the interface between the oxide semiconductor films 11A and 11B is prevented, and the adhesion between the oxide semiconductor film 11 and the first electrode substrate 10 is prevented. Can be improved. Furthermore, since the surface of the oxide semiconductor film 11 can be smoothed by the pressurizing step (FIG. 5B), the oxide semiconductor layer carrying the dye sensitizer 12 on the oxide semiconductor film 11 The adhesion between the electrolyte layer 13 and the electrolyte layer 2 can be improved. As a result, the charge mobility is increased, and a dye-sensitized solar cell element having high power generation efficiency can be manufactured. Note that reference numerals not described in FIG. 5 can be the same as those in FIG. Hereinafter, each process of the manufacturing method of the dye-sensitized solar cell element of this invention is each demonstrated.
  • an oxide semiconductor film containing metal oxide semiconductor fine particles is formed on a first electrode base material, and a dye is formed on the surface of the oxide semiconductor film.
  • a step of forming an oxide semiconductor electrode substrate by forming an oxide semiconductor layer carrying a sensitizer, wherein the oxide semiconductor film is partially pressurized or the oxide semiconductor film is partially formed It is a process which has one of the pressurization processes of the process of pressurizing with a different pressure.
  • a pressurizing step included in the oxide semiconductor electrode substrate forming step a step of preparing a first electrode base material (hereinafter referred to as a first electrode base material preparing step), and forming an oxide semiconductor film.
  • the description will be divided into a step (hereinafter referred to as an oxide semiconductor film formation step) and a step of forming an oxide semiconductor layer (hereinafter referred to as an oxide semiconductor layer formation step).
  • the pressurization step in the present invention is a step of partially pressurizing the oxide semiconductor film or a step of partially pressing the oxide semiconductor film with a different pressure.
  • the pressurizing method in this step is not particularly limited as long as it can apply a desired pressure to the oxide semiconductor film.
  • a press process can be mentioned.
  • Specific examples of the press treatment include roll press work or flat plate press work, and roll press work is particularly preferable.
  • the roll press process is a rolling process that forms a desired concavo-convex structure on the surface by pressing a rotating roller having a concavo-convex pattern. Further, in the roll press process, a concavo-convex structure is formed on the surface of the molding object by passing a rotating roller in the roll press machine a plurality of times.
  • FIG. 6 is a schematic view showing an example of roll press processing.
  • the roll press machine 200 includes a molding target side rotation roller 6 and a concave / convex pattern mold 4 arranged so as to contact the molding target arranged on the molding target side rotation roller 6. I have it.
  • the first electrode base material 10 having the oxide semiconductor film 11 on the surface is disposed as the object to be molded, and the rotating roller 5 having the concavo-convex pattern mold 4 so as to be in contact with the oxide semiconductor film 11. Is provided.
  • the rotating roller 5 provided so as to be in contact with the oxide semiconductor film 11 rotates, the mold 4 having an uneven pattern provided on the rotating roller 5 is pressed against the oxide semiconductor film 11.
  • the cross-sectional shape, height, width, and period of the concavo-convex pattern mold provided on the surface of the rotating roller depend on the thickness of the oxide semiconductor film described above and the pattern and design represented in the dye-sensitized solar cell element. Are appropriately prepared.
  • the difference between the one pressure and the other pressure when the oxide semiconductor film has a region pressurized with one pressure and a region pressurized with another pressure different from the one pressure are appropriately adjusted depending on the selection of the density of the color that appears when the oxide semiconductor film material or the dye sensitizer is supported, and is not particularly limited. In this embodiment, for example, it is preferably in the range of 0.001 t / cm to 5 t / cm, more preferably in the range of 0.005 t / cm to 1 t / cm, particularly 0.01 t / cm. It is preferably in the range of ⁇ 0.1 t / cm.
  • the pressure applied to the pressurized region may be a material supporting the oxide semiconductor film or a dye sensitizer.
  • the color is appropriately adjusted depending on the selection of the shade of the color that appears, and is not particularly limited. In this embodiment, for example, it is preferably in the range of 0.001 t / cm to 5 t / cm, more preferably in the range of 0.005 t / cm to 1 t / cm, and particularly 0.03 t / cm. It is preferably in the range of ⁇ 0.1 t / cm.
  • the firing treatment is known to be a treatment that can sinter metal oxide semiconductor fine particles contained in an oxide semiconductor film to form a conduction path and improve photoelectric conversion efficiency.
  • a preferable firing temperature for the firing treatment is not particularly limited as long as it does not exceed the heat resistance temperature of the first electrode substrate, but it is preferably in the range of 200 ° C. to 600 ° C., for example.
  • the 1st electrode base material preparation process in the manufacturing method of the dye-sensitized solar cell element of this invention is a process of preparing a 1st electrode layer on a base material.
  • a general method can be used, and examples thereof include a vapor deposition method, a sputtering method, and a CVD method.
  • the sputtering method is particularly preferable.
  • a film base material is preferable especially. This is because, in the pressurizing step described later, a pressurizing process can be easily performed as long as the film substrate has excellent workability.
  • Oxide semiconductor film formation process The oxide semiconductor film formation process in the manufacturing method of the dye-sensitized solar cell element of the present invention forms an oxide semiconductor film containing metal oxide semiconductor fine particles on the first electrode substrate. It is a process to do.
  • the method for forming the oxide semiconductor film is not particularly limited.
  • a coating liquid for forming an oxide semiconductor film in which metal oxide semiconductor fine particles are dispersed or dissolved in an appropriate solvent is used as the first method.
  • a method of forming an oxide semiconductor film by coating on an electrode substrate and drying is exemplified.
  • the method for applying the coating liquid for forming an oxide semiconductor film is not particularly limited as long as it is a general application method. Specifically, a die coating method, a gravure coating method, a gravure method, and the like. Reverse coating method, roll coating method, reverse roll coating method, bar coating method, blade coating method, knife coating method, air knife coating method, slot die coating method, slide die coating method, dip coating method, micro bar coating method, micro bar reverse coating And screen printing (rotary method).
  • An oxide semiconductor film can be formed by applying and drying a coating liquid for forming an oxide semiconductor film using such a coating method.
  • the oxide semiconductor layer forming step in the method for producing a dye-sensitized solar cell element of the present invention includes the oxide semiconductor layer in which a dye sensitizer is supported on the surface of the oxide semiconductor film described above. Is a step of forming.
  • the method for supporting the dye sensitizer after forming the oxide semiconductor film by applying the coating liquid for forming the oxide semiconductor film by the above coating method and drying it is not particularly limited.
  • the solvent used in the dye sensitizer solution is appropriately prepared according to the type of the dye sensitizer used, and examples thereof include an aqueous solvent and an organic solvent. .
  • the counter electrode substrate preparation step in the method for producing the dye-sensitized solar cell element of the present invention is a step of preparing a second electrode substrate which is an electrode facing the first electrode substrate described above on the electrolyte. is there.
  • the method for forming the second electrode substrate is described in the above-mentioned section “III. Method for producing dye-sensitized solar cell element, A. Oxide semiconductor electrode substrate forming step, 2. First electrode substrate preparing step”. Since it can be the same as that described above, the description thereof is omitted here.
  • a second electrode substrate is prepared in advance so that the second electrode substrate and the electrolyte layer are in contact with each other.
  • the method of forming by bonding to can be mentioned.
  • the detailed contents of the material used for the second electrode substrate may be the same as those described in the section “I.
  • Counter electrode substrate Since it is possible, description here is abbreviate
  • Step of Forming Electrolyte Layer The step of forming the electrolyte layer in the method for producing the dye-sensitized solar cell element of the present invention (hereinafter referred to as the electrolyte layer forming step) is generated by received sunlight. In this step, an electrolyte layer having a function of moving the charged charges toward the first electrode base in the oxide semiconductor electrode substrate is formed on the oxide semiconductor layer.
  • the method for forming the electrolyte layer is not particularly limited as long as it can be formed with high thickness accuracy.
  • the electrolyte layer is solid, gel, or liquid. It is appropriately adjusted depending on whether or not.
  • a method of arranging a counter electrode substrate on the electrolyte layer first method
  • a method of forming an electrolyte layer between the oxide semiconductor electrode substrate and the counter electrode substrate third method.
  • the first method for example, a coating method for forming an electrolyte layer by coating a coating solution for forming an electrolyte layer on the oxide semiconductor electrode substrate and drying it can be used.
  • the second method also includes a method of forming an electrolyte layer by a coating method as described above.
  • the oxide semiconductor electrode substrate of the dye-sensitized solar cell element and the counter electrode substrate are disposed with a predetermined gap so as to face each other, and an electrolyte layer is disposed in the gap.
  • An injection method for forming an electrolyte layer can be used by injecting a forming coating solution.
  • the electrolyte layer forming coating solution can be prepared by dispersing or dissolving the material used for the electrolyte layer in a suitable solvent.
  • the coating method for the electrolyte layer forming coating solution is not particularly limited as long as it is a general coating method.
  • a die coating method, a gravure coating method, a gravure reverse coating method, a roll coating method, a reverse roll List coating method, bar coating method, blade coating method, knife coating method, air knife coating method, slot die coating method, slide die coating method, dip coating method, micro bar coating method, micro bar reverse coating method, screen printing method, etc. can do.
  • a method for injecting the coating liquid for forming the electrolyte layer since a general injection method can be used, description thereof is omitted here.
  • electrolyte layer The detailed contents of the electrolyte layer can be the same as those described in the section “I. Dye-sensitized solar cell element A. First aspect 2. Electrolyte layer”. Omitted.
  • the dye-sensitized solar cell element assembling step in the method for producing a dye-sensitized solar cell element of the present invention includes the oxide semiconductor electrode substrate and the counter electrode substrate, and the electrolyte layer. It is the process of combining via.
  • oxide semiconductor electrode substrate of the present invention has two aspects. Hereinafter, the fifth aspect and the sixth aspect will be described separately.
  • the oxide semiconductor electrode substrate according to the present aspect includes a first electrode base material having a function as an electrode, and an oxide semiconductor film formed on the first electrode base material and including metal oxide semiconductor fine particles. It has an oxide semiconductor layer carrying a dye sensitizer on the surface, the oxide semiconductor layer has at least two regions having different thicknesses and different transmittances, and the at least two regions are It is formed integrally.
  • the oxide semiconductor layer has at least two regions having different film thicknesses and transmittances, thereby expressing color shading corresponding to the difference between the film thicknesses and transmittances of the at least two regions. It becomes possible. That is, by using the oxide semiconductor layer, an oxide semiconductor electrode substrate with excellent design can be obtained.
  • the oxide semiconductor electrode substrate of this embodiment may be the same as that described in the above-mentioned section “I. Dye-sensitized solar cell element A. First embodiment 1. Oxide semiconductor electrode substrate”. Since it is possible, description here is abbreviate
  • the oxide semiconductor electrode substrate according to the present aspect includes a first electrode base material having a function as an electrode, and an oxide semiconductor film formed on the first electrode base material and including metal oxide semiconductor fine particles. It has an oxide semiconductor layer carrying a dye sensitizer on its surface, the oxide semiconductor layer has at least two regions with different thicknesses and different pore sizes, and the at least two regions are the same It consists of a group of particles having a composition.
  • the oxide semiconductor layer has at least two regions having different film thicknesses and pore diameters, thereby expressing the color shading corresponding to the difference between the film thicknesses and the pore diameters of the at least two regions. It becomes possible. That is, by using the oxide semiconductor layer, a dye-sensitized solar cell element excellent in design can be obtained. In addition, since the particles constituting the at least two regions in the oxide semiconductor film have the same composition, in order to obtain a dye-sensitized solar cell element having excellent design properties using the oxide semiconductor electrode substrate In addition, it is not necessary to use a plurality of types of particles having different compositions for each region, and the cost can be reduced as compared with the prior art.
  • the oxide semiconductor electrode substrate of this embodiment may be the same as that described in the section of “I. Dye-sensitized solar cell element B. Second embodiment 1. Oxide semiconductor electrode substrate” described above. Since it is possible, description here is abbreviate
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.
  • Example 1 (Oxide semiconductor electrode substrate formation process) -Preparation of 1st electrode base material First, 50-micrometer-thick Ti foil (Takeuchi Metal Foil Industry Co., Ltd.) was prepared.
  • metal oxide semiconductor fine particles P25 manufactured by Nippon Aerosil Co., Ltd., trade name: P25
  • P25 metal oxide semiconductor fine particles
  • ethylcellulose STD-100 Nishin Kasei Kogyo Co., Ltd.
  • oxide semiconductor film By applying the prepared coating liquid for forming an oxide semiconductor layer on the Ti foil as the first electrode base material by a bar coating method, and then drying at 120 ° C. An oxide semiconductor film containing metal oxide semiconductor fine particles was formed on the first electrode substrate. At this time, the thickness of the oxide semiconductor film was 11 ⁇ m. Further, the transmittance was 57.8%, and the pore diameter (maximum peak of pore diameter) was 19 nm. Furthermore, the specific surface area was 52.7 m 2 / g.
  • the press roll of the roll press machine has a character “DNP” cut and arranged at a depth of 1 mm in width and 500 ⁇ m in depth. After pressing, it was baked at 500 ° C. for 30 minutes. At this time, the film thickness of the pressurized oxide semiconductor film (a region other than the letters “DNP”) was 7 ⁇ m. Further, the transmittance of the pressurized oxide semiconductor film was 65%, and the pore diameter (maximum peak of pore diameter) was 12 nm. Furthermore, the specific surface area after pressing was 47.7 m 2 / g.
  • an organic dye (trade name: N719, manufactured by Diesol Co., Ltd.) as a dye sensitizer and a volume ratio of acetonitrile and tert-butyl alcohol to a concentration of 0.3 mM is 1:
  • a dye-supporting coating solution was prepared by dissolving in 1 solution.
  • the first electrode substrate on which the oxide semiconductor film containing the metal oxide semiconductor fine particles described above was formed was immersed in the dye-supporting coating solution for 20 hours. Thereafter, the pigment-carrying coating solution was pulled up from the pigment-carrying coating solution, washed with acetonitrile, and then air-dried.
  • a dye sensitizer was supported on the pore surfaces of the metal oxide semiconductor fine particles to form an oxide semiconductor layer, which was used as an oxide semiconductor electrode substrate.
  • a transparent conductive film with an ITO film (sheet resistance: 30 ⁇ / ⁇ ) formed on a PEN film is prepared, and a counter electrode substrate is formed by laminating platinum with a thickness of 13 mm (transmittance 80%) on the ITO film. did.
  • the electrolyte formation coating liquid was apply
  • oxide semiconductor electrode substrate on which the electrolyte layer is formed and the counter electrode substrate are bonded together and thermally laminated to obtain a dye-sensitized solar cell element. It was.
  • Example 2 (Oxide semiconductor electrode substrate formation process) -Preparation of 1st electrode base material
  • the base material was set as the PEN film (made by Teijin DuPont) with a thickness of 125 micrometers.
  • An ITO film having a sheet resistance of 30 ⁇ / ⁇ was formed on the PEN film by a sputtering method to obtain a first electrode substrate.
  • metal oxide semiconductor fine particles P25 manufactured by Nippon Aerosil Co., Ltd., trade name: P25
  • P25 metal oxide semiconductor fine particles
  • ethylcellulose STD-100 Nishin Kasei Kogyo Co., Ltd.
  • the first electrode is prepared by applying the prepared coating liquid for forming an oxide semiconductor film onto the first electrode substrate by a bar coating method and then drying at 120 ° C.
  • An oxide semiconductor film including metal oxide semiconductor fine particles was formed over the base material.
  • the thickness of the oxide semiconductor film was 11 ⁇ m.
  • the transmittance was 57.8%
  • the pore diameter maximum peak of pore diameter
  • the specific surface area after pressing was 52.7 m 2 / g.
  • the press roll of the roll press machine has a character “DNP” cut and arranged at a depth of 1 mm in width and 500 ⁇ m in depth. After pressing, it was baked at 500 ° C. for 30 minutes. At this time, the film thickness of the pressurized oxide semiconductor film (a region other than the letters “DNP”) was 7 ⁇ m. Further, the transmittance of the pressurized oxide semiconductor film was 65%, and the pore diameter (maximum peak of pore diameter) was 12 nm. Furthermore, the specific surface area after pressing was 47.7 m 2 / g.
  • an organic dye (trade name: N719, manufactured by Diesol Co., Ltd.) as a dye sensitizer and a volume ratio of acetonitrile and tert-butyl alcohol to a concentration of 0.3 mM is 1:
  • a dye-supporting coating solution was prepared by dissolving in 1 solution.
  • the first electrode substrate on which the oxide semiconductor film containing the metal oxide semiconductor fine particles described above was formed was immersed in the dye-supporting coating solution for 20 hours. Thereafter, the pigment-carrying coating solution was pulled up from the pigment-carrying coating solution, washed with acetonitrile, and then air-dried.
  • a dye sensitizer was supported on the pore surfaces of the metal oxide semiconductor fine particles to form an oxide semiconductor layer, which was used as an oxide semiconductor electrode substrate.
  • a dye-sensitized solar cell element was produced in the same manner as in Example 1 except that the oxide semiconductor electrode substrate was formed as described above.
  • metal oxide semiconductor fine particles P25 manufactured by Nippon Aerosil Co., Ltd., trade name: P25
  • P25 metal oxide semiconductor fine particles
  • ethylcellulose STD-100 Nishin Kasei Kogyo Co., Ltd.
  • the prepared coating liquid for forming an oxide semiconductor film is applied onto the Ti foil as the first electrode substrate by a bar coating method, and then dried at 120 ° C.
  • An oxide semiconductor film containing metal oxide semiconductor fine particles was formed on the first electrode substrate.
  • the thickness of the oxide semiconductor film was 11 ⁇ m.
  • the transmittance was 57.8%, and the pore diameter (maximum peak of pore diameter) was 19 nm.
  • the metal oxide semiconductor film was roll-pressed at a pressure of 0.05 t / cm and a speed of 1 m / min using a roll press machine, and the film thickness was set to 7 ⁇ m by applying pressure. Further, the transmittance of the pressurized oxide semiconductor film was 65%, and the pore diameter (maximum peak of the pore diameter) was 12 nm. In addition, the thing of the mirror surface was used for the press roll of the said roll press machine.
  • an organic dye (trade name: N719, manufactured by Diesol Co., Ltd.) as a dye sensitizer and a volume ratio of acetonitrile and tert-butyl alcohol to a concentration of 0.3 mM is 1:
  • a dye-supporting coating solution was prepared by dissolving in 1 solution.
  • the first electrode substrate on which the oxide semiconductor film containing the metal oxide semiconductor fine particles described above was formed was immersed in the dye-supporting coating solution for 20 hours. Thereafter, the pigment-carrying coating solution was pulled up from the pigment-carrying coating solution, washed with acetonitrile, and then air-dried.
  • a dye sensitizer was supported on the pore surfaces of the metal oxide semiconductor fine particles to form an oxide semiconductor layer, which was used as an oxide semiconductor electrode substrate.
  • a dye-sensitized solar cell element was produced in the same manner as in Example 1 and Example 2 except that the oxide semiconductor electrode substrate was formed as described above.
  • [Comparative Example 2] (Oxide semiconductor electrode substrate formation process) -Preparation of 1st electrode base material
  • the base material was set as the PEN film (made by Teijin DuPont) with a thickness of 125 micrometers.
  • An ITO film having a sheet resistance of 30 ⁇ / ⁇ was formed on the PEN film by a sputtering method to obtain a first electrode substrate.
  • metal oxide semiconductor fine particles P25 manufactured by Nippon Aerosil Co., Ltd., trade name: P25
  • P25 metal oxide semiconductor fine particles
  • ethylcellulose STD-100 Nishin Kasei Kogyo Co., Ltd.
  • the first electrode is prepared by applying the prepared coating liquid for forming an oxide semiconductor film onto the first electrode substrate by a bar coating method and then drying at 120 ° C.
  • An oxide semiconductor film including metal oxide semiconductor fine particles was formed over the base material.
  • the thickness of the oxide semiconductor film was 11 ⁇ m.
  • the transmittance was 57.8%.
  • the pore diameter (maximum peak of the pore diameter) was 19 nm.
  • the metal oxide semiconductor film was roll-pressed at a pressure of 0.05 t / cm and a speed of 1 m / min using a roll press machine, and the film thickness was set to 7 ⁇ m by applying pressure. Further, the transmittance of the pressurized oxide semiconductor film was 65%. Furthermore, the pore diameter (maximum peak of pore diameter) of the pressurized oxide semiconductor film was 12 nm. In addition, the thing of the mirror surface was used for the press roll of the said roll press machine.
  • an organic dye (trade name: N719, manufactured by Diesol Co., Ltd.) as a dye sensitizer and a volume ratio of acetonitrile and tert-butyl alcohol to a concentration of 0.3 mM is 1:
  • a dye-supporting coating solution was prepared by dissolving in 1 solution.
  • the first electrode substrate on which the oxide semiconductor layer containing the metal oxide semiconductor fine particles described above was formed was immersed in the dye-supporting coating solution for 20 hours. Thereafter, the pigment-carrying coating solution was pulled up from the pigment-carrying coating solution, washed with acetonitrile, and then air-dried.
  • a dye sensitizer was supported on the pore surfaces of the metal oxide semiconductor fine particles to form an oxide conductor layer, which was used as an oxide semiconductor electrode substrate.
  • a dye-sensitized solar cell element was produced in the same manner as in Example 1, Example 2, and Comparative Example 1 except that the oxide semiconductor electrode substrate was formed as described above.
  • the pressure applied to the oxide semiconductor film is set to 0 t / cm, 0.03 t / cm, 0.05 t / cm, 0.07 t / cm, 0.1 t / cm, and 0.3 t / cm. Except for this, a dye-sensitized solar cell element was produced in the same manner as in Example 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The main aim of this invention is to provide a dye-sensitized solar cell element that has superior design properties, has a simple manufacturing process, and has high power generation efficiency. The present invention solves the problem described above by providing a dye-sensitized solar cell element in which an oxide semiconductor electrode substrate that has a first electrode substrate providing the function of an electrode and an oxide semiconductor layer that holds a dye-sensitizing agent on the surface of the oxide semiconductor film that is formed on the first electrode substrate and includes metal oxide semiconductor particles, and a counter electrode substrate having a second electrode substrate providing at least the function of an electrode are arranged so that the oxide semiconductor layer is opposite the second electrode substrate; and an electrolytic layer including an oxidation-reduction pair is formed between the oxide semiconductor electrode substrate and the counter electrode substrate, wherein the oxide semiconductor layer has at least two regions having different film thicknesses and different transmittances; at least two of these regions are formed into one body; in the oxide semiconductor layer, the color tone in the region having a thick film is darker; and the color tone in the region having a thin film is lighter compared to the color tone of the region having the thick film.

Description

色素増感型太陽電池素子、色素増感型太陽電池モジュール、色素増感型太陽電池素子の製造方法および酸化物半導体電極基板Dye-sensitized solar cell element, dye-sensitized solar cell module, method for producing dye-sensitized solar cell element, and oxide semiconductor electrode substrate
 本発明は、意匠性に優れた色素増感型太陽電池素子、上記色素増感型太陽電池素子を得ることができ、製造工程の簡易化を可能とする色素増感型太陽電池素子の製造方法、また、色素増感型太陽電池モジュールおよび酸化物半導体電極基板に関するものである。 The present invention can provide a dye-sensitized solar cell element excellent in design and the dye-sensitized solar cell element, and a method for producing a dye-sensitized solar cell element capable of simplifying the production process. The present invention also relates to a dye-sensitized solar cell module and an oxide semiconductor electrode substrate.
 近年、二酸化炭素の増加が原因とされる地球温暖化等の環境問題が深刻となり、世界的にその対策が進められている。中でも環境に対する負荷が小さく、クリーンなエネルギー源として、太陽光エネルギーを利用した太陽電池に関する積極的な研究開発が進められている。このような太陽電池としては、単結晶シリコン太陽電池、多結晶シリコン太陽電池、アモルファスシリコン太陽電池、および化合物半導体太陽電池などが既に実用化されているが、これらの太陽電池は製造コストが高い等の問題がある。そこで、環境負荷が小さく、かつ製造コストを削減できる太陽電池として、色素増感型太陽電池が注目され研究開発が進められている。また、色素増感型太陽電池は、その製造コストの低さや低環境負荷以外にも、カラフル性、軽量フレキシブル性、シースルー性などの既存シリコン太陽電池では実現が難しい付加価値を有している点においても優れている。 In recent years, environmental problems such as global warming caused by an increase in carbon dioxide have become serious, and countermeasures are being promoted worldwide. In particular, active research and development on solar cells using solar energy as a clean energy source with a low environmental impact is underway. As such solar cells, single crystal silicon solar cells, polycrystalline silicon solar cells, amorphous silicon solar cells, compound semiconductor solar cells and the like have already been put into practical use, but these solar cells have high production costs, etc. There is a problem. Therefore, as a solar cell that has a small environmental load and can reduce the manufacturing cost, a dye-sensitized solar cell has attracted attention and research and development has been promoted. In addition to low production costs and low environmental impact, dye-sensitized solar cells have added values that are difficult to realize with existing silicon solar cells such as colorfulness, lightweight flexibility, and see-through performance. Is also excellent.
 色素増感型太陽電池は、小型化および低消費電力化の要求の強い電子機器への適用が検討されている。色素増感型太陽電池を電子機器の主電源や補助電源として利用することにより、電子機器の充電を不要にし、あるいは充電サイクルを長くする効果が期待される。このような電子機器はパーソナルユースであるため、意匠性が重要な要因となってくる。そこで、これらのニーズに対して意匠性に優れた色素増感型太陽電池を用いた商品展開も検討されている。 Dye-sensitized solar cells are being considered for application to electronic devices where there is a strong demand for miniaturization and low power consumption. By using the dye-sensitized solar cell as a main power source or auxiliary power source for an electronic device, it is expected to eliminate the need for charging the electronic device or lengthen the charge cycle. Since such an electronic device is for personal use, the design is an important factor. Accordingly, development of products using dye-sensitized solar cells having excellent design properties for these needs is also being studied.
 ここで、意匠性に優れた色素増感型太陽電池について検討する。
 特許文献1では、透明基板上に透明電極層を形成し、上記透明電極層上への多孔質酸化物半導体のパターン形成に続く上記多孔質酸化物半導体への色素担持による色素担持半導体のパターン形成を2回以上行うことで、互いに異なる色彩を有する2種以上の色素担持半導体を備えた意匠性に優れる色素増感型太陽電池を製造する方法が開示されている。この方法により、特定の文字、記号、または図形等の模様を表現することが可能となったが、少なくとも2回以上の色素担持半導体のパターン形成を行う必要があり、製造工程が煩雑であるといった問題があった。
 また、特許文献2では、光電変換層を、異なるパターンを有する複数のマスクを用いて複数回スクリーン印刷し、領域毎に光電変換層の厚みを変えて色素を吸着させることで、入射光の透過率の違いに基づいて領域毎に色の濃淡が異なった意匠性に優れた色素増感型太陽電池について開示されている。上記方法により、色の濃淡を用いた模様を表現できるようになったが、スクリーン印刷を複数回行う必要があり、製造工程が煩雑であるといった問題があった。
 さらに、特許文献3では、酸化チタン微粒子からなり、色素増感剤を担持した多孔質酸化チタン層を、色素増感剤の種類、厚さ、積層構造、上記酸化チタン微粒子の粒径、または上記酸化チタン微粒子が互いに粒径が異なる二種類以上の酸化チタン微粒子からなる場合におけるそれらの配合率等を調整して形成することで、所定の色を呈する上記多孔質酸化チタン層を製造する方法が開示されている。この方法により、上記多孔質酸化チタン層を用いて所定の模様を表現し、意匠性に優れた色素増感型太陽電池を得ることが可能となったが、所定の色を呈する上記多孔質酸化チタン層を形成するために、色素増感剤の種類、厚さ、積層構造、酸化チタン微粒子の粒径、または上記酸化チタン微粒子が互いに粒径が異なる二種類以上の酸化チタン微粒子からなる場合におけるそれらの配合率等を適宜調整する必要があり、より簡易に意匠性に優れた色素増感型太陽電池を製造する方法の開発が求められている。また、上記方法では、複数種類の酸化チタン微粒子を用いることから、コスト面においても更なる改善が求められている。
Here, a dye-sensitized solar cell excellent in design is examined.
In Patent Document 1, a transparent electrode layer is formed on a transparent substrate, and a pattern of a dye-carrying semiconductor is formed by carrying a dye on the porous oxide semiconductor following the pattern formation of the porous oxide semiconductor on the transparent electrode layer. The method of manufacturing the dye-sensitized solar cell excellent in the design property provided with the 2 or more types of pigment | dye carrying | support semiconductor which has a mutually different color by performing 2 times or more is disclosed. This method makes it possible to express a pattern such as a specific character, symbol, or figure, but it is necessary to form a pattern of the dye-carrying semiconductor at least twice, and the manufacturing process is complicated. There was a problem.
In Patent Document 2, the photoelectric conversion layer is screen-printed a plurality of times using a plurality of masks having different patterns, and the pigment is adsorbed by changing the thickness of the photoelectric conversion layer for each region, thereby transmitting incident light. There is disclosed a dye-sensitized solar cell excellent in design with different shades of color for each region based on the difference in rate. With the above method, a pattern using color shading can be expressed, but there is a problem that the screen printing needs to be performed a plurality of times and the manufacturing process is complicated.
Furthermore, in Patent Document 3, a porous titanium oxide layer made of titanium oxide fine particles and carrying a dye sensitizer is classified into the type, thickness, laminated structure of the dye sensitizer, the particle diameter of the titanium oxide fine particles, or the above A method for producing the porous titanium oxide layer exhibiting a predetermined color by adjusting the blending ratio and the like in the case where the titanium oxide fine particles are composed of two or more types of titanium oxide fine particles having different particle sizes. It is disclosed. By this method, it is possible to express a predetermined pattern using the porous titanium oxide layer and obtain a dye-sensitized solar cell excellent in design, but the porous oxidation exhibiting a predetermined color. In order to form a titanium layer, the kind of dye sensitizer, the thickness, the laminated structure, the particle size of the titanium oxide fine particles, or the case where the titanium oxide fine particles are composed of two or more types of titanium oxide fine particles having different particle sizes. It is necessary to appropriately adjust the blending ratio and the like, and development of a method for producing a dye-sensitized solar cell that is simpler and excellent in design is demanded. Further, in the above method, since a plurality of types of titanium oxide fine particles are used, further improvement in cost is required.
 また、現在に至っては、色素増感型太陽電池素子について、優れた意匠性とともに更なる発電効率の向上が求められている。 In addition, to date, there has been a demand for further improvement in power generation efficiency as well as excellent design for dye-sensitized solar cell elements.
特開2011-124053号公報Japanese Unexamined Patent Publication No. 2011-124053 特開2009-170239号公報JP 2009-170239 A 特開2010-113905号公報JP 2010-113905 A
 本発明は、上記問題点に鑑みてなされたものであり、意匠性に優れ、製造工程が簡易的であり、かつ高い発電効率を有する色素増感型太陽電池素子、これを用いた色素増感型太陽電池モジュール、上記色素増感型太陽電池素子の製造方法、上記色素増感型太陽電池素子に用いられる酸化物半導体電極基板を提供することを主目的とする。 The present invention has been made in view of the above problems, a dye-sensitized solar cell element having excellent design properties, a simple manufacturing process, and high power generation efficiency, and a dye-sensitized dye using the same. The main object of the present invention is to provide an oxide semiconductor electrode substrate used in a dye-sensitized solar cell element, a method for producing the dye-sensitized solar cell element, and a dye-sensitized solar cell element.
 上記課題を解決するために、本発明は、電極としての機能を備えた第1電極基材、および上記第1電極基材上に形成され、金属酸化物半導体微粒子を含む酸化物半導体膜の表面に、色素増感剤が坦持された酸化物半導体層を有する酸化物半導体電極基板と、少なくとも電極としての機能を備えた第2電極基材を有する対極基板とが、上記酸化物半導体層および上記第2電極基材が対向するように配置されており、上記酸化物半導体電極基板および上記対極基板の間に酸化還元対を含む電解質層が形成されている色素増感型太陽電池素子であって、上記酸化物半導体層が、膜厚が異なり、透過率が異なる少なくとも2つの領域を有し、上記少なくとも2つの領域が一体に形成されていることを特徴とする色素増感型太陽電池素子を提供する。 In order to solve the above problems, the present invention provides a first electrode base material having a function as an electrode, and a surface of an oxide semiconductor film formed on the first electrode base material and containing metal oxide semiconductor fine particles. In addition, an oxide semiconductor electrode substrate having an oxide semiconductor layer carrying a dye sensitizer and a counter electrode substrate having at least a second electrode base material having a function as an electrode are the oxide semiconductor layer and The dye-sensitized solar cell element, wherein the second electrode base material is disposed so as to face each other, and an electrolyte layer including a redox pair is formed between the oxide semiconductor electrode substrate and the counter electrode substrate. The dye-sensitized solar cell element, wherein the oxide semiconductor layer has at least two regions having different thicknesses and different transmittances, and the at least two regions are integrally formed. I will provide a.
 本発明においては、酸化物半導体層が、膜厚および透過率が異なる少なくとも2つの領域を有することにより、上記少なくとも2つの領域の膜厚および透過率の差異に相当する分の色の濃淡を表すことが可能となる。すなわち、上記酸化物半導体層を用いることにより、意匠性に優れた色素増感型太陽電池素子とすることができる。 In the present invention, the oxide semiconductor layer has at least two regions having different film thicknesses and transmittances, thereby expressing color shading corresponding to the difference between the film thicknesses and transmittances of the at least two regions. It becomes possible. That is, by using the oxide semiconductor layer, a dye-sensitized solar cell element excellent in design can be obtained.
 本発明は、電極としての機能を備えた第1電極基材、および上記第1電極基材上に形成され、金属酸化物半導体微粒子を含む酸化物半導体膜の表面に、色素増感剤が坦持された酸化物半導体層を有する酸化物半導体電極基板と、少なくとも電極としての機能を備えた第2電極基材を有する対極基板とが、上記酸化物半導体層および上記第2電極基材が対向するように配置されており、上記酸化物半導体電極基板および上記対極基板の間に酸化還元対を含む電解質層が形成されている色素増感型太陽電池素子であって、上記酸化物半導体層が、膜厚が異なり、細孔径が異なる少なくとも2つの領域を有し、上記少なくとも2つの領域が同一組成の粒子群からなることを特徴とする色素増感型太陽電池素子を提供する。 The present invention provides a first electrode substrate having a function as an electrode, and a dye sensitizer on the surface of an oxide semiconductor film formed on the first electrode substrate and containing metal oxide semiconductor fine particles. An oxide semiconductor electrode substrate having a held oxide semiconductor layer and a counter electrode substrate having a second electrode base material having at least a function as an electrode are opposed to the oxide semiconductor layer and the second electrode base material. A dye-sensitized solar cell element in which an electrolyte layer including a redox pair is formed between the oxide semiconductor electrode substrate and the counter electrode substrate, wherein the oxide semiconductor layer is The present invention provides a dye-sensitized solar cell element characterized by having at least two regions having different film thicknesses and different pore diameters, and wherein the at least two regions are composed of particle groups having the same composition.
 本発明においては、酸化物半導体層が、膜厚および細孔径が異なる少なくとも2つの領域を有することにより、上記少なくとも2つの領域の膜厚および細孔径の差異に相当する分の色の濃淡を表すことが可能となる。すなわち、上記酸化物半導体層を用いることにより、意匠性に優れた色素増感型太陽電池素子とすることができる。
 また、上記酸化物半導体層において上記少なくとも2つの領域を構成する粒子が同一組成であることにより、優れた意匠性を有する色素増感型太陽電池素子を得るために、組成が異なる複数種類の粒子を領域毎に使い分ける必要がないため、従来よりもコストを抑えることができる。
In the present invention, the oxide semiconductor layer has at least two regions having different film thicknesses and pore diameters, thereby expressing the color shading corresponding to the difference between the film thicknesses and the pore diameters of the at least two regions. It becomes possible. That is, by using the oxide semiconductor layer, a dye-sensitized solar cell element excellent in design can be obtained.
Moreover, in order to obtain the dye-sensitized solar cell element which has the outstanding design property because the particle | grains which comprise the said at least 2 area | region in the said oxide semiconductor layer have the same composition, several types of particle | grains from which a composition differs Since it is not necessary to use different for each area, the cost can be reduced as compared with the conventional case.
 本発明は、電極としての機能を備えた第1電極基材、および上記第1電極基材上に形成され、金属酸化物半導体微粒子を含む酸化物半導体膜の表面に、色素増感剤が坦持された酸化物半導体層を有する酸化物半導体電極基板と、少なくとも電極としての機能を備えた第2電極基材を有する対極基板とが、上記酸化物半導体層および上記第2電極基材が対向するように配置され、上記酸化物半導体電極基板および上記対極基板の間に酸化還元対を含む電解質層が形成されており、上記酸化物半導体層が、膜厚が異なり、透過率が異なる少なくとも2つの領域を有し、上記少なくとも2つの領域が一体に形成された色素増感型太陽電池素子が複数個直列または並列に接続されてなることを特徴とする色素増感型太陽電池モジュールを提供する。 The present invention provides a first electrode substrate having a function as an electrode, and a dye sensitizer on the surface of an oxide semiconductor film formed on the first electrode substrate and containing metal oxide semiconductor fine particles. An oxide semiconductor electrode substrate having a held oxide semiconductor layer and a counter electrode substrate having a second electrode base material having at least a function as an electrode are opposed to the oxide semiconductor layer and the second electrode base material. And an electrolyte layer including a redox pair is formed between the oxide semiconductor electrode substrate and the counter electrode substrate, and the oxide semiconductor layer has a different thickness and a different transmittance. Provided is a dye-sensitized solar cell module comprising a plurality of dye-sensitized solar cell elements, each having at least two regions, which are integrally formed with at least two regions. .
 本発明においては、酸化物半導体層が、膜厚および透過率が異なる少なくとも2つの領域を有することにより、上記少なくとも2つの領域の膜厚および透過率の差異に相当する分の色の濃淡を表すことが可能となる。すなわち、上記酸化物半導体層を用いることにより、意匠性に優れた色素増感型太陽電池モジュールとすることができる。 In the present invention, the oxide semiconductor layer has at least two regions having different film thicknesses and transmittances, thereby expressing color shading corresponding to the difference between the film thicknesses and transmittances of the at least two regions. It becomes possible. That is, by using the oxide semiconductor layer, a dye-sensitized solar cell module excellent in design can be obtained.
 本発明は、電極としての機能を備えた第1電極基材、および上記第1電極基材上に形成され、金属酸化物半導体微粒子を含む酸化物半導体膜の表面に、色素増感剤が坦持された酸化物半導体層を有する酸化物半導体電極基板と、少なくとも電極としての機能を備えた第2電極基材を有する対極基板とが、上記酸化物半導体層および上記第2電極基材が対向するように配置され、上記酸化物半導体電極基板および上記対極基板の間に酸化還元対を含む電解質層が形成されており、上記酸化物半導体層が、膜厚が異なり、細孔径が異なる少なくとも2つの領域を有し、上記少なくとも2つの領域が同一組成の粒子群からなる色素増感型太陽電池素子が複数個直列または並列に接続されてなることを特徴とする色素増感型太陽電池モジュールを提供する。 The present invention provides a first electrode substrate having a function as an electrode, and a dye sensitizer on the surface of an oxide semiconductor film formed on the first electrode substrate and containing metal oxide semiconductor fine particles. An oxide semiconductor electrode substrate having a held oxide semiconductor layer and a counter electrode substrate having a second electrode base material having at least a function as an electrode are opposed to the oxide semiconductor layer and the second electrode base material. And an electrolyte layer including a redox pair is formed between the oxide semiconductor electrode substrate and the counter electrode substrate, and the oxide semiconductor layer has at least two different thicknesses and different pore diameters. A dye-sensitized solar cell module comprising a plurality of dye-sensitized solar cell elements each having two regions, wherein the at least two regions are composed of a group of particles having the same composition. Offer To.
 本発明においては、酸化物半導体層が、膜厚および細孔径が異なる少なくとも2つの領域を有することにより、上記少なくとも2つの領域の膜厚および細孔径の差異に相当する分の色の濃淡を表すことが可能となる。すなわち、上記酸化物半導体層を用いることにより、意匠性に優れた色素増感型太陽電池モジュールとすることができる。
 また、上記酸化物半導体層において上記少なくとも2つの領域を構成する粒子が同一組成であることにより、優れた意匠性を有する色素増感型太陽電池モジュールを得るために、組成が異なる複数種類の粒子を領域毎に使い分ける必要がないため、従来よりもコストを抑えることができる。
In the present invention, the oxide semiconductor layer has at least two regions having different film thicknesses and pore diameters, thereby expressing the color shading corresponding to the difference between the film thicknesses and the pore diameters of the at least two regions. It becomes possible. That is, by using the oxide semiconductor layer, a dye-sensitized solar cell module excellent in design can be obtained.
Further, in order to obtain a dye-sensitized solar cell module having an excellent design property because the particles constituting the at least two regions in the oxide semiconductor layer have the same composition, a plurality of types of particles having different compositions Since it is not necessary to use different for each area, the cost can be reduced as compared with the conventional case.
 本発明は、上述した色素増感型太陽電池素子を製造する色素増感型太陽電池素子の製造方法であって、上記第1電極基材上に、上記金属酸化物半導体微粒子を含む上記酸化物半導体膜を形成し、上記酸化物半導体膜表面に上記色素増感剤が坦持された上記酸化物半導体層を形成することにより、上記酸化物半導体電極基板を形成する酸化物半導体電極基板形成工程と、上記第2電極基材を有する上記対極基板を準備する対極基板準備工程と、上記酸化物半導体電極基板と上記対極基板とを、上記電解質層を介して対向するように配置して、色素増感型太陽電池素子を組み立てる色素増感型太陽電池素子組み立て工程と、を有し、上記酸化物半導体電極基板形成工程が、上記酸化物半導体膜を部分的に加圧する工程または上記酸化物半導体膜を部分的に異なる圧力で加圧する工程のいずれかの加圧工程を有することを特徴とする色素増感型太陽電池素子の製造方法を提供する。 This invention is a manufacturing method of the dye-sensitized solar cell element which manufactures the dye-sensitized solar cell element mentioned above, Comprising: The said oxide containing the said metal oxide semiconductor fine particle on the said 1st electrode base material An oxide semiconductor electrode substrate forming step of forming the oxide semiconductor electrode substrate by forming a semiconductor film and forming the oxide semiconductor layer having the dye sensitizer carried on the surface of the oxide semiconductor film. A counter electrode substrate preparation step for preparing the counter electrode substrate having the second electrode base material, and the oxide semiconductor electrode substrate and the counter electrode substrate so as to face each other with the electrolyte layer therebetween. A dye-sensitized solar cell element assembling step for assembling a sensitized solar cell element, wherein the oxide semiconductor electrode substrate forming step partially pressurizes the oxide semiconductor film or the oxide semiconductor film To provide a method of manufacturing a dye-sensitized solar cell characterized by having either a pressurization step of step of pressing with partially different pressures.
 本発明においては、酸化物半導体電極基板形成工程が、酸化物半導体膜を部分的に加圧する工程または酸化物半導体膜を部分的に異なる圧力で加圧する工程のいずれかの工程を有することにより、上記酸化物半導体膜において、加圧される領域および加圧されない領域、または一の圧力で加圧される領域および一の圧力とは異なる圧力で加圧される領域を、それぞれ形成することができる。上記酸化物半導体膜は、加圧されることにより上記酸化物半導体膜の細孔径が小さくなる。したがって、上記酸化物半導体膜における各領域は、加圧の有無または加圧する圧力の大きさに相当する分だけの上記酸化物半導体膜の細孔径の差異を出すことができるため、上記酸化物半導体膜に色素増感剤を担持させることで、各領域の透過率に差異を出すことが可能となる。
 このように、本発明では、上記酸化物半導体膜を加圧する工程を有することで、意匠性に優れた色素増感型太陽電池素子を製造することが可能となる。
 また、上記酸化物半導体膜を加圧する工程により、酸化物半導体電極基板と第1電極基材との密着性が上がり、高い発電効率を有する色素増感型太陽電池素子の製造が可能となる。
In the present invention, the oxide semiconductor electrode substrate forming step includes either a step of partially pressing the oxide semiconductor film or a step of partially pressing the oxide semiconductor film with a different pressure. In the oxide semiconductor film, a pressurized region and a non-pressed region, or a region pressurized with one pressure and a region pressurized with a pressure different from the one pressure can be formed, respectively. . When the oxide semiconductor film is pressurized, the pore diameter of the oxide semiconductor film is reduced. Therefore, each region in the oxide semiconductor film can produce a difference in pore diameter of the oxide semiconductor film by an amount corresponding to the presence or absence of pressurization or the magnitude of the pressure to be applied. By supporting the dye sensitizer on the film, it is possible to make a difference in the transmittance of each region.
Thus, in this invention, it becomes possible to manufacture the dye-sensitized solar cell element excellent in the designability by having the process of pressurizing the said oxide semiconductor film.
In addition, the step of pressurizing the oxide semiconductor film improves the adhesion between the oxide semiconductor electrode substrate and the first electrode base material, and makes it possible to manufacture a dye-sensitized solar cell element having high power generation efficiency.
 本発明は、電極としての機能を備えた第1電極基材、および上記第1電極基材上に形成され、金属酸化物半導体微粒子を含む酸化物半導体膜の表面に、色素増感剤が坦持された酸化物半導体層を有し、上記酸化物半導体層が、膜厚が異なり、透過率が異なる少なくとも2つの領域を有し、上記少なくとも2つの領域が一体に形成されていることを特徴とする酸化物半導体電極基板を提供する。 The present invention provides a first electrode substrate having a function as an electrode, and a dye sensitizer on the surface of an oxide semiconductor film formed on the first electrode substrate and containing metal oxide semiconductor fine particles. The oxide semiconductor layer includes at least two regions having different thicknesses and different transmittances, and the at least two regions are integrally formed. An oxide semiconductor electrode substrate is provided.
 本発明においては、酸化物半導体層が、膜厚および透過率が異なる少なくとも2つの領域を有することにより、上記少なくとも2つの領域の膜厚および透過率の差異に相当する分の色の濃淡を表すことが可能となる。すなわち、上記酸化物半導体層を用いることにより、意匠性に優れた酸化物半導体電極基板とすることができる。 In the present invention, the oxide semiconductor layer has at least two regions having different film thicknesses and transmittances, thereby expressing color shading corresponding to the difference between the film thicknesses and transmittances of the at least two regions. It becomes possible. That is, by using the oxide semiconductor layer, an oxide semiconductor electrode substrate with excellent design can be obtained.
 本発明は、電極としての機能を備えた第1電極基材、および上記第1電極基材上に形成され、色素増感剤が坦持された金属酸化物半導体微粒子を含む酸化物半導体膜を有し、上記酸化物半導体層が、膜厚が異なり、細孔径が異なる少なくとも2つの領域を有し、上記少なくとも2つの領域が同一組成の粒子群からなることを特徴とする酸化物半導体電極基板を提供する。 The present invention provides a first electrode base material having a function as an electrode, and an oxide semiconductor film including metal oxide semiconductor fine particles formed on the first electrode base material and carrying a dye sensitizer. An oxide semiconductor electrode substrate, wherein the oxide semiconductor layer has at least two regions having different thicknesses and different pore diameters, and the at least two regions are composed of a particle group having the same composition I will provide a.
 本発明においては、酸化物半導体層が、膜厚および細孔径が異なる少なくとも2つの領域を有することにより、上記少なくとも2つの領域の膜厚および細孔径の差異に相当する分の色の濃淡を表すことが可能となる。すなわち、上記酸化物半導体層を用いることにより、意匠性に優れた酸化物半導体電極基板とすることができる。
 また、上記酸化物半導体層において、上記少なくとも2つの領域を構成する粒子が同一組成であることにより、上記酸化物半導体電極基板を用いて優れた意匠性を有する色素増感型太陽電池素子を得るために、組成が異なる複数種類の粒子を領域毎に使い分ける必要がないため、従来よりもコストを抑えることができる。
In the present invention, the oxide semiconductor layer has at least two regions having different film thicknesses and pore diameters, thereby expressing the color shading corresponding to the difference between the film thicknesses and the pore diameters of the at least two regions. It becomes possible. That is, by using the oxide semiconductor layer, an oxide semiconductor electrode substrate with excellent design can be obtained.
Further, in the oxide semiconductor layer, the particles constituting the at least two regions have the same composition, whereby a dye-sensitized solar cell element having excellent design properties is obtained using the oxide semiconductor electrode substrate. For this reason, since it is not necessary to use different types of particles having different compositions for each region, the cost can be reduced as compared with the prior art.
 本発明においては、優れた意匠性を有し、かつ高い発電効率を有する色素増感型太陽電池素子、これを用いた色素増感型太陽電池モジュール、および上記色素増感型太陽電池素子に用いることができる酸化物半導体電極基板を提供することができる。また、上記色素増感型太陽電池素子を簡易的に製造することができる色素増感型太陽電池素子の製造方法を提供することができる。 In the present invention, the dye-sensitized solar cell element having excellent design and high power generation efficiency, the dye-sensitized solar cell module using the same, and the dye-sensitized solar cell element are used. An oxide semiconductor electrode substrate that can be provided can be provided. Moreover, the manufacturing method of the dye-sensitized solar cell element which can manufacture the said dye-sensitized solar cell element simply can be provided.
本発明の色素増感型太陽電池素子の一例を示す概略図である。It is the schematic which shows an example of the dye-sensitized solar cell element of this invention. 本発明の色素増感型太陽電池素子の他の例を示す概略断面図である。It is a schematic sectional drawing which shows the other example of the dye-sensitized solar cell element of this invention. 本発明の色素増感型太陽電池素子の他の例を示す概略断面図である。It is a schematic sectional drawing which shows the other example of the dye-sensitized solar cell element of this invention. 本発明の色素増感型太陽電池素子の製造方法の一例を示す概略工程図である。It is a schematic process drawing which shows an example of the manufacturing method of the dye-sensitized solar cell element of this invention. 本発明の色素増感型太陽電池素子の製造方法の他の例を示す概略工程図である。It is a schematic process drawing which shows the other example of the manufacturing method of the dye-sensitized solar cell element of this invention. 本発明におけるロールプレス加工の一例を示す概略図である。It is the schematic which shows an example of the roll press process in this invention.
 以下、本発明の色素増感型太陽電池素子、色素増感型太陽電池モジュール、色素増感型太陽電池素子の製造方法、および酸化物酸導体電極基板について詳細に説明する。 Hereinafter, the dye-sensitized solar cell element, the dye-sensitized solar cell module, the method for producing the dye-sensitized solar cell element, and the oxide acid conductor electrode substrate of the present invention will be described in detail.
 I.色素増感型太陽電池素子
 本発明の色素増感型太陽電池素子は、2つの態様を有する。
 以下、第1態様と第2態様とに分けてそれぞれ説明する。
I. Dye-sensitized solar cell element The dye-sensitized solar cell element of the present invention has two aspects.
Hereinafter, the first aspect and the second aspect will be described separately.
 A.第1態様
 本態様の色素増感型太陽電池素子は、電極としての機能を備えた第1電極基材、および上記第1電極基材上に形成され、金属酸化物半導体微粒子を含む酸化物半導体膜の表面に、色素増感剤が坦持された酸化物半導体層を有する酸化物半導体電極基板と、少なくとも電極としての機能を備えた第2電極基材を有する対極基板とが、上記酸化物半導体層および上記第2電極基材が対向するように配置されており、上記酸化物半導体電極基板および上記対極基板の間に酸化還元対を含む電解質層が形成されているものであって、上記酸化物半導体層が、膜厚が異なり、透過率が異なる少なくとも2つの領域を有し、上記少なくとも2つの領域が一体に形成されていることを特徴とするものである。
 以下、図を参照しながら説明する。
A. 1st aspect The dye-sensitized solar cell element of this aspect is a 1st electrode base material provided with the function as an electrode, and the oxide semiconductor formed on the said 1st electrode base material and containing a metal oxide semiconductor fine particle An oxide semiconductor electrode substrate having an oxide semiconductor layer carrying a dye sensitizer on the surface of the film, and a counter electrode substrate having at least a second electrode base material having a function as an electrode, The semiconductor layer and the second electrode base material are disposed so as to face each other, and an electrolyte layer including a redox pair is formed between the oxide semiconductor electrode substrate and the counter electrode substrate, The oxide semiconductor layer has at least two regions having different thicknesses and different transmittances, and the at least two regions are integrally formed.
Hereinafter, description will be given with reference to the drawings.
 図1(a)は、本態様の色素増感型太陽電池素子の一例を示す概略平面図であり、図1(b)は、図1(a)のA-A線断面図であり、図1(c)は、図1(b)におけるD領域の拡大図である。
 図1(a)および図1(b)に示すように、本態様の色素増感型太陽電池素子100は、第1電極基材10、および上記第1電極基材10上に形成され、金属酸化物半導体微粒子を含む酸化物半導体膜表面に色素増感剤が担持された酸化物半導体層13を有する酸化物半導体電極基板1と、上記酸化物半導体層13を覆うように形成され、酸化還元対を含む電解質層2と、上記電解質層2を介して上記酸化物半導体電極基板1と対向するように形成され、第2電極基材を有する対極基板3とを有するものである。
 また、上記酸化物半導体層13は、膜厚が異なり、透過率が異なる領域を少なくとも2つ有するものである。そのため、図1に示す色素増感型太陽電池素子100において、上記酸化物半導体層13は、図1(c)に示すように、膜厚が13aである領域と、膜厚が13bである領域とを有するものである。なお、膜厚が13aである領域は、図1(a)の文字部分以外の領域に相当し、膜厚が13bである領域は、図1(a)に示す「DNP」の文字部分に相当する。
 さらに、上記酸化物半導体層13において、膜厚が13aである領域および膜厚が13bである領域の2つの領域は、それぞれ一体に形成されたものであり、上記2つの領域には界面が存在しない。
FIG. 1A is a schematic plan view showing an example of the dye-sensitized solar cell element of this embodiment, and FIG. 1B is a cross-sectional view taken along the line AA in FIG. 1 (c) is an enlarged view of a region D in FIG. 1 (b).
As shown in FIG. 1 (a) and FIG. 1 (b), the dye-sensitized solar cell element 100 of this embodiment is formed on the first electrode base material 10 and the first electrode base material 10, and is made of metal. An oxide semiconductor electrode substrate 1 having an oxide semiconductor layer 13 in which a dye sensitizer is supported on the surface of an oxide semiconductor film containing oxide semiconductor fine particles, and the oxide semiconductor layer 13 are formed so as to cover the oxide semiconductor layer 13 and are oxidized and reduced. It has an electrolyte layer 2 including a pair, and a counter electrode substrate 3 formed so as to face the oxide semiconductor electrode substrate 1 with the electrolyte layer 2 interposed therebetween and having a second electrode base material.
The oxide semiconductor layer 13 has at least two regions having different thicknesses and different transmittances. Therefore, in the dye-sensitized solar cell element 100 shown in FIG. 1, the oxide semiconductor layer 13 includes a region having a film thickness of 13a and a region having a film thickness of 13b as shown in FIG. It has. In addition, the area | region whose film thickness is 13a is equivalent to the area | regions other than the character part of Fig.1 (a), and the area | region whose film thickness is 13b is equivalent to the character part of "DNP" shown in Fig.1 (a). To do.
Further, in the oxide semiconductor layer 13, the two regions, ie, the region having a film thickness of 13 a and the region having a film thickness of 13 b are formed integrally, and an interface exists between the two regions. do not do.
 本態様によれば、色素増感型太陽電池素子を構成する酸化物半導体層が、膜厚および透過率が異なる少なくとも2つの領域を有することにより、上記少なくとも2つの領域の膜厚および透過率の差異に相当する分の色の濃淡を表すことが可能となる。すなわち、上記酸化物半導体層において、膜厚が薄い領域の透過率は高くなり、一方、膜厚が厚い領域の透過率は低くなる。
 このように、上記酸化物半導体層は、膜厚によって透過率に差異が生じ、ヘイズ率が高い領域の色調は白濁することにより薄くなり、一方、ヘイズ率が低い領域の色調は濃くなる。したがって、上記酸化物半導体層を用いることにより、意匠性に優れた色素増感型太陽電池素子とすることができる。
 以下、本態様の色素増感型太陽電池素子を構成する酸化物半導体電極基板、電解質層および対極基板について、それぞれ説明する。
According to this aspect, since the oxide semiconductor layer constituting the dye-sensitized solar cell element has at least two regions having different thicknesses and transmittances, the thicknesses and transmittances of the at least two regions are increased. It is possible to express the shade of the color corresponding to the difference. That is, in the oxide semiconductor layer, the transmittance of a region with a small thickness is high, while the transmittance of a region with a large thickness is low.
As described above, the transmittance of the oxide semiconductor layer varies depending on the film thickness, and the color tone of a region having a high haze rate becomes thin due to white turbidity, while the color tone of a region having a low haze rate becomes dark. Therefore, a dye-sensitized solar cell element excellent in design can be obtained by using the oxide semiconductor layer.
Hereinafter, the oxide semiconductor electrode substrate, the electrolyte layer, and the counter electrode substrate that constitute the dye-sensitized solar cell element of this embodiment will be described.
 1.酸化物半導体電極基板
 本態様の色素増感型太陽電池素子を構成する酸化物半導体電極基板は、電極としての機能を備えた第1電極基材、および上記第1電極基材上に形成され、金属酸化物半導体微粒子を含む酸化物半導体膜の表面に、色素増感剤が坦持された酸化物半導体層を有するものである。
1. Oxide Semiconductor Electrode Substrate An oxide semiconductor electrode substrate constituting the dye-sensitized solar cell element of the present embodiment is formed on a first electrode base material having a function as an electrode, and the first electrode base material, It has an oxide semiconductor layer in which a dye sensitizer is supported on the surface of an oxide semiconductor film containing metal oxide semiconductor fine particles.
 このような酸化物半導体電極基板に用いられる酸化物半導体層は、膜厚が異なり、透過率が異なる少なくとも2つの領域を有するため、色の濃淡を表わすことが可能となる。また、上記酸化物半導体電極基板を用いることにより、意匠性に優れた色素増感型太陽電池素子を得ることができるという効果を奏する。
 以下、酸化物半導体電極基板の構成部材ついて説明する。
Since the oxide semiconductor layer used for such an oxide semiconductor electrode substrate has at least two regions with different film thicknesses and different transmittances, it is possible to express color shading. In addition, by using the oxide semiconductor electrode substrate, it is possible to obtain a dye-sensitized solar cell element excellent in design.
Hereinafter, constituent members of the oxide semiconductor electrode substrate will be described.
 (1)酸化物半導体層
 本態様における酸化物半導体層は、後述する第1電極基材上に形成されるものであり、金属酸化物半導体微粒子を含む酸化物半導体膜の表面に、色素増感剤が坦持されたものである。また、上記酸化物半導体層は、膜厚が異なり、透過率が異なる少なくとも2つの領域を有するものである。
 以下、上記酸化物半導体層が、膜厚が異なる領域を少なくとも2つ有することについて図を参照しながら説明する。
(1) Oxide Semiconductor Layer The oxide semiconductor layer in this embodiment is formed on the first electrode substrate described later, and is dye-sensitized on the surface of the oxide semiconductor film containing metal oxide semiconductor fine particles. The drug is carried. The oxide semiconductor layer has at least two regions with different thicknesses and different transmittances.
Hereinafter, the fact that the oxide semiconductor layer has at least two regions having different thicknesses will be described with reference to the drawings.
 図2は、本態様の色素増感型太陽電池素子の一例を示す概略断面図である。
 図2に示す色素増感型太陽電池素子100では、酸化物半導体層13が、膜厚13c、13d、および13eである3つの領域を有している。
 上記3つの領域は13c<13d<13eの順に膜厚が厚くなっており、この膜厚差に伴って、互いに透過率が異なるものである。
FIG. 2 is a schematic cross-sectional view showing an example of the dye-sensitized solar cell element of this embodiment.
In the dye-sensitized solar cell element 100 shown in FIG. 2, the oxide semiconductor layer 13 has three regions having film thicknesses 13c, 13d, and 13e.
The three regions are thicker in the order of 13c <13d <13e, and the transmittances differ from each other due to the difference in film thickness.
 本態様において、膜厚および透過率が異なる少なくとも2つの領域を有する上記酸化物半導体層を形成する方法としては、特に限定されるものではないが、例えば、上記酸化物半導体膜を異なる圧力によって加圧し、その後、色素増感剤を担持させることによって、膜厚および透過率が異なる少なくとも2つの領域を有する上記酸化物半導体層を形成する方法や、上記酸化物半導体膜に色素増感剤を担持させることによって上記酸化物半導体層を形成し、その後、上記酸化物半導体層を異なる圧力によって加圧する方法等が挙げられる。上記方法を用いることで、上記酸化物半導体膜または上記酸化物半導体層が加圧された領域の膜厚は薄くなり、膜厚が薄くなった分に相当する分だけ細孔径は小さくなる。そのため、上記酸化物半導体層において、上記酸化物半導体膜または上記酸化物半導体層が加圧された領域の透過率は高まることとなる。すなわち、加圧によって、膜厚および透過率が異なる少なくとも2つの領域を有する上記酸化物半導体層を形成する場合には、上記酸化物半導体層の膜厚が薄い領域における細孔径が小さくなることで、加圧前に比べて透過率が高まることとなる。
 したがって、図2の色素増感型太陽電池素子100においては、膜厚が13cである領域のヘイズ率が高くなり、色調が白濁して最も薄く見え、一方、膜厚が13eである領域のヘイズ率は低くなり、色調が最も濃く見えることとなる。
 なお、図2において説明していない符号については、図1と同様とすることができるため、省略する。
In this embodiment, a method for forming the oxide semiconductor layer having at least two regions having different thicknesses and transmittances is not particularly limited. For example, the oxide semiconductor film is applied with different pressures. And then supporting the dye sensitizer to form the oxide semiconductor layer having at least two regions having different film thicknesses and transmittances, and supporting the dye sensitizer on the oxide semiconductor film. The oxide semiconductor layer is formed by forming the oxide semiconductor layer, and then the oxide semiconductor layer is pressurized with a different pressure. By using the above method, the thickness of the region where the oxide semiconductor film or the oxide semiconductor layer is pressed is reduced, and the pore diameter is reduced by an amount corresponding to the reduced thickness. Therefore, in the oxide semiconductor layer, the transmittance of a region where the oxide semiconductor film or the oxide semiconductor layer is pressurized is increased. That is, when the oxide semiconductor layer having at least two regions having different thicknesses and transmittances is formed by pressurization, the pore diameter in the region where the oxide semiconductor layer is thin is reduced. The transmittance will be higher than before pressurization.
Therefore, in the dye-sensitized solar cell element 100 of FIG. 2, the haze ratio in the region where the film thickness is 13c is high, the color tone is cloudy and looks the thinnest, while the haze in the region where the film thickness is 13e. The rate will be low and the color will appear darkest.
2 that are not described in FIG. 2 can be the same as those in FIG.
 本態様に用いられる酸化物半導体層は、膜厚が異なる領域を少なくとも2つ有するものであり、一の膜厚を有する一の領域と、一の膜厚とは異なる他の膜厚を有する他の領域との膜厚差としては、色の濃淡を用いて所望のデザイン等を表現することができる程度であれば特に限定されるものではないが、例えば、0.01μm~10μmの範囲内であることが好ましく、中でも0.1μm~5μmの範囲内であることが好ましく、特に0.5μm~3μmの範囲内であることが好ましい。
 なお、ここでの膜厚差とは、上記酸化物半導体層において、互いに隣接し、膜厚が異なる2つの領域の膜厚の差を指す。なお、「互いに隣接する」とは、対象となる2つの領域が、他の領域を介することなく接して並んでいる状態を指すものである。すなわち、図2の色素増感型太陽電池100における酸化物半導体層13の場合には、膜厚13cと膜厚13dとの差、あるいは膜厚13dと膜厚13eとの差を指すものであり、例えば、膜厚13cと膜厚13eとの差のように、互いに隣接していない領域における膜厚差を指すものではない。
The oxide semiconductor layer used in this embodiment includes at least two regions having different thicknesses, and includes one region having one thickness and another thickness different from the one thickness. The film thickness difference with the region is not particularly limited as long as the desired design or the like can be expressed using color shading, but for example, within a range of 0.01 μm to 10 μm. Preferably, it is preferably within the range of 0.1 μm to 5 μm, and particularly preferably within the range of 0.5 μm to 3 μm.
Note that the film thickness difference here refers to a difference in film thickness between two regions which are adjacent to each other and have different film thicknesses in the oxide semiconductor layer. Note that “adjacent to each other” refers to a state in which two target areas are in contact with each other without interposing other areas. That is, in the case of the oxide semiconductor layer 13 in the dye-sensitized solar cell 100 of FIG. 2, it indicates the difference between the film thickness 13c and the film thickness 13d, or the difference between the film thickness 13d and the film thickness 13e. For example, it does not indicate the difference in film thickness in regions that are not adjacent to each other, such as the difference between the film thickness 13c and the film thickness 13e.
 本態様に用いられる酸化物半導体層の厚みとしては、本態様の色素増感型太陽電池素子の用途等に応じて適宜決定できるものであり、特に限定されるものではないが、本態様の色素増感型太陽電池素子において、上記酸化物半導体層の最も薄い領域の厚みとしては、例えば、0.1μm~50μmの範囲内であることが好ましく、中でも0.3μm~30μmの範囲内であることが好ましく、特に1μm~20μmの範囲内であることが好ましい。
 上記酸化物半導体層の厚みが、上述の範囲よりも薄い場合には、高効率な色素増感型太陽電池素子とすることができない場合があり、一方、上述の範囲よりも厚い場合には、上記酸化物半導体層の透過率が低下して色自体が見えなくなり、優れた意匠性が得られない場合があるからである。
 なお、上記厚みは、酸化物半導体層が複数の層から構成される場合には、すべての層の厚みを合計した総厚みを指すものとする。
The thickness of the oxide semiconductor layer used in this embodiment can be appropriately determined according to the use of the dye-sensitized solar cell element of this embodiment, and is not particularly limited. In the sensitized solar cell element, the thickness of the thinnest region of the oxide semiconductor layer is preferably, for example, in the range of 0.1 μm to 50 μm, and more preferably in the range of 0.3 μm to 30 μm. In particular, it is preferably in the range of 1 μm to 20 μm.
If the thickness of the oxide semiconductor layer is thinner than the above range, it may not be a highly efficient dye-sensitized solar cell element, whereas if it is thicker than the above range, This is because the transmittance of the oxide semiconductor layer is lowered, the color itself cannot be seen, and an excellent design property may not be obtained.
Note that in the case where the oxide semiconductor layer includes a plurality of layers, the above thickness refers to the total thickness of all the layers.
 このように、本態様における酸化物半導体層は、膜厚が異なる領域を少なくとも2つ有するものである。すなわち、上記酸化物半導体層は、表面に凹凸形状を有するものである。
 本態様において、上記凹凸形状としては、上記酸化物半導体層の膜厚差によって表す文字や模様等のデザインに応じて適宜調整されるものである。上記酸化物半導体層の凹部の断面形状としては、例えば、多角形、円形、テーパー形等が挙げられる。
As described above, the oxide semiconductor layer in this embodiment includes at least two regions having different thicknesses. That is, the oxide semiconductor layer has an uneven shape on the surface.
In this embodiment, the uneven shape is appropriately adjusted according to the design of characters, patterns, and the like represented by the difference in film thickness of the oxide semiconductor layer. Examples of the cross-sectional shape of the concave portion of the oxide semiconductor layer include a polygonal shape, a circular shape, and a tapered shape.
 また、本態様に用いられる酸化物半導体層は、透過率が異なる領域を少なくとも2つ有するものであり、一の透過率を有する一の領域と、一とは異なる他の透過率を有する他の領域との透過率差としては、上記透過率差による色の濃淡を用いて所望のデザイン等を表現することができれば特に限定されるものではないが、例えば、2%以上であることが好ましく、中でも3%以上であることが好ましく、特に5%以上であることが好ましい。
 透過率差が上記範囲内であることにより、透過率が異なる領域の界面において色の濃淡を十分に表すことができ、優れた意匠性を得ることができる。
 なお、ここでの透過率差とは、透過率が異なる領域を少なくとも2つ有する上記酸化物半導体層において、互いに隣接する領域の透過率の差を指すものである。なお、「互いに隣接する」とは、対象となる2つの領域が、他の領域を介することなく接して並んでいる状態を指すものである。すなわち、図2の色素増感型太陽電池100における酸化物半導体層13の場合には、膜厚13cである領域と膜厚13dである領域との透過率差、あるいは膜厚13dである領域と膜厚13eである領域との透過率差を指すものであり、例えば、膜厚13cである領域と膜厚13eである領域との透過率差のように、互いに隣接していない領域の透過率差を指すものではない。
In addition, the oxide semiconductor layer used in this embodiment includes at least two regions having different transmittances, one region having one transmittance, and another region having another transmittance different from one. The transmittance difference with the region is not particularly limited as long as a desired design or the like can be expressed by using the color shade due to the transmittance difference, but is preferably 2% or more, for example. Of these, 3% or more is preferable, and 5% or more is particularly preferable.
When the transmittance difference is within the above range, the color density can be sufficiently expressed at the interface of the regions having different transmittances, and excellent design properties can be obtained.
Note that the transmittance difference here refers to a difference in transmittance between regions adjacent to each other in the oxide semiconductor layer including at least two regions having different transmittances. Note that “adjacent to each other” refers to a state in which two target areas are in contact with each other without interposing other areas. That is, in the case of the oxide semiconductor layer 13 in the dye-sensitized solar cell 100 of FIG. 2, the transmittance difference between the region having the film thickness 13c and the region having the film thickness 13d, or the region having the film thickness 13d This refers to the difference in transmittance with the region having the film thickness 13e. For example, the transmittance of the regions that are not adjacent to each other, such as the difference in transmittance between the region with the film thickness 13c and the region with the film thickness 13e. It does not indicate a difference.
 本態様に用いられる酸化物半導体層の透過率としては、本態様の色素増感型太陽電池素子の用途、用いられる粒子のサイズや分散方法等に応じて適宜調整されるものであり、特に限定されるものではないが、本態様の色素増感型太陽電池素子において、上記酸化物半導体層の最も薄い領域の透過率としては、例えば、5%~99%の範囲内であることが好ましく、中でも、10%~90%の範囲内であることが好ましく、特に、20%~80%の範囲内であることが好ましい。
 なお、ここでの透過率は、酸化物半導体層に入射した光に対する透過率を指すものである。
The transmittance of the oxide semiconductor layer used in this embodiment is appropriately adjusted according to the use of the dye-sensitized solar cell element of this embodiment, the size of the particles used, the dispersion method, and the like, and is particularly limited. However, in the dye-sensitized solar cell element of this embodiment, the transmittance of the thinnest region of the oxide semiconductor layer is preferably in the range of 5% to 99%, for example. In particular, it is preferably in the range of 10% to 90%, and particularly preferably in the range of 20% to 80%.
Note that the transmittance here refers to the transmittance with respect to light incident on the oxide semiconductor layer.
 上記酸化物半導体層の透過率は、可視光領域において、スガ試験機株式会社製 ヘーズメーター(HGM-2K)を用いて測定した値である。
 また、上記酸化物半導体層の透過率差は、上述の方法で測定した値の差し引きにより得られた値である。
The transmittance of the oxide semiconductor layer is a value measured using a haze meter (HGM-2K) manufactured by Suga Test Instruments Co., Ltd. in the visible light region.
The transmittance difference of the oxide semiconductor layer is a value obtained by subtracting the value measured by the above method.
 さらに、本態様に用いられる酸化物半導体層は、上述した膜厚および透過率が異なる少なくとも2つの領域が、一体に形成されたものである。 Furthermore, the oxide semiconductor layer used in this embodiment is formed by integrally forming at least two regions having different film thicknesses and transmittances as described above.
 ここでの「一体に形成された」とは、膜厚の厚い領域と膜厚の薄い領域とが、界面を有することなく形成されている状態を示し、膜厚の厚い領域においては、厚み方向にも界面が存在しない状態を示すものである。
 以下、図を参照しながら詳細に説明する。
Here, “integrally formed” means a state where a thick film region and a thin film region are formed without having an interface, and in the thick film region, the thickness direction In other words, this indicates a state in which no interface exists.
Hereinafter, it will be described in detail with reference to the drawings.
 図2の色素増感型太陽電池素子100において、上記酸化物半導体層13は、上述したように、膜厚がそれぞれ13c、13d、および13eである領域を有している。第1電極基材10上において隣接するこれらの領域は、互いに色素増感型太陽電池素子100の面方向に界面を有しておらず、一体に形成されたものである。 2, in the dye-sensitized solar cell element 100 of FIG. 2, the oxide semiconductor layer 13 has regions having film thicknesses of 13c, 13d, and 13e, respectively, as described above. These adjacent regions on the first electrode substrate 10 do not have an interface in the surface direction of the dye-sensitized solar cell element 100, and are formed integrally.
 また、本態様における上記酸化物半導体層は、図2に示すように単層からなるものであってもよく、あるいは図3に示すように、色素増感型太陽電池素子の厚み方向に複数の層が積層されてなるものであってもよい。
 図3に示すように、上記酸化物半導体層13が、酸化物半導体層13Aおよび酸化物半導体層13Bの2層からなる場合においても、本態様に用いられる上記酸化物半導体層13は一体に形成されたものである。すなわち、上記酸化物半導体層13Aおよび上記酸化物半導体層13B自体は、本態様の色素増感型太陽電池素子100の厚み方向に界面を有さないものである。
In addition, the oxide semiconductor layer in this embodiment may be a single layer as shown in FIG. 2, or a plurality of oxide semiconductor layers in the thickness direction of the dye-sensitized solar cell element as shown in FIG. Layers may be laminated.
As shown in FIG. 3, the oxide semiconductor layer 13 used in this embodiment is integrally formed even when the oxide semiconductor layer 13 includes two layers, an oxide semiconductor layer 13A and an oxide semiconductor layer 13B. It has been done. In other words, the oxide semiconductor layer 13A and the oxide semiconductor layer 13B themselves do not have an interface in the thickness direction of the dye-sensitized solar cell element 100 of this embodiment.
 上述のように、本態様に用いられる酸化物半導体層としては、膜厚が異なり、透過率が異なる少なくとも2つの領域を有するものであり、各層が一体に形成されたものであれば、特に限定されるものではなく、例えば、上記酸化物半導体層において膜厚および透過率が異なる少なくとも2つの領域の細孔径が異なり、かつ上記各領域が同一組成の粒子群からなるものであってもよい。 As described above, the oxide semiconductor layer used in this embodiment has at least two regions with different film thicknesses and different transmittances, and is particularly limited as long as each layer is integrally formed. For example, at least two regions having different thicknesses and transmittances in the oxide semiconductor layer may have different pore diameters, and each region may be composed of a particle group having the same composition.
 ここで、「粒子が同一組成である」とは、酸化物半導体層が1種の粒子群からなる場合には、上記酸化物半導体層における少なくとも2つの領域の各粒子群の平均粒径が一致しているものをいい、酸化物半導体層が2種以上の粒子群からなる場合には、各粒子群の平均粒径およびその混合比が一致しているものを言う。
 例えば、上記酸化物半導体層が1種の粒子群からなる場合には、上記酸化物半導体層を構成する粒子群の平均粒径は、上記酸化物半導体層における膜厚および透過率が異なる少なくとも2つの領域で一致するものである。
 なお、粒子群の平均粒径の測定方法としては、レーザー解析法や三次元画像解析法が挙げられる。レーザー解析法は、測定対象がインキ状態である場合に有効であり、三次元画像解析法は、測定対象が膜状態である場合に有効である。また、これらの測定方法は、粒度分布測定の他に、各粒子の混合比についての測定も可能である。
Here, “the particles have the same composition” means that when the oxide semiconductor layer is composed of one kind of particle group, the average particle diameter of each particle group in at least two regions in the oxide semiconductor layer is equal to one. In the case where the oxide semiconductor layer is composed of two or more types of particle groups, the average particle size of each particle group and the mixing ratio thereof are the same.
For example, when the oxide semiconductor layer is composed of one kind of particle group, the average particle diameter of the particle group constituting the oxide semiconductor layer is at least 2 different in film thickness and transmittance in the oxide semiconductor layer. Match in two areas.
Examples of the method for measuring the average particle diameter of the particle group include laser analysis and three-dimensional image analysis. The laser analysis method is effective when the measurement target is in an ink state, and the three-dimensional image analysis method is effective when the measurement target is in a film state. In addition to the particle size distribution measurement, these measurement methods can also measure the mixing ratio of each particle.
 また、上記酸化物半導体層が2種以上の粒子群からなる場合には、上記酸化物半導体層における膜厚および透過率が異なる少なくとも2つの領域で、上記2種以上の各粒子群の平均粒径が一致し、かつ上記各粒子群の混合比が一致する。
 ここで、「各粒子群の混合比が一致する」とは、上記酸化物半導体層において膜厚および透過率が異なる少なくとも2つの領域が、いずれも、上記2種以上の粒子群が同じ比率で混合されて構成されていることを指す。
In the case where the oxide semiconductor layer includes two or more types of particle groups, the average particle size of the two or more types of particle groups in at least two regions having different film thicknesses and transmittances in the oxide semiconductor layer. The diameters match and the mixing ratios of the particle groups match.
Here, “the mixing ratio of each particle group is the same” means that at least two regions having different thicknesses and transmittances in the oxide semiconductor layer have the same ratio in the two or more types of particle groups. It refers to being composed.
 また、本態様に用いられる酸化物半導体層は、透過率が異なる領域を少なくとも2つ有するものであり、上記少なくとも2つの領域の細孔径が異なるものであってもよい。上記少なくとも2つの領域の細孔径が異なる場合の、一の細孔径を有する一の領域と、一の細孔径とは異なる他の細孔径を有する他の領域との細孔径の差としては、上記細孔径の差によって透過率に差をもたせ、結果として、細孔径が異なる少なくとも2つの領域で、色の濃淡を用いて所望のデザイン等を表現することができれば特に限定されるものではない。本態様においては、例えば、1nm~20nmの範囲内であることが好ましく、中でも2nm~15nmの範囲内であることが好ましく、特に3nm~10nmの範囲内であることが好ましい。
 なお、ここでの細孔径の差とは、細孔径が異なる領域を少なくとも2つ有する上記酸化物半導体層において、互いに隣接する領域の細孔径の差を指すものである。なお、「互いに隣接する」とは、対象となる2つの領域が、他の領域を介することなく接して並んでいる状態を指すものである。すなわち、図2の色素増感型太陽電池100における酸化物半導体層13の場合には、膜厚13cである領域の細孔径と膜厚13dである領域の細孔径との差、あるいは膜厚13dである領域の細孔径と膜厚13eである領域の細孔径との差を指すものであり、例えば、膜厚13cである領域の細孔径と膜厚13eである領域の細孔径との差のように、互いに隣接していない領域の細孔径の差を指すものではない。
 細孔径の差が上記範囲内であることにより、上記細孔径の差によって透過率に差をもたせることができ、結果として細孔径が異なる領域の界面において色の濃淡を十分に表すことができ、優れた意匠性を得ることができる。
 また、上記酸化物半導体層の細孔径の差によって上記酸化物半導体層のヘイズ率に差をもたせることができる。すなわち、上記酸化物半導体層において、細孔径が比較的大きい領域ではヘイズ率が高くすることができ、細孔径が比較的小さい領域ではヘイズ率が低くすることができる。そのため、細孔径が比較的大きくヘイズ率が高い領域の色調は白濁することにより薄く、一方、細孔径が比較的小さくヘイズ率が低い領域の色調は濃くなる。ここで、ヘイズ率とは、入射光のうち平行光線透過率と拡散光線透過率との比率である。本態様におけるヘイズ率差としては、上述した細孔径の差や上記酸化物半導体層の材料等によって異なるものであるが、例えば、0.05~99の範囲内であることが好ましく、中でも0.1~50の範囲内であることが好ましく、特に0.3~30の範囲内であることが好ましい。
 なお、上記ヘイズ率は、スガ試験機株式会社製 ヘーズメーター(HGM-2K)を用いて測定した値である。
In addition, the oxide semiconductor layer used in this embodiment includes at least two regions having different transmittances, and the at least two regions may have different pore diameters. When the pore diameters of the at least two regions are different, the difference in pore diameter between one region having one pore diameter and another region having another pore diameter different from one pore diameter is as described above. There is no particular limitation as long as the transmittance can be varied depending on the difference in pore diameter, and as a result, a desired design or the like can be expressed using color shading in at least two regions having different pore diameters. In this embodiment, for example, it is preferably in the range of 1 nm to 20 nm, more preferably in the range of 2 nm to 15 nm, and particularly preferably in the range of 3 nm to 10 nm.
Note that the difference in pore diameter here refers to the difference in pore diameter between adjacent areas in the oxide semiconductor layer having at least two areas having different pore diameters. Note that “adjacent to each other” refers to a state in which two target areas are in contact with each other without interposing other areas. That is, in the case of the oxide semiconductor layer 13 in the dye-sensitized solar cell 100 of FIG. 2, the difference between the pore diameter in the region having the film thickness 13c and the pore diameter in the region having the film thickness 13d, or the film thickness 13d. Is the difference between the pore diameter of the region that is and the pore diameter of the region that is the film thickness 13e. For example, the difference between the pore diameter of the region that is the film thickness 13c and the pore diameter of the region that is the film thickness 13e is As such, it does not indicate a difference in pore diameter between regions that are not adjacent to each other.
By making the difference in pore diameter within the above range, it is possible to have a difference in transmittance due to the difference in pore diameter, and as a result, it is possible to sufficiently represent the color shade at the interface of the regions having different pore diameters, Excellent design properties can be obtained.
In addition, a difference in the haze ratio of the oxide semiconductor layer can be given due to a difference in pore diameter of the oxide semiconductor layer. That is, in the oxide semiconductor layer, the haze ratio can be increased in a region where the pore diameter is relatively large, and the haze ratio can be decreased in a region where the pore diameter is relatively small. For this reason, the color tone of the region having a relatively large pore diameter and a high haze ratio is thin by being clouded, while the color tone of the region having a relatively small pore diameter and a low haze ratio is dark. Here, the haze ratio is a ratio between the parallel light transmittance and the diffuse light transmittance in the incident light. The difference in haze ratio in this embodiment varies depending on the above-described difference in pore diameter, the material of the oxide semiconductor layer, and the like. For example, it is preferably in the range of 0.05 to 99. It is preferably in the range of 1 to 50, particularly preferably in the range of 0.3 to 30.
The haze ratio is a value measured using a haze meter (HGM-2K) manufactured by Suga Test Instruments Co., Ltd.
 また、本態様に用いられる酸化物半導体層の細孔径としては、本態様の色素増感型太陽電池素子の用途等に応じて適宜調整されるものであり、特に限定されるものではないが、本態様の色素増感型太陽電池素子において、上記酸化物半導体層の最も薄い領域の細孔径としては、例えば、1nm~80nmの範囲内であることが好ましく、中でも3nm~50nmの範囲内であることが好ましく、特に5nm~30nmの範囲内であることが好ましい。
 なお、本発明における細孔径とは、細孔径の最大ピークを指すものである。
Further, the pore diameter of the oxide semiconductor layer used in this embodiment is appropriately adjusted according to the use of the dye-sensitized solar cell element of this embodiment, and is not particularly limited. In the dye-sensitized solar cell element of this embodiment, the pore diameter of the thinnest region of the oxide semiconductor layer is preferably in the range of, for example, 1 nm to 80 nm, and more preferably in the range of 3 nm to 50 nm. It is particularly preferable that the thickness is in the range of 5 nm to 30 nm.
In the present invention, the pore diameter refers to the maximum peak of the pore diameter.
 上記酸化物半導体層の細孔径については、高精度全自動ガス吸着装置(日本ベル株式会社製BELSORP 28SA)を用いた測定が可能である。なお、吸着ガスには窒素ガスを用いることができる。 The pore diameter of the oxide semiconductor layer can be measured using a highly accurate fully automatic gas adsorption device (BELSORP 28SA manufactured by Nippon Bell Co., Ltd.). Note that nitrogen gas can be used as the adsorption gas.
 以下、上記酸化物半導体層を構成する酸化物半導体膜および色素増感剤について説明する。 Hereinafter, the oxide semiconductor film and the dye sensitizer constituting the oxide semiconductor layer will be described.
 (a)酸化物半導体膜
 本態様に用いられる酸化物半導体膜は、第1電極基材上に形成され、金属酸化物半導体微粒子を含むものである。
 以下、上記酸化物半導体膜に含まれる金属酸化物半導体微粒子について説明する。
(A) Oxide Semiconductor Film The oxide semiconductor film used in this embodiment is formed on the first electrode substrate and contains metal oxide semiconductor fine particles.
Hereinafter, the metal oxide semiconductor fine particles contained in the oxide semiconductor film will be described.
 (i)金属酸化物半導体微粒子
 本態様に用いられる金属酸化物半導体微粒子としては、半導体特性を備える金属酸化物からなるものであれば特に限定されるものではない。本態様に用いられる金属酸化物半導体微粒子を構成する金属酸化物としては、例えば、TiO、ZnO、SnO、ITO、ZrO、MgO、Al、CeO、Bi、Mn、Y、WO、Ta、Nb、La等を挙げることができる。なかでも本態様においては、TiOからなる金属酸化物半導体微粒子を用いることが最も好ましい。TiOは特に半導体特性に優れるからである。
(I) Metal oxide semiconductor fine particles The metal oxide semiconductor fine particles used in this embodiment are not particularly limited as long as they are made of a metal oxide having semiconductor characteristics. Examples of the metal oxide constituting the metal oxide semiconductor fine particles used in this embodiment include TiO 2 , ZnO, SnO 2 , ITO, ZrO 2 , MgO, Al 2 O 3 , CeO 2 , Bi 2 O 3 , and Mn. 3 O 4 , Y 2 O 3 , WO 3 , Ta 2 O 5 , Nb 2 O 5 , La 2 O 3 and the like can be mentioned. Among these, in this embodiment, it is most preferable to use metal oxide semiconductor fine particles made of TiO 2 . This is because TiO 2 is particularly excellent in semiconductor characteristics.
 本態様に用いられる金属酸化物半導体微粒子の平均粒径としては、通常、1nm~10μmの範囲内であることが好ましく、特に10nm~1000nmの範囲内であることが好ましい。 The average particle diameter of the metal oxide semiconductor particles used in this embodiment is usually preferably in the range of 1 nm to 10 μm, particularly preferably in the range of 10 nm to 1000 nm.
 (ii)その他の成分
 本態様に用いられる酸化物半導体膜には、上記金属酸化物半導体微粒子の他に任意の成分が含まれていてもよい。上記酸化物半導体膜に含まれるその他の成分としては、例えば、樹脂を挙げることができる。上記酸化物半導体膜に樹脂が含有されることにより、本態様に用いられる酸化物半導体膜の脆性を改善することができるからである。
(Ii) Other components The oxide semiconductor film used in this embodiment may contain an optional component in addition to the metal oxide semiconductor fine particles. As another component contained in the oxide semiconductor film, for example, a resin can be given. This is because when the resin is contained in the oxide semiconductor film, the brittleness of the oxide semiconductor film used in this embodiment can be improved.
 本態様において酸化物半導体膜に用いることができる樹脂としては、例えば、ポリビニルピロリドン、エチルセルロース、カプロラクタン等を挙げることができる。 Examples of the resin that can be used for the oxide semiconductor film in this embodiment include polyvinyl pyrrolidone, ethyl cellulose, caprolactan, and the like.
 (b)色素増感剤
 本態様に用いられる酸化物半導体層は、上述した酸化物半導体膜表面に色素増感剤が担持されたものである。
 以下、本態様に用いられる色素増感剤について説明する。
(B) Dye sensitizer The oxide semiconductor layer used in this embodiment is one in which a dye sensitizer is supported on the surface of the oxide semiconductor film described above.
Hereinafter, the dye sensitizer used in this embodiment will be described.
 本態様に用いられる色素増感剤としては、光を吸収して起電力を生じさせることが可能なものであれば特に限定はされない。このような色素増感剤としては、有機色素または金属錯体色素を挙げることができる。上記有機色素としては、アクリジン系、アゾ系、インジゴ系、キノン系、クマリン系、メロシアニン系、フェニルキサンテン系、インドリン系、カルバゾール系の色素が挙げられる。本態様においてはこれらの有機色素の中でも、クマリン系色素を用いることが好ましい。また、上記金属錯体色素としてはルテニウム系色素を用いることが好ましく、特にルテニウム錯体であるルテニウムビピリジン色素およびルテニウムターピリジン色素を用いることが好ましい。このようなルテニウム錯体は吸収する光の波長範囲が広いため、光電変換できる光の波長領域を大幅に広げることができるからである。 The dye sensitizer used in this embodiment is not particularly limited as long as it can absorb light and generate an electromotive force. Examples of such a dye sensitizer include organic dyes and metal complex dyes. Examples of the organic dyes include acridine, azo, indigo, quinone, coumarin, merocyanine, phenylxanthene, indoline, and carbazole dyes. In this embodiment, among these organic dyes, a coumarin dye is preferably used. Further, as the metal complex dye, it is preferable to use a ruthenium dye, and it is particularly preferable to use a ruthenium bipyridine dye and a ruthenium terpyridine dye which are ruthenium complexes. This is because such a ruthenium complex has a wide wavelength range of light to be absorbed, so that the wavelength range of light that can be photoelectrically converted can be greatly expanded.
 本態様に用いられる上記色素増感剤は、例えば、黄系~緑系の色相を有するルテニウム錯体、赤系の色相を有するクマリン系有機色素、青系の色相を有するメロシアニン系有機色素等あらゆる色相を有する色素増感剤があるため、これらの色素増感剤を上記金属酸化物半導体微粒子に担持させることで、鮮やかな色調の酸化物半導体層とすることが可能となる。 Examples of the dye sensitizer used in this embodiment include any hue such as a ruthenium complex having a yellow to green hue, a coumarin organic dye having a red hue, and a merocyanine organic dye having a blue hue. Therefore, it is possible to obtain an oxide semiconductor layer having a vivid color tone by supporting these dye sensitizers on the metal oxide semiconductor fine particles.
 (2)第1電極基材
 本態様に用いられる第1電極基材としては、少なくとも電極として機能を備えたものであれば特に限定されない。また、本態様に用いられる第1電極基材と、後述する対極基板に用いられる第2電極基材とは、少なくともいずれか一方が透明性を有する電極基材である。例えば、第1電極基材が透明性を有さない場合には、金属層を有する金属基板を挙げることができ、また、透明性を有する場合には、基材と、上記基材上に透明導電膜とを有する透明導電性基板を挙げることができる。本態様においては、酸化物半導体電極基板に用いられる第1電極基材に金属基板を用いることが好ましい。電気抵抗の低い金属基板を用いることにより、発電効率を高めることができるからである。
 以下、金属基板および透明導電性基板についてそれぞれ説明する。
(2) First Electrode Base Material The first electrode base material used in this embodiment is not particularly limited as long as it has at least a function as an electrode. Moreover, at least any one of the 1st electrode base material used for this aspect and the 2nd electrode base material used for the counter-electrode board | substrate mentioned later is an electrode base material which has transparency. For example, when the first electrode base material does not have transparency, a metal substrate having a metal layer can be exemplified. When the first electrode base material has transparency, the base material is transparent on the base material. A transparent conductive substrate having a conductive film can be given. In this aspect, it is preferable to use a metal substrate for the first electrode base material used for the oxide semiconductor electrode substrate. This is because power generation efficiency can be increased by using a metal substrate with low electrical resistance.
Hereinafter, each of the metal substrate and the transparent conductive substrate will be described.
 (a)金属基板
 本態様に用いられる金属基板は、金属層を有するものであれば特に限定されるものではない。具体的には金属層のみを有する場合と、基材と基材上に配置された金属層とを有する場合とが挙げられる。
 以下、各場合について説明する。
(A) Metal substrate The metal substrate used in this embodiment is not particularly limited as long as it has a metal layer. Specifically, there are a case where only a metal layer is provided and a case where a base material and a metal layer disposed on the base material are provided.
Hereinafter, each case will be described.
 (i)金属層のみを有する場合
 上記金属層としては、金属基板として用いることができるのであれば特に限定されるものではなく、フレキシブル性を有するものであってもよいし、フレキシブル性を有しないものであってもよい。フレキシブル性を有する金属層としては、金属箔を挙げることができる。
 なお、上記フレキシブル性の有無は、JISZ2248の金属材料曲げ試験方法をおこなって、5×10Nの力をかけたときに曲がるか否で判断することができる。
(I) In the case of having only a metal layer The metal layer is not particularly limited as long as it can be used as a metal substrate, may have flexibility, or does not have flexibility. It may be a thing. Examples of the metal layer having flexibility include metal foil.
In addition, the presence or absence of the said flexibility can be judged by performing the metal material bending test method of JISZ2248, and determining whether it bends when a force of 5 × 10 3 N is applied.
 上記金属箔に用いられる金属材料としては、具体的には、Cu、Al、Ti、Cr、W、Mo、Pt、Ta、Nb、Zr、Zn、およびFeなどの単体、SUSなどの上記金属の合金等が挙げられ、なかでも耐熱性の高いTi等を用いることが好ましい。 Specific examples of the metal material used for the metal foil include Cu, Al, Ti, Cr, W, Mo, Pt, Ta, Nb, Zr, Zn, and a simple substance such as Fe, and SUS or the like. An alloy etc. are mentioned, Among these, it is preferable to use Ti etc. with high heat resistance.
 このような金属箔の厚みとしては、5μm~1000μmの範囲内であることが好ましく、10μm~500μmの範囲内であることがより好ましく、20μm~200μmの範囲内であることがさらに好ましい。 The thickness of such a metal foil is preferably in the range of 5 μm to 1000 μm, more preferably in the range of 10 μm to 500 μm, and still more preferably in the range of 20 μm to 200 μm.
 なお、フレキシブル性を有しない金属層としては、金属基板を挙げることができる。このような金属基板に用いられる金属材料については、上述した金属箔に用いられる金属材料と同様とすることができるので、ここでの説明は省略する。 In addition, a metal substrate can be mentioned as a metal layer which does not have flexibility. Since the metal material used for such a metal substrate can be the same as the metal material used for the metal foil described above, the description thereof is omitted here.
 (ii)基材と基材上に配置された金属層とを有する場合
 上述した金属層および基材についてそれぞれ説明する。
(Ii) When it has a base material and the metal layer arrange | positioned on a base material The metal layer mentioned above and a base material are each demonstrated.
 上記金属層としては、例えば、金属薄膜や金属板を挙げることができるが、この場合においては、金属薄膜であることがより好ましい。ここでの金属層においては、基材上に配置された金属層をエッチングして、パターン状に形成する等の加工が可能であることから、上記金属層として金属薄膜を用いることにより、エッチングによる金属層のパターニングを容易に行うことが可能となる。 Examples of the metal layer include a metal thin film and a metal plate. In this case, a metal thin film is more preferable. In the metal layer here, the metal layer disposed on the base material can be etched and formed into a pattern, etc., so that by using a metal thin film as the metal layer, etching can be performed. The metal layer can be easily patterned.
 このような金属薄膜の厚みとしては、0.005μm~1μmの範囲内、なかでも0.010μm~0.5μmの範囲内、特に0.020μm~0.3μmの範囲内であることが好ましい。 The thickness of such a metal thin film is preferably in the range of 0.005 μm to 1 μm, more preferably in the range of 0.010 μm to 0.5 μm, and particularly preferably in the range of 0.020 μm to 0.3 μm.
 上記金属薄膜に用いられる金属材料については、「(i)金属層のみを有する場合」の項で説明した金属箔に用いられる金属材料と同様とすることができるので、ここでの説明は省略する。 The metal material used for the metal thin film can be the same as the metal material used for the metal foil described in the section “(i) In the case of having only a metal layer”. .
 次に、基材について説明する。
 ここで用いられる基材としては、透明性を有するものであってもよいし、透明性を有しないものであってもよい。具体的には、透明無機物製基材や透明樹脂製基材を用いることができる。透明樹脂製基材としては、一般的な透明性を有する樹脂から構成される基材を用いることができ、例えばポリエチレンテレフタレート、ポリエステルナフタレート、ポリカーボネート等の樹脂から構成される基材を挙げることができる。透明無機物製基材としては、合成石英基材やガラス基板等を挙げることができる。透明基材の厚みは、5μm~2000μmの範囲内であることが好ましい。
Next, the base material will be described.
As a base material used here, what has transparency may be sufficient and what does not have transparency may be sufficient. Specifically, a transparent inorganic substrate or a transparent resin substrate can be used. As the transparent resin base material, a base material composed of a resin having general transparency can be used, for example, a base material composed of a resin such as polyethylene terephthalate, polyester naphthalate, or polycarbonate. it can. Examples of the transparent inorganic substrate include a synthetic quartz substrate and a glass substrate. The thickness of the transparent substrate is preferably in the range of 5 μm to 2000 μm.
 (b)透明導電性基板
 本態様に用いられる透明導電性基板は、基材と透明導電膜とを有するものである。
 以下、本態様に用いられる基材および透明導電膜について説明する。
(B) Transparent conductive substrate The transparent conductive substrate used for this aspect has a base material and a transparent conductive film.
Hereinafter, the base material and the transparent conductive film used in this embodiment will be described.
 透明導電性基板に用いられる基材としては、本態様の色素増感型太陽電池素子が太陽光を受光する受光面に配置されるものであるため、太陽光に対する透過性を備えることが必要とされるものである。基材についての詳しい説明については、「(a)金属基板 (ii)基材と基材上に配置された金属層とを有する場合」の項に記載した内容と同様とすることができるので、ここでの説明は省略する。 As a base material used for the transparent conductive substrate, since the dye-sensitized solar cell element of this embodiment is disposed on a light receiving surface that receives sunlight, it is necessary to have transparency to sunlight. It is what is done. The detailed description of the base material can be the same as that described in the section “(a) Metal substrate (ii) When having a base material and a metal layer disposed on the base material”. The description here is omitted.
 透明導電膜は、上記基材上に形成されるものである。透明導電膜としては、所望の透明性を有し、所望の導電性を有するものであれば特に限定されるものではない。透明導電膜に用いられる材料としては、金属酸化物、導電性高分子材料等を挙げることができる。金属酸化物としては、例えば、SnO、ZnO、酸化インジウムにスズを添加した化合物(ITO)、酸化インジウムに酸化亜鉛を添加した化合物(IZO)等を挙げることができる。導電性高分子材料としては、例えば、ポリチオフェン、ポリアニリン、ポリピロール、ポリエチレンジオキシチオフェン、およびこれらの誘導体等を挙げることができる。また、これらを2種以上混合して用いることもできる。 The transparent conductive film is formed on the substrate. The transparent conductive film is not particularly limited as long as it has desired transparency and has desired conductivity. Examples of the material used for the transparent conductive film include metal oxides and conductive polymer materials. Examples of the metal oxide include SnO 2 , ZnO, a compound in which tin is added to indium oxide (ITO), a compound in which zinc oxide is added to indium oxide (IZO), and the like. Examples of the conductive polymer material include polythiophene, polyaniline, polypyrrole, polyethylenedioxythiophene, and derivatives thereof. Moreover, these can also be used in mixture of 2 or more types.
 透明導電膜の全光線透過率は、85%以上であることが好ましく、なかでも90%以上であることが好ましい。
 ここでの透明導電膜の全光線透過率の測定方法としては、上記「1.酸化物半導体電極基板 (1)酸化物半導体層」の項で説明した透過率の測定方法と同様とすることができる。
The total light transmittance of the transparent conductive film is preferably 85% or more, and more preferably 90% or more.
The method for measuring the total light transmittance of the transparent conductive film here is the same as the method for measuring the transmittance described in the above section “1. Oxide Semiconductor Electrode Substrate (1) Oxide Semiconductor Layer”. it can.
 透明導電膜のシート抵抗は、500Ω/□以下であることが好ましく、なかでも300Ω/□以下であることが好ましい。透明導電膜は、単一の層からなる構成であってもよく、また、複数の層が積層された構成であってもよい。 The sheet resistance of the transparent conductive film is preferably 500Ω / □ or less, and more preferably 300Ω / □ or less. The transparent conductive film may be composed of a single layer or may be composed of a plurality of layers.
 透明導電膜の膜厚としては、通常、5nm~2000nmの範囲内が好ましく、特に10nm~1000nmの範囲内であることが好ましい。 The film thickness of the transparent conductive film is usually preferably in the range of 5 nm to 2000 nm, particularly preferably in the range of 10 nm to 1000 nm.
 透明導電膜の形成方法としては、一般的な形成方法を用いることができるので、ここでの説明は省略する。なお、詳しい形成方法については、後述する「III.色素増感型太陽電池素子の製造方法 A.酸化物半導体電極基板形成工程 2.第1電極基材準備工程」の項で説明する。 Since a general forming method can be used as a method for forming the transparent conductive film, description thereof is omitted here. The detailed formation method will be described later in the section “III. Method for producing dye-sensitized solar cell element, A. Oxide semiconductor electrode substrate formation step, 2. First electrode substrate preparation step”.
 2.電解質層
 本態様に用いられる電解質層は、上述した酸化物半導体電極基板および後述する対極基板の間に形成され、酸化還元対を含むものである。
 以下、本態様に用いられる電解質層について説明する。
2. Electrolyte Layer The electrolyte layer used in this embodiment is formed between the above-described oxide semiconductor electrode substrate and a counter electrode substrate described later, and includes a redox pair.
Hereinafter, the electrolyte layer used in this embodiment will be described.
 本態様における電解質層に用いられる酸化還元対としては、色素増感型太陽電池素子で用いられるものであれば特に限定はされない。例えば、ヨウ素およびヨウ化物の組合せが挙げられる。酸化還元対の含有量としては、電解質層に占める酸化還元対の割合が、1質量%~50質量%の範囲内、中でも、5質量%~35質量%の範囲内であることが好ましい。 The redox couple used in the electrolyte layer in this embodiment is not particularly limited as long as it is used in a dye-sensitized solar cell element. For example, a combination of iodine and iodide can be mentioned. As the content of the redox couple, the ratio of the redox couple in the electrolyte layer is preferably in the range of 1% by mass to 50% by mass, and more preferably in the range of 5% by mass to 35% by mass.
 電解質層は、ゲル状、固体状または液体状のいずれの形態からなる電解質層であってもよい。電解質層をゲル状とした場合には、物理ゲルと化学ゲルのいずれであってもよい。ここで、物理ゲルは物理的な相互作用により室温付近でゲル化しているものであり、化学ゲルは架橋反応などにより化学結合でゲルを形成しているものである。また、電解質層を液体状とした場合には、例えば、アセトニトリル、メトキシアセトニトリル、炭酸プロピレンなどを溶媒とし、酸化還元対を含んだものや、同じくイミダゾリウム塩をカチオンとするイオン性液体を溶媒とすることができる。さらに、電解質層を固体状とした場合には、酸化還元対を含まずにそれ自身が正孔輸送剤として機能するものであればよく、例えばCuI、ポリピロール、ポリチオフェンなどを含む正孔輸送剤であってもよい。 The electrolyte layer may be an electrolyte layer having any form of gel, solid, or liquid. When the electrolyte layer is in a gel form, either a physical gel or a chemical gel may be used. Here, the physical gel is gelled near room temperature due to physical interaction, and the chemical gel is a gel formed by chemical bonding by a crosslinking reaction or the like. When the electrolyte layer is in a liquid state, for example, acetonitrile, methoxyacetonitrile, propylene carbonate or the like is used as a solvent, and an ionic liquid containing a redox couple or an imidazolium salt as a cation is used as a solvent. can do. Furthermore, when the electrolyte layer is in a solid state, it may be any material that does not include a redox pair and functions as a hole transporting agent. For example, a hole transporting agent including CuI, polypyrrole, polythiophene, etc. There may be.
 このような電解質層の膜厚としては、特に限定はされないが、上記酸化物半導体層が連通孔を有する多孔質であることが好ましいことから、このような酸化物半導体層内に充填されて電解質層が形成されている場合には、酸化物半導体層の膜厚も含めて2μm~100μmの範囲内、その中でも、2μm~50μmの範囲内であることが好ましい。上記範囲よりも膜厚が薄い場合には、酸化物半導体層と対極基板とが接触しやすくなるため短絡の原因となり、一方、上記範囲よりも膜厚が厚い場合には、内部抵抗が大きくなり性能低下につながるからである。 The thickness of such an electrolyte layer is not particularly limited, but it is preferable that the oxide semiconductor layer is porous having communication holes. In the case where a layer is formed, it is preferably in the range of 2 μm to 100 μm including the thickness of the oxide semiconductor layer, and more preferably in the range of 2 μm to 50 μm. When the film thickness is smaller than the above range, the oxide semiconductor layer and the counter electrode substrate are likely to come into contact with each other, causing a short circuit. On the other hand, when the film thickness is thicker than the above range, the internal resistance is increased. This is because it leads to performance degradation.
 3.対極基板
 本態様に用いられる対極基板は、少なくとも電極としての機能を備えた第2電極基材を有するものであり、上述した酸化物半導体層および前記第2電極基材が対向するように配置されるものである。
 以下、本態様に用いられる対極基板について説明する。
3. Counter Electrode Substrate The counter electrode substrate used in this embodiment has a second electrode base material having at least a function as an electrode, and is arranged so that the above-described oxide semiconductor layer and the second electrode base material face each other. Is.
Hereinafter, the counter electrode substrate used in this embodiment will be described.
 (1)第2電極基材 
 本態様に用いられる第2電極基材としては、少なくとも電極としての機能を備えたものであれば特に限定されない。また、本態様に用いられる第2電極基材と、上述した酸化物半導体層側基板に用いられる第1電極基材とは、少なくともいずれか一方が透明性を有する電極基材である。例えば、第2電極基材が透明性を有さない場合は、金属層を有する金属基板を挙げることができ、また、透明性を有する場合には基材と、上記基材上に透明導電膜とを有する透明導電性基板を挙げることができる。本態様においては、対向電極基板に用いられる導電性基板に透明導電性基板を用いることが好ましい。なお、金属基板および透明導電性基板についての詳しい説明は、「1.酸化物半導体層側基板 (3)第1電極基材」の項に記載したものと同様とすることができるので、ここでの説明は省略する。
(1) Second electrode base material
The second electrode substrate used in this embodiment is not particularly limited as long as it has at least a function as an electrode. Moreover, at least any one of the 2nd electrode base material used for this aspect and the 1st electrode base material used for the oxide semiconductor layer side board | substrate mentioned above is an electrode base material which has transparency. For example, when the second electrode substrate does not have transparency, a metal substrate having a metal layer can be cited. When the second electrode substrate has transparency, a transparent conductive film is formed on the substrate and the substrate. And a transparent conductive substrate. In this aspect, it is preferable to use a transparent conductive substrate for the conductive substrate used for the counter electrode substrate. The detailed description of the metal substrate and the transparent conductive substrate can be the same as that described in the section of “1. Oxide semiconductor layer side substrate (3) First electrode base material”. Description of is omitted.
 (2)その他
 本態様に用いられる対極基板は、必要に応じて触媒層が形成されるものである。
 以下、本態様に用いられる触媒層について説明する。
(2) Others The counter electrode substrate used in this embodiment has a catalyst layer formed as necessary.
Hereinafter, the catalyst layer used in this embodiment will be described.
 上記対極基板に触媒層が形成されていることにより、本態様の色素増感型太陽電池素子をより発電効率に優れたものにすることができる。このような触媒層の例としては、例えば、上記対極基板上にPtを蒸着した態様や、ポリエチレンジオキシチオフェン(PEDOT)、ポリスチレンスルホン酸(PSS)、ポリアニリン(PA)、パラトルエンスルホン酸(PTS)およびこれらの混合物から触媒層を形成する態様を挙げることができるが、この限りではない。 By forming a catalyst layer on the counter electrode substrate, the dye-sensitized solar cell element of this embodiment can be made more excellent in power generation efficiency. Examples of such a catalyst layer include, for example, an embodiment in which Pt is vapor-deposited on the counter electrode substrate, polyethylene dioxythiophene (PEDOT), polystyrene sulfonic acid (PSS), polyaniline (PA), paratoluene sulfonic acid (PTS). ) And a mixture thereof, an embodiment of forming a catalyst layer can be mentioned, but is not limited thereto.
 このような触媒層の膜厚としては、5nm~500nmの範囲内、なかでも10nm~300nmの範囲内、特に15nm~100nmの範囲内であることが好ましい。 The film thickness of such a catalyst layer is preferably in the range of 5 nm to 500 nm, more preferably in the range of 10 nm to 300 nm, and particularly preferably in the range of 15 nm to 100 nm.
 B.第2態様
 本態様の色素増感型太陽電池素子は、電極としての機能を備えた第1電極基材、および上記第1電極基材上に形成され、金属酸化物半導体微粒子を含む酸化物半導体膜の表面に、色素増感剤が坦持された酸化物半導体層を有する酸化物半導体電極基板と、少なくとも電極としての機能を備えた第2電極基材を有する対極基板とが、上記酸化物半導体層および上記第2電極基材が対向するように配置されており、上記酸化物半導体電極基板および上記対極基板の間に酸化還元対を含む電解質層が形成されているものであって、上記酸化物半導体層が、膜厚が異なり、細孔径が異なる少なくとも2つの領域を有し、上記少なくとも2つの領域が同一組成の粒子群からなるものである。
B. Second Aspect A dye-sensitized solar cell element according to the present aspect includes a first electrode base material having a function as an electrode, and an oxide semiconductor formed on the first electrode base material and including metal oxide semiconductor fine particles. An oxide semiconductor electrode substrate having an oxide semiconductor layer carrying a dye sensitizer on the surface of the film, and a counter electrode substrate having at least a second electrode base material having a function as an electrode, The semiconductor layer and the second electrode base material are disposed so as to face each other, and an electrolyte layer including a redox pair is formed between the oxide semiconductor electrode substrate and the counter electrode substrate, The oxide semiconductor layer has at least two regions having different film thicknesses and different pore diameters, and the at least two regions are composed of particle groups having the same composition.
 本態様においては、酸化物半導体層が、膜厚および細孔径が異なる少なくとも2つの領域を有することにより、上記少なくとも2つの領域の膜厚および細孔径の差異に相当する分の色の濃淡を表すことが可能となる。すなわち、上記酸化物半導体層を用いることにより、意匠性に優れた色素増感型太陽電池素子とすることができる。
 また、本態様によれば、上記酸化物半導体層における膜厚および細孔径が異なる少なくとも2つの領域を構成する粒子が同一組成であることから、優れた意匠性を有する色素増感型太陽電池素子を得るために、組成が異なる複数種類の粒子を用いる必要がないため、従来よりもコストを抑えることができる。
 さらに、上記酸化物半導体層の少なくとも2つの領域を構成する粒子が同一組成であることにより、製造工程において、上記酸化物半導体膜形成用塗工液の塗布工程を複数回設ける必要がなく、さらに領域毎に異なる種類の粒子を使い分ける必要もなくなり、優れた意匠性を有する色素増感型太陽電池素子を簡易に製造することが可能となる。なお、本発明の色素増感型太陽電池素子の製造方法については、後述する「III.色素増感型太陽電池素子の製造方法」の項で詳しく説明する。
 以下、本態様の色素増感型太陽電池素子を構成する酸化物半導体電極基板、電解質層および対極基板について、それぞれ説明する。
In this embodiment, the oxide semiconductor layer has at least two regions having different film thicknesses and pore diameters, thereby expressing the color shading corresponding to the difference between the film thicknesses and the pore diameters of the at least two regions. It becomes possible. That is, by using the oxide semiconductor layer, a dye-sensitized solar cell element excellent in design can be obtained.
Moreover, according to this aspect, since the particles constituting at least two regions having different film thicknesses and pore diameters in the oxide semiconductor layer have the same composition, the dye-sensitized solar cell element having excellent design properties Therefore, since it is not necessary to use a plurality of types of particles having different compositions, the cost can be reduced as compared with the conventional case.
Furthermore, since the particles constituting at least two regions of the oxide semiconductor layer have the same composition, it is not necessary to provide the coating process of the oxide semiconductor film forming coating solution a plurality of times in the manufacturing process. There is no need to use different types of particles for each region, and a dye-sensitized solar cell element having excellent design properties can be easily produced. The method for producing the dye-sensitized solar cell element of the present invention will be described in detail in the section “III. Method for producing dye-sensitized solar cell element” described later.
Hereinafter, the oxide semiconductor electrode substrate, the electrolyte layer, and the counter electrode substrate that constitute the dye-sensitized solar cell element of this embodiment will be described.
 1.酸化物半導体電極基板
 本態様の色素増感型太陽電池素子を構成する酸化物半導体電極基板は、電極としての機能を備えた第1電極基材、および上記第1電極基材上に形成され、金属酸化物半導体微粒子を含む酸化物半導体膜の表面に、色素増感剤が坦持された酸化物半導体層を有するものである。
1. Oxide Semiconductor Electrode Substrate An oxide semiconductor electrode substrate constituting the dye-sensitized solar cell element of the present embodiment is formed on a first electrode base material having a function as an electrode, and the first electrode base material, It has an oxide semiconductor layer in which a dye sensitizer is supported on the surface of an oxide semiconductor film containing metal oxide semiconductor fine particles.
 このような酸化物半導体電極基板は、酸化物半導体層の膜厚に伴って細孔径が異なるため、結果として透過率差をもたせることができ、色の濃淡を表わすことが可能となる。よって、上記酸化物半導体電極基板を用いることにより、意匠性に優れた色素増感型太陽電池素子を得ることができるという効果を奏する。
 以下、酸化物半導体電極基板の構成部材ついて説明する。
Such an oxide semiconductor electrode substrate has different pore diameters depending on the film thickness of the oxide semiconductor layer. As a result, a difference in transmittance can be provided, and color shading can be expressed. Therefore, by using the oxide semiconductor electrode substrate, there is an effect that a dye-sensitized solar cell element excellent in design can be obtained.
Hereinafter, constituent members of the oxide semiconductor electrode substrate will be described.
 (1)酸化物半導体層
 本態様における酸化物半導体膜は、後述する第1電極基材上に形成されるものであり、金属酸化物半導体微粒子を含むものである。また、上記酸化物半導体層は、膜厚が異なり、細孔径が異なる少なくとも2つの領域を有し、上記少なくとも2つの領域が同一組成の粒子群からなるものである。
(1) Oxide semiconductor layer The oxide semiconductor film in this aspect is formed on the 1st electrode base material mentioned later, and contains metal oxide semiconductor fine particles. The oxide semiconductor layer has at least two regions having different film thicknesses and different pore diameters, and the at least two regions are composed of particle groups having the same composition.
 本態様における酸化物半導体層としては、膜厚が異なり、細孔径が異なる少なくとも2つの領域を有するものであり、上記少なくとも2つの領域が同一組成の粒子群からなるものであれば特に限定されるものではない。
 なお、上記酸化物半導体層が、膜厚および細孔径が異なる少なくとも2つの領域を有すること、また、上記少なくとも2つの領域が同一組成の粒子群からなること等についての詳しい説明は、上記「A.第1態様 1.酸化物半導体電極基板 (1)酸化物半導体層」の項に記載したものと同様とすることができるので、ここでの説明は省略する。
The oxide semiconductor layer in this embodiment is particularly limited as long as it has at least two regions having different film thicknesses and different pore sizes, and the at least two regions are composed of particle groups having the same composition. It is not a thing.
Note that the oxide semiconductor layer has at least two regions having different thicknesses and pore diameters, and the detailed description about the fact that the at least two regions are composed of a particle group having the same composition, etc. First Embodiment 1. Oxide Semiconductor Electrode Substrate (1) Since it can be the same as that described in the section of “Oxide Semiconductor Layer”, description thereof is omitted here.
 (2)第1電極基材
 本態様に用いられる第1電極基材としては、少なくとも電極として機能を備えたものであれば特に限定されない。また、本態様に用いられる第1電極基材と、後述する対極基板に用いられる第2電極基材とは、少なくともいずれか一方が透明性を有する電極基材である。
 なお、本態様に用いられる第1電極基材については、上記「A.第1態様 1.酸化物半導体電極基板 (3)第1電極基材」の項に記載したものと同様とすることができるので、ここでの説明は省略する。
(2) First Electrode Base Material The first electrode base material used in this embodiment is not particularly limited as long as it has at least a function as an electrode. Moreover, at least any one of the 1st electrode base material used for this aspect and the 2nd electrode base material used for the counter-electrode board | substrate mentioned later is an electrode base material which has transparency.
In addition, about the 1st electrode base material used for this aspect, it may be the same as that of the above-mentioned item of "A. 1st aspect 1. Oxide semiconductor electrode substrate (3) 1st electrode base material". Since it is possible, description here is abbreviate | omitted.
 2.電解質層
 本態様に用いられる電解質層は、上述した酸化物半導体電極基板および後述する対極基板の間に形成され、酸化還元対を含むものである。
 なお、本態様に用いられる電解質層については、上記「A.第1態様 2.電解質層」の項に記載したものと同様とすることができるので、ここでの説明は省略する。
2. Electrolyte Layer The electrolyte layer used in this embodiment is formed between the above-described oxide semiconductor electrode substrate and a counter electrode substrate described later, and includes a redox pair.
In addition, about the electrolyte layer used for this aspect, since it can be made to be the same as that of the description of the said "A. 1st aspect 2. Electrolyte layer", description here is abbreviate | omitted.
 3.対極基板
 本態様に用いられる対極基板は、少なくとも電極としての機能を備えた第2電極基材を有するものであり、上述した酸化物半導体層および前記第2電極基材が対向するように配置されるものである。
 なお、本態様に用いられる対極基板については、上記「A.第1態様 3.対極基板」の項に記載したものと同様とすることができるので、ここでの説明は省略する。
3. Counter Electrode Substrate The counter electrode substrate used in this embodiment has a second electrode base material having at least a function as an electrode, and is arranged so that the above-described oxide semiconductor layer and the second electrode base material face each other. Is.
In addition, about the counter electrode board | substrate used for this aspect, since it can be made to be the same as that of what was described in the term of the said "A. 1st aspect 3. Counter electrode board | substrate", description here is abbreviate | omitted.
 II.色素増感型太陽電池モジュール
 本発明の色素増感型太陽電池モジュールは、2つの態様を有する。
 以下、第3態様と第4態様とに分けてそれぞれ説明する。
II. Dye-sensitized solar cell module The dye-sensitized solar cell module of the present invention has two aspects.
Hereinafter, the third mode and the fourth mode will be described separately.
 A.第3態様
 本態様の色素増感型太陽電池モジュールは、電極としての機能を備えた第1電極基材、および上記第1電極基材上に形成され、金属酸化物半導体微粒子を含む酸化物半導体膜の表面に、色素増感剤が坦持された酸化物半導体層を有する酸化物半導体電極基板と、少なくとも電極としての機能を備えた第2電極基材を有する対極基板とが、上記酸化物半導体層および上記第2電極基材が対向するように配置され、上記酸化物半導体電極基板および上記対極基板の間に酸化還元対を含む電解質層が形成されており、上記酸化物半導体層が、膜厚が異なり、透過率が異なる少なくとも2つの領域を有し、上記少なくとも2つの領域が一体に形成された色素増感型太陽電池素子が複数個直列または並列に接続されてなるものである。
A. Third Aspect A dye-sensitized solar cell module according to the present aspect includes a first electrode base material having a function as an electrode, and an oxide semiconductor formed on the first electrode base material and including metal oxide semiconductor fine particles. An oxide semiconductor electrode substrate having an oxide semiconductor layer carrying a dye sensitizer on the surface of the film, and a counter electrode substrate having at least a second electrode base material having a function as an electrode, The semiconductor layer and the second electrode base material are disposed so as to face each other, and an electrolyte layer including a redox pair is formed between the oxide semiconductor electrode substrate and the counter electrode substrate. A plurality of dye-sensitized solar cell elements each having at least two regions having different film thicknesses and different transmittances and having the at least two regions formed integrally are connected in series or in parallel.
 本態様によれば、色素増感型太陽電池素子を構成する酸化物半導体層が、膜厚および透過率が異なる少なくとも2つの領域を有することにより、上記少なくとも2つの領域の膜厚および透過率の差異に相当する分の色の濃淡を表すことが可能となる。すなわち、上記酸化物半導体層において、膜厚が薄い領域の透過率は高くなり、一方、膜厚が厚い領域の透過率は低くなる。
 このように、上記酸化物半導体層は、膜厚によって透過率に差異が生じ、、ヘイズ率が高い領域の色調は白濁することにより薄くなり、一方、ヘイズ率が低い領域の色調は濃くなる。したがって、上記酸化物半導体層を用いることにより、意匠性に優れた色素増感型太陽電池素子とすることができ、上記色素増感型太陽電池素子を連結することで、意匠性に優れた色素増感型太陽電池モジュールとすることができる。
According to this aspect, since the oxide semiconductor layer constituting the dye-sensitized solar cell element has at least two regions having different thicknesses and transmittances, the thicknesses and transmittances of the at least two regions are increased. It is possible to express the shade of the color corresponding to the difference. That is, in the oxide semiconductor layer, the transmittance of a region with a small thickness is high, while the transmittance of a region with a large thickness is low.
As described above, the oxide semiconductor layer has a difference in transmittance depending on the film thickness, and the color tone of a region having a high haze rate becomes thin due to white turbidity, while the color tone of a region having a low haze rate becomes dark. Therefore, by using the oxide semiconductor layer, a dye-sensitized solar cell element excellent in design can be obtained, and a dye excellent in design can be obtained by connecting the dye-sensitized solar cell elements. A sensitized solar cell module can be obtained.
 なお、本態様の色素増感型太陽電池モジュールに用いられる色素増感型太陽電池素子については、上記「I.色素増感型太陽電池素子 A.第1態様」の項において説明したものと同様であるため、ここでの説明は省略する。 In addition, about the dye-sensitized solar cell element used for the dye-sensitized solar cell module of this aspect, it is the same as that described in the above-mentioned section of “I. Dye-sensitized solar cell element A. First aspect”. Therefore, the description here is omitted.
 本態様において複数の色素増感型太陽電池素子が連結された態様としては、本態様の色素増感型太陽電池モジュールにより所望の意匠性および起電力を得ることができる態様であれば特に限定されるものではない。このような態様としては、上記色素増感型太陽電池素子が直列に連結された態様であってもよく、あるいは上記色素増感型太陽電池素子が並列に連結された態様であってもよい。 The aspect in which a plurality of dye-sensitized solar cell elements are connected in this aspect is particularly limited as long as desired design and electromotive force can be obtained by the dye-sensitized solar cell module of this aspect. It is not something. Such an embodiment may be an embodiment in which the dye-sensitized solar cell elements are connected in series, or an embodiment in which the dye-sensitized solar cell elements are connected in parallel.
 また、複数の上記色素増感型太陽電池素子が連結された態様としては、一対の基板の間に複数の上記色素増感型太陽電池素子が形成された態様であってもよく、あるいは、それぞれ別個独立に形成された上記色素増感型太陽電池素子が外部配線等によって連結された態様であってもよい。 In addition, the aspect in which a plurality of the dye-sensitized solar cell elements are connected may be an aspect in which a plurality of the dye-sensitized solar cell elements are formed between a pair of substrates. The said dye-sensitized solar cell element formed independently may be the aspect connected with external wiring etc.
 B.第4態様
 本態様の色素増感型太陽電池モジュールは、電極としての機能を備えた第1電極基材、および上記第1電極基材上に形成され、金属酸化物半導体微粒子を含む酸化物半導体膜の表面に、色素増感剤が坦持された酸化物半導体層を有する酸化物半導体電極基板と、少なくとも電極としての機能を備えた第2電極基材を有する対極基板とが、上記酸化物半導体層および上記第2電極基材が対向するように配置され、上記酸化物半導体電極基板および上記対極基板の間に酸化還元対を含む電解質層が形成されており、上記酸化物半導体層が、膜厚が異なり、細孔径が異なる少なくとも2つの領域を有し、上記少なくとも2つの領域が同一組成の粒子群からなる色素増感型太陽電池素子が複数個直列または並列に接続されてなるものである。
B. 4th aspect The dye-sensitized solar cell module of this aspect is a 1st electrode base material provided with the function as an electrode, and the oxide semiconductor formed on the said 1st electrode base material and containing a metal oxide semiconductor fine particle An oxide semiconductor electrode substrate having an oxide semiconductor layer carrying a dye sensitizer on the surface of the film, and a counter electrode substrate having at least a second electrode base material having a function as an electrode, The semiconductor layer and the second electrode base material are disposed so as to face each other, and an electrolyte layer including a redox pair is formed between the oxide semiconductor electrode substrate and the counter electrode substrate. A plurality of dye-sensitized solar cell elements each having at least two regions having different film thicknesses and different pore diameters, wherein the at least two regions are composed of particles having the same composition are connected in series or in parallel. is there.
 本態様においては、酸化物半導体層が、膜厚および細孔径が異なる少なくとも2つの領域を有することにより、上記少なくとも2つの領域の膜厚および細孔径の差異に相当する分の色の濃淡を表すことが可能となる。すなわち、上記酸化物半導体層を用いることにより、意匠性に優れた色素増感型太陽電池モジュールとすることができる。
 また、上記酸化物半導体層における膜厚および細孔径が異なる少なくとも2つの領域を構成する粒子が同一組成であることから、優れた意匠性を有する色素増感型太陽電池モジュールを得るために、組成が異なる複数種類の粒子を用いる必要がないため、従来よりもコストを抑えることができる。
 さらに、上記酸化物半導体層の少なくとも2つの領域を構成する粒子が同一組成であることにより、製造工程において、上記酸化物半導体膜形成用塗工液の塗布工程を複数回設ける必要がなく、領域毎に異なる種類の粒子を使い分ける必要もなくなり、優れた意匠性を有する色素増感型太陽電池モジュールを簡易に製造することが可能となる。
In this embodiment, the oxide semiconductor layer has at least two regions having different film thicknesses and pore diameters, thereby expressing the color shading corresponding to the difference between the film thicknesses and the pore diameters of the at least two regions. It becomes possible. That is, by using the oxide semiconductor layer, a dye-sensitized solar cell module excellent in design can be obtained.
In addition, since the particles constituting at least two regions having different film thicknesses and pore diameters in the oxide semiconductor layer have the same composition, in order to obtain a dye-sensitized solar cell module having excellent design properties Since it is not necessary to use a plurality of types of particles having different values, the cost can be reduced as compared with the prior art.
Further, since the particles constituting at least two regions of the oxide semiconductor layer have the same composition, it is not necessary to provide the coating process of the coating solution for forming the oxide semiconductor film multiple times in the manufacturing process. It is not necessary to use different types of particles for each, and a dye-sensitized solar cell module having excellent design can be easily manufactured.
 なお、本態様の色素増感型太陽電池モジュールに用いられる色素増感型太陽電池素子については、上記「I.色素増感型太陽電池素子 B.第2態様」の項において説明したものと同様であるため、ここでの説明は省略する。 In addition, about the dye-sensitized solar cell element used for the dye-sensitized solar cell module of this aspect, it is the same as what was demonstrated in the above-mentioned item of "I. Dye-sensitized solar cell element B. 2nd aspect". Therefore, the description here is omitted.
 また、本態様の色素増感型太陽電池モジュールについては、上記「A.第3態様」の項で説明したものと同様とすることができるので、ここでの説明は省略する。 In addition, the dye-sensitized solar cell module of this embodiment can be the same as that described in the above section “A. Third Embodiment”, so description thereof is omitted here.
 III.色素増感型太陽電池素子の製造方法
 本発明の色素増感型太陽電池素子の製造方法は、上述した第1態様および第2態様に記載の色素増感型太陽電池素子を製造する色素増感型太陽電池素子の製造方法であって、第1電極基材上に、金属酸化物半導体微粒子を含む酸化物半導体膜を形成し、上記酸化物半導体膜表面に色素増感剤が坦持された上記酸化物半導体層を形成することにより、上記酸化物半導体電極基板を形成する酸化物半導体電極基板形成工程と、上記第2電極基材を有する上記対極基板を準備する対極基板準備工程と、上記酸化物半導体電極基板と上記対極基板とを、上記電解質層を介して対向するように配置して、色素増感型太陽電池素子を組み立てる色素増感型太陽電池素子組み立て工程と、を有し、上記酸化物半導体電極基板形成工程が、上記酸化物半導体膜を部分的に加圧する工程または上記酸化物半導体膜を部分的に異なる圧力で加圧する工程のいずれかの加圧工程を有することを特徴とする製造方法である。
 以下、図を参照しながら説明する。
III. Method for Producing Dye-Sensitized Solar Cell Element The method for producing the dye-sensitized solar cell element of the present invention is a dye-sensitized method for producing the dye-sensitized solar cell element according to the first and second aspects described above. Type solar cell element manufacturing method, wherein an oxide semiconductor film containing metal oxide semiconductor fine particles is formed on a first electrode substrate, and a dye sensitizer is carried on the surface of the oxide semiconductor film By forming the oxide semiconductor layer, an oxide semiconductor electrode substrate forming step for forming the oxide semiconductor electrode substrate, a counter electrode substrate preparing step for preparing the counter electrode substrate having the second electrode base material, A dye-sensitized solar cell element assembly step for assembling a dye-sensitized solar cell element by disposing the oxide semiconductor electrode substrate and the counter electrode substrate so as to face each other with the electrolyte layer interposed therebetween, Oxide semiconductor electrode group In the manufacturing method, the plate forming step includes a pressing step of either partially pressing the oxide semiconductor film or partially pressing the oxide semiconductor film with a different pressure. is there.
Hereinafter, description will be given with reference to the drawings.
 図4は、本発明の色素増感型太陽電池素子の製造方法の一例を示す概略工程図である。
 図4に示すように、本発明の色素増感型太陽電池素子の製造方法は、第1電極基材10上に金属酸化物半導体微粒子を含む酸化物半導体膜11を形成する酸化物半導体膜形成工程(図4(a))、上記酸化物半導体膜11に金型4を用いて圧力を加える加圧工程(図4(b))、および加圧された上記酸化物半導体膜11の表面に色素増感剤12を担持させ、酸化物半導体層を形成する酸化物半導体層形成工程(図4(c))を有する酸化物半導体電極基板形成工程と、酸化物半導体電極基板1の色素増感剤12が担持された面側に電解質層2を形成し(電解質層形成工程(図4(d)))、上記電解質層2を介して酸化物半導体電極基板1と対極基板3とが対向するように組み立てる色素増感型太陽電池組み立て工程(図4(e))とを有するものである。
 なお、図4における加圧工程(図4(b))では、酸化物半導体膜11において、一の圧力で加圧される領域と一の圧力とは異なる他の圧力で加圧される領域とが形成されるように金型4を用いたが、酸化物半導体膜を部分的に加圧して、上記酸化物半導体膜において加圧される領域と加圧されない領域とを形成してもよい。
FIG. 4 is a schematic process diagram showing an example of a method for producing a dye-sensitized solar cell element of the present invention.
As shown in FIG. 4, in the method for manufacturing a dye-sensitized solar cell element of the present invention, an oxide semiconductor film is formed by forming an oxide semiconductor film 11 containing metal oxide semiconductor fine particles on a first electrode substrate 10. Step (FIG. 4A), pressurizing step of applying pressure to the oxide semiconductor film 11 using the mold 4 (FIG. 4B), and the surface of the pressurized oxide semiconductor film 11 An oxide semiconductor electrode substrate forming step having an oxide semiconductor layer forming step (FIG. 4C) for supporting the dye sensitizer 12 and forming an oxide semiconductor layer, and a dye sensitization of the oxide semiconductor electrode substrate 1 The electrolyte layer 2 is formed on the surface side on which the agent 12 is supported (electrolyte layer forming step (FIG. 4D)), and the oxide semiconductor electrode substrate 1 and the counter electrode substrate 3 face each other with the electrolyte layer 2 interposed therebetween. A dye-sensitized solar cell assembly process (FIG. 4 (e)) Is shall.
Note that in the pressurizing step in FIG. 4 (FIG. 4B), in the oxide semiconductor film 11, a region pressurized with one pressure and a region pressurized with another pressure different from the one pressure However, the oxide semiconductor film may be partially pressurized to form a pressurized region and a non-pressurized region in the oxide semiconductor film.
 本発明においては、酸化物半導体電極基板形成工程が、酸化物半導体膜を部分的に加圧する工程または酸化物半導体膜を部分的に異なる圧力で加圧する工程のいずれかの工程を有することにより、上記酸化物半導体膜において、加圧される領域および加圧されない領域、または一の圧力で加圧される領域および一の圧力とは異なる圧力で加圧される領域を、それぞれ形成することができる。上記酸化物半導体膜は、加圧されることにより細孔径が小さくなる。したがって、上記酸化物半導体膜における各領域は、加圧の有無または加圧する圧力の大きさに相当する分だけの細孔径の差異を出すことができ、これにより各領域の透過率に差異を出すことが可能となる。すなわち、各領域の透過率の差異に相当する分の色の濃淡を表すことが可能となるため、意匠性に優れた色素増感型太陽電池素子を製造することが可能となる。 In the present invention, the oxide semiconductor electrode substrate forming step includes either a step of partially pressing the oxide semiconductor film or a step of partially pressing the oxide semiconductor film with a different pressure. In the oxide semiconductor film, a pressurized region and a non-pressed region, or a region pressurized with one pressure and a region pressurized with a pressure different from the one pressure can be formed, respectively. . The oxide semiconductor film has a small pore size when pressurized. Accordingly, each region in the oxide semiconductor film can have a difference in pore diameter corresponding to the presence or absence of pressurization or the magnitude of the pressure to be pressed, and thus the transmittance in each region is different. It becomes possible. That is, since it is possible to represent the shade of the color corresponding to the difference in the transmittance of each region, it is possible to manufacture a dye-sensitized solar cell element excellent in design.
 従来では、優れた意匠性を有する色素増感型太陽電池素子を製造するために、複数の製造工程を用いていたが、本発明では、上記酸化物半導体膜を加圧する工程を有することで、色素増感型太陽電池素子に優れた意匠性を付与することが可能となる。すなわち、より簡易な方法で、意匠性に優れた色素増感型太陽電池素子を製造することができる。 Conventionally, in order to produce a dye-sensitized solar cell element having excellent design properties, a plurality of production steps were used.In the present invention, by having a step of pressurizing the oxide semiconductor film, It is possible to impart excellent design properties to the dye-sensitized solar cell element. That is, a dye-sensitized solar cell element excellent in design can be manufactured by a simpler method.
 また、図5に示すように、第1電極基材10上に形成された酸化物半導体膜11が複数層(ここでは11Aおよび11Bの2層)からなる場合においても、上記酸化物半導体膜11は、加圧の有無または加圧する圧力の大きさに相当する分だけの粒子の細孔径の差異を出すことができ、これにより各領域の透過率に差異を出すことが可能となる。すなわち、粒子の細孔径および透過率が異なる領域を有する上記酸化物半導体膜11に色素増感剤12を担持させることで、各領域の粒子の細孔径および透過率の差異に相当する分の色の濃淡を表すことが可能となり、これにより意匠性に優れた色素増感型太陽電池素子100を製造することが可能となる。
 また、本発明は、加圧工程(図5(b))によって、各層を一体とすることができる。すなわち、図5の(a)~(c)に示すように、酸化物半導体膜11Aおよび11Bの界面における間隙等の発生を防止し、酸化物半導体膜11と第1電極基材10との密着性を向上させることができる。
 さらに、加圧工程(図5(b))によって、上記酸化物半導体膜11の表面を平滑にすることができるため、上記酸化物半導体膜11に色素増感剤12を担持した酸化物半導体層13と電解質層2との密着性を向上させることができる。これにより、電荷の移動度が上昇し、高い発電効率を有する色素増感型太陽電池素子を製造することが可能となる。
 なお、図5において説明していない符号については、図4と同様とすることができるため、ここでの説明は省略する。
 以下、本発明の色素増感型太陽電池素子の製造方法の各工程についてそれぞれ説明する。
As shown in FIG. 5, the oxide semiconductor film 11 is formed even when the oxide semiconductor film 11 formed on the first electrode substrate 10 is composed of a plurality of layers (here, two layers 11A and 11B). Can give a difference in the pore diameter of the particles corresponding to the presence or absence of pressurization or the magnitude of the pressurization pressure, thereby making it possible to make a difference in the transmittance of each region. That is, by supporting the dye sensitizer 12 on the oxide semiconductor film 11 having regions where the pore diameter and transmittance of the particles are different, colors corresponding to the difference in the pore diameter and transmittance of the particles in each region. This makes it possible to manufacture the dye-sensitized solar cell element 100 having excellent design properties.
Moreover, this invention can integrate each layer by a pressurization process (FIG.5 (b)). That is, as shown in FIGS. 5A to 5C, generation of a gap or the like at the interface between the oxide semiconductor films 11A and 11B is prevented, and the adhesion between the oxide semiconductor film 11 and the first electrode substrate 10 is prevented. Can be improved.
Furthermore, since the surface of the oxide semiconductor film 11 can be smoothed by the pressurizing step (FIG. 5B), the oxide semiconductor layer carrying the dye sensitizer 12 on the oxide semiconductor film 11 The adhesion between the electrolyte layer 13 and the electrolyte layer 2 can be improved. As a result, the charge mobility is increased, and a dye-sensitized solar cell element having high power generation efficiency can be manufactured.
Note that reference numerals not described in FIG. 5 can be the same as those in FIG.
Hereinafter, each process of the manufacturing method of the dye-sensitized solar cell element of this invention is each demonstrated.
 A.酸化物半導体電極基板形成工程
 本発明における酸化物半導体電極基板形成工程は、第1電極基材上に、金属酸化物半導体微粒子を含む酸化物半導体膜を形成し、上記酸化物半導体膜表面に色素増感剤が坦持された酸化物半導体層を形成することにより、酸化物半導体電極基板を形成する工程であり、上記酸化物半導体膜を部分的に加圧する工程または上記酸化物半導体膜を部分的に異なる圧力で加圧する工程のいずれかの加圧工程を有する工程である。
 以下、上記酸化物半導体電極基板形成工程に含まれる加圧工程、第1電極基材を準備する工程(以下、第1電極基材準備工程と称して説明する。)、酸化物半導体膜を形成する工程(以下、酸化物半導体膜形成工程と称して説明する。)、および酸化物半導体層を形成する工程(以下、酸化物半導体層形成工程と称して説明する。)に分けて説明する。
A. Oxide Semiconductor Electrode Substrate Formation Step In the oxide semiconductor electrode substrate formation step of the present invention, an oxide semiconductor film containing metal oxide semiconductor fine particles is formed on a first electrode base material, and a dye is formed on the surface of the oxide semiconductor film. A step of forming an oxide semiconductor electrode substrate by forming an oxide semiconductor layer carrying a sensitizer, wherein the oxide semiconductor film is partially pressurized or the oxide semiconductor film is partially formed It is a process which has one of the pressurization processes of the process of pressurizing with a different pressure.
Hereinafter, a pressurizing step included in the oxide semiconductor electrode substrate forming step, a step of preparing a first electrode base material (hereinafter referred to as a first electrode base material preparing step), and forming an oxide semiconductor film. The description will be divided into a step (hereinafter referred to as an oxide semiconductor film formation step) and a step of forming an oxide semiconductor layer (hereinafter referred to as an oxide semiconductor layer formation step).
 1.加圧工程
 本発明における加圧工程は、酸化物半導体膜を部分的に加圧する工程、または上記酸化物半導体膜を部分的に異なる圧力で加圧する工程である。
1. Pressurization Step The pressurization step in the present invention is a step of partially pressurizing the oxide semiconductor film or a step of partially pressing the oxide semiconductor film with a different pressure.
 本工程における加圧方法としては、酸化物半導体膜に対して所望も圧力をかけることができる方法であれば特に限定されない。例えば、プレス処理をあげることができる。上記プレス処理としては、具体的に、ロールプレス加工または平板プレス加工等を挙げることができ、中でもロールプレス加工が好ましい。 The pressurizing method in this step is not particularly limited as long as it can apply a desired pressure to the oxide semiconductor film. For example, a press process can be mentioned. Specific examples of the press treatment include roll press work or flat plate press work, and roll press work is particularly preferable.
 上記ロールプレス加工とは、凹凸パターンのある回転ローラーを押し当てることにより、表面に所望の凹凸構造を成型する転造式加工である。また、ロールプレス加工は、被成型体がロールプレス機中の回転ローラーを複数回通過することにより、表面に凹凸構造を成型するものである。 The roll press process is a rolling process that forms a desired concavo-convex structure on the surface by pressing a rotating roller having a concavo-convex pattern. Further, in the roll press process, a concavo-convex structure is formed on the surface of the molding object by passing a rotating roller in the roll press machine a plurality of times.
 図6は、ロールプレス加工の一例を示す概略図である。図6に示すように、ロールプレス機200は、被成型体側回転ローラー6と、被成型体側回転ローラー6に配置された被成型体に接触するように配置された凹凸パターンの金型4とを有するものである。図6では、被成型体として、表面に酸化物半導体膜11を有する第1電極基材10が配置され、上記酸化物半導体膜11と接するように凹凸パターンの金型4を有する回転ローラー5が設けられている。上記酸化物半導体膜11と接するように設けられた回転ローラー5が回転することによって、上記回転ローラー5に設置された凹凸パターンの金型4が上記酸化物半導体膜11に押し付けられる。 FIG. 6 is a schematic view showing an example of roll press processing. As shown in FIG. 6, the roll press machine 200 includes a molding target side rotation roller 6 and a concave / convex pattern mold 4 arranged so as to contact the molding target arranged on the molding target side rotation roller 6. I have it. In FIG. 6, the first electrode base material 10 having the oxide semiconductor film 11 on the surface is disposed as the object to be molded, and the rotating roller 5 having the concavo-convex pattern mold 4 so as to be in contact with the oxide semiconductor film 11. Is provided. When the rotating roller 5 provided so as to be in contact with the oxide semiconductor film 11 rotates, the mold 4 having an uneven pattern provided on the rotating roller 5 is pressed against the oxide semiconductor film 11.
 このようなロールプレス加工をすることにより、定位・定圧プレスが可能となり、成型体の厚みを均一化することができる。 By carrying out such roll press processing, it becomes possible to perform orientation / constant pressure pressing, and the thickness of the molded body can be made uniform.
 上記回転ローラー表面に設けられる凹凸パターンの金型の断面形状、高さ、幅、周期としては、上述した酸化物半導体膜の膜厚や、色素増感型太陽電池素子に表す模様やデザインに応じて適宜調製されるものである。 The cross-sectional shape, height, width, and period of the concavo-convex pattern mold provided on the surface of the rotating roller depend on the thickness of the oxide semiconductor film described above and the pattern and design represented in the dye-sensitized solar cell element. Are appropriately prepared.
 また、上記酸化物半導体膜が、一の圧力で加圧される領域および一の圧力とは異なる他の圧力で加圧される領域を有する際の、上記一の圧力と他の圧力との差としては、酸化物半導体膜の材料や色素増感剤を担持させたときに現れる色の濃淡の選択等によって適宜調整されるものであり、特に限定されるものではない。本態様においては、例えば、0.001t/cm~5t/cmの範囲内であることが好ましく、中でも0.005t/cm~1t/cmの範囲内であることが好ましく、特に0.01t/cm~0.1t/cmの範囲内であることが好ましい。 The difference between the one pressure and the other pressure when the oxide semiconductor film has a region pressurized with one pressure and a region pressurized with another pressure different from the one pressure. Are appropriately adjusted depending on the selection of the density of the color that appears when the oxide semiconductor film material or the dye sensitizer is supported, and is not particularly limited. In this embodiment, for example, it is preferably in the range of 0.001 t / cm to 5 t / cm, more preferably in the range of 0.005 t / cm to 1 t / cm, particularly 0.01 t / cm. It is preferably in the range of ˜0.1 t / cm.
 さらに、上記酸化物半導体膜が、加圧される領域および加圧されない領域を有する際の、加圧される領域に加えられる圧力としては、酸化物半導体膜の材料や色素増感剤を担持させたときに現れる色の濃淡の選択等によって適宜調整されるものであり、特に限定されるものではない。本態様においては、例えば、0.001t/cm~5t/cmの範囲内であることが好ましく、中でも0.005t/cm~1t/cmの範囲内であることが好ましく、特に0.03t/cm~0.1t/cmの範囲内であることが好ましい。 Further, when the oxide semiconductor film has a pressurized region and a non-pressurized region, the pressure applied to the pressurized region may be a material supporting the oxide semiconductor film or a dye sensitizer. The color is appropriately adjusted depending on the selection of the shade of the color that appears, and is not particularly limited. In this embodiment, for example, it is preferably in the range of 0.001 t / cm to 5 t / cm, more preferably in the range of 0.005 t / cm to 1 t / cm, and particularly 0.03 t / cm. It is preferably in the range of ˜0.1 t / cm.
 なお、上記加圧工程後に焼成処理を行うことが好ましい。一般的に、焼成処理は、酸化物半導体膜に含まれる金属酸化物半導体微粒子同士を焼結させて伝導経路を形成することができ、光電変換効率を向上させることができる処理であると知られているが、加圧工程前に焼成処理を行う場合に比べて、加圧工程後に焼成処理を行う場合に、光電変換効率が向上するといった上記効果が顕著になる。
 焼成処理の好ましい焼成温度としては、第1電極基材の耐熱温度を超えない程度であれば特に限定されるものではないが、例えば、200℃~600℃の範囲内であることが好ましい。
In addition, it is preferable to perform a baking process after the said pressurization process. In general, the firing treatment is known to be a treatment that can sinter metal oxide semiconductor fine particles contained in an oxide semiconductor film to form a conduction path and improve photoelectric conversion efficiency. However, compared with the case where the baking treatment is performed before the pressurization step, the above-described effect that the photoelectric conversion efficiency is improved when the baking treatment is performed after the pressurization step.
A preferable firing temperature for the firing treatment is not particularly limited as long as it does not exceed the heat resistance temperature of the first electrode substrate, but it is preferably in the range of 200 ° C. to 600 ° C., for example.
 2.第1電極基材準備工程
 本発明の色素増感型太陽電池素子の製造方法における第1電極基材準備工程は、基材上に第1電極層を準備する工程である。
2. 1st electrode base material preparation process The 1st electrode base material preparation process in the manufacturing method of the dye-sensitized solar cell element of this invention is a process of preparing a 1st electrode layer on a base material.
 基材上に第1電極層を形成する方法としては、一般的な方法を用いることができ、例えば、蒸着法、スパッタリング法、CVD法等を挙げることができる。本発明においては、中でもスパッタリング法であることが好ましい。 As a method for forming the first electrode layer on the substrate, a general method can be used, and examples thereof include a vapor deposition method, a sputtering method, and a CVD method. In the present invention, the sputtering method is particularly preferable.
 本工程において用いる基材としては、特に限定されるものではないが、中でもフィルム基材であることが好ましい。後述する加圧工程において、加工性に優れたフィルム基材であれば容易に加圧処理を行うことができるからでる。
 なお、本工程に用いられる第1電極基材の材料等については、上記「I.色素増感型太陽電池素子 A.第1態様 1.酸化物半導体電極基板 (2)第1電極基材」の項に記載したものと同様とすることができるので、ここでの説明は省略する。
Although it does not specifically limit as a base material used in this process, A film base material is preferable especially. This is because, in the pressurizing step described later, a pressurizing process can be easily performed as long as the film substrate has excellent workability.
In addition, about the material of the 1st electrode base material used for this process, said "I. Dye-sensitized solar cell element A. 1st aspect 1. Oxide semiconductor electrode substrate (2) 1st electrode base material" Since it can be the same as that described in the section, the explanation here is omitted.
 3.酸化物半導体膜形成工程
 本発明の色素増感型太陽電池素子の製造方法における酸化物半導体膜形成工程は、第1電極基材上に、金属酸化物半導体微粒子を含有した酸化物半導体膜を形成する工程である。
3. Oxide semiconductor film formation process The oxide semiconductor film formation process in the manufacturing method of the dye-sensitized solar cell element of the present invention forms an oxide semiconductor film containing metal oxide semiconductor fine particles on the first electrode substrate. It is a process to do.
 本工程において、酸化物半導体膜を形成する方法としては、特に限定されないが、例えば、金属酸化物半導体微粒子を適当な溶媒に分散または溶解させた酸化物半導体膜形成用塗工液を、第1電極基材上に塗布し、乾燥させることにより酸化物半導体膜を形成する方法が挙げられる。 In this step, the method for forming the oxide semiconductor film is not particularly limited. For example, a coating liquid for forming an oxide semiconductor film in which metal oxide semiconductor fine particles are dispersed or dissolved in an appropriate solvent is used as the first method. A method of forming an oxide semiconductor film by coating on an electrode substrate and drying is exemplified.
 このような形成方法において、上記酸化物半導体膜形成用塗工液を塗布する方法としては、一般的な塗布方法であれば特に限定されないが、具体的には、ダイコート法、グラビアコート法、グラビアリバースコート法、ロールコート法、リバースロールコート法、バーコート法、ブレードコート法、ナイフコート法、エアナイフコート法、スロットダイコート法、スライドダイコート法、ディップコート法、マイクロバーコート法、マイクロバーリバースコート法や、スクリーン印刷(ロータリー方式)等を挙げることができる。
 このような塗布法を用い、酸化物半導体膜形成用塗工液を塗布および乾燥させることにより、酸化物半導体膜を形成することができる。
In such a forming method, the method for applying the coating liquid for forming an oxide semiconductor film is not particularly limited as long as it is a general application method. Specifically, a die coating method, a gravure coating method, a gravure method, and the like. Reverse coating method, roll coating method, reverse roll coating method, bar coating method, blade coating method, knife coating method, air knife coating method, slot die coating method, slide die coating method, dip coating method, micro bar coating method, micro bar reverse coating And screen printing (rotary method).
An oxide semiconductor film can be formed by applying and drying a coating liquid for forming an oxide semiconductor film using such a coating method.
 酸化物半導体膜形成工程に用いられる金属酸化物半導体微粒子についての詳しい記載については、「I.色素増感型太陽電池素子 A.第1態様 1.酸化物半導体電極基板 (1)酸化物半導体膜」の項と同様とすることができるので、ここでの説明は省略する。 For the detailed description of the metal oxide semiconductor fine particles used in the oxide semiconductor film forming step, refer to “I. Dye-sensitized solar cell element A. First aspect 1. Oxide semiconductor electrode substrate (1) Oxide semiconductor film” The description is omitted here since it can be the same as that in the section "."
 4.酸化物半導体層形成工程
 本発明の色素増感型太陽電池素子の製造方法における酸化物半導体層形成工程は、上述した酸化物半導体膜の表面に、色素増感剤が担持された酸化物半導体層を形成する工程である。
4). Oxide Semiconductor Layer Forming Step The oxide semiconductor layer forming step in the method for producing a dye-sensitized solar cell element of the present invention includes the oxide semiconductor layer in which a dye sensitizer is supported on the surface of the oxide semiconductor film described above. Is a step of forming.
 上記塗布方法により酸化物半導体膜形成用塗工液を塗布し、乾燥させることにより酸化物半導体膜を形成した後、色素増感剤を担持させる方法としては、特に限定されるものではない。本発明においては、例えば、色素増感剤の溶液に酸化物半導体膜を浸漬させ、浸透させた後、乾燥させる方法や、色素増感剤の溶液を酸化物半導体膜上に塗布し、浸透させた後、乾燥させる方法等を挙げることができる。 The method for supporting the dye sensitizer after forming the oxide semiconductor film by applying the coating liquid for forming the oxide semiconductor film by the above coating method and drying it is not particularly limited. In the present invention, for example, a method of immersing an oxide semiconductor film in a dye sensitizer solution and allowing it to penetrate, and then drying, or applying a dye sensitizer solution on the oxide semiconductor film and allowing it to penetrate. Thereafter, a drying method and the like can be mentioned.
 このような方法において、色素増感剤の溶液に使用する溶媒としては、用いる色素増感剤の種類等に応じて適宜調製されるものであり、例えば、水系溶媒、有機系溶媒等が挙げられる。 In such a method, the solvent used in the dye sensitizer solution is appropriately prepared according to the type of the dye sensitizer used, and examples thereof include an aqueous solvent and an organic solvent. .
 酸化物半導体層形成工程に用いられる色素増感剤についての詳しい記載については、「I.色素増感型太陽電池素子 A.第1態様 1.酸化物半導体電極基板 (2)酸化物半導体層」の項と同様とすることができるので、ここでの説明は省略する。 For the detailed description of the dye sensitizer used in the oxide semiconductor layer forming step, see "I. Dye-sensitized solar cell element A. First aspect 1. Oxide semiconductor electrode substrate (2) Oxide semiconductor layer" Since it can be the same as that of the term, the explanation here is omitted.
 B.対極基板準備工程
 本発明の色素増感型太陽電池素子の製造方法における対極基板準備工程は、電解質上に上述した第1電極基材と対向する電極である第2電極基材を準備する工程である。
B. Counter electrode substrate preparation step The counter electrode substrate preparation step in the method for producing the dye-sensitized solar cell element of the present invention is a step of preparing a second electrode substrate which is an electrode facing the first electrode substrate described above on the electrolyte. is there.
 第2電極基材の形成方法としては、上述した「III.色素増感型太陽電池素子の製造方法 A.酸化物半導体電極基板形成工程 2.第1電極基材準備工程」の項で説明したものと同様とすることができるため、ここでの説明は省略する。 The method for forming the second electrode substrate is described in the above-mentioned section “III. Method for producing dye-sensitized solar cell element, A. Oxide semiconductor electrode substrate forming step, 2. First electrode substrate preparing step”. Since it can be the same as that described above, the description thereof is omitted here.
 このような本工程において、第2電極基材を電解質層上に形成する方法としては、例えば、予め、第2電極基材を準備し、上記第2電極基材と電解質層とが接触するように貼り合せることにより形成する方法を挙げることができる。 In such a process, as a method for forming the second electrode substrate on the electrolyte layer, for example, a second electrode substrate is prepared in advance so that the second electrode substrate and the electrolyte layer are in contact with each other. The method of forming by bonding to can be mentioned.
 なお、第2電極基材に用いられる材料等の詳しい内容については、「I.色素増感型太陽電池素子 A.第1態様 3.対極基板」の項に記載したものと同様とすることができるので、ここでの説明は省略する。 The detailed contents of the material used for the second electrode substrate may be the same as those described in the section “I. Dye-sensitized solar cell element A. First aspect 3. Counter electrode substrate”. Since it is possible, description here is abbreviate | omitted.
 C.電解質層を形成する工程
 本発明の色素増感型太陽電池素子の製造方法における電解質層を形成する工程(以下、電解質層形成工程と称して説明する。)は、受光された太陽光によって生成された電荷を、酸化物半導体電極基板内の第1電極基材側に移動させる機能を有する電解質層を、酸化物半導体層上に形成する工程である。
C. Step of Forming Electrolyte Layer The step of forming the electrolyte layer in the method for producing the dye-sensitized solar cell element of the present invention (hereinafter referred to as the electrolyte layer forming step) is generated by received sunlight. In this step, an electrolyte layer having a function of moving the charged charges toward the first electrode base in the oxide semiconductor electrode substrate is formed on the oxide semiconductor layer.
 本工程において、上記電解質層を形成する方法としては、厚み精度よく形成できる方法であれば特に限定されるものではなく、上記電解質層が固体状であるか、ゲル状であるか、あるいは液体状であるかによって適宜調整されるものである。このような方法としては、上記色素増感型太陽電池素子の酸化物半導体電極基板上に電解質層を形成した後、上記電解質層上に対極基板を配置する方法(第1の方法)と、上記色素増感型太陽電池素子の対極基板上に電解質層を形成した後、上記電解質層上に酸化物半導体電極基板を配置する方法(第2の方法)と、上記酸化物半導体電極基板と対極基板とを対向するように配置した後、上記酸化部半導体電極基板と対極基板との間に電解質層を形成する方法(第3の方法)と、を挙げることができる。 In this step, the method for forming the electrolyte layer is not particularly limited as long as it can be formed with high thickness accuracy. The electrolyte layer is solid, gel, or liquid. It is appropriately adjusted depending on whether or not. As such a method, after forming an electrolyte layer on the oxide semiconductor electrode substrate of the dye-sensitized solar cell element, a method of arranging a counter electrode substrate on the electrolyte layer (first method), and A method (second method) of disposing an oxide semiconductor electrode substrate on the electrolyte layer after forming an electrolyte layer on the counter electrode substrate of the dye-sensitized solar cell element, and the oxide semiconductor electrode substrate and the counter electrode substrate And a method of forming an electrolyte layer between the oxide semiconductor electrode substrate and the counter electrode substrate (third method).
 上記第1の方法としては、例えば、電解質層形成用塗工液を上記酸化物半導体電極基板上に塗布し、乾燥させることにより電解質層を形成する塗布方法を用いることができる。なお、第2の方法においても、上述のように塗布方法によって電解質層を形成する方法が挙げられる。また、上記第3の方法としては、上記色素増感型太陽電池用素子の酸化物半導体電極基板と対極基板とが対向するように所定の間隙を有して配置させ、その間隙に、電解質層形成用塗工液を注入することにより、電解質層を形成する注入方法を用いることができる。 As the first method, for example, a coating method for forming an electrolyte layer by coating a coating solution for forming an electrolyte layer on the oxide semiconductor electrode substrate and drying it can be used. The second method also includes a method of forming an electrolyte layer by a coating method as described above. Further, as the third method, the oxide semiconductor electrode substrate of the dye-sensitized solar cell element and the counter electrode substrate are disposed with a predetermined gap so as to face each other, and an electrolyte layer is disposed in the gap. An injection method for forming an electrolyte layer can be used by injecting a forming coating solution.
 上記電解質層形成用塗工液としては、電解質層に用いられる材料を適当な溶剤に分散または溶解させることにより調製することができる。 The electrolyte layer forming coating solution can be prepared by dispersing or dissolving the material used for the electrolyte layer in a suitable solvent.
 上記電解質層形成用塗工液の塗布方法としては、一般的な塗布方法であれば特に限定するものではないが、例えば、ダイコート法、グラビアコート法、グラビアリバースコート法、ロールコート法、リバースロールコート法、バーコート法、ブレードコート法、ナイフコート法、エアナイフコート法、スロットダイコート法、スライドダイコート法、ディップコート法、マイクロバーコート法、マイクロバーリバースコート法や、スクリーン印刷法などを挙げることができる。
 また、上記電解質層形成用塗工液の注入方法としては、一般的な注入方法を用いることができるため、ここでの説明は省略する。
The coating method for the electrolyte layer forming coating solution is not particularly limited as long as it is a general coating method. For example, a die coating method, a gravure coating method, a gravure reverse coating method, a roll coating method, a reverse roll List coating method, bar coating method, blade coating method, knife coating method, air knife coating method, slot die coating method, slide die coating method, dip coating method, micro bar coating method, micro bar reverse coating method, screen printing method, etc. Can do.
In addition, as a method for injecting the coating liquid for forming the electrolyte layer, since a general injection method can be used, description thereof is omitted here.
 なお、電解質層の詳しい内容については、「I.色素増感型太陽電池素子 A.第1態様 2.電解質層」の項で説明したものと同様とすることができるので、ここでの説明は省略する。 The detailed contents of the electrolyte layer can be the same as those described in the section “I. Dye-sensitized solar cell element A. First aspect 2. Electrolyte layer”. Omitted.
 D.色素増感型太陽電池素子組み立て工程
 本発明の色素増感型太陽電池素子の製造方法における色素増感型太陽電池素子組み立て工程は、上記酸化物半導体電極基板と上記対極基板とを、上記電解質層を介して組み合わせる工程である。
D. Dye-sensitized solar cell element assembling step The dye-sensitized solar cell element assembling step in the method for producing a dye-sensitized solar cell element of the present invention includes the oxide semiconductor electrode substrate and the counter electrode substrate, and the electrolyte layer. It is the process of combining via.
 なお、本発明の色素増感型太陽電池素子の製造方法によって得られる色素増感型太陽電池素子については、上述した「I.色素増感型太陽電池素子」の項に記載されたものと同様とすることができる。 In addition, about the dye-sensitized solar cell element obtained by the manufacturing method of the dye-sensitized solar cell element of this invention, it is the same as that described in the above-mentioned item of "I. Dye-sensitized solar cell element". It can be.
 IV.酸化物半導体電極基板
 本発明の酸化物半導体電極基板は、2つの態様を有する。
 以下、第5態様と第6態様とに分けてそれぞれ説明する。
IV. Oxide Semiconductor Electrode Substrate The oxide semiconductor electrode substrate of the present invention has two aspects.
Hereinafter, the fifth aspect and the sixth aspect will be described separately.
 A.第5態様
 本態様の酸化物半導体電極基板は、電極としての機能を備えた第1電極基材、および上記第1電極基材上に形成され、金属酸化物半導体微粒子を含む酸化物半導体膜の表面に、色素増感剤が坦持された酸化物半導体層を有し、上記酸化物半導体層が、膜厚が異なり、透過率が異なる少なくとも2つの領域を有し、上記少なくとも2つの領域が一体に形成されたものである。
A. Fifth Aspect The oxide semiconductor electrode substrate according to the present aspect includes a first electrode base material having a function as an electrode, and an oxide semiconductor film formed on the first electrode base material and including metal oxide semiconductor fine particles. It has an oxide semiconductor layer carrying a dye sensitizer on the surface, the oxide semiconductor layer has at least two regions having different thicknesses and different transmittances, and the at least two regions are It is formed integrally.
 本態様においては、酸化物半導体層が、膜厚および透過率が異なる少なくとも2つの領域を有することにより、上記少なくとも2つの領域の膜厚および透過率の差異に相当する分の色の濃淡を表すことが可能となる。すなわち、上記酸化物半導体層を用いることにより、意匠性に優れた酸化物半導体電極基板とすることができる。 In this embodiment, the oxide semiconductor layer has at least two regions having different film thicknesses and transmittances, thereby expressing color shading corresponding to the difference between the film thicknesses and transmittances of the at least two regions. It becomes possible. That is, by using the oxide semiconductor layer, an oxide semiconductor electrode substrate with excellent design can be obtained.
 なお、本態様の酸化物半導体電極基板については、上述した「I.色素増感型太陽電池素子 A.第1態様 1.酸化物半導体電極基板」の項で説明したものと同様とすることができるので、ここでの説明は省略する。 The oxide semiconductor electrode substrate of this embodiment may be the same as that described in the above-mentioned section “I. Dye-sensitized solar cell element A. First embodiment 1. Oxide semiconductor electrode substrate”. Since it is possible, description here is abbreviate | omitted.
 B.第6態様
 本態様の酸化物半導体電極基板は、電極としての機能を備えた第1電極基材、および上記第1電極基材上に形成され、金属酸化物半導体微粒子を含む酸化物半導体膜の表面に、色素増感剤が担持された酸化物半導体層を有し、上記酸化物半導体層が、膜厚が異なり、細孔径が異なる少なくとも2つの領域を有し、上記少なくとも2つの領域が同一組成の粒子群からなるものである。
B. Sixth Aspect The oxide semiconductor electrode substrate according to the present aspect includes a first electrode base material having a function as an electrode, and an oxide semiconductor film formed on the first electrode base material and including metal oxide semiconductor fine particles. It has an oxide semiconductor layer carrying a dye sensitizer on its surface, the oxide semiconductor layer has at least two regions with different thicknesses and different pore sizes, and the at least two regions are the same It consists of a group of particles having a composition.
 本態様においては、酸化物半導体層が、膜厚および細孔径が異なる少なくとも2つの領域を有することにより、上記少なくとも2つの領域の膜厚および細孔径の差異に相当する分の色の濃淡を表すことが可能となる。すなわち、上記酸化物半導体層を用いることにより、意匠性に優れた色素増感型太陽電池素子を得ることができる。
 また、上記酸化物半導体膜における上記少なくとも2つの領域を構成する粒子が同一組成であることから、上記酸化物半導体電極基板を用いて優れた意匠性を有する色素増感型太陽電池素子を得るために、組成が異なる複数種類の粒子を領域毎に使い分ける必要がなく、従来よりもコストを抑えることができる。
In this embodiment, the oxide semiconductor layer has at least two regions having different film thicknesses and pore diameters, thereby expressing the color shading corresponding to the difference between the film thicknesses and the pore diameters of the at least two regions. It becomes possible. That is, by using the oxide semiconductor layer, a dye-sensitized solar cell element excellent in design can be obtained.
In addition, since the particles constituting the at least two regions in the oxide semiconductor film have the same composition, in order to obtain a dye-sensitized solar cell element having excellent design properties using the oxide semiconductor electrode substrate In addition, it is not necessary to use a plurality of types of particles having different compositions for each region, and the cost can be reduced as compared with the prior art.
 なお、本態様の酸化物半導体電極基板については、上述した「I.色素増感型太陽電池素子 B.第2態様 1.酸化物半導体電極基板」の項で説明したものと同様とすることができるので、ここでの説明は省略する。 The oxide semiconductor electrode substrate of this embodiment may be the same as that described in the section of “I. Dye-sensitized solar cell element B. Second embodiment 1. Oxide semiconductor electrode substrate” described above. Since it is possible, description here is abbreviate | omitted.
 本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.
 以下、実施例をあげて本発明を具体的に説明する。 Hereinafter, the present invention will be specifically described with reference to examples.
[実施例1]
 (酸化物半導体電極基板形成工程)
 ・第1電極基材の準備
 まず、厚み50μmのTi箔(竹内金属箔工業株式会社)を準備した。
[Example 1]
(Oxide semiconductor electrode substrate formation process)
-Preparation of 1st electrode base material First, 50-micrometer-thick Ti foil (Takeuchi Metal Foil Industry Co., Ltd.) was prepared.
 ・酸化物半導体膜形成用塗工液の調製
 次いで、金属酸化物半導体微粒子P25(日本エアロジル社製、商品名:P25)をエタノールに投入し、さらに0.5%のエチルセルロースSTD‐100(日新化成工業株式会社)を混合させて酸化物半導体膜形成用塗工液を調製した。
-Preparation of coating solution for forming oxide semiconductor film Next, metal oxide semiconductor fine particles P25 (manufactured by Nippon Aerosil Co., Ltd., trade name: P25) were added to ethanol, and 0.5% ethylcellulose STD-100 (Nisshin) Kasei Kogyo Co., Ltd.) was mixed to prepare a coating liquid for forming an oxide semiconductor film.
 ・酸化物半導体膜の形成
 上記作製した酸化物半導体層形成用塗工液を、上記第1電極基材である上記Ti箔上にバーコート法により塗布し、その後、120℃で乾燥させることで、上記第1電極基材上に金属酸化物半導体微粒子を含む酸化物半導体膜を形成した。
 この時の、酸化物半導体膜の膜厚は11μmであった。
 また、透過率は57.8%であり、細孔径(細孔径の最大ピーク)は19nmであった。
 さらに、比表面積は52.7m/gであった。
-Formation of oxide semiconductor film By applying the prepared coating liquid for forming an oxide semiconductor layer on the Ti foil as the first electrode base material by a bar coating method, and then drying at 120 ° C. An oxide semiconductor film containing metal oxide semiconductor fine particles was formed on the first electrode substrate.
At this time, the thickness of the oxide semiconductor film was 11 μm.
Further, the transmittance was 57.8%, and the pore diameter (maximum peak of pore diameter) was 19 nm.
Furthermore, the specific surface area was 52.7 m 2 / g.
 ・加圧工程
 その後、上記金属酸化物半導体膜にロールプレス機を用いて圧力0.05t/cm、速度1m/minで圧力を加えた。なお、上記ロールプレス機のプレスロールには、幅1mm、深さ500μmの深さで「DNP」という文字が削られて配置されてある。
 プレス後、500℃で30分間焼成した。
 この時、加圧された酸化物半導体膜(「DNP」という文字以外の領域)の膜厚は7μmであった。
 また、加圧された酸化物半導体膜の透過率は、65%であり、細孔径(細孔径の最大ピーク)は12nmであった。
 さらに、プレス後の比表面積は47.7m/gであった。
-Pressure process Then, the pressure was applied to the said metal oxide semiconductor film with the pressure of 0.05 t / cm, and the speed | rate of 1 m / min using the roll press machine. The press roll of the roll press machine has a character “DNP” cut and arranged at a depth of 1 mm in width and 500 μm in depth.
After pressing, it was baked at 500 ° C. for 30 minutes.
At this time, the film thickness of the pressurized oxide semiconductor film (a region other than the letters “DNP”) was 7 μm.
Further, the transmittance of the pressurized oxide semiconductor film was 65%, and the pore diameter (maximum peak of pore diameter) was 12 nm.
Furthermore, the specific surface area after pressing was 47.7 m 2 / g.
 ・酸化物半導体層形成工程
 次に、色素増感剤として有機色素(Dyesol社製、商品名:N719)を、濃度が0.3mMとなるようにアセトニトリル、およびtert-ブチルアルコールの体積比1:1溶液に溶解させて色素担持用塗工液を調製した。この色素担持用塗工液に対し、上述の金属酸化物半導体微粒子を含む酸化物半導体膜を形成した第1電極基材を20時間浸漬させた。その後、色素担持用塗工液から引き上げ、金属酸化物半導体微粒子に付着した色素担持用塗工液をアセトニトリルにより洗浄後、風乾した。これにより、金属酸化物半導体微粒子の細孔表面に色素増感剤を担持させ、酸化物半導体層を形成し、これを酸化物半導体電極基板とした。
-Oxide semiconductor layer formation step Next, an organic dye (trade name: N719, manufactured by Diesol Co., Ltd.) as a dye sensitizer and a volume ratio of acetonitrile and tert-butyl alcohol to a concentration of 0.3 mM is 1: A dye-supporting coating solution was prepared by dissolving in 1 solution. The first electrode substrate on which the oxide semiconductor film containing the metal oxide semiconductor fine particles described above was formed was immersed in the dye-supporting coating solution for 20 hours. Thereafter, the pigment-carrying coating solution was pulled up from the pigment-carrying coating solution, washed with acetonitrile, and then air-dried. Thus, a dye sensitizer was supported on the pore surfaces of the metal oxide semiconductor fine particles to form an oxide semiconductor layer, which was used as an oxide semiconductor electrode substrate.
 (対極基板形成工程)
 PENフィルム上にITO膜(シート抵抗:30Ω/□)が形成された透明導電膜を用意し、そのITO膜上に白金を厚み13Å(透過率80%)で積層することにより、対極基板を形成した。
(Counter electrode substrate formation process)
A transparent conductive film with an ITO film (sheet resistance: 30Ω / □) formed on a PEN film is prepared, and a counter electrode substrate is formed by laminating platinum with a thickness of 13 mm (transmittance 80%) on the ITO film. did.
 (色素増感型太陽電池組み立て工程)
 ・電解質層形成用塗工液の調製
 6mol/lのhexyl methyl imidazolum iodide(富山薬品工業社製)と、0.6mol/lのI(メルク社製)と、0.45mol/lのn-methyl benzoimidazol(シグマ‐アルドリッチ社製)とを、hexyl methyl imidazolum tetracyano borat(メルク社製)に溶解し、電解液とした。
 次に、エタノールにSTD-100(日新化成社製)を10wt%溶解させて樹脂溶液とした。
 その後、上記電解液および樹脂溶液を、電解液:樹脂溶液=1:6(重量比)で混合し、電解質層形成用塗工液とした。
(Dye-sensitized solar cell assembly process)
-Preparation of electrolyte layer forming coating solution 6 mol / l hexyl methyl imidazolide (manufactured by Toyama Pharmaceutical Co., Ltd.), 0.6 mol / l I 2 (manufactured by Merck), and 0.45 mol / l n- Methyl benzimidazol (manufactured by Sigma-Aldrich) was dissolved in hexyl methyl imidazolium tetraciano borate (manufactured by Merck) to obtain an electrolytic solution.
Next, 10 wt% of STD-100 (Nisshin Kasei Co., Ltd.) was dissolved in ethanol to obtain a resin solution.
Then, the said electrolyte solution and resin solution were mixed by electrolyte solution: resin solution = 1: 6 (weight ratio), and it was set as the coating liquid for electrolyte layer formation.
 ・電解質層の形成
 上述した酸化物半導体電極基板上に、電解質形成用塗工液をミヤバー法により塗布し、120℃で10分間加熱して電解質層を形成した。
-Formation of electrolyte layer On the oxide semiconductor electrode substrate mentioned above, the electrolyte formation coating liquid was apply | coated by the Miyabar method, and it heated at 120 degreeC for 10 minute (s), and formed the electrolyte layer.
 ・酸化物半導体電極基板、電解質層および対極基板の貼り合せ
 上記電解質層が形成された酸化物半導体電極基板と上記対極基板とを貼り合せ、熱ラミネートすることにより色素増感型太陽電池素子を得た。
-Bonding of oxide semiconductor electrode substrate, electrolyte layer and counter electrode substrate The oxide semiconductor electrode substrate on which the electrolyte layer is formed and the counter electrode substrate are bonded together and thermally laminated to obtain a dye-sensitized solar cell element. It was.
[実施例2]
 (酸化物半導体電極基板形成工程)
 ・第1電極基材の準備
 基材は、厚さが125μmのPENフィルム(帝人デュポン社製)とした。上記PENフィルム上に、シート抵抗が30Ω/□のITO膜をスパッタリング法により成膜し、第1電極基材とした。
[Example 2]
(Oxide semiconductor electrode substrate formation process)
-Preparation of 1st electrode base material The base material was set as the PEN film (made by Teijin DuPont) with a thickness of 125 micrometers. An ITO film having a sheet resistance of 30Ω / □ was formed on the PEN film by a sputtering method to obtain a first electrode substrate.
 ・酸化物半導体膜形成用塗工液の調製
 次いで、金属酸化物半導体微粒子P25(日本エアロジル社製、商品名:P25)をエタノールに投入し、さらに0.5%のエチルセルロースSTD‐100(日新化成工業株式会社)を混合させて酸化物半導体膜形成用塗工液を調製した。
-Preparation of coating solution for forming oxide semiconductor film Next, metal oxide semiconductor fine particles P25 (manufactured by Nippon Aerosil Co., Ltd., trade name: P25) were added to ethanol, and 0.5% ethylcellulose STD-100 (Nisshin) Kasei Kogyo Co., Ltd.) was mixed to prepare a coating liquid for forming an oxide semiconductor film.
 ・酸化物半導体膜の形成
 上記作製した酸化物半導体膜形成用塗工液を、上記第1電極基材上にバーコート法により塗布し、その後、120℃で乾燥させることで、上記第1電極基材上に金属酸化物半導体微粒子を含む酸化物半導体膜を形成した。
 この時の、酸化物半導体膜の膜厚は11μmであった。
 また、透過率は57.8%であり、細孔径(細孔径の最大ピーク)は19nmであった。
 さらに、プレス後の比表面積は52.7m/gであった。
-Formation of Oxide Semiconductor Film The first electrode is prepared by applying the prepared coating liquid for forming an oxide semiconductor film onto the first electrode substrate by a bar coating method and then drying at 120 ° C. An oxide semiconductor film including metal oxide semiconductor fine particles was formed over the base material.
At this time, the thickness of the oxide semiconductor film was 11 μm.
Further, the transmittance was 57.8%, and the pore diameter (maximum peak of pore diameter) was 19 nm.
Furthermore, the specific surface area after pressing was 52.7 m 2 / g.
 ・加圧工程
 その後、上記金属酸化物半導体膜にロールプレス機を用いて圧力0.05t/cm、速度1m/minで圧力を加えた。なお、上記ロールプレス機のプレスロールには、幅1mm、深さ500μmの深さで「DNP」という文字が削られて配置されてある。
 プレス後、500℃で30分間焼成した。
 この時、加圧された酸化物半導体膜(「DNP」という文字以外の領域)の膜厚は7μmであった。
 また、加圧された酸化物半導体膜の透過率は、65%であり、細孔径(細孔径の最大ピーク)は12nmであった。
 さらに、プレス後の比表面積は47.7m/gであった。
-Pressure process Then, the pressure was applied to the said metal oxide semiconductor film with the pressure of 0.05 t / cm, and the speed | rate of 1 m / min using the roll press machine. The press roll of the roll press machine has a character “DNP” cut and arranged at a depth of 1 mm in width and 500 μm in depth.
After pressing, it was baked at 500 ° C. for 30 minutes.
At this time, the film thickness of the pressurized oxide semiconductor film (a region other than the letters “DNP”) was 7 μm.
Further, the transmittance of the pressurized oxide semiconductor film was 65%, and the pore diameter (maximum peak of pore diameter) was 12 nm.
Furthermore, the specific surface area after pressing was 47.7 m 2 / g.
 ・酸化物半導体層形成工程
 次に、色素増感剤として有機色素(Dyesol社製、商品名:N719)を、濃度が0.3mMとなるようにアセトニトリル、およびtert-ブチルアルコールの体積比1:1溶液に溶解させて色素担持用塗工液を調製した。この色素担持用塗工液に対し、上述の金属酸化物半導体微粒子を含む酸化物半導体膜を形成した第1電極基材を20時間浸漬させた。その後、色素担持用塗工液から引き上げ、金属酸化物半導体微粒子に付着した色素担持用塗工液をアセトニトリルにより洗浄後、風乾した。これにより、金属酸化物半導体微粒子の細孔表面に色素増感剤を担持させ、酸化物半導体層を形成し、これを酸化物半導体電極基板とした。
-Oxide semiconductor layer formation step Next, an organic dye (trade name: N719, manufactured by Diesol Co., Ltd.) as a dye sensitizer and a volume ratio of acetonitrile and tert-butyl alcohol to a concentration of 0.3 mM is 1: A dye-supporting coating solution was prepared by dissolving in 1 solution. The first electrode substrate on which the oxide semiconductor film containing the metal oxide semiconductor fine particles described above was formed was immersed in the dye-supporting coating solution for 20 hours. Thereafter, the pigment-carrying coating solution was pulled up from the pigment-carrying coating solution, washed with acetonitrile, and then air-dried. Thus, a dye sensitizer was supported on the pore surfaces of the metal oxide semiconductor fine particles to form an oxide semiconductor layer, which was used as an oxide semiconductor electrode substrate.
 酸化物半導体電極基板を上述のように形成したこと以外は、実施例1と同様にして色素増感型太陽電池素子を作製した。 A dye-sensitized solar cell element was produced in the same manner as in Example 1 except that the oxide semiconductor electrode substrate was formed as described above.
[比較例1]
 (酸化物半導体電極基板形成工程)
 ・第1電極基材の準備
 まず、厚み50μmのTi箔(竹内金属箔工業株式会社)を準備した。
[Comparative Example 1]
(Oxide semiconductor electrode substrate formation process)
-Preparation of 1st electrode base material First, 50-micrometer-thick Ti foil (Takeuchi Metal Foil Industry Co., Ltd.) was prepared.
 ・酸化物半導体膜形成用塗工液の調製
 次いで、金属酸化物半導体微粒子P25(日本エアロジル社製、商品名:P25)をエタノールに投入し、さらに0.5%のエチルセルロースSTD‐100(日新化成工業株式会社)を混合させて酸化物半導体膜形成用塗工液を調製した。
-Preparation of coating solution for forming oxide semiconductor film Next, metal oxide semiconductor fine particles P25 (manufactured by Nippon Aerosil Co., Ltd., trade name: P25) were added to ethanol, and 0.5% ethylcellulose STD-100 (Nisshin) Kasei Kogyo Co., Ltd.) was mixed to prepare a coating liquid for forming an oxide semiconductor film.
 ・酸化物半導体膜の形成
 上記作製した酸化物半導体膜形成用塗工液を、上記第1電極基材である上記Ti箔上にバーコート法により塗布し、その後、120℃で乾燥させることで、上記第1電極基材上に金属酸化物半導体微粒子を含む酸化物半導体膜を形成した。
 この時の、酸化物半導体膜の膜厚は11μmであった。
 また、透過率は57.8%であり、細孔径(細孔径の最大ピーク)は19nmであった。
-Formation of oxide semiconductor film The prepared coating liquid for forming an oxide semiconductor film is applied onto the Ti foil as the first electrode substrate by a bar coating method, and then dried at 120 ° C. An oxide semiconductor film containing metal oxide semiconductor fine particles was formed on the first electrode substrate.
At this time, the thickness of the oxide semiconductor film was 11 μm.
Further, the transmittance was 57.8%, and the pore diameter (maximum peak of pore diameter) was 19 nm.
 ・加圧工程
 その後、上記金属酸化物半導体膜にロールプレス機を用いて圧力0.05t/cm、速度1m/minでロールプレスし、圧力を加えることで膜厚を7μmとした。
 また、加圧された酸化物半導体膜の透過率は65%であり、細孔径(細孔径の最大ピーク)は12nmであった。
 なお、上記ロールプレス機のプレスロールには、全面鏡面のものを用いた。
-Pressurization process Subsequently, the metal oxide semiconductor film was roll-pressed at a pressure of 0.05 t / cm and a speed of 1 m / min using a roll press machine, and the film thickness was set to 7 μm by applying pressure.
Further, the transmittance of the pressurized oxide semiconductor film was 65%, and the pore diameter (maximum peak of the pore diameter) was 12 nm.
In addition, the thing of the mirror surface was used for the press roll of the said roll press machine.
 ・酸化物半導体層形成工程
 次に、色素増感剤として有機色素(Dyesol社製、商品名:N719)を、濃度が0.3mMとなるようにアセトニトリル、およびtert-ブチルアルコールの体積比1:1溶液に溶解させて色素担持用塗工液を調製した。この色素担持用塗工液に対し、上述の金属酸化物半導体微粒子を含む酸化物半導体膜を形成した第1電極基材を20時間浸漬させた。その後、色素担持用塗工液から引き上げ、金属酸化物半導体微粒子に付着した色素担持用塗工液をアセトニトリルにより洗浄後、風乾した。これにより、金属酸化物半導体微粒子の細孔表面に色素増感剤を担持させ、酸化物半導体層を形成し、これを酸化物半導体電極基板とした。
-Oxide semiconductor layer formation step Next, an organic dye (trade name: N719, manufactured by Diesol Co., Ltd.) as a dye sensitizer and a volume ratio of acetonitrile and tert-butyl alcohol to a concentration of 0.3 mM is 1: A dye-supporting coating solution was prepared by dissolving in 1 solution. The first electrode substrate on which the oxide semiconductor film containing the metal oxide semiconductor fine particles described above was formed was immersed in the dye-supporting coating solution for 20 hours. Thereafter, the pigment-carrying coating solution was pulled up from the pigment-carrying coating solution, washed with acetonitrile, and then air-dried. Thus, a dye sensitizer was supported on the pore surfaces of the metal oxide semiconductor fine particles to form an oxide semiconductor layer, which was used as an oxide semiconductor electrode substrate.
 酸化物半導体電極基板を上述のように形成したこと以外は、実施例1および実施例2と同様にして色素増感型太陽電池素子を作製した。 A dye-sensitized solar cell element was produced in the same manner as in Example 1 and Example 2 except that the oxide semiconductor electrode substrate was formed as described above.
[比較例2]
 (酸化物半導体電極基板形成工程)
 ・第1電極基材の準備
 基材は、厚さが125μmのPENフィルム(帝人デュポン社製)とした。上記PENフィルム上に、シート抵抗が30Ω/□のITO膜をスパッタリング法により成膜し、第1電極基材とした。
[Comparative Example 2]
(Oxide semiconductor electrode substrate formation process)
-Preparation of 1st electrode base material The base material was set as the PEN film (made by Teijin DuPont) with a thickness of 125 micrometers. An ITO film having a sheet resistance of 30Ω / □ was formed on the PEN film by a sputtering method to obtain a first electrode substrate.
 ・酸化物半導体膜形成用塗工液の調製
 次いで、金属酸化物半導体微粒子P25(日本エアロジル社製、商品名:P25)をエタノールに投入し、さらに0.5%のエチルセルロースSTD‐100(日新化成工業株式会社)を混合させて酸化物半導体膜形成用塗工液を調製した。
-Preparation of coating solution for forming oxide semiconductor film Next, metal oxide semiconductor fine particles P25 (manufactured by Nippon Aerosil Co., Ltd., trade name: P25) were added to ethanol, and 0.5% ethylcellulose STD-100 (Nisshin) Kasei Kogyo Co., Ltd.) was mixed to prepare a coating liquid for forming an oxide semiconductor film.
 ・酸化物半導体膜の形成
 上記作製した酸化物半導体膜形成用塗工液を、上記第1電極基材上にバーコート法により塗布し、その後、120℃で乾燥させることで、上記第1電極基材上に金属酸化物半導体微粒子を含む酸化物半導体膜を形成した。
 この時の、酸化物半導体膜の膜厚は11μmであった。
 また、透過率は57.8%であった。
 さらに、細孔径(細孔径の最大ピーク)は19nmであった。
-Formation of Oxide Semiconductor Film The first electrode is prepared by applying the prepared coating liquid for forming an oxide semiconductor film onto the first electrode substrate by a bar coating method and then drying at 120 ° C. An oxide semiconductor film including metal oxide semiconductor fine particles was formed over the base material.
At this time, the thickness of the oxide semiconductor film was 11 μm.
Further, the transmittance was 57.8%.
Furthermore, the pore diameter (maximum peak of the pore diameter) was 19 nm.
 ・加圧工程
 その後、上記金属酸化物半導体膜にロールプレス機を用いて圧力0.05t/cm、速度1m/minでロールプレスし、圧力を加えることで膜厚を7μmとした。
 また、加圧された酸化物半導体膜の透過率は、65%であった。
 さらに、加圧された酸化物半導体膜の細孔径(細孔径の最大ピーク)は12nmであった。
 なお、上記ロールプレス機のプレスロールには、全面鏡面のものを用いた。
-Pressurization process Subsequently, the metal oxide semiconductor film was roll-pressed at a pressure of 0.05 t / cm and a speed of 1 m / min using a roll press machine, and the film thickness was set to 7 μm by applying pressure.
Further, the transmittance of the pressurized oxide semiconductor film was 65%.
Furthermore, the pore diameter (maximum peak of pore diameter) of the pressurized oxide semiconductor film was 12 nm.
In addition, the thing of the mirror surface was used for the press roll of the said roll press machine.
 ・酸化物半導体層形成工程
 次に、色素増感剤として有機色素(Dyesol社製、商品名:N719)を、濃度が0.3mMとなるようにアセトニトリル、およびtert-ブチルアルコールの体積比1:1溶液に溶解させて色素担持用塗工液を調製した。この色素担持用塗工液に対し、上述の金属酸化物半導体微粒子を含む酸化物半導体層を形成した第1電極基材を20時間浸漬させた。その後、色素担持用塗工液から引き上げ、金属酸化物半導体微粒子に付着した色素担持用塗工液をアセトニトリルにより洗浄後、風乾した。これにより、金属酸化物半導体微粒子の細孔表面に色素増感剤を担持させ、酸化物導体層を形成し、これを酸化物半導体電極基板とした。
-Oxide semiconductor layer formation step Next, an organic dye (trade name: N719, manufactured by Diesol Co., Ltd.) as a dye sensitizer and a volume ratio of acetonitrile and tert-butyl alcohol to a concentration of 0.3 mM is 1: A dye-supporting coating solution was prepared by dissolving in 1 solution. The first electrode substrate on which the oxide semiconductor layer containing the metal oxide semiconductor fine particles described above was formed was immersed in the dye-supporting coating solution for 20 hours. Thereafter, the pigment-carrying coating solution was pulled up from the pigment-carrying coating solution, washed with acetonitrile, and then air-dried. Thus, a dye sensitizer was supported on the pore surfaces of the metal oxide semiconductor fine particles to form an oxide conductor layer, which was used as an oxide semiconductor electrode substrate.
 酸化物半導体電極基板を上述のように形成したこと以外は、実施例1、実施例2および比較例1と同様にして色素増感型太陽電池素子を作製した。 A dye-sensitized solar cell element was produced in the same manner as in Example 1, Example 2, and Comparative Example 1 except that the oxide semiconductor electrode substrate was formed as described above.
[評価結果]
 作製した実施例1、2および比較例1、2における色素増感型太陽電池素子の光電変換特性について、分光感度特性装置CP-2000(分光計器株式会社製)を用いて測定した。
 また、上記各色素増感型太陽電池素子の意匠性について、目視により評価した。
 それぞれの結果について、表1に示す。
[Evaluation results]
The photoelectric conversion characteristics of the dye-sensitized solar cell elements in Examples 1 and 2 and Comparative Examples 1 and 2 were measured using a spectral sensitivity characteristic apparatus CP-2000 (manufactured by Spectrometer Co., Ltd.).
Moreover, the design property of each said dye-sensitized solar cell element was evaluated visually.
The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[実験例1]~[実験例6]
 加圧工程において、上記酸化物半導体膜に加える圧力を、0t/cm、0.03t/cm、0.05t/cm、0.07t/cm、0.1t/cm、0.3t/cmにすること以外は実施例1と同様にして色素増感型太陽電池素子を作製した。
[Experiment 1] to [Experiment 6]
In the pressing step, the pressure applied to the oxide semiconductor film is set to 0 t / cm, 0.03 t / cm, 0.05 t / cm, 0.07 t / cm, 0.1 t / cm, and 0.3 t / cm. Except for this, a dye-sensitized solar cell element was produced in the same manner as in Example 1.
[評価結果]
 作製した実験例1~実験例6における色素増感型太陽電池素子のプレスされた領域とプレスされていない領域との透過率差、細孔径差(細孔径の最大ピーク差)、膜厚差、ヘイズ率差について測定した。
 それぞれの結果について表2に示す。
 なお、ヘイズ率とは、入射光のうち平行光線透過率と拡散光線透過率との比率であり、
ヘーズメーター(スガ試験機 型番:HGM-2K)を用いて測定した。
[Evaluation results]
Transmittance difference, pore diameter difference (maximum peak diameter difference of pore diameter), film thickness difference between the pressed area and the unpressed area of the dye-sensitized solar cell element in Experimental Examples 1 to 6 It measured about the haze rate difference.
The results are shown in Table 2.
The haze ratio is a ratio of parallel light transmittance and diffuse light transmittance in incident light,
It measured using the haze meter (Suga test machine model number: HGM-2K).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 1   … 酸化物半導体電極基板
 10  … 第1電極基材
 11  … 酸化物半導体膜
 12  … 色素増感剤
 13  … 酸化物半導体層
 2   … 電解質層
 3   … 第2電極基材
 4   … 金型
 5   … 回転ローラー
 6   … 被成型体側回転ローラー
 100 … 色素増感型太陽電池素子
 200 … ロールプレス機
DESCRIPTION OF SYMBOLS 1 ... Oxide semiconductor electrode substrate 10 ... 1st electrode base material 11 ... Oxide semiconductor film 12 ... Dye sensitizer 13 ... Oxide semiconductor layer 2 ... Electrolyte layer 3 ... 2nd electrode base material 4 ... Mold 5 ... Rotation Roller 6 ... Molded object side rotating roller 100 ... Dye-sensitized solar cell element 200 ... Roll press machine

Claims (7)

  1.  電極としての機能を備えた第1電極基材、および前記第1電極基材上に形成され、金属酸化物半導体微粒子を含む酸化物半導体膜の表面に、色素増感剤が坦持された酸化物半導体層を有する酸化物半導体電極基板と、少なくとも電極としての機能を備えた第2電極基材を有する対極基板とが、前記酸化物半導体層および前記第2電極基材が対向するように配置されており、前記酸化物半導体電極基板および前記対極基板の間に酸化還元対を含む電解質層が形成されている色素増感型太陽電池素子であって、
     前記酸化物半導体層が、膜厚が異なり、透過率が異なる少なくとも2つの領域を有し、前記少なくとも2つの領域が一体に形成されており、
     前記酸化物半導体層において、膜厚が厚い領域の色調が濃く、膜厚が薄い領域の色調が、前記膜厚が厚い領域の色調に比べて薄いことを特徴とする色素増感型太陽電池素子。
    A first electrode base material having a function as an electrode, and an oxidation in which a dye sensitizer is carried on the surface of an oxide semiconductor film formed on the first electrode base material and containing metal oxide semiconductor fine particles An oxide semiconductor electrode substrate having an oxide semiconductor layer and a counter electrode substrate having a second electrode base material having at least a function as an electrode are disposed so that the oxide semiconductor layer and the second electrode base material face each other. A dye-sensitized solar cell element in which an electrolyte layer including a redox pair is formed between the oxide semiconductor electrode substrate and the counter electrode substrate,
    The oxide semiconductor layer has at least two regions having different thicknesses and different transmittances, and the at least two regions are integrally formed,
    A dye-sensitized solar cell element characterized in that, in the oxide semiconductor layer, the color tone of the thick film region is dark and the color tone of the thin film region is thinner than the color tone of the thick film region .
  2.  電極としての機能を備えた第1電極基材、および前記第1電極基材上に形成され、金属酸化物半導体微粒子を含む酸化物半導体膜の表面に、色素増感剤が坦持された酸化物半導体層を有する酸化物半導体電極基板と、少なくとも電極としての機能を備えた第2電極基材を有する対極基板とが、前記酸化物半導体層および前記第2電極基材が対向するように配置されており、前記酸化物半導体電極基板および前記対極基板の間に酸化還元対を含む電解質層が形成されている色素増感型太陽電池素子であって、
     前記酸化物半導体層が、膜厚が異なり、細孔径が異なる少なくとも2つの領域を有し、前記少なくとも2つの領域が同一組成の粒子群からなり、
     前記酸化物半導体層において、膜厚が厚い領域の色調が濃く、膜厚が薄い領域の色調が、前記膜厚が厚い領域の色調に比べて薄いことを特徴とする色素増感型太陽電池素子。
    A first electrode base material having a function as an electrode, and an oxidation in which a dye sensitizer is carried on the surface of an oxide semiconductor film formed on the first electrode base material and containing metal oxide semiconductor fine particles An oxide semiconductor electrode substrate having an oxide semiconductor layer and a counter electrode substrate having a second electrode base material having at least a function as an electrode are disposed so that the oxide semiconductor layer and the second electrode base material face each other. A dye-sensitized solar cell element in which an electrolyte layer including a redox pair is formed between the oxide semiconductor electrode substrate and the counter electrode substrate,
    The oxide semiconductor layer has at least two regions having different thicknesses and different pore diameters, and the at least two regions are composed of particle groups having the same composition,
    A dye-sensitized solar cell element characterized in that, in the oxide semiconductor layer, the color tone of the thick film region is dark and the color tone of the thin film region is thinner than the color tone of the thick film region .
  3.  電極としての機能を備えた第1電極基材、および前記第1電極基材上に形成され、金属酸化物半導体微粒子を含む酸化物半導体膜の表面に、色素増感剤が坦持された酸化物半導体層を有する酸化物半導体電極基板と、少なくとも電極としての機能を備えた第2電極基材を有する対極基板とが、前記酸化物半導体層および前記第2電極基材が対向するように配置され、前記酸化物半導体電極基板および前記対極基板の間に酸化還元対を含む電解質層が形成されており、前記酸化物半導体層が、膜厚が異なり、透過率が異なる少なくとも2つの領域を有し、前記少なくとも2つの領域が一体に形成されており、前記酸化物半導体層において、膜厚が厚い領域の色調が濃く、膜厚が薄い領域の色調が、前記膜厚が厚い領域の色調に比べて薄い色素増感型太陽電池素子が複数個直列または並列に接続されてなることを特徴とする色素増感型太陽電池モジュール。 A first electrode base material having a function as an electrode, and an oxidation in which a dye sensitizer is carried on the surface of an oxide semiconductor film formed on the first electrode base material and containing metal oxide semiconductor fine particles An oxide semiconductor electrode substrate having an oxide semiconductor layer and a counter electrode substrate having a second electrode base material having at least a function as an electrode are disposed so that the oxide semiconductor layer and the second electrode base material face each other. An electrolyte layer including a redox pair is formed between the oxide semiconductor electrode substrate and the counter electrode substrate, and the oxide semiconductor layer has at least two regions having different thicknesses and different transmittances. The at least two regions are integrally formed, and in the oxide semiconductor layer, the color tone of the thick film region is dark and the color tone of the thin film region is the color tone of the thick film region. Compared to thin pigment Dye-sensitized solar cell module, wherein the sensitive solar cells which are connected to a plurality series or in parallel.
  4.  電極としての機能を備えた第1電極基材、および前記第1電極基材上に形成され、金属酸化物半導体微粒子を含む酸化物半導体膜の表面に、色素増感剤が坦持された酸化物半導体層を有する酸化物半導体電極基板と、少なくとも電極としての機能を備えた第2電極基材を有する対極基板とが、前記酸化物半導体層および前記第2電極基材が対向するように配置され、前記酸化物半導体電極基板および前記対極基板の間に酸化還元対を含む電解質層が形成されており、前記酸化物半導体層が、膜厚が異なり、細孔径が異なる少なくとも2つの領域を有し、前記少なくとも2つの領域が同一組成の粒子群からなり、前記酸化物半導体層において、膜厚が厚い領域の色調が濃く、膜厚が薄い領域の色調が、前記膜厚が厚い領域の色調に比べて薄い色素増感型太陽電池素子が複数個直列または並列に接続されてなることを特徴とする色素増感型太陽電池モジュール。 A first electrode base material having a function as an electrode, and an oxidation in which a dye sensitizer is carried on the surface of an oxide semiconductor film formed on the first electrode base material and containing metal oxide semiconductor fine particles An oxide semiconductor electrode substrate having an oxide semiconductor layer and a counter electrode substrate having a second electrode base material having at least a function as an electrode are disposed so that the oxide semiconductor layer and the second electrode base material face each other. An electrolyte layer including a redox pair is formed between the oxide semiconductor electrode substrate and the counter electrode substrate, and the oxide semiconductor layer has at least two regions having different thicknesses and different pore diameters. In the oxide semiconductor layer, the color tone of the thick region is dark and the color tone of the thin region is the color tone of the thick region. Thin compared to Dye-sensitized solar cell module, wherein the Motozo sensitized solar cell elements are connected to each other in series or in parallel.
  5.  請求の範囲第1項または第2項に記載の色素増感型太陽電池素子を製造する色素増感型太陽電池素子の製造方法であって、
     前記第1電極基材上に、前記金属酸化物半導体微粒子を含む前記酸化物半導体膜を形成し、前記酸化物半導体膜表面に前記色素増感剤が坦持された前記酸化物半導体層を形成することにより、前記酸化物半導体電極基板を形成する酸化物半導体電極基板形成工程と、前記第2電極基材を有する前記対極基板を準備する対極基板準備工程と、前記酸化物半導体電極基板と前記対極基板とを、前記電解質層を介して対向するように配置して、色素増感型太陽電池素子を組み立てる色素増感型太陽電池素子組み立て工程と、を有し、
     前記酸化物半導体電極基板形成工程が、前記酸化物半導体膜を部分的に加圧する工程または前記酸化物半導体膜を部分的に異なる圧力で加圧する工程のいずれかの加圧工程を有することを特徴とする色素増感型太陽電池素子の製造方法。
    A method for producing a dye-sensitized solar cell element for producing the dye-sensitized solar cell element according to claim 1 or 2,
    The oxide semiconductor film containing the metal oxide semiconductor fine particles is formed on the first electrode substrate, and the oxide semiconductor layer in which the dye sensitizer is supported on the surface of the oxide semiconductor film is formed. The oxide semiconductor electrode substrate forming step of forming the oxide semiconductor electrode substrate, the counter electrode substrate preparing step of preparing the counter electrode substrate having the second electrode base material, the oxide semiconductor electrode substrate and the A dye-sensitized solar cell element assembling step for assembling a dye-sensitized solar cell element by arranging a counter electrode substrate so as to face each other through the electrolyte layer,
    The oxide semiconductor electrode substrate forming step includes a pressurizing step of either partially pressing the oxide semiconductor film or partially pressing the oxide semiconductor film with a different pressure. A method for producing a dye-sensitized solar cell element.
  6.  電極としての機能を備えた第1電極基材、および前記第1電極基材上に形成され、金属酸化物半導体微粒子を含む酸化物半導体膜の表面に、色素増感剤が坦持された酸化物半導体層を有し、
     前記酸化物半導体層が、膜厚が異なり、透過率が異なる少なくとも2つの領域を有し、前記少なくとも2つの領域が一体に形成されており、
     前記酸化物半導体層において、膜厚が厚い領域の色調が濃く、膜厚が薄い領域の色調が、前記膜厚が厚い領域の色調に比べて薄いことを特徴とする酸化物半導体電極基板。
    A first electrode base material having a function as an electrode, and an oxidation in which a dye sensitizer is carried on the surface of an oxide semiconductor film formed on the first electrode base material and containing metal oxide semiconductor fine particles A semiconductor layer,
    The oxide semiconductor layer has at least two regions having different thicknesses and different transmittances, and the at least two regions are integrally formed,
    In the oxide semiconductor layer, an oxide semiconductor electrode substrate characterized in that a color tone of a thick region is dark and a color tone of a thin region is thinner than a color tone of the thick region.
  7.  電極としての機能を備えた第1電極基材、および前記第1電極基材上に形成され、金属酸化物半導体微粒子を含む酸化物半導体膜の表面に、色素増感剤が担持された酸化物半導体層を有し、
     前記酸化物半導体層が、膜厚が異なり、細孔径が異なる少なくとも2つの領域を有し、前記少なくとも2つの領域が同一組成の粒子群からなり、
     前記酸化物半導体層において、膜厚が厚い領域の色調が濃く、膜厚が薄い領域の色調が、前記膜厚が厚い領域の色調に比べて薄いことを特徴とする酸化物半導体電極基板。
    A first electrode base material having a function as an electrode, and an oxide formed on the first electrode base material and having a dye sensitizer supported on the surface of an oxide semiconductor film containing metal oxide semiconductor fine particles Having a semiconductor layer,
    The oxide semiconductor layer has at least two regions having different thicknesses and different pore diameters, and the at least two regions are composed of particle groups having the same composition,
    In the oxide semiconductor layer, an oxide semiconductor electrode substrate characterized in that a color tone of a thick region is dark and a color tone of a thin region is thinner than a color tone of the thick region.
PCT/JP2012/082963 2011-12-19 2012-12-19 Dye-sensitized solar cell element, dye-sensitized solar cell module, method for manufacturing dye-sensitized solar cell element, and oxide semiconductor electrode substrate WO2013094653A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011277177A JP5327306B2 (en) 2011-12-19 2011-12-19 Dye-sensitized solar cell element, dye-sensitized solar cell module, method for producing dye-sensitized solar cell element, and oxide semiconductor electrode substrate
JP2011-277177 2011-12-19

Publications (1)

Publication Number Publication Date
WO2013094653A1 true WO2013094653A1 (en) 2013-06-27

Family

ID=48668537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/082963 WO2013094653A1 (en) 2011-12-19 2012-12-19 Dye-sensitized solar cell element, dye-sensitized solar cell module, method for manufacturing dye-sensitized solar cell element, and oxide semiconductor electrode substrate

Country Status (2)

Country Link
JP (1) JP5327306B2 (en)
WO (1) WO2013094653A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3047353A1 (en) * 2016-02-02 2017-08-04 Ardeje MULTICOLOUR ENERGY CONVERSION DEVICE AND THREE DIMENSIONAL STRUCTURING METHOD FOR THIN LAYERS
EP3089182A4 (en) * 2013-12-24 2017-08-30 Fujikura Ltd. Photoelectric conversion element
CN109414720A (en) * 2016-08-04 2019-03-01 积水化学工业株式会社 The manufacturing method of die applicator, the manufacturing device of dye-sensitized solar cells and battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005116415A (en) * 2003-10-09 2005-04-28 Sk Kaken Co Ltd Laminated body
JP2005228611A (en) * 2004-02-13 2005-08-25 Bridgestone Corp Manufacturing method of dye-sensitized solar cell
JP2007115513A (en) * 2005-10-20 2007-05-10 Fujikura Ltd Manufacturing method of dye-sensitized solar battery
JP2008053166A (en) * 2006-08-28 2008-03-06 Toyo Seikan Kaisha Ltd Reverse irradiation type dye-sensitized large scale solar battery
JP2010267480A (en) * 2009-05-14 2010-11-25 Nissha Printing Co Ltd Dye-sensitized solar cell equipped with design performance, and method of manufacturing the same
JP2012155909A (en) * 2011-01-24 2012-08-16 Sony Corp Dye sensitized solar cell and method for manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005116415A (en) * 2003-10-09 2005-04-28 Sk Kaken Co Ltd Laminated body
JP2005228611A (en) * 2004-02-13 2005-08-25 Bridgestone Corp Manufacturing method of dye-sensitized solar cell
JP2007115513A (en) * 2005-10-20 2007-05-10 Fujikura Ltd Manufacturing method of dye-sensitized solar battery
JP2008053166A (en) * 2006-08-28 2008-03-06 Toyo Seikan Kaisha Ltd Reverse irradiation type dye-sensitized large scale solar battery
JP2010267480A (en) * 2009-05-14 2010-11-25 Nissha Printing Co Ltd Dye-sensitized solar cell equipped with design performance, and method of manufacturing the same
JP2012155909A (en) * 2011-01-24 2012-08-16 Sony Corp Dye sensitized solar cell and method for manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3089182A4 (en) * 2013-12-24 2017-08-30 Fujikura Ltd. Photoelectric conversion element
US10580587B2 (en) 2013-12-24 2020-03-03 Fujikura Ltd. Photoelectric conversion element
FR3047353A1 (en) * 2016-02-02 2017-08-04 Ardeje MULTICOLOUR ENERGY CONVERSION DEVICE AND THREE DIMENSIONAL STRUCTURING METHOD FOR THIN LAYERS
WO2017134095A1 (en) * 2016-02-02 2017-08-10 Ardeje Multicolor energy conversion device, and method for three-dimensional structuring of thin films
CN109414720A (en) * 2016-08-04 2019-03-01 积水化学工业株式会社 The manufacturing method of die applicator, the manufacturing device of dye-sensitized solar cells and battery

Also Published As

Publication number Publication date
JP2013127923A (en) 2013-06-27
JP5327306B2 (en) 2013-10-30

Similar Documents

Publication Publication Date Title
Wang et al. Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell
Ito et al. High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO 2 photoanode
Yamaguchi et al. Highly efficient plastic-substrate dye-sensitized solar cells with validated conversion efficiency of 7.6%
Sauvage et al. Butyronitrile-based electrolyte for dye-sensitized solar cells
Lin et al. Low-temperature flexible photoanode and net-like Pt counter electrode for improving the performance of dye-sensitized solar cells
Leftheriotis et al. Development of photoelectrochromic devices for dynamic solar control in buildings
Santa-Nokki et al. Dynamic preparation of TiO2 films for fabrication of dye-sensitized solar cells
Leftheriotis et al. “Partly covered” photoelectrochromic devices with enhanced coloration speed and efficiency
Premaratne et al. Highly efficient, optically semi-transparent, ZnO-based dye-sensitized solar cells with Indoline D-358 as the dye
JP2002093476A (en) Coloring matter sensitization type solar battery cell, coloring matter sensitization type solar battery module, using the same, and their manufacturing method
Shao et al. Low temperature preparation of TiO2 films by cold isostatic pressing for flexible dye-sensitized solar cells
Xue et al. Facile fabrication of co-sensitized plastic dye-sensitized solar cells using multiple electrophoretic deposition
JP5327306B2 (en) Dye-sensitized solar cell element, dye-sensitized solar cell module, method for producing dye-sensitized solar cell element, and oxide semiconductor electrode substrate
JP4858652B2 (en) Dye-sensitized solar cell
KR20120020938A (en) Photo electrode for dye-sensitized solar cell, manufacturing method of the same and dye-sensitized solar cell including the same
JP2007073198A (en) Dye-sensitized solar battery
Ho et al. Enhanced efficiency via blocking layers at photocathode interfaces in cobalt-mediated tandem dye-sensitized solar cells
WO2011058786A1 (en) Dye-sensitized solar cell
JP4919448B2 (en) Semiconductor film for photovoltaic cell, laminated body, and coating material for producing semiconductor film
JP2005135799A (en) Electrode for photocell and manufacturing method of the same, and photocell using the same
JP6229306B2 (en) Method for designing dye-sensitized solar cell and method for producing dye-sensitized solar cell
JP4628728B2 (en) Transparent conductive substrate and dye-sensitized solar cell provided with the same
JP6821956B2 (en) Photoelectric conversion element
US20060011232A1 (en) Photoelectric transducer
Jiang et al. Fabrication of enhanced electron transport layer by laser scanning technology for dye-sensitized solar cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12860181

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12860181

Country of ref document: EP

Kind code of ref document: A1