WO2010117062A1 - Electrode used in dye-sensitized solar cell, and coating composition used for producing the electrode - Google Patents

Electrode used in dye-sensitized solar cell, and coating composition used for producing the electrode Download PDF

Info

Publication number
WO2010117062A1
WO2010117062A1 PCT/JP2010/056457 JP2010056457W WO2010117062A1 WO 2010117062 A1 WO2010117062 A1 WO 2010117062A1 JP 2010056457 W JP2010056457 W JP 2010056457W WO 2010117062 A1 WO2010117062 A1 WO 2010117062A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium
electrode
layer
layer region
photoelectric conversion
Prior art date
Application number
PCT/JP2010/056457
Other languages
French (fr)
Japanese (ja)
Inventor
直嗣 山本
賢 柏原
一弘 佐藤
Original Assignee
東洋製罐株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009152837A external-priority patent/JP5458694B2/en
Application filed by 東洋製罐株式会社 filed Critical 東洋製罐株式会社
Publication of WO2010117062A1 publication Critical patent/WO2010117062A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Definitions

  • the present invention relates to an electrode used for a dye-sensitized solar cell and a coating composition used for producing the electrode, and more specifically, an electrode substrate and a photoelectric conversion layer provided on the electrode substrate; And a coating composition used for forming a photoelectric conversion layer on the electrode.
  • a dye-sensitized solar cell has attracted attention as a solar cell using a material other than silicon.
  • a transparent electrode substrate in which a transparent conductive film such as ITO is provided on the surface of a glass substrate or a transparent plastic substrate, and a metal electrode substrate are sensitized with a dye.
  • the peripheral portion between the metal electrode substrate and the transparent electrode substrate is sealed so that the electrolyte layer does not leak. Sealed with a stopper.
  • the region where the metal electrode substrate and the transparent electrode substrate are opposed to each other with the porous photoelectric conversion layer and the electrolyte layer interposed therebetween is the power generation region, and the region sealed with the sealing material is the power generation region. It is a sealing area unrelated to the above.
  • This porous photoelectric conversion layer is generally provided on a transparent electrode substrate, but can also be provided on a metal electrode substrate (see Patent Document 1).
  • the dye in the dye-sensitized porous layer is excited, transitioned from the ground state to the excited state, and excited.
  • the electrons of the dye are injected into the conduction band in the semiconductor porous layer, and pass through an external circuit from the transparent electrode substrate or metal electrode substrate on which the semiconductor porous layer is formed. Move to transparent electrode substrate.
  • the electrons that have moved to the counter electrode substrate are carried by the ions in the electrolyte layer and return to the dye. Electric energy is extracted by repeating such a process.
  • the power generation mechanism of such a dye-sensitized solar cell is different from a pn junction photoelectric conversion element, in which light capture and electronic conduction are performed in different places, and is very similar to a plant photoelectric conversion process. Yes.
  • the porous photoelectric conversion layer carrying the dye is directly on the low-resistance metal substrate. Therefore, it is possible to avoid a decrease in conversion efficiency and to suppress an increase in internal resistance (curvature factor, FillFFactor; FF) when the cell is enlarged.
  • the porous photoelectric conversion layer is provided on the metal substrate and power is generated by light irradiation from the transparent electrode substrate side, so that the porous photoelectric conversion layer exists on the low-resistance metal substrate, so that the rectifying action is In order to achieve incompleteness, reverse current, and sufficiently high conversion efficiency, there is still room for improvement. There is also a problem that the durability is low and the conversion efficiency decreases with time.
  • the present applicant formed a reverse electron prevention layer made of a chemical conversion treatment film on a metal substrate, and sensitized with a dye on the reverse electron prevention layer.
  • a method for forming a porous oxide semiconductor layer has been proposed (see Patent Document 2).
  • a reverse electron prevention layer is formed on a metal substrate by chemical conversion treatment, and a semiconductor porous layer sensitized with a dye is formed on the reverse electron prevention layer. Since the reverse electron prevention layer is highly resistant to electrolytes, it can effectively prevent a decrease in conversion efficiency over time, but the reverse current prevention effect is not so high, and thus a high change efficiency is obtained. It is still insufficient.
  • this coating solution is composed of an organic solvent solution containing a metal compound capable of forming a metal oxide by heat treatment as a solute.
  • the organic solvent solution contains a solute stabilizer and is 10 cP at 25 ° C. It has the above viscosity, and this is applied to the surface of a metal substrate and dried to form a reverse electron prevention layer serving as a base for a semiconductor porous layer sensitized with a dye. is there.
  • the reverse electron prevention layer formed using such a coating liquid is formed from a dense layer of metal oxide, it not only exhibits an excellent rectifying action compared to that formed by chemical conversion treatment, It has good resistance to the electrolyte, and therefore has an advantage that the corrosion of the metal substrate can be effectively prevented and the problem of deterioration in conversion efficiency with time can be effectively avoided.
  • an object of the present invention is a dye-sensitized dye having a photoelectric conversion layer that has excellent reverse electron prevention properties, excellent resistance to electrolytes, and stably exhibits high conversion efficiency without decreasing over time. It is to provide an electrode for a solar cell. Another object of the present invention is to provide a coating composition capable of forming a photoelectric conversion layer having the above-mentioned characteristics by a single step coating.
  • the present inventors have particularly found that dispersed particles of semiconductor metal oxide are dispersed in an organic solvent together with a dispersant.
  • a metal compound capable of forming an oxide by heat treatment particularly a metal compound capable of forming the metal oxide
  • it has excellent anti-electrostatic properties
  • the porous photoelectric converting layer excellent also in the tolerance with respect to electrolyte was formed, and came to complete this invention.
  • an electrode used in a dye-sensitized solar cell includes an electrode substrate and a photoelectric conversion coating layer provided on the electrode substrate. It is formed from a porous layer region in which titanium crystal particles are distributed in layers, and a composite oxide titanium layer region located on the electrode substrate side with respect to the porous layer region, and in the composite oxide titanium layer region Provides an electrode characterized in that a part of the crystal grains of the titanium dioxide is bitten.
  • the complex oxide titanium layer region has the following formula: TiO 2 ⁇ nTiOR Where n is a positive number; R represents an organic group or a metal atom, Having a molar composition represented by: (2)
  • the surface of the titanium dioxide crystal particles is coated with composite oxide titanium, (3)
  • the complex oxide titanium layer region has a thickness of 0.5 to 500 nm, (4)
  • the pigment is supported on the photoelectric conversion coating layer, (5) the electrode substrate is a metal substrate; Further, a dye is supported on the photoelectric conversion layer of this electrode and is used for an electrode of a dye-sensitized solar cell.
  • a coating composition used for forming a photoelectric conversion coating layer on an electrode substrate comprising titanium oxide, a titanium compound capable of forming an oxide by heat treatment, a dispersant, and an organic
  • a coating composition comprising a solvent, wherein the titanium oxide is present as dispersed particles and the titanium compound is present as a solute is provided.
  • the titanium compound is an alkoxide or chloride of titanium, (2) containing the titanium compound in an amount of 0.01 to 50% by weight per titanium oxide in terms of metal; (3)
  • the organic solvent is at least one selected from the group consisting of lower alcohols having 4 or less carbon atoms, ethyl cellulose, and terpineol. Is preferred.
  • the dispersing agent containing a dispersing component for dispersing the titanium oxide and a compatibilizing component for stabilizing the titanium compound as a solute
  • the dispersion component is at least one selected from the group consisting of glycol ether, acetic acid, trimethylacetic acid, ⁇ -diketone and water, and the compatibilizing component is glycol ether;
  • the glycol ether is butyl cellosolve or propyl cellosolve, (7)
  • the dispersion component is contained in an amount of 0.01 to 50% by weight per titanium oxide
  • the compatibilizing component is contained in an amount of 0.01 to 50% by weight per titanium compound.
  • Both the dispersion component and the compatibilizing component are glycol ethers, It can take the form.
  • the electrode used in the dye-sensitized solar cell of the present invention has a photoelectric conversion coating layer on an electrode substrate, a porous layer region in which titanium dioxide crystal particles are distributed in layers, and a composite oxide titanium layer region The composite oxide titanium layer region is formed on the electrode substrate side with respect to the porous layer.
  • the layer region has a remarkable feature in that a part of the crystal grains of the titanium dioxide bites into the layer region.
  • An electrode having a photoelectric conversion layer having such a structure not only has an excellent anti-reverse electric characteristic (rectification characteristic) per se, but also has resistance to an electrolyte, as shown in Examples described later. It is also excellent, and corrosion of the electrode substrate due to the electrolyte is effectively prevented even after a long period of time. For example, when it is formed on the surface of a metal substrate having a large surface roughness, pitting corrosion does not occur. Therefore, a decrease in conversion efficiency with time can be effectively prevented, and high conversion efficiency can be stably maintained.
  • this electrode can be manufactured by a one-step coating in which a coating composition for forming a photoelectric conversion layer is applied to the surface of a predetermined electrode substrate, for example, a metal substrate, and then heat-treated. But it ’s excellent.
  • the titanium oxide present in the form of dispersed particles is a porous titanium oxide layer (that is, the above-described titanium dioxide crystal particles are layered).
  • the titanium compound existing in the solute state is a layer in which the titanium complex oxide is densely distributed by heating (that is, the dense complex oxide titanium layer region). ) And has a function as a binder of titanium oxide particles.
  • Porous layer using this coating composition which is applied to the surface of a predetermined electrode substrate, for example, a metal substrate, and then heat-treated, so that titanium dioxide crystal particles are distributed in a single stage) A photoelectric conversion coating layer can be formed, which is extremely advantageous in terms of productivity.
  • FIG. 1 shows the cross-section of the electrode for dye-sensitized solar cells of this invention. It is a figure which shows the cross-section of the conventionally well-known dye-sensitized solar cell electrode in which the photoelectric converting layer was formed by the coating in two steps.
  • FIG. 1 it is a figure which expands and shows the interface part of an electrode substrate and this coating layer when the photoelectric conversion coating layer is formed in the rough surface part of the electrode substrate.
  • FIG. 3 is an enlarged view showing an interface portion between the electrode substrate and the photoelectric conversion layer when the photoelectric conversion layer is formed on the rough surface portion of the electrode substrate in the conventionally known electrode shown in FIG. 2.
  • FIG. 2 is an EDX analysis chart of a porous titanium oxide layer in an electrode produced in Example 1.
  • FIG. 2 is an EDX analysis chart of a low-oxidation titanium layer in an electrode produced in Example 1.
  • FIG. 1 showing a cross-sectional structure of an electrode for a dye-sensitized solar cell of the present invention
  • this electrode is formed on a surface of an electrode substrate 50 such as a metal substrate on a photoelectric conversion coating layer 51 (hereinafter simply referred to as a photoelectric conversion layer).
  • the photoelectric conversion layer 51 includes a dense complex oxide titanium layer region 53 located on the surface side of the electrode substrate 50 and a dioxide oxide formed on the complex oxide titanium layer region. It is comprised from the porous layer area
  • the upper porous layer region 55 is a porous layered region in which the titanium dioxide crystal particles 55a are connected by sintering, and is mainly composed of titanium dioxide.
  • the complex oxide titanium layer region 53 has the following formula: TiO 2 ⁇ nTiOR Where n is a positive number; R represents an organic group such as an alkyl group or a metal atom, It is formed from the complex oxide which has the molar composition shown by this, and it has having an amorphous part containing titanium oxide components other than titanium dioxide. That is, it can be confirmed by XRD or the like that the complex oxide titanium layer region 53 has an amorphous part.
  • S Ti represents the energy intensity derived from the K ⁇ ray of titanium
  • S O indicates the energy intensity derived from the oxygen K ⁇ ray
  • the Ti / O energy intensity ratio X is in the range of 2.40 to 2.80.
  • the value is about 2.30 to 2.5. Therefore, the porous titanium oxide layer 55 is very close to titanium dioxide. It has an oxidation degree and is found to be mainly composed of titanium dioxide.
  • the Ti / O energy intensity ratio X is in the range of 1.20 to 2.39, which is smaller than the porous titanium oxide layer 55, and therefore has a low oxidation degree. It can be seen that the composite oxide as described above is mainly used.
  • the analysis chart is as shown in FIG. .
  • Ti atom peaks appear at the positions of 4.52 keV and 4.93 keV
  • oxygen atom peaks appear at the position of 0.55 keV. Therefore, when the Ti / O energy intensity ratio X is calculated from the intensity of each peak, the value is 2.48.
  • the EDX analysis chart at the center of the composite oxide titanium layer region 53 formed in the lower region of the coating layer is as shown in FIG. 7, and Ti atoms are located at the same positions as in FIG.
  • the peak of oxygen atoms is expressed, and calculating the Ti / O energy intensity ratio X in this part from the intensity of each peak, it becomes a value of 1.33, compared with the porous titanium oxide layer 55, The value is quite low. Accordingly, it is confirmed that the upper porous layer region 55 has a high degree of oxidation and is mainly made of titanium dioxide, and the lower layered region 53 is made of the composite oxide titanium mainly containing the composite oxide. can do.
  • the photoelectric conversion coating layer 51 composed of the composite oxide titanium layer region 53 containing the amorphous part as described above and the porous layer region 55 is coated in one step, that is, 1 It is formed by drying and heat treatment by applying one kind of coating composition in one step, and in connection with being formed by such a method, the porosity formed by the conventional two-step coating is formed. It has a peculiar structure that is not found in the quality photoelectric conversion layer.
  • the titanium dioxide crystal particles 55a forming the upper porous layer region 55 are formed in the lower composite oxide titanium.
  • the layer region 53 has digged in. As can be understood from this, a clear interface is not formed between the layer regions 53 and 55.
  • the coating composition for forming the composite oxide titanium layer region 53 to be the reverse current prevention layer is applied and dried, and then the coating composition for forming the porous layer region 55 is applied to the composite oxide titanium layer.
  • the photoelectric conversion coating layer 51 is formed on the coating layer for the region 53 by two-step coating in which heat treatment is performed after coating and drying, as shown in FIG.
  • a porous layer region 55 made of titanium dioxide crystal particles 55a is formed on the composite oxide titanium layer region 53 that functions as a reverse current prevention layer.
  • the titanium dioxide crystal particles 55 a do not penetrate into the composite oxide titanium layer region 53.
  • a clear interface is formed with the mass layer region 55.
  • the structure in which the titanium dioxide crystal particles 55a are bitten into the composite oxide titanium layer 53 is a structure peculiar to the electrode of the present invention in which the porous photoelectric conversion layer 51 is formed by one-step coating. .
  • such a specific structure exhibits a stable reverse current prevention characteristic (rectification characteristic) and at the same time has extremely high resistance to the electrolyte.
  • the surface of the electrode substrate 50 is partially rough, as shown in FIG. 3, the surface of the electrode substrate 50 is covered with a completely dense complex oxide titanium layer region 53.
  • the contact between the electrolyte and the metal substrate 50 is completely prevented, the electrode substrate 50 is effectively prevented from being corroded by the electrolyte, and even when used for a long period of time, the surface of the electrode substrate 50 is pitting. Therefore, a decrease in conversion efficiency over time is effectively prevented, and high conversion efficiency can be stably maintained.
  • the surface of the electrode substrate 50 is particularly rough.
  • a part of the surface of the electrode substrate 50 is exposed through the composite oxide titanium layer region 53, so that the electrolyte directly contacts the electrode substrate 50.
  • the surface of the electrode substrate 50 is completely covered with the complex oxide titanium layer region 53 as shown in FIG. 3, and the reason why the corrosion of the electrode substrate 50 by the electrolyte is effectively prevented is as follows. Although not clearly clarified, the present inventors presume as follows.
  • the photoelectric conversion coating layer 51 is formed by one-step coating, an organic solvent for the titanium dioxide crystal particles 55a to form the composite oxide titanium layer region 53 during the heat treatment. It exists in a dispersed state in the solution, and heat treatment is performed in such a state, and the degree of oxidation is low due to gelation from the organic solvent solution in which the titanium dioxide crystal particles 55a are dispersed. Titanium oxide having an / O energy intensity ratio X of 1.20 to 2.39 is produced. For this reason, the composite oxide titanium layer region 53 is formed in a form in which the titanium dioxide crystal particles 55a are eroded. In the heat treatment in such a form, the thermal contraction of the composite oxide titanium layer region 53 is caused. Effectively mitigated.
  • the titanium dioxide crystal particles 55a biting into the composite oxide titanium layer region 53 effectively suppress the thermal contraction of the composite oxide titanium layer region 53. Even when the surface is rough, the surface of the electrode substrate 50 does not break through the composite oxide titanium layer region 53, and the entire surface of the electrode substrate 50 is completely covered by the composite oxide titanium layer region 53. It becomes.
  • the photoelectric conversion coating layer 51 is formed by the conventional two-stage coating, as understood from FIG. 2, when the final heat treatment is performed, the titanium dioxide crystal particles 55a are converted into the composite oxide titanium layer.
  • the crystal particles 55 a are present on the coating layer for forming the region 53, and the crystal particles 55 a are completely separated from the complex oxide titanium layer region 53.
  • the shrinkage balance between the shrinkage of the composite oxide titanium layer region 53 and the porous layer region 55 made of the crystal particles 55a is poor, and the thickness thereof varies greatly.
  • the electrode having a particularly rough surface When the photoelectric conversion coating layer 51 is formed on the substrate 50, a rough portion of the surface of the electrode substrate 50 breaks through the composite oxide titanium layer region 53 and is exposed.
  • the electrode according to the present invention has a unique structure in which the titanium dioxide crystal particles 55a forming the porous layer region 55 bite into the dense complex oxide titanium layer region 53 below.
  • each of the titanium dioxide crystal particles 55a forming the porous layer region 55 contains an amorphous part as shown in FIG.
  • the surface coating with the composite oxide titanium thin film 55b is also a major feature of the photoelectric conversion coating layer 51 (porous layer region 55) formed by one-step coating. That is, the photoelectric conversion coating layer 51 is subjected to heat treatment (gelation) in a state in which the titanium dioxide crystal particles 55a are dispersed in the organic solvent solution for forming the composite oxide titanium layer region 53. A complex oxide titanium layer region 53 is formed.
  • the titanium dioxide crystal particles 55a are sintered in a state where they are covered with low-oxidation titanium having a small Ti / O energy intensity ratio X.
  • the crystal particles 55a contain an amorphous part.
  • the composite oxide titanium thin film 55b is covered.
  • the composite oxide titanium layer region 53 is generated by gelation in a state separated from the titanium dioxide crystal particles 55a, and can be understood from FIG.
  • the crystal particles 55a are not covered with the thin film 55b of composite oxide titanium.
  • the fact that the surface of the titanium dioxide crystal particles 55a as described above is covered with the thin film 55b of the composite oxide titanium containing the amorphous part is that the cross section of this electrode is measured with a transmission electron microscope (TEM). ) By a high angle scattered dark field image (HAADF).
  • TEM transmission electron microscope
  • the photoelectric conversion coating layer 51 in the electrode of the present invention there is a gap between the composite oxide titanium layer region 53 containing the amorphous portion formed on the surface of the electrode substrate 50 and the porous layer region 55. Since a clear interface is not formed, and the crystal particles 55a bite into the complex oxide titanium layer region 53, it is difficult to accurately measure the thickness of the complex oxide titanium layer region 53. However, if this thickness becomes larger than necessary, the film will crack, and the electrical resistance will increase, causing a deterioration in the function of the battery. If this thickness is thinner than necessary, the characteristics of the composite oxide titanium layer region 53 as a reverse current prevention layer may be insufficient, and cracks may occur due to stress generated when an external load is applied. Function will be reduced.
  • the particles are in contact with the composite oxide titanium layer region 53.
  • the distance t between the particle A and the electrode substrate 50 is defined as the thickness of the composite oxide titanium layer region 53 with the particle A farthest from the surface of the electrode substrate 50 as a reference.
  • the composite oxide titanium layer region 53 is preferably formed so as to have a thickness of 5 to 500 nm, particularly 30 to 200 nm.
  • the thickness of the porous layer region 55 made of titanium oxide having a high degree of crystallinity is set to be about 5 to 20 ⁇ m as the thickness of the upper portion with reference to the lower part of the particle A. It is suitable.
  • the thickness of the composite oxide titanium layer region 53 and the highly crystallized porous layer region 55 as described above can be specifically adjusted by adjusting the composition of the coating composition described later.
  • the amount ratio of the titanium dioxide particles dispersed in the titanium compound and the titanium compound dissolved in the coating composition an appropriate range can be obtained. That is, as the amount of titanium dioxide particles increases, the thickness of the porous layer region 55 described above increases, and as the amount of titanium dioxide particles decreases, the thickness of the composite oxide titanium layer region 53 increases.
  • the electrode substrate 50 on which the photoelectric conversion coating layer 51 having the above-described structure is formed is not particularly limited as long as it is formed from a metal material having low electrical resistance. Specifically, a metal or alloy having a specific resistance of 6 ⁇ 10 ⁇ 6 ⁇ ⁇ m or less, such as aluminum, iron (steel), stainless steel, copper, nickel, or the like is used. Further, the thickness of the electrode substrate 50 is not particularly limited as long as it has a thickness enough to maintain an appropriate mechanical strength. Moreover, if productivity is not considered, the electrode substrate 50 may be formed in the resin film etc. by vapor deposition etc., for example. Of course, the substrate such as the resin film does not need to be transparent.
  • a chemical conversion treatment film (having a reverse electron prevention function) disclosed in Japanese Patent Application Laid-Open No. 2008-53165 is formed on the surface of the electrode substrate 50 on which the photoelectric conversion coating layer 51 is formed. And it is also possible to form the photoelectric conversion coating layer 51 on this. Further, an electrode substrate using a coating composition as disclosed in JP 2010-20939 A or a coating composition having a composition in which titanium oxide particles are removed from the coating composition of the present invention described later is used. It is also possible to form a back-current prevention layer on the surface of 50 and then form the photoelectric conversion coating layer 51 described above. By providing the photoelectric conversion coating layer 51 on the chemical conversion film and the reverse current prevention layer formed in this way, the reverse current prevention characteristic can be further improved.
  • the sensitizing dye is supported on the porous layer region 55 located above the photoelectric conversion coating layer 51, and then the electrode (negative electrode) of the dye-sensitized solar cell.
  • the porous layer region 55 needs to be porous in order to carry the dye, and for example, the relative density by the Archimedes method is preferably 50 to 90%, particularly preferably about 50 to 70%.
  • the relative density by the Archimedes method is preferably 50 to 90%, particularly preferably about 50 to 70%.
  • a porous photoelectric conversion layer can be formed on the photoelectric conversion coating layer 51 by a known means if necessary. For example, using a coating composition having a composition excluding a titanium compound capable of forming an oxide from the coating composition of the present invention, which will be described later, this coating composition is applied onto the photoelectric conversion coating layer 51, and dried and baked. By carrying out, a porous photoelectric converting layer can be formed in an overlapping manner, whereby the surface area can be increased and the amount of the dye supported can be further increased.
  • the electrode of the present invention described above includes titanium dioxide particles (a) and a titanium compound that can form composite oxide titanium (for example, titanium oxide having a Ti / O energy intensity ratio X of 1.20 to 2.39) by heat treatment ( b), a coating composition comprising a dispersing agent (c) and an organic solvent (d), wherein the titanium compound (b) is dissolved in the organic solvent, and this coating composition is applied to the electrode substrate 50.
  • the photoelectric conversion coating layer 51 having the above-described structure is formed on the surface of the electrode substrate 50 by a one-step coating process in which the coating layer is dried and heat-treated.
  • titanium dioxide particles are present as dispersed particles in the coating composition, are porous sensitized with a dye, and have a porous layer region (oxides) of high-crystallinity titanium oxide having semiconductor characteristics.
  • This is a component for forming (corresponding to a semiconductor layer) 55. That is, since the porous layered region 55 is formed by sintering the particles, the layered region 55 includes the titanium dioxide crystal particles 55a, and thus has a high oxidation degree close to that of titanium dioxide ( For example, the region 55 has a Ti / O energy intensity ratio X of 2.40 to 2.80).
  • titanium dioxide those of anatase type, brookite type and rutile type are known. From the viewpoint of obtaining high conversion efficiency as a porous oxide semiconductor layer, anatase type or brookite type is known. Titanium dioxide is optimal.
  • the dispersed particle size is not particularly limited, but generally, it is preferable that fine particle size powder is dispersed and adjusted to a particle size of, for example, 500 nm or less. If the dispersed particle size is excessively large, variations in the transmission of light to the formed porous layer are likely to occur, which may make it difficult to exhibit stable characteristics as a solar cell. This particle size can be measured by a laser diffraction scattering method.
  • the titanium dioxide particles as described above are preferably contained in the coating composition in the range of 5 to 60% by weight, particularly 10 to 40% by weight.
  • the content of the titanium dioxide particles is small, it becomes difficult to form the porous layer region 55 having a certain thickness, and when the coating composition contains more titanium dioxide particles than necessary, heat treatment is performed. Later, the film tends to crack, and as a result, the electric characteristics may be deteriorated.
  • the titanium compound (b) contained in the coating composition exists as a solute, forms a titanium oxide by heat treatment (firing) described later, functions as a binder of the titanium dioxide particles described above, and reverse electrons. And a prevention layer forming function.
  • the form of the compound is not particularly limited as long as it can form an oxide by heat treatment and can be dissolved in an organic solvent. In general, it can be easily obtained, and the oxide can be quickly obtained by heat treatment. And is preferably an alkoxide, hydroxide, or chloride because of its high solubility in organic solvents. Further, from the viewpoint of the function of the titanium dioxide particles as a binder, titanium alkoxide, particularly titanium isopropoxide is preferable, and titanium tetraisopropoxide is most preferable.
  • the titanium compound (b) forms a titanium oxide by gelation by heat treatment, and at this time, a metal formed by condensation of an alkyl group or an alkoxy group bonded to an oxygen atom and a base metal. Since the alkoxide or the like is incorporated in the titanium oxide, the titanium oxide to be generated has the formula: TiO 2 ⁇ nTiOR Where n is a positive number; R represents an organic group such as an alkyl group or a metal atom, The composite oxide titanium layer region 53 (for example, Ti / O energy intensity ratio X is 1.20 to 2.39) having such a composition is formed.
  • the organic group such as alkyl is derived from an organic group such as an alkyl group contained in the titanium compound or an organic group included in the solvent used, and a metal atom is applied by this coating composition. It is considered to be derived from a metal substrate (for example, Al).
  • the above titanium compound is an amount of 0.01 to 50% by weight, particularly 0.03 to 30% by weight per titanium dioxide particle (amount in terms of metal, and the titanium compound relative to the amount of Ti in the titanium dioxide. It is preferable that it is contained in the coating composition at a ratio of Ti content in the coating composition). That is, if this amount is too small, the thickness of the composite oxide titanium layer region 53 formed under the porous layer region 55 made of high crystallinity titanium shown in FIG. The rectification characteristics are unsatisfactory, or defects such as pinholes are likely to occur, leading to a decrease in conversion efficiency.
  • a dispersant in the coating composition of the present invention, a dispersion component (hereinafter referred to as a first dispersant) having a dispersion function for stably dispersing the titanium dioxide particles (a) in an organic solvent. And a compatibilizing component (hereinafter referred to as a second dispersant) having a compatibilizing function for stabilizing the solute of the titanium compound (b).
  • a dispersant a dispersion component having a dispersion function for stably dispersing the titanium dioxide particles (a) in an organic solvent.
  • a compatibilizing component hereinafter referred to as a second dispersant having a compatibilizing function for stabilizing the solute of the titanium compound (b).
  • Examples of the first dispersant include glycol ether, acetic acid, trimethylacetic acid, ⁇ -diketone, and water
  • examples of the second dispersant include glycol ether.
  • the glycol ether functions as a first dispersant and a second dispersant, and further, without adversely affecting the semiconductor characteristics of the particles by heating. Since it can be easily volatilized, it is the most preferred dispersant in the present invention.
  • a glycol ether having such a function has the following formula: HOCH 2 CH 2 OR 1
  • R 1 is an alkyl group, an aryl group, or an aralkyl group.
  • the alkyl group is typically a lower alkyl group having 8 or less carbon atoms, such as a methyl group, an ethyl group, an isopropyl group, an n-propyl group, an isobutyl group, an n-butyl group, and an isoamyl group.
  • Examples of the aryl group include a phenyl group, and examples of the aralkyl group include a benzyl group.
  • glycol ethers in which R 1 is an alkyl group are preferable, and in particular, the titanium compound (b) that has an excellent function as a compatibilizing component and prevents the precipitation of the titanium compound (b) as a solute is present.
  • propyl cellosolve ethylene glycol monopropyl ether, R
  • 1 propyl group
  • butyl cellosolve is most preferable.
  • the first dispersant that is, titanium dioxide particles (a) in an organic solvent.
  • the dispersion component is used as a dispersion component having a dispersion function in order to disperse, and since these do not function as a compatibilizing component, they are used in combination with the second dispersant (glycol ether). Any of these may be used depending on the type of the organic solvent used.
  • the titanium dioxide particles can be dispersed in the organic solvent relatively stably, and the semiconductor of the particles can be heated. It can be easily stripped without adversely affecting the properties.
  • Examples of the ⁇ -diketone in the first dispersant include the following. Acetylacetone 1,3-Cyclohexadione Methylenebis-1,3-cyclohexadione 2-Benzyl-1,3-cyclohexadione Acetyltetralone Palmitoyltetralone Stearoyltetralone Benzoyltetralone 2-Acetylcyclohexanone 2-Benzoylcyclohexanone 2- Acetyl-1,3-cyclohexanedione Bis (benzoyl) methane Benzoyl-p-chlorobenzoylmethane Bis (4-methylbenzoyl) methane Bis (2-hydroxybenzoyl) methane Benzoylacetone Tribenzoylmethane Diacetylbenzoylmethane Stearoylbenzoylmethane Palmitoylbenzoylmethane Lauroylbenzoylmethane dibenzo
  • the water used as the first dispersant is usually used in combination with acetic acid.
  • the above-mentioned first dispersant is preferably used in an amount of 0.01 to 50% by weight, particularly 0.02 to 20% by weight, in terms of Ti, per titanium dioxide particle (a).
  • the second dispersant is preferably used in an amount of 0.01 to 50% by weight, particularly 0.02 to 30% by weight, in terms of Ti, per titanium compound (b).
  • the content in the coating composition is the amount as the first dispersant and the second dispersant.
  • the total amount as the amount.
  • the organic solvent can be used as a dispersion medium for the above-described titanium dioxide particles (a), further dissolves the above-described titanium compound (b), and has high affinity with the dispersant (c).
  • a viscous coating solution particularly suitable for screen printing can be formed and can be volatilized by heating without adversely affecting the electrical properties of titanium dioxide. From the viewpoint, at least one selected from the group consisting of lower alcohols having 4 or less carbon atoms, ethyl cellulose, and terpineol is preferable.
  • examples of the lower alcohol include methanol, ethanol, isopropanol, and butanol, which are particularly suitable as a dispersion medium for titanium dioxide particles (a) and a solvent for the titanium compound (b), and a screen.
  • it is preferably used as a mixed solvent with terpineol and ethyl cellulose.
  • Terpineol (C 10 H 18 O) is an unsaturated alcohol produced by dehydrating one molecule of water from 1,8-terbin, and three types of ⁇ , ⁇ and ⁇ are known. Although types can be used, generally ⁇ -terpineol (Bp: 219 to 221 ° C.) or a mixture containing ⁇ -terpineol as a main component and other types such as ⁇ -terpineol mixed (generally commercially available) What is being done is a mixture).
  • Terpineol is a viscous liquid, but has good affinity with the metal oxide fine particles and metal compound dispersed in the above-mentioned lower alcohol. Similarly to the lower alcohol, terpineol is a metal oxide produced by heating (for example, it can be easily volatilized without adversely affecting the electrical properties of titanium dioxide).
  • ethyl cellulose can be easily decomposed and removed by heat treatment without adversely affecting the electrical properties of the titanium oxide produced from the titanium compound. It has the function of. Accordingly, ethyl cellulose is optimally used in combination with other organic solvents.For example, when only a lower alcohol or terpineol is used as an organic solvent and a titanium compound solution is prepared, the viscosity of the coating composition becomes extremely low, Although dripping or the like tends to occur during coating, the viscosity of the coating composition can be adjusted to a range suitable for coating by using ethyl cellulose in combination.
  • ethyl cellulose having various molecular weights is commercially available, from the viewpoint of adjusting the coating liquid to a viscosity particularly suitable for screen printing, toluene is used as a solvent, and a solid ethylcellulose concentration 10% solution is used. Those having a viscosity (25 ° C.) in the range of 30 to 50 cP are preferred.
  • an appropriate amount of lower alcohol is dispersed in the titanium dioxide particles (a) so that the viscosity of the coating composition is in a range suitable for coating (for example, 15 to 500 cP at 25 ° C.). It is good to use as a medium.
  • the coating composition containing each component described above includes a dispersion in which the titanium dioxide particles (a) are dispersed, and a solution in which the titanium compound (b) is dissolved, in particular, in order to allow the titanium compound (b) to exist stably as a solute. Is preferably prepared by mixing these dispersions and solutions. When the components are mixed all at once, the titanium compound (b) may be precipitated in an aggregated state. In such a case, the high crystallinity formed by sintering the titanium dioxide crystal particles 55a. This is because it becomes difficult to form a dense complex oxide titanium layer region 53 on the base of the porous layer region 55 of titanium oxide.
  • the dispersion in which the titanium dioxide particles (a) are dispersed is obtained by using titanium dioxide particles and a first dispersant (glycol ether) in a part of the organic solvent described above, particularly in a lower alcohol. And / or other dispersion components) are mixed in the above-mentioned proportions and stirred.
  • the solution in which the titanium compound (b) is dissolved is mixed with the remaining organic solvent, particularly an ethyl cellulose / terpineol mixed solvent, with a titanium compound and a second dispersant (glycol ether) in a predetermined amount ratio, and stirred. Can be obtained. At this time, it can be heated to an appropriate temperature.
  • the amount of the organic solvent used in these dispersions or solutions is such that the viscosity of the coating composition is suitable for coating when the coating composition is prepared by mixing the two (for example, the viscosity at 25 ° C.
  • the amount may be 10 cP or more, particularly 50 to 2000 cP), and the amount is such that the dissolved titanium does not precipitate.
  • the photoelectric conversion coating layer 51 having the above-described structure having the reverse electron prevention property can be formed on the surface of the electrode substrate 50 by one-step coating.
  • this coating composition is applied to the surface of the metal substrate 50 used as the electrode substrate, which will be the power generation region, and then heat-treated (dried and fired) to form the photoelectric conversion coating layer 51. Is done.
  • the organic solvent and the like are removed by volatilization, thermal decomposition, etc., and the porous layer region 55 composed of the sintered titanium dioxide crystal particles 55a is densely formed by sintering the titanium dioxide particles and gelling the titanium compound.
  • the composite oxide titanium layer region 53 is formed. Since the gelation of the titanium compound is performed in the form of incorporating the titanium dioxide particles, the titanium dioxide crystal particles 55a are converted into the composite oxide titanium layer region 53.
  • the titanium dioxide crystal particles 55a have a structure in which the titanium dioxide crystal particles 55a are coated with a composite oxide titanium having an amorphous part, for example, a composite oxide titanium having a Ti / O energy intensity ratio of 1.20 to 2.39. It is.
  • the coating composition can be applied by known application means such as screen printing, spray spraying, brush coating, spin coating, dipping, etc., but screen printing is effective in that it can be applied efficiently and continuously. Is preferred.
  • the heat treatment conditions after coating vary depending on the type of titanium compound used, but are generally performed by heating and holding the coating layer at a high temperature of 300 to 600 ° C. for 10 to 180 minutes.
  • the coating amount of the coating composition is usually such that the thickness of the lower composite oxide titanium layer region 53 is in the above-described range (0.5 to 500 nm, particularly 30 to 200 nm), and the porous layer region 55 on the upper layer.
  • the thickness is set to be about 5 to 20 ⁇ m.
  • the photoelectric conversion coating layer 51 (specifically, the porous layer region 55) obtained as described above adsorbs and supports a dye according to a conventional method, and the photoelectric conversion coating layer 51 sensitized with such a dye.
  • the surface of the metal substrate 50 is used as an electrode substrate of a solar cell as an electrode (negative electrode substrate).
  • the photoelectric conversion coating layer 51 is formed on the reverse current prevention layer or the chemical conversion treatment layer, for example, power generation of the metal substrate 50 is performed in order to prevent the occurrence of defects due to positioning errors during manufacturing. It is preferable to form a reverse current prevention layer and a chemical conversion treatment layer not only on the surface to be the region but also on the surface to be the sealing region.
  • the dye adsorbed on the photoelectric conversion coating layer 51 is adsorbed and supported by bringing the dye solution into contact with the porous layer region 55.
  • the contact of the dye solution is usually performed by dipping, and the adsorption treatment time (immersion time) is usually about 30 minutes to 24 hours. After adsorption, the solvent of the dye solution is removed by drying.
  • a sensitizing dye is adsorbed and supported on the surface and inside of the porous layer region 55 described above.
  • the dye used can function as a sensitizing dye and has a linking group such as a carboxylate group, a cyano group, a phosphate group, an oxime group, a dioxime group, a hydroxyquinoline group, a salicylate group, and an ⁇ -keto-enol group.
  • a linking group such as a carboxylate group, a cyano group, a phosphate group, an oxime group, a dioxime group, a hydroxyquinoline group, a salicylate group, and an ⁇ -keto-enol group.
  • a ruthenium complex, an osmium complex, an iron complex, etc. can be used without any limitation.
  • Ruthenium-based complexes such as' -dicarboxylate
  • Such a dye solution of a sensitizing dye is prepared using an alcohol-based organic solvent such as ethanol or butanol as a solvent, and the dye concentration is usually about 3 ⁇ 10 ⁇ 4 to 5 ⁇ 10 ⁇ 4 mol / l. It is good to do.
  • the electrode having on the surface the photoelectric conversion coating layer 51 having the porous layer region 55 sensitized with the dye as described above is used as, for example, a negative electrode substrate of a dye-sensitized solar cell having a structure shown in FIG.
  • a porous photoelectric conversion layer 13 sensitized with a dye is formed on the surface of metal substrate 11, and this is used as negative electrode substrate 10 to form electrolyte layer 20.
  • the transparent electrode substrate (positive electrode substrate) 1 is sandwiched between and has a structure in which the periphery thereof is sealed with a sealant 30.
  • the negative electrode substrate 10 is formed by using the coating composition described above. This is an electrode of the present invention having a structure in which the photoelectric conversion coating layer 51 formed by one-stage coating is formed on the surface of the electrode substrate 50.
  • the photoelectric conversion coating layer 13 includes a porous titanium oxide layer region 13a on which a dye is mainly adsorbed and supported, and a dense complex oxide titanium layer formed on the surface side of the metal substrate (electrode substrate) 11. It consists of a region 13b.
  • the photoelectric conversion coating layer 13 is formed in a portion that becomes the power generation region X, and the periphery thereof is a sealed region Y that does not participate in power generation.
  • the transparent electrode substrate 1 disposed opposite to the negative electrode substrate 10 (electrode of the present invention) comprising the metal substrate 11 and the photoelectric conversion coating layer 13 sensitized with the dye as described above is transparent on the surface of the transparent substrate 3.
  • the conductive film 5 and the electron reducing conductive layer 7 are formed.
  • the transparent substrate 3 only needs to have high light transmittance, and is formed of, for example, transparent glass or a transparent resin film.
  • the thickness and size are appropriately determined according to the intended use of the dye-sensitized solar cell to be finally formed.
  • Typical examples of the transparent conductive film 5 formed on the transparent substrate 3 include a film made of an indium oxide-tin oxide alloy (ITO film) and a film in which tin oxide is doped with fluorine (FTO film).
  • ITO film is preferable because of its high electron reducing property and particularly desirable characteristics as a cathode. These are formed on the transparent substrate 3 by vapor deposition, and the thickness is usually about 500 nm to 700 nm.
  • the electron reduction conductive layer 7 formed on the transparent conductive film 5 is generally made of a thin platinum layer, and has a function of quickly transferring electrons flowing into the transparent conductive film 5 to the electrolyte layer 20. is there.
  • Such an electron reduction conductive layer 7 is formed thinly by vapor deposition so that the average thickness thereof is about 0.1 to 1.5 nm so as not to impair the light transmittance.
  • the negative electrode substrate 10 and the transparent electrode substrate (positive electrode substrate) 1 formed as described above are opposed to each other with the electrolyte layer 20 interposed therebetween, and the photoelectric conversion coating layer 13 (particularly, sensitized with the electrolyte layer 20 and the dye).
  • the power generation region X is formed by the porous layer region 13a) of titanium oxide.
  • Such an electrolyte layer 20 is formed of various electrolyte solutions containing cations such as lithium ions and anions such as chlorine ions as in the case of known solar cells.
  • an oxidation-reduction pair capable of reversibly taking an oxidized structure and a reduced structure is present in the electrolyte 20, and examples of such an oxidation-reduction pair include iodine-iodine compounds, bromine- Examples thereof include bromine compounds and quinone-hydroquinone.
  • the electrolyte layer 20 is sealed by the sealing material 30 provided in the sealing region Y located at the periphery of the power generation region X, and liquid leakage from between the electrodes is prevented.
  • the thickness of the electrolyte layer 20 is generally about 10 to 50 ⁇ m, although it varies depending on the size of the battery finally formed.
  • sealing material 30 examples include various heat-sealable thermoplastic resins or thermoplastic elastomers such as low-density polyethylene, high-density polyethylene, polypropylene, poly-1-butene, poly-4-methyl-1-pentene, or ethylene, Polyolefin resins such as random or block copolymers of ⁇ -olefins such as propylene, 1-butene and 4-methyl-1-pentene; ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer, ethylene- Ethylene-vinyl compound copolymer resin such as vinyl chloride copolymer; Styrenic resin such as polystyrene, acrylonitrile-styrene copolymer, ABS, ⁇ -methylstyrene-styrene copolymer; polyvinyl alcohol, polyvinyl pyrrolidone, polychlorinated Vinyl, polyvinylidene chloride, chloride Vinyl
  • Polyester resin such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate; Polycarbonate; Polyphenylene oxide; Cellulose derivatives such as carboxymethyl cellulose and hydroxyethyl cellulose; Starch such as oxidized starch, etherified starch, dextrin; and mixtures thereof
  • a resin comprising, for example, is used.
  • the sealing material 30 is obtained by molding into a ring shape having a width corresponding to the sealing region Y, for example, by extrusion molding, injection molding, or the like using the above-described thermoplastic resin.
  • heat sealing thermocompression bonding
  • the negative electrode substrate 10 and the transparent electrode substrate 1 are joined.
  • an injection tube is inserted into the sealing material 30, and an electrolyte solution for forming the electrolyte layer 20 is injected into the space between the two electrode substrates through the injection tube, whereby the structure shown in FIG.
  • the dye-sensitized solar cell can be obtained.
  • the negative electrode substrate 10 and the transparent electrode substrate 1 are sealed with a sealing agent 30, and then filled with an electrolyte solution from an unsealed opening, Finally, the dye-sensitized solar cell having the structure shown in FIG. 5 can also be manufactured by completely sealing the opening with the sealant 30.
  • the dye carried on the photoelectric conversion coating layer 13 (titanium oxide porous layer region 13a) is irradiated with visible light from the transparent electrode substrate 1 side. Excited and transitioned from the ground state to the excited state, the excited electrons of the dye are injected into the conduction band in the photoelectric conversion layer 13, and the external circuit (not shown) is passed through the metal electrode substrate 10 (metal substrate 11). To the transparent electrode substrate 1. The electrons that have moved to the transparent electrode substrate 1 are carried by the ions in the electrolyte layer 20 and return to the pigment. By repeating such a process, electric energy is extracted and electric power is generated. That is, in such a solar cell, the composite oxide titanium layer region 13b that functions as a rectifying barrier is formed in the region facing the metal substrate 11 in the photoelectric conversion layer 13, so that reverse current is effectively prevented and high conversion is achieved. Efficiency can be obtained.
  • the photoelectric conversion coating layer 13 having the two-layer structure as described above is formed by one-step coating. That is, the dense composite oxide titanium layer region 13b existing on the surface of the metal substrate 11 and the titanium oxide porous layer region 13a formed thereon are integrally formed by one-step coating, so that the porous layer region 13a is formed. Defects such as pinholes due to the heat treatment at the time do not occur in the composite oxide titanium layer region 13b. Therefore, even if the surface of the metal substrate 11 is a rough surface having a large surface roughness, in the power generation region X, the surface is completely covered with the complex oxide titanium layer 13b. The surface is not exposed and does not directly contact the porous oxide semiconductor layer 13a.
  • the composite oxide titanium layer region 13b is formed of a metal oxide having resistance to the electrolyte. Therefore, corrosion of the metal substrate 11 by the electrolyte solution from the electrolyte layer 20 can be surely prevented, and this dye-sensitized solar cell exhibits extremely high durability and effectively prevents a decrease in conversion efficiency over time. ing.
  • the photoelectric conversion coating layer 13 composed of the composite oxide titanium layer region 13b and the porous layer region 13a of titanium oxide can be formed by one-step coating, its productivity is extremely high. .
  • the photoelectric conversion coating layer formed by the coating composition is formed on the surface of the metal substrate.
  • a photoelectric conversion coating layer is limited to the above example.
  • the thickness of the porous layer region of titanium oxide and the composite oxide titanium layer region was measured by SEM observation with a scanning electron microscope and TEM observation with an electrolytic emission transmission analysis electron microscope.
  • ⁇ Measurement of Ti / O energy intensity ratio X> To measure the Ti / O energy intensity ratio of the porous layer region and the composite titanium oxide layer region, first, ultrathin sections were obtained using a focused ion processing device (device name: Xvision 200DB manufactured by SIINT, a low acceleration FIB / SEM composite device). After that, the ultrathin section was measured by performing elemental analysis with EDX (device name: ⁇ -TEM manufactured by EDAX, an energy dispersive X-ray spectroscopic analyzer).
  • EDX device name: ⁇ -TEM manufactured by EDAX, an energy dispersive X-ray spectroscopic analyzer.
  • Example 1 Paste preparation for porous layer region formation
  • Two types of commercially available TiO 2 particles having a spherical particle size of 30 nm and an irregular shape (polyhedral shape) of 15 nm are mainly used, ethanol is used as a solvent in an amount of 70% by weight, and butyl cellosolve is used as a dispersant.
  • a TiO 2 paste (first paste) containing in an amount of 05% by weight was prepared.
  • a mixed solvent of terpineol and ethyl cellulose in a weight ratio of 2/98 is used as a solvent, and titanium tetraisopropoxide (main agent) and butyl cellosolve as a dispersing agent (stabilizing component) are mixed with this mixed solvent, and the composite oxide titanium.
  • a layer region forming paste (second paste) was prepared (butyl cellosolve concentration: 3% by weight, titanium concentration: 0.5% by weight).
  • the first paste and the second paste were mixed while being stirred at a weight ratio of 1: 1 to prepare a coating composition for forming a photoelectric conversion coating layer.
  • a commercially available aluminum plate (thickness: 0.3 mm) is prepared as a metal substrate, and the coating composition prepared above is applied onto the aluminum plate, and then baked at 450 ° C. for 30 minutes to produce a photoelectric conversion. A coating layer was prepared.
  • EDX analysis was performed on the upper porous layer region and the lower composite oxide titanium layer region, and the analysis charts at the center of each region are shown in FIGS. 6 and 7. From this analysis chart, the average value of the Ti / O energy intensity ratio X in the upper porous layer region is 2.45, and the Ti / O energy intensity ratio X in the lower composite oxide titanium layer region is 1.82. there were.
  • the lower complex oxide titanium layer region had a thickness of about 150 nm
  • the upper porous layer region had a thickness of about 10 ⁇ m.
  • the photoelectric conversion coating layer was immersed in a dye solution composed of a ruthenium complex dye dispersed in ethanol having a purity of 99.5% for 24 hours, and then dried to obtain a negative electrode.
  • the ruthenium complex dye used is represented by the following formula. [Ru (dcbpy) 2 (NCS) 2 ] ⁇ 2H 2 O
  • a dye-sensitized solar cell was manufactured by sandwiching an electrolyte solution between the counter electrode and the negative electrode prepared above.
  • As the electrolyte solution a solution obtained by dissolving LiI / I 2 (0.5 mol / 0.025 mol) in methoxypropionitrile and adding 4-tert-butylpyridine was used.
  • the obtained battery was stored in a room temperature environment and checked after 1000 hours. As a result, corrosion was not developed and there was no decrease in conversion efficiency.
  • Example 2 An electrode and a dye-sensitized solar cell were prepared under the same conditions as in Example 1 except that acetic acid was used as a dispersant for the paste for forming the porous layer region. When the cross section of the electrode was observed with TEM, it was observed that the same cross section as in Example 1 was formed. The results of EDX analysis and battery evaluation are shown in Table 1.
  • Example 3 An electrode and a dye-sensitized solar cell were prepared under the same conditions as in Example 1 except that trimethylacetic acid was used as a dispersant for the paste for forming the porous layer region. When the cross section of the electrode was observed with TEM, it was observed that the same cross section as in Example 1 was formed. The results of EDX analysis and battery evaluation are shown in Table 1.
  • Example 5 An electrode and a dye-sensitized solar cell were prepared under the same conditions as in Example 1 except that acetylacetone was used as a dispersant for the paste for forming the porous layer region. When the cross section of the electrode was observed with TEM, it was observed that the same cross section as in Example 1 was formed. The results of EDX analysis and battery evaluation are shown in Table 1.
  • stacked as mentioned above was baked for 30 minutes at 450 degreeC, and the complex oxide titanium layer and the porous titanium oxide layer were formed.
  • the thickness of each layer thus formed was measured, the thickness of the upper porous titanium oxide layer was approximately the same as about 10 ⁇ m, but the lower composite oxide titanium layer was non-uniform, about 20 to 500 nm. It was a thick film. From this, it can be seen that the lower composite oxide titanium layer is largely thermally contracted.
  • Ti / O energy intensity ratio X of each layer was the same as that in Example 2, but the biting of the titanium dioxide crystal particles into the composite oxide titanium layer was not observed, and further, on the surface of the titanium dioxide crystal particles. No titanium oxide coating was observed.
  • Example 2 a battery was produced in the same manner as in Example 2, stored in a room temperature environment, and confirmed after 24 hours. As a result, corrosion occurred and the battery was hardly functioning.
  • the corrosion form is pitting corrosion, which is considered to be due to the presence of exposed portions of the aluminum surface.
  • Electrode substrate 51 Porous photoelectric conversion layer 53: Composite oxide titanium layer 55: Porous titanium oxide layer 55a: Crystal particles of titanium dioxide 55b: Composite oxide titanium coating layer

Abstract

Disclosed is an electrode for dye-sensitized solar cells, which comprises a porous photoelectric conversion layer that exhibits excellent reverse electron blocking performance, while having excellent resistance to the electrolyte and stable high conversion efficiency that does not decrease over time. Specifically disclosed is an electrode used in a dye-sensitized solar cell, which is characterized by being composed of an electrode substrate and a photoelectric conversion coating layer that is formed on the electrode substrate. The electrode used in a dye-sensitized solar cell is also characterized in that the photoelectric conversion coating layer is configured of a porous layer region, in which titanium dioxide crystal particles are distributed in the form of layers, and a titanium complex oxide layer region which is positioned closer to the electrode substrate than the porous layer region, with some of the titanium dioxide crystal particles having entered into the titanium complex oxide layer region.

Description

色素増感型太陽電池に使用される電極及び該電極の作製に用いるコーティング組成物Electrode used for dye-sensitized solar cell and coating composition used for production of the electrode
 本発明は、色素増感型太陽電池に使用される電極及び該電極の作製に用いるコーティング組成物に関するものであり、より詳細には、電極基板と該電極基板上に設けられた光電変換層とからなる電極及び該電極上の光電変換層の形成に用いるコーティング組成物に関する。 The present invention relates to an electrode used for a dye-sensitized solar cell and a coating composition used for producing the electrode, and more specifically, an electrode substrate and a photoelectric conversion layer provided on the electrode substrate; And a coating composition used for forming a photoelectric conversion layer on the electrode.
 現在、地球規模の環境問題や化石エネルギー資源枯渇問題などの観点から太陽光発電に対する期待が大きく、単結晶及び多結晶シリコン光電変換素子が太陽電池として実用化されている。しかし、この種の太陽電池は、高価格であること、シリコン原料の供給問題などを有しており、シリコン以外の材料を用いた太陽電池の実用化が望まれている。 Currently, there is great expectation for photovoltaic power generation from the viewpoint of global environmental problems and fossil energy resource depletion problems, and single crystal and polycrystalline silicon photoelectric conversion elements are put into practical use as solar cells. However, this type of solar cell is expensive and has a problem of supply of silicon raw materials, and the practical application of solar cells using materials other than silicon is desired.
 上記のような見地から、最近では、シリコン以外の材料を用いた太陽電池として、色素増感型太陽電池が注目されている。この色素増感型太陽電池の代表的なものとして、ガラス基板や透明プラスチック基板の表面にITO等の透明導電膜を設けた透明電極基板と、金属電極基板とが、色素で増感された多孔質光電変換層(半導体多孔質層)と電解質層とを間に挟んで対峙した構造を有しており、金属電極基板と透明電極基板との周縁部分は、電解質層が漏洩しないように、封止材で封止されている。即ち、多孔質光電変換層と電解質層とを間に挟んで金属電極基板と透明電極基板とが対峙している領域が発電領域となっており、封止材で封止されている領域が発電とは無関係の封止領域となっている。この多孔質光電変換層は、一般に透明電極基板上に設けられているが、金属電極基板上に設けることもできる(特許文献1参照)。 From the above viewpoint, recently, a dye-sensitized solar cell has attracted attention as a solar cell using a material other than silicon. As a representative of this dye-sensitized solar cell, a transparent electrode substrate in which a transparent conductive film such as ITO is provided on the surface of a glass substrate or a transparent plastic substrate, and a metal electrode substrate are sensitized with a dye. The peripheral portion between the metal electrode substrate and the transparent electrode substrate is sealed so that the electrolyte layer does not leak. Sealed with a stopper. That is, the region where the metal electrode substrate and the transparent electrode substrate are opposed to each other with the porous photoelectric conversion layer and the electrolyte layer interposed therebetween is the power generation region, and the region sealed with the sealing material is the power generation region. It is a sealing area unrelated to the above. This porous photoelectric conversion layer is generally provided on a transparent electrode substrate, but can also be provided on a metal electrode substrate (see Patent Document 1).
 上記のような構造の色素増感型太陽電池では、透明電極基板側から可視光を照射すると、色素増感多孔質層中の色素が励起され、基底状態から励起状態へと遷移し、励起された色素の電子は、この半導体多孔質層中の伝導帯へ注入され、この半導体多孔質層が形成されている透明電極基板或いは金属電極基板から外部回路を通って、対極である金属電極基板或いは透明電極基板に移動する。対極の電極基板に移動した電子は、電解質層中のイオンによって運ばれ、色素に戻る。このような過程の繰り返しにより電気エネルギーが取り出されるわけである。このような色素増感太陽電池の発電メカニズムは、pn接合型光電変換素子と異なり、光の捕捉と電子伝導が別々の場所で行われ、植物の光電変換プロセスに非常に似たものとなっている。 In the dye-sensitized solar cell having the above-described structure, when visible light is irradiated from the transparent electrode substrate side, the dye in the dye-sensitized porous layer is excited, transitioned from the ground state to the excited state, and excited. The electrons of the dye are injected into the conduction band in the semiconductor porous layer, and pass through an external circuit from the transparent electrode substrate or metal electrode substrate on which the semiconductor porous layer is formed. Move to transparent electrode substrate. The electrons that have moved to the counter electrode substrate are carried by the ions in the electrolyte layer and return to the dye. Electric energy is extracted by repeating such a process. The power generation mechanism of such a dye-sensitized solar cell is different from a pn junction photoelectric conversion element, in which light capture and electronic conduction are performed in different places, and is very similar to a plant photoelectric conversion process. Yes.
 上記のような構造の色素増感型太陽電池において、特に多孔質光電変換層を金属基板上に設けた場合には、色素を担持している多孔質光電変換層が直接低抵抗の金属基板上に形成されるため、変換効率の低下を回避することができ、またセルを大型化した場合の内部抵抗(曲率因子、Fill Factor;FF)の増大を抑制することができるという利点がある。 In the dye-sensitized solar cell having the above structure, particularly when the porous photoelectric conversion layer is provided on the metal substrate, the porous photoelectric conversion layer carrying the dye is directly on the low-resistance metal substrate. Therefore, it is possible to avoid a decrease in conversion efficiency and to suppress an increase in internal resistance (curvature factor, FillFFactor; FF) when the cell is enlarged.
 しかしながら、多孔質光電変換層を金属基板上に設けて透明電極基板側からの光照射により発電を行うときには、多孔質光電変換層が低抵抗の金属基板上に存在しているため、整流作用が不完全となり、逆電流が発生し、十分に高い変換効率を得るためには、未だ改善の余地がある。また、耐久性が低く、経時と共に変換効率が低下するという問題もある。 However, when the porous photoelectric conversion layer is provided on the metal substrate and power is generated by light irradiation from the transparent electrode substrate side, the porous photoelectric conversion layer exists on the low-resistance metal substrate, so that the rectifying action is In order to achieve incompleteness, reverse current, and sufficiently high conversion efficiency, there is still room for improvement. There is also a problem that the durability is low and the conversion efficiency decreases with time.
 上記のような問題を改善するための手段としては、本出願人により、金属基板上に、化成処理膜からなる逆電子防止層を形成し、この逆電子防止層上に色素で増感された多孔質酸化物半導体層を形成する方法が提案されている(特許文献2参照)。 As means for improving the above problems, the present applicant formed a reverse electron prevention layer made of a chemical conversion treatment film on a metal substrate, and sensitized with a dye on the reverse electron prevention layer. A method for forming a porous oxide semiconductor layer has been proposed (see Patent Document 2).
特開2001-273937号公報JP 2001-273937 A 特開2008-053024号公報JP 2008-053024 A
 しかしながら、特許文献2で提案されているように、化成処理により逆電子防止層を金属基板上に形成し、この逆電子防止層上に色素で増感された半導体多孔質層を形成する場合には、逆電子防止層が電解質に対しての耐性が高いため、経時による変換効率の低下を有効に防止し得るが、逆電流の防止効果がそれほど高くなく、従って高い変化効率を得るという点で未だ不十分である。 However, as proposed in Patent Document 2, a reverse electron prevention layer is formed on a metal substrate by chemical conversion treatment, and a semiconductor porous layer sensitized with a dye is formed on the reverse electron prevention layer. Since the reverse electron prevention layer is highly resistant to electrolytes, it can effectively prevent a decrease in conversion efficiency over time, but the reverse current prevention effect is not so high, and thus a high change efficiency is obtained. It is still insufficient.
 一方、本出願人は、逆電子防止層を形成するためのコーティング液を提案した[特願2008-178341(特開2010-20939号公報)]。即ち、このコーティング液は、熱処理により金属酸化物を形成し得る金属化合物を溶質として含む有機溶媒溶液からなり、該有機溶媒溶液は、溶質安定化剤を含有しているとともに、25℃で、10cP以上の粘度を有しているものであり、これを金属基板表面に塗布し、乾燥することにより、色素で増感された半導体多孔質層の下地となる逆電子防止層を形成するというものである。このようなコーティング液を用いて形成された逆電子防止層は、金属酸化物の緻密な層から形成されているため、化成処理により形成したものに比して優れた整流作用を示すばかりか、電解質に対して耐性も良好であり、従って、金属基板の腐食を有効に防止でき、経時による変換効率の低下という問題も有効に回避できるという利点を有している。 On the other hand, the present applicant has proposed a coating liquid for forming a reverse electron prevention layer [Japanese Patent Application No. 2008-178341 (Japanese Patent Laid-Open No. 2010-20939)]. That is, this coating solution is composed of an organic solvent solution containing a metal compound capable of forming a metal oxide by heat treatment as a solute. The organic solvent solution contains a solute stabilizer and is 10 cP at 25 ° C. It has the above viscosity, and this is applied to the surface of a metal substrate and dried to form a reverse electron prevention layer serving as a base for a semiconductor porous layer sensitized with a dye. is there. Since the reverse electron prevention layer formed using such a coating liquid is formed from a dense layer of metal oxide, it not only exhibits an excellent rectifying action compared to that formed by chemical conversion treatment, It has good resistance to the electrolyte, and therefore has an advantage that the corrosion of the metal substrate can be effectively prevented and the problem of deterioration in conversion efficiency with time can be effectively avoided.
 しかるに、上記のようなコーティング液により逆電子防止層を形成した場合には、下地の金属基板の表面に局部的な腐食(孔食)が生じるという問題があった。このような孔食は、経時と共に拡大し、変換効率の低下をもたらしてしまう。特に、このような孔食は、表面粗さの大きな金属基板の表面に逆電子防止層を形成する場合に頻繁に生じている。従って、電解質に対する耐性を確実なものとし、経時による変換効率の低下を確実に防止することが必要であり、さらなる改善が求められている。 However, when the reverse electron prevention layer is formed by the coating liquid as described above, there is a problem that local corrosion (pitting corrosion) occurs on the surface of the underlying metal substrate. Such pitting corrosion expands with time, resulting in a decrease in conversion efficiency. In particular, such pitting corrosion frequently occurs when a reverse electron prevention layer is formed on the surface of a metal substrate having a large surface roughness. Therefore, it is necessary to ensure resistance to the electrolyte and to surely prevent a decrease in conversion efficiency over time, and further improvement is required.
 また、上記のようなコーティング液を用いて逆電子防止層を形成する場合には、逆電子防止層を形成した後に、さらに金属酸化物が分散されたペーストなどを塗布してのコーティングにより、多孔質酸化物半導体層を形成することが必要であり、多孔質酸化物半導体層を含む多孔質光電変換層を電極金属基板上に形成するために、コーティングを2段で行わなければならず、生産性が低いという欠点もある。 In addition, when forming the reverse electron prevention layer using the coating liquid as described above, after forming the reverse electron prevention layer, coating with a paste coated with a metal oxide is further applied. It is necessary to form a porous oxide semiconductor layer, and in order to form a porous photoelectric conversion layer including a porous oxide semiconductor layer on an electrode metal substrate, the coating must be performed in two stages and produced. There is also a disadvantage that the property is low.
 従って、本発明の目的は、逆電子防止性に優れていると共に、電解質に対する耐性にも優れ、経時的に低下せずに安定して高い変換効率を示すような光電変換層を有する色素増感型太陽電池用の電極を提供することにある。
 本発明の他の目的は、上記のような特性を有する光電変換層を一段のコーティングにより形成し得るコーティング組成物を提供することにある。
Accordingly, an object of the present invention is a dye-sensitized dye having a photoelectric conversion layer that has excellent reverse electron prevention properties, excellent resistance to electrolytes, and stably exhibits high conversion efficiency without decreasing over time. It is to provide an electrode for a solar cell.
Another object of the present invention is to provide a coating composition capable of forming a photoelectric conversion layer having the above-mentioned characteristics by a single step coating.
 本発明者等は、色素増感型太陽電池に使用される電極について多くの実験を行い、その特性を検討した結果、特に、半導体金属酸化物の分散粒子が分散剤と共に有機溶媒中に分散されており、しかも、この有機溶媒中に、熱処理により酸化物を形成し得る金属化合物(特に該金属酸化物を形成し得る金属化合物)が溶質として存在しているときには、逆電防止特性に優れ、しかも電解質に対する耐性にも優れた多孔質の光電変換層が形成されることを見出し、本発明を完成させるに至った。 As a result of conducting many experiments on the electrodes used in dye-sensitized solar cells and examining their characteristics, the present inventors have particularly found that dispersed particles of semiconductor metal oxide are dispersed in an organic solvent together with a dispersant. In addition, when a metal compound capable of forming an oxide by heat treatment (particularly a metal compound capable of forming the metal oxide) is present as a solute in this organic solvent, it has excellent anti-electrostatic properties, And it discovered that the porous photoelectric converting layer excellent also in the tolerance with respect to electrolyte was formed, and came to complete this invention.
 即ち、本発明によれば、色素増感型太陽電池に使用される電極であって、電極基板と該電極基板上に設けられた光電変換コーティング層とからなり、該光電変換コーティング層は、二酸化チタンの結晶粒子が層状に分布した多孔質層領域と、該多孔質層領域に対して電極基板側に位置する複合酸化物チタン層領域とから形成されており、該複合酸化物チタン層領域には、前記二酸化チタンの結晶粒子の一部が食い込んでいることを特徴とする電極が提供される。 That is, according to the present invention, an electrode used in a dye-sensitized solar cell includes an electrode substrate and a photoelectric conversion coating layer provided on the electrode substrate. It is formed from a porous layer region in which titanium crystal particles are distributed in layers, and a composite oxide titanium layer region located on the electrode substrate side with respect to the porous layer region, and in the composite oxide titanium layer region Provides an electrode characterized in that a part of the crystal grains of the titanium dioxide is bitten.
 本発明の電極においては、
(1)前記複合酸化物チタン層領域は、下記式:
  TiO・nTiOR
  式中、nは正の数であり、
     Rは有機基或いは金属原子を示す、
で表されるモル組成を有していること、
(2)前記二酸化チタンの結晶粒子は、その表面が複合酸化物チタンで被覆されていること、
(3)前記複合酸化物チタン層領域は、0.5乃至500nmの厚みを有していること、
(4)前記光電変換コーティング層には色素が担持されていること、
(5)前記電極基板が金属基板であること、
が好ましく、さらに、この電極の光電変換層には、色素が担持され、色素増感型太陽電池の電極としての使用に供される。
In the electrode of the present invention,
(1) The complex oxide titanium layer region has the following formula:
TiO 2 · nTiOR
Where n is a positive number;
R represents an organic group or a metal atom,
Having a molar composition represented by:
(2) The surface of the titanium dioxide crystal particles is coated with composite oxide titanium,
(3) The complex oxide titanium layer region has a thickness of 0.5 to 500 nm,
(4) The pigment is supported on the photoelectric conversion coating layer,
(5) the electrode substrate is a metal substrate;
Further, a dye is supported on the photoelectric conversion layer of this electrode and is used for an electrode of a dye-sensitized solar cell.
 本発明によれば、また、電極基板上に光電変換コーティング層を形成するために使用されるコーティング組成物であって、チタン酸化物、熱処理により酸化物を形成し得るチタン化合物、分散剤及び有機溶媒を含み、該チタン酸化物は分散粒子として存在し、該チタン化合物は溶質として存在していることを特徴とするコーティング組成物が提供される。 According to the present invention, there is also provided a coating composition used for forming a photoelectric conversion coating layer on an electrode substrate, comprising titanium oxide, a titanium compound capable of forming an oxide by heat treatment, a dispersant, and an organic A coating composition comprising a solvent, wherein the titanium oxide is present as dispersed particles and the titanium compound is present as a solute is provided.
 上記のコーティング組成物においては、
(1)前記チタン化合物が、チタンのアルコキシドもしくは塩化物であること、
(2)前記チタン化合物を、金属換算で、前記チタン酸化物当り0.01乃至50重量%の量で含有していること、
(3)前記有機溶媒が、炭素数4以下の低級アルコール、エチルセルロース及びテルピネオールからなる群より選択された少なくとも1種であること、
が好ましい。
In the above coating composition,
(1) The titanium compound is an alkoxide or chloride of titanium,
(2) containing the titanium compound in an amount of 0.01 to 50% by weight per titanium oxide in terms of metal;
(3) The organic solvent is at least one selected from the group consisting of lower alcohols having 4 or less carbon atoms, ethyl cellulose, and terpineol.
Is preferred.
 さらに、上記のコーティング組成物においては、
(4)前記分散剤として、前記チタン酸化物を分散させるための分散成分と、前記チタン化合物を溶質安定化するための相溶化成分とを含有していること、
(5)前記分散成分が、グリコールエーテル、酢酸、トリメチル酢酸、β-ジケトン及び水からなる群より選択された少なくとも1種であり、前記相溶化成分がグリコールエーテルであること、
(6)前記グリコールエーテルがブチルセロソルブまたはプロピルセロソルブであること、
(7)金属換算で、前記分散成分を、前記チタン酸化物当り0.01乃至50重量%の量で含有し、前記相溶化成分を、前記チタン化合物当り0.01乃至50重量%の量で含有していること、
(8)前記分散成分及び前記相溶化成分の何れもがグリコールエーテルであること、
という態様を採り得る。
Furthermore, in the above coating composition,
(4) As the dispersing agent, containing a dispersing component for dispersing the titanium oxide and a compatibilizing component for stabilizing the titanium compound as a solute,
(5) the dispersion component is at least one selected from the group consisting of glycol ether, acetic acid, trimethylacetic acid, β-diketone and water, and the compatibilizing component is glycol ether;
(6) The glycol ether is butyl cellosolve or propyl cellosolve,
(7) In terms of metal, the dispersion component is contained in an amount of 0.01 to 50% by weight per titanium oxide, and the compatibilizing component is contained in an amount of 0.01 to 50% by weight per titanium compound. Containing,
(8) Both the dispersion component and the compatibilizing component are glycol ethers,
It can take the form.
 本発明の色素増感型太陽電池に使用される電極は、電極基板上の光電変換コーティング層が、二酸化チタンの結晶粒子が層状に分布している多孔質層領域と、複合酸化物チタン層領域(多孔質層領域に比して緻密である)とから形成されており、この複合酸化物チタン層領域は、多孔質層に対して電極基板側に形成されているが、この複合酸化物チタン層領域には、前記二酸化チタンの結晶粒子の一部が食い込んでいる点に顕著な特徴を有している。
 このような構造の光電変換層を有する電極は、後述する実施例に示されているように、それ自体で優れた逆電防止特性(整流特性)を有しているばかりか、電解質に対する耐性にも優れており、長期間の経時後においても電解質による電極基板の腐食が有効に防止され、例えば表面粗さの大きな金属基板の表面に形成されている場合にも孔食を生じることが無く、従って、変換効率の経時的な低下が有効に防止され、安定して高い変換効率を維持することができる。
The electrode used in the dye-sensitized solar cell of the present invention has a photoelectric conversion coating layer on an electrode substrate, a porous layer region in which titanium dioxide crystal particles are distributed in layers, and a composite oxide titanium layer region The composite oxide titanium layer region is formed on the electrode substrate side with respect to the porous layer. The layer region has a remarkable feature in that a part of the crystal grains of the titanium dioxide bites into the layer region.
An electrode having a photoelectric conversion layer having such a structure not only has an excellent anti-reverse electric characteristic (rectification characteristic) per se, but also has resistance to an electrolyte, as shown in Examples described later. It is also excellent, and corrosion of the electrode substrate due to the electrolyte is effectively prevented even after a long period of time. For example, when it is formed on the surface of a metal substrate having a large surface roughness, pitting corrosion does not occur. Therefore, a decrease in conversion efficiency with time can be effectively prevented, and high conversion efficiency can be stably maintained.
 また、この電極は、所定の電極基板、例えば金属基板の表面に、光電変換層形成用のコーティング組成物を塗布し、次いで熱処理するという一段でのコーティングにより製造することができ、生産性の点でも優れている。 In addition, this electrode can be manufactured by a one-step coating in which a coating composition for forming a photoelectric conversion layer is applied to the surface of a predetermined electrode substrate, for example, a metal substrate, and then heat-treated. But it ’s excellent.
 上述した光電変換コーティング層の形成に用いる本発明のコーティング組成物においては、分散粒子の形態で存在するチタン酸化物は、多孔質のチタン酸化物層(即ち、前述した二酸化チタンの結晶粒子が層状に分布した多孔質層領域)を形成する成分であり、溶質の状態で存在するチタン化合物は、加熱により、チタンの複合酸化物が緻密に分布した層(即ち、緻密な複合酸化物チタン層領域)を生成する成分であり、チタン酸化物粒子のバインダーとしての機能を有している。このコーティング組成物を使用し、これを所定の電極基板、例えば金属基板の表面に塗布し、次いで熱処理することにより、一段で二酸化チタンの結晶粒子が分布している多孔質層)を含む多孔質光電変換コーティング層を形成することができ、生産性の点で極めて有利である。 In the coating composition of the present invention used for forming the photoelectric conversion coating layer described above, the titanium oxide present in the form of dispersed particles is a porous titanium oxide layer (that is, the above-described titanium dioxide crystal particles are layered). The titanium compound existing in the solute state is a layer in which the titanium complex oxide is densely distributed by heating (that is, the dense complex oxide titanium layer region). ) And has a function as a binder of titanium oxide particles. Porous layer using this coating composition, which is applied to the surface of a predetermined electrode substrate, for example, a metal substrate, and then heat-treated, so that titanium dioxide crystal particles are distributed in a single stage) A photoelectric conversion coating layer can be formed, which is extremely advantageous in terms of productivity.
本発明の色素増感型太陽電池用電極の断面構造を示す図である。It is a figure which shows the cross-section of the electrode for dye-sensitized solar cells of this invention. 二段でのコーティングにより、光電変換層が形成された従来公知の色素増感型太陽電池用電極の断面構造を示す図である。It is a figure which shows the cross-section of the conventionally well-known dye-sensitized solar cell electrode in which the photoelectric converting layer was formed by the coating in two steps. 図1に示された本発明の電極において、電極基板の粗面部分に光電変換コーティング層が形成されているときの電極基板と該コーティング層との界面部分を拡大して示す図である。In the electrode of this invention shown by FIG. 1, it is a figure which expands and shows the interface part of an electrode substrate and this coating layer when the photoelectric conversion coating layer is formed in the rough surface part of the electrode substrate. 図2に示された従来公知の電極において、電極基板の粗面部分に光電変換層が形成されているときの電極基板と光電変換層との界面部分を拡大して示す図である。FIG. 3 is an enlarged view showing an interface portion between the electrode substrate and the photoelectric conversion layer when the photoelectric conversion layer is formed on the rough surface portion of the electrode substrate in the conventionally known electrode shown in FIG. 2. 本発明の電極を有する色素増感型太陽電池の概略構造を示す概略断面図である。It is a schematic sectional drawing which shows schematic structure of the dye-sensitized solar cell which has an electrode of this invention. 実施例1で作製された電極における多孔質酸化チタン層のEDX分析チャートである。2 is an EDX analysis chart of a porous titanium oxide layer in an electrode produced in Example 1. FIG. 実施例1で作製された電極における低酸化度チタン層のEDX分析チャートである。2 is an EDX analysis chart of a low-oxidation titanium layer in an electrode produced in Example 1.
<電極構造>
 本発明の色素増感型太陽電池用電極の断面構造を示す図1を参照すると、この電極は、金属基板等の電極基板50の表面に、光電変換コーティング層51(以下、単に光電変換層と呼ぶ)を形成したものであり、この光電変換層51は、電極基板50の表面側に位置する緻密な複合酸化物チタン層領域53と、該複合酸化物チタン層領域の上に形成された二酸化チタンの結晶粒子からなる多孔質層領域55とから構成されている。
<Electrode structure>
Referring to FIG. 1 showing a cross-sectional structure of an electrode for a dye-sensitized solar cell of the present invention, this electrode is formed on a surface of an electrode substrate 50 such as a metal substrate on a photoelectric conversion coating layer 51 (hereinafter simply referred to as a photoelectric conversion layer). The photoelectric conversion layer 51 includes a dense complex oxide titanium layer region 53 located on the surface side of the electrode substrate 50 and a dioxide oxide formed on the complex oxide titanium layer region. It is comprised from the porous layer area | region 55 which consists of a crystal grain of titanium.
 即ち、上層の多孔質層領域55は、図1から理解されるように、二酸化チタンの結晶粒子55aが焼結して連なった多孔質の層状領域であり、二酸化チタンを主体とする。
 一方、前記複合酸化物チタン層領域53は、下記式:
  TiO・nTiOR
  式中、nは正の数であり、
     Rはアルキル基等の有機基或いは金属原子を示す、
で示されるモル組成を有する複合酸化物から形成されており、二酸化チタン以外のチタン酸化物成分を含む非晶質部を有することを意味している。即ち、該複合酸化物チタン層領域53が非晶質部を有することは、XRD等により確認することができる。
That is, as can be understood from FIG. 1, the upper porous layer region 55 is a porous layered region in which the titanium dioxide crystal particles 55a are connected by sintering, and is mainly composed of titanium dioxide.
On the other hand, the complex oxide titanium layer region 53 has the following formula:
TiO 2 · nTiOR
Where n is a positive number;
R represents an organic group such as an alkyl group or a metal atom,
It is formed from the complex oxide which has the molar composition shown by this, and it has having an amorphous part containing titanium oxide components other than titanium dioxide. That is, it can be confirmed by XRD or the like that the complex oxide titanium layer region 53 has an amorphous part.
 また、上層の多孔質層領域55が二酸化チタンを主成分とし、下層の複合酸化物チタン層53が二酸化チタンとは異なるチタン化合物であることは、EDX分析により、下記式:
  X=STi/SO
 式中、STiは、チタンのKα線に由来するエネルギー強度を示し、
    SOは、酸素のKα線に由来するエネルギー強度を示す、
で定義されるTi/Oエネルギー強度比Xを求めることにより確認することができる。
Further, the fact that the upper porous layer region 55 is mainly composed of titanium dioxide and the lower composite oxide titanium layer 53 is a titanium compound different from titanium dioxide is based on the following formula:
X = S Ti / S O
In the formula, S Ti represents the energy intensity derived from the Kα ray of titanium,
S O indicates the energy intensity derived from the oxygen Kα ray,
This can be confirmed by obtaining the Ti / O energy intensity ratio X defined by
 即ち、上層の多孔質層領域55では、Ti/Oエネルギー強度比Xが2.40乃至2.80の範囲にある。高純度の二酸化チタンについて、Ti/Oエネルギー強度比Xを求めると、その値は2.30乃至2.5程度であり、このことから、この多孔質酸化チタン層55は、二酸化チタンに極めて近い酸化度を有しており、二酸化チタンを主成分とするものであることが判る。一方、下層の複合酸化物チタン層状領域53では、そのTi/Oエネルギー強度比Xが1.20乃至2.39の範囲にあり、多孔質酸化チタン層55よりも小さく、従って、低酸化度であり、上記のような複合酸化物を主体としていることが判る。 That is, in the upper porous layer region 55, the Ti / O energy intensity ratio X is in the range of 2.40 to 2.80. When the Ti / O energy intensity ratio X is determined for high-purity titanium dioxide, the value is about 2.30 to 2.5. Therefore, the porous titanium oxide layer 55 is very close to titanium dioxide. It has an oxidation degree and is found to be mainly composed of titanium dioxide. On the other hand, in the lower complex oxide titanium layered region 53, the Ti / O energy intensity ratio X is in the range of 1.20 to 2.39, which is smaller than the porous titanium oxide layer 55, and therefore has a low oxidation degree. It can be seen that the composite oxide as described above is mainly used.
 例えば、後述する実施例1で作製された電極のコーティング層の上部領域に形成されている多孔質層領域55について、その中心部分でのEDX分析では、その分析チャートは図6に示す通りである。この分析チャートによると、4.52keVと4.93keVの位置にTi原子のピークが発現しており、0.55keVの位置に酸素原子のピークが発現している。従って、各ピークの強度からTi/Oエネルギー強度比Xを算出すると、2.48の値となる。
 一方、このコーティング層の下部領域に形成されている複合酸化物チタン層領域53についての中心部分でのEDX分析チャートは図7に示されている通りであり、図6と同様の位置にTi原子及び酸素原子のピークが発現しており、各ピークの強度から、この部分でのTi/Oエネルギー強度比Xを算出すると、1.33の値となり、多孔質酸化チタン層55に比して、かなり低い値となっている。従って、上部の多孔質層領域55は酸化度が高く、二酸化チタンを主体としており、下部の層状領域53は、前記の複合酸化物を主体とする複合酸化物チタンにより形成されていることを確認することができる。
For example, in the EDX analysis at the central portion of the porous layer region 55 formed in the upper region of the electrode coating layer manufactured in Example 1 described later, the analysis chart is as shown in FIG. . According to this analysis chart, Ti atom peaks appear at the positions of 4.52 keV and 4.93 keV, and oxygen atom peaks appear at the position of 0.55 keV. Therefore, when the Ti / O energy intensity ratio X is calculated from the intensity of each peak, the value is 2.48.
On the other hand, the EDX analysis chart at the center of the composite oxide titanium layer region 53 formed in the lower region of the coating layer is as shown in FIG. 7, and Ti atoms are located at the same positions as in FIG. And when the peak of oxygen atoms is expressed, and calculating the Ti / O energy intensity ratio X in this part from the intensity of each peak, it becomes a value of 1.33, compared with the porous titanium oxide layer 55, The value is quite low. Accordingly, it is confirmed that the upper porous layer region 55 has a high degree of oxidation and is mainly made of titanium dioxide, and the lower layered region 53 is made of the composite oxide titanium mainly containing the composite oxide. can do.
 ところで、本発明においては、上記のような非晶質部を含有する複合酸化物チタン層領域53と多孔質層領域55とからなる光電変換コーティング層51は、1段でのコーティング、即ち、1種類のコーティング組成物を1段で塗布しての乾燥及び熱処理により形成されるものであり、このような方法で形成されることに関連して、従来の2段でのコーティングで形成される多孔質光電変換層には見られない特異な構造を有している。 By the way, in the present invention, the photoelectric conversion coating layer 51 composed of the composite oxide titanium layer region 53 containing the amorphous part as described above and the porous layer region 55 is coated in one step, that is, 1 It is formed by drying and heat treatment by applying one kind of coating composition in one step, and in connection with being formed by such a method, the porosity formed by the conventional two-step coating is formed. It has a peculiar structure that is not found in the quality photoelectric conversion layer.
 即ち、図1に示されているように、本発明における多孔質光電変換層51においては、上部の多孔質層領域55を形成している二酸化チタンの結晶粒子55aが、下部の複合酸化物チタン層領域53中に食い込んでおり、このことから理解されるように、これらの層状領域53,55の間には明確な界面が形成されていないのである。 That is, as shown in FIG. 1, in the porous photoelectric conversion layer 51 of the present invention, the titanium dioxide crystal particles 55a forming the upper porous layer region 55 are formed in the lower composite oxide titanium. The layer region 53 has digged in. As can be understood from this, a clear interface is not formed between the layer regions 53 and 55.
 例えば、逆電防止層となる複合酸化物チタン層領域53を形成するためのコーティング組成物を塗布、乾燥し、次いで多孔質層領域55を形成するためのコーティング組成物を、複合酸化物チタン層領域53用のコーティング層の上に、塗布乾燥した後に、熱処理を行うという2段コーティングによって、光電変換コーティング層51を形成した場合においても、図2に示されているように、図1と同様、逆電防止層として機能する複合酸化物チタン層領域53の上に、二酸化チタンの結晶粒子55aからなる多孔質層領域55が形成される。しかしながら、図2から理解されるように、この場合には、二酸化チタンの結晶粒子55aは複合酸化物チタン層領域53の内部には食い込んでおらず、従って、複合酸化物チタン層領域53と多孔質層領域55との間には、明確な界面が形成されることとなる。 For example, the coating composition for forming the composite oxide titanium layer region 53 to be the reverse current prevention layer is applied and dried, and then the coating composition for forming the porous layer region 55 is applied to the composite oxide titanium layer. Even when the photoelectric conversion coating layer 51 is formed on the coating layer for the region 53 by two-step coating in which heat treatment is performed after coating and drying, as shown in FIG. A porous layer region 55 made of titanium dioxide crystal particles 55a is formed on the composite oxide titanium layer region 53 that functions as a reverse current prevention layer. However, as understood from FIG. 2, in this case, the titanium dioxide crystal particles 55 a do not penetrate into the composite oxide titanium layer region 53. A clear interface is formed with the mass layer region 55.
 このように、二酸化チタンの結晶粒子55aが複合酸化物チタン層53の内部に食い込んでいる構造は、1段コーティングにより多孔質光電変換層51が形成される本発明の電極に特有の構造である。しかも、本発明の電極においては、このような特異的な構造により、安定な逆電防止特性(整流特性)が発揮されると同時に、電解質に対する耐性が極めて高い。例えば電極基板50の表面が部分的に粗面であった場合においても、図3に示されているように、電極基板50の表面が完全に緻密な複合酸化物チタン層領域53によって被覆されており、この結果、電解質と金属基板50との接触が完全に防止され、電極基板50の電解質による腐食が有効に防止され、長期間にわたって使用された場合においても、電極基板50の表面に孔食を生じることが無く、従って、変換効率の経時的な低下が有効に防止され、安定して高い変換効率を維持することができるのである。 As described above, the structure in which the titanium dioxide crystal particles 55a are bitten into the composite oxide titanium layer 53 is a structure peculiar to the electrode of the present invention in which the porous photoelectric conversion layer 51 is formed by one-step coating. . Moreover, in the electrode of the present invention, such a specific structure exhibits a stable reverse current prevention characteristic (rectification characteristic) and at the same time has extremely high resistance to the electrolyte. For example, even when the surface of the electrode substrate 50 is partially rough, as shown in FIG. 3, the surface of the electrode substrate 50 is covered with a completely dense complex oxide titanium layer region 53. As a result, the contact between the electrolyte and the metal substrate 50 is completely prevented, the electrode substrate 50 is effectively prevented from being corroded by the electrolyte, and even when used for a long period of time, the surface of the electrode substrate 50 is pitting. Therefore, a decrease in conversion efficiency over time is effectively prevented, and high conversion efficiency can be stably maintained.
 一方、図2に示されているような2段コーティングによって光電変換コーティング層51が電極基板50の表面に形成されている従来公知の電極では、特に電極基板50の表面が粗面であるような場合には、図4に示されているように、電極基板50の表面の一部が複合酸化物チタン層領域53を突き破って露出してしまい、このため、電解質が電極基板50に直接接触してしまい、電解質による腐食が生じ、例えば長期間の使用により、電極基板50の表面に孔食が発生し、経時的に変換効率が低下してしまうのである。 On the other hand, in the conventionally known electrode in which the photoelectric conversion coating layer 51 is formed on the surface of the electrode substrate 50 by the two-step coating as shown in FIG. 2, the surface of the electrode substrate 50 is particularly rough. In this case, as shown in FIG. 4, a part of the surface of the electrode substrate 50 is exposed through the composite oxide titanium layer region 53, so that the electrolyte directly contacts the electrode substrate 50. Thus, corrosion due to the electrolyte occurs, and for example, pitting corrosion occurs on the surface of the electrode substrate 50 due to long-term use, and conversion efficiency decreases with time.
 尚、本発明の電極では、図3のように電極基板50の表面が完全に複合酸化物チタン層領域53によって覆われており、電極基板50の電解質による腐食が効果的に防止される理由は、明確に解明されているわけではないが、本発明者等は、次のように推定している。 In the electrode of the present invention, the surface of the electrode substrate 50 is completely covered with the complex oxide titanium layer region 53 as shown in FIG. 3, and the reason why the corrosion of the electrode substrate 50 by the electrolyte is effectively prevented is as follows. Although not clearly clarified, the present inventors presume as follows.
 即ち、本発明の電極では、光電変換コーティング層51が一段でのコーティングにより形成されているため、熱処理に際しては、二酸化チタンの結晶粒子55aが複合酸化物チタン層領域53を形成するための有機溶媒溶液中に分散した状態で存在しており、このような状態で熱処理が行われ、二酸化チタンの結晶粒子55aを分散している有機溶媒溶液中からのゲル化によって、酸化度が低く、例えばTi/Oエネルギー強度比Xが1.20乃至2.39である酸化チタンが生成する。このため、二酸化チタンの結晶粒子55aが食い込んだ形で複合酸化物チタン層領域53が形成されるわけであるが、このような形態での熱処理では、複合酸化物チタン層領域53の熱収縮が有効に緩和される。即ち、複合酸化物チタン層領域53に食い込んでいる二酸化チタンの結晶粒子55aが複合酸化物チタン層領域53の熱収縮を効果的に抑制しているものと考えられ、この結果、電極基板50の表面が粗面である場合においても、電極基板50の表面が複合酸化物チタン層領域53を突き破ってしまうことがなく、電極基板50の全面が複合酸化物チタン層領域53によって完全に覆われることとなるのである。 That is, in the electrode of the present invention, since the photoelectric conversion coating layer 51 is formed by one-step coating, an organic solvent for the titanium dioxide crystal particles 55a to form the composite oxide titanium layer region 53 during the heat treatment. It exists in a dispersed state in the solution, and heat treatment is performed in such a state, and the degree of oxidation is low due to gelation from the organic solvent solution in which the titanium dioxide crystal particles 55a are dispersed. Titanium oxide having an / O energy intensity ratio X of 1.20 to 2.39 is produced. For this reason, the composite oxide titanium layer region 53 is formed in a form in which the titanium dioxide crystal particles 55a are eroded. In the heat treatment in such a form, the thermal contraction of the composite oxide titanium layer region 53 is caused. Effectively mitigated. That is, it is considered that the titanium dioxide crystal particles 55a biting into the composite oxide titanium layer region 53 effectively suppress the thermal contraction of the composite oxide titanium layer region 53. Even when the surface is rough, the surface of the electrode substrate 50 does not break through the composite oxide titanium layer region 53, and the entire surface of the electrode substrate 50 is completely covered by the composite oxide titanium layer region 53. It becomes.
 例えば、従来の二段コーティングにより光電変換コーティング層51を形成した場合には、図2から理解されるように、最終的な熱処理を行うに際して、二酸化チタンの結晶粒子55aが、複合酸化物チタン層領域53を形成するためのコーティング層上に載った状態で存在しており、この結晶粒子55aが複合酸化物チタン層領域53と完全に分離している。このため、熱処理によって、複合酸化物チタン層領域53の収縮と結晶粒子55aからなる多孔質層領域55との収縮バランスが悪いため、その厚みが大きくばらついてしまい、この結果、特に表面の粗い電極基板50上に光電変換コーティング層51を形成するような場合には、電極基板50表面の粗い部分が複合酸化物チタン層領域53を突き破って露出してしまうのである。 For example, in the case where the photoelectric conversion coating layer 51 is formed by the conventional two-stage coating, as understood from FIG. 2, when the final heat treatment is performed, the titanium dioxide crystal particles 55a are converted into the composite oxide titanium layer. The crystal particles 55 a are present on the coating layer for forming the region 53, and the crystal particles 55 a are completely separated from the complex oxide titanium layer region 53. For this reason, due to the heat treatment, the shrinkage balance between the shrinkage of the composite oxide titanium layer region 53 and the porous layer region 55 made of the crystal particles 55a is poor, and the thickness thereof varies greatly. As a result, the electrode having a particularly rough surface When the photoelectric conversion coating layer 51 is formed on the substrate 50, a rough portion of the surface of the electrode substrate 50 breaks through the composite oxide titanium layer region 53 and is exposed.
 上述したように、本発明の電極では、多孔質層領域55を形成している二酸化チタンの結晶粒子55aが、下部の緻密な複合酸化物チタン層領域53中に食い込んでいるという特異な構造を有しているが、このような構造に加えて、多孔質層領域55を形成している二酸化チタンの結晶粒子55aのそれぞれが、図1に示されているように、非晶質部を含有する複合酸化物チタンの薄膜55bによって表面被覆されていることも、1段でのコーティングによって形成される光電変換コーティング層51(多孔質層領域55)の大きな特徴である。即ち、この光電変換コーティング層51は、二酸化チタンの結晶粒子55aが複合酸化物チタン層領域53を形成するための有機溶媒溶液中に分散した状態で熱処理(ゲル化)が行われ、これによって、複合酸化物チタン層領域53が形成される。従って、二酸化チタンの結晶粒子55aは、Ti/Oエネルギー強度比Xが小さい低酸化度チタンによって覆われた状態で焼結することとなり、この結果、該結晶粒子55aは、非晶質部を含有する複合酸化物チタンの薄膜55bによって被覆されることとなる。
 2段コーティングによって形成される多孔質層領域55においては、複合酸化物チタン層領域53が、二酸化チタンの結晶粒子55aと分離した状態でのゲル化によって生成するため、図2からも理解されるように、該結晶粒子55aが複合酸化物チタンの薄膜55bによって被覆されることはない。
As described above, the electrode according to the present invention has a unique structure in which the titanium dioxide crystal particles 55a forming the porous layer region 55 bite into the dense complex oxide titanium layer region 53 below. In addition to such a structure, each of the titanium dioxide crystal particles 55a forming the porous layer region 55 contains an amorphous part as shown in FIG. The surface coating with the composite oxide titanium thin film 55b is also a major feature of the photoelectric conversion coating layer 51 (porous layer region 55) formed by one-step coating. That is, the photoelectric conversion coating layer 51 is subjected to heat treatment (gelation) in a state in which the titanium dioxide crystal particles 55a are dispersed in the organic solvent solution for forming the composite oxide titanium layer region 53. A complex oxide titanium layer region 53 is formed. Accordingly, the titanium dioxide crystal particles 55a are sintered in a state where they are covered with low-oxidation titanium having a small Ti / O energy intensity ratio X. As a result, the crystal particles 55a contain an amorphous part. The composite oxide titanium thin film 55b is covered.
In the porous layer region 55 formed by the two-step coating, the composite oxide titanium layer region 53 is generated by gelation in a state separated from the titanium dioxide crystal particles 55a, and can be understood from FIG. Thus, the crystal particles 55a are not covered with the thin film 55b of composite oxide titanium.
 尚、上記のような二酸化チタンの結晶粒子55aの表面が非晶質部を含有する複合酸化物チタンの薄膜55bによって被覆されているという事実は、この電極の断面を、透過型電子顕微鏡(TEM)による高角度散乱暗視野像(HAADF)により確認することができる。 Incidentally, the fact that the surface of the titanium dioxide crystal particles 55a as described above is covered with the thin film 55b of the composite oxide titanium containing the amorphous part is that the cross section of this electrode is measured with a transmission electron microscope (TEM). ) By a high angle scattered dark field image (HAADF).
 上記のような本発明の電極における光電変換コーティング層51において、電極基板50の表面に形成される非晶質部を含有する複合酸化物チタン層領域53と多孔質層領域55との間には明確な界面が形成されておらず、結晶粒子55aが複合酸化物チタン層領域53中に食い込んでいるため、複合酸化物チタン層領域53の厚みを正確に測定することは難しい。しかるに、この厚みが必要以上に厚くなると、膜に亀裂が発生するため、電気抵抗が増大し、電池としての機能低下を引き起こす。またこの厚みが必要以上に薄いと、複合酸化物チタン層領域53の逆電防止層としての特性不十分や外部からの負荷が加わった時に発生する応力による亀裂の発生が生じて、電池としての機能が低下してしまう。このため、一般的には、図1に示されているように、多孔質酸化チタン層55を形成している二酸化チタンの結晶粒子55aにおいて、複合酸化物チタン層領域53に接触している粒子の中で最も電極基板50の表面から離れている粒子Aを基準として、この粒子Aと電極基板50との間隔tを複合酸化物チタン層領域53の厚みと定義し、この厚みtが0.5乃至500nm、特に30乃至200nmとなるように複合酸化物チタン層領域53が形成されていることが好適である。
 また、高結晶化度の酸化チタンからなる多孔質層領域55の厚みは、上記の粒子Aの下部を基準とし、これよりも上側の部分の厚みとして、5乃至20μm程度となるように設定されていることが好適である。
In the photoelectric conversion coating layer 51 in the electrode of the present invention as described above, there is a gap between the composite oxide titanium layer region 53 containing the amorphous portion formed on the surface of the electrode substrate 50 and the porous layer region 55. Since a clear interface is not formed, and the crystal particles 55a bite into the complex oxide titanium layer region 53, it is difficult to accurately measure the thickness of the complex oxide titanium layer region 53. However, if this thickness becomes larger than necessary, the film will crack, and the electrical resistance will increase, causing a deterioration in the function of the battery. If this thickness is thinner than necessary, the characteristics of the composite oxide titanium layer region 53 as a reverse current prevention layer may be insufficient, and cracks may occur due to stress generated when an external load is applied. Function will be reduced. For this reason, generally, as shown in FIG. 1, in the titanium dioxide crystal particles 55a forming the porous titanium oxide layer 55, the particles are in contact with the composite oxide titanium layer region 53. The distance t between the particle A and the electrode substrate 50 is defined as the thickness of the composite oxide titanium layer region 53 with the particle A farthest from the surface of the electrode substrate 50 as a reference. The composite oxide titanium layer region 53 is preferably formed so as to have a thickness of 5 to 500 nm, particularly 30 to 200 nm.
The thickness of the porous layer region 55 made of titanium oxide having a high degree of crystallinity is set to be about 5 to 20 μm as the thickness of the upper portion with reference to the lower part of the particle A. It is suitable.
 尚、上記のような複合酸化物チタン層領域53及び高結晶化度の多孔質層領域55の厚みは、後述するコーティング組成物の組成を調整することによって、具体的には、コーティング組成物中に分散されている二酸化チタン粒子と、該コーティング組成物中に溶解しているチタン化合物の量比を調整することにより、適宜の範囲とすることができる。即ち、二酸化チタン粒子の量が多いほど、前述した多孔質層領域55の厚みが厚くなり、二酸化チタン粒子の量が少ないほど、複合酸化物チタン層領域53の厚みが厚くなる。 In addition, the thickness of the composite oxide titanium layer region 53 and the highly crystallized porous layer region 55 as described above can be specifically adjusted by adjusting the composition of the coating composition described later. By adjusting the amount ratio of the titanium dioxide particles dispersed in the titanium compound and the titanium compound dissolved in the coating composition, an appropriate range can be obtained. That is, as the amount of titanium dioxide particles increases, the thickness of the porous layer region 55 described above increases, and as the amount of titanium dioxide particles decreases, the thickness of the composite oxide titanium layer region 53 increases.
 また、本発明の電極において、上述した構造の光電変換コーティング層51が表面に形成されている電極基板50としては、低電気抵抗の金属材料から形成されたものであれば特に制限されないが、一般的には、6×10-6Ω・m以下の比抵抗を有する金属乃至合金、例えばアルミニウム、鉄(スチール)、ステンレススチール、銅、ニッケルなどが使用される。
 また、電極基板50の厚みは特に制限されず、適度な機械的強度が保持される程度の厚みを有していればよい。また、生産性を考慮しないのであれば、電極基板50は、例えば蒸着等により、樹脂フィルム等に形成されていてもよい。勿論、この樹脂フィルム等の基材は透明である必要はない。
Further, in the electrode of the present invention, the electrode substrate 50 on which the photoelectric conversion coating layer 51 having the above-described structure is formed is not particularly limited as long as it is formed from a metal material having low electrical resistance. Specifically, a metal or alloy having a specific resistance of 6 × 10 −6 Ω · m or less, such as aluminum, iron (steel), stainless steel, copper, nickel, or the like is used.
Further, the thickness of the electrode substrate 50 is not particularly limited as long as it has a thickness enough to maintain an appropriate mechanical strength. Moreover, if productivity is not considered, the electrode substrate 50 may be formed in the resin film etc. by vapor deposition etc., for example. Of course, the substrate such as the resin film does not need to be transparent.
 尚、上記の光電変換コーティング層51が形成される電極基板50の表面には、特開2008-53165号公報などに開示されている化成処理膜(逆電子防止機能を有している)を形成し、この上に、光電変換コーティング層51を形成することも可能である。また、特開2010-20939号公報に開示されているようなコーティング組成物や、後述する本発明のコーティング組成物からチタン酸化物粒子が除去されている組成のコーティング組成物を用いて、電極基板50の表面に逆電防止層を形成し、次いで、上述した光電変換コーティング層51を形成することも可能である。このようにして形成される化成処理膜や逆電防止層の上に光電変換コーティング層51を設けることにより、逆電防止特性をさらに向上させることができる。 A chemical conversion treatment film (having a reverse electron prevention function) disclosed in Japanese Patent Application Laid-Open No. 2008-53165 is formed on the surface of the electrode substrate 50 on which the photoelectric conversion coating layer 51 is formed. And it is also possible to form the photoelectric conversion coating layer 51 on this. Further, an electrode substrate using a coating composition as disclosed in JP 2010-20939 A or a coating composition having a composition in which titanium oxide particles are removed from the coating composition of the present invention described later is used. It is also possible to form a back-current prevention layer on the surface of 50 and then form the photoelectric conversion coating layer 51 described above. By providing the photoelectric conversion coating layer 51 on the chemical conversion film and the reverse current prevention layer formed in this way, the reverse current prevention characteristic can be further improved.
 上述した構造を有している本発明の電極は、光電変換コーティング層51の上部に位置する多孔質層領域55に増感色素を担持させた後、色素増感型太陽電池の電極(負極)としての使用に供される。即ち、この多孔質層領域55は、色素を担持させるため、多孔質であることが必要であり、例えば、アルキメデス法による相対密度が50乃至90%、特に50乃至70%程度であることが好ましく、これにより、大きな表面積を確保し、有効量の色素を担持させることができるようになっている。 In the electrode of the present invention having the above-described structure, the sensitizing dye is supported on the porous layer region 55 located above the photoelectric conversion coating layer 51, and then the electrode (negative electrode) of the dye-sensitized solar cell. Served as use. That is, the porous layer region 55 needs to be porous in order to carry the dye, and for example, the relative density by the Archimedes method is preferably 50 to 90%, particularly preferably about 50 to 70%. Thus, a large surface area can be secured and an effective amount of the dye can be supported.
 さらに、上記の光電変換コーティング層51の上に、さらに必要により、公知の手段によって、多孔質の光電変換層を形成することも可能である。例えば、後述する本発明のコーティング組成物から酸化物を形成し得るチタン化合物を除いた組成のコーティング組成物を用い、このコーティング組成物を光電変換コーティング層51の上に塗布し、乾燥及び焼成を行うことにより、多孔質の光電変換層を重ねて形成することができ、これにより、表面積を増大させ、色素の担持量をさらに増大せしめることもできる。 Further, a porous photoelectric conversion layer can be formed on the photoelectric conversion coating layer 51 by a known means if necessary. For example, using a coating composition having a composition excluding a titanium compound capable of forming an oxide from the coating composition of the present invention, which will be described later, this coating composition is applied onto the photoelectric conversion coating layer 51, and dried and baked. By carrying out, a porous photoelectric converting layer can be formed in an overlapping manner, whereby the surface area can be increased and the amount of the dye supported can be further increased.
<コーティング組成物>
 上述した本発明の電極は、二酸化チタン粒子(a)、熱処理により複合酸化物チタン(例えばTi/Oエネルギー強度比Xが1.20乃至2.39のチタン酸化物)を形成し得るチタン化合物(b)、分散剤(c)及び有機溶媒(d)からなり、且つチタン化合物(b)が有機溶媒中に溶解して存在しているコーティング組成物を使用し、このコーティング組成物を電極基板50の表面に塗布し、コーティング層を乾燥及び熱処理するという1段でのコーティングによって、電極基板50の表面に前述した構造の光電変換コーティング層51を形成することにより作成される。
<Coating composition>
The electrode of the present invention described above includes titanium dioxide particles (a) and a titanium compound that can form composite oxide titanium (for example, titanium oxide having a Ti / O energy intensity ratio X of 1.20 to 2.39) by heat treatment ( b), a coating composition comprising a dispersing agent (c) and an organic solvent (d), wherein the titanium compound (b) is dissolved in the organic solvent, and this coating composition is applied to the electrode substrate 50. The photoelectric conversion coating layer 51 having the above-described structure is formed on the surface of the electrode substrate 50 by a one-step coating process in which the coating layer is dried and heat-treated.
(a)二酸化チタン粒子;
 この二酸化チタン粒子は、コーティング組成物中に分散粒子として存在するものであり、色素で増感される多孔質であり且つ半導体特性を有する高結晶化度の酸化チタンの多孔質層領域(酸化物半導体層に相当)55を形成するための成分である。即ち、この粒子が焼結することにより多孔質の層状領域55が形成されるため、この層状領域55は、二酸化チタンの結晶粒子55aを含んでおり、このためニ酸化チタンに近い高酸化度(例えばTi/Oエネルギー強度比Xが2.40乃至2.80)の領域55となるわけである。このような二酸化チタンとしては、アナターゼ型、ブルーカイト型及びルチル型のものが知られているが、多孔質の酸化物半導体層として高い変換効率を得るという観点から、アナターゼ型或いはブルーカイト型の二酸化チタンが最適である。
(A) titanium dioxide particles;
The titanium dioxide particles are present as dispersed particles in the coating composition, are porous sensitized with a dye, and have a porous layer region (oxides) of high-crystallinity titanium oxide having semiconductor characteristics. This is a component for forming (corresponding to a semiconductor layer) 55. That is, since the porous layered region 55 is formed by sintering the particles, the layered region 55 includes the titanium dioxide crystal particles 55a, and thus has a high oxidation degree close to that of titanium dioxide ( For example, the region 55 has a Ti / O energy intensity ratio X of 2.40 to 2.80). As such titanium dioxide, those of anatase type, brookite type and rutile type are known. From the viewpoint of obtaining high conversion efficiency as a porous oxide semiconductor layer, anatase type or brookite type is known. Titanium dioxide is optimal.
 また、この分散粒径は、特に制限されるものではないが、一般には、微細な粒径の粉末を分散させ、例えば500nm以下の粒径に調整されていることが好ましい。この分散粒径が過度に粗大であると、形成される多孔質層への光の透過にバラツキを生じ易く、太陽電池として安定した特性を発揮させることが困難となるおそれが生じる。尚、この粒径は、レーザ回折散乱法により測定することができる。 Further, the dispersed particle size is not particularly limited, but generally, it is preferable that fine particle size powder is dispersed and adjusted to a particle size of, for example, 500 nm or less. If the dispersed particle size is excessively large, variations in the transmission of light to the formed porous layer are likely to occur, which may make it difficult to exhibit stable characteristics as a solar cell. This particle size can be measured by a laser diffraction scattering method.
 上記のような二酸化チタン粒子は、このコーティング組成物中に、5乃至60重量%、特に10乃至40重量%の範囲で含まれていることが好ましい。この二酸化チタン粒子の含有量が少ないと、一定の厚みの多孔質層領域55を形成させることが困難となり、また必要以上に多量の二酸化チタン粒子がコーティング組成物中に含まれていると、熱処理後に膜への亀裂が生じやすくなり、この結果、電気特性が低下するおそれを生じてしまう。 The titanium dioxide particles as described above are preferably contained in the coating composition in the range of 5 to 60% by weight, particularly 10 to 40% by weight. When the content of the titanium dioxide particles is small, it becomes difficult to form the porous layer region 55 having a certain thickness, and when the coating composition contains more titanium dioxide particles than necessary, heat treatment is performed. Later, the film tends to crack, and as a result, the electric characteristics may be deteriorated.
(b)チタン化合物;
 コーティング組成物中に含まれるチタン化合物(b)は、溶質として存在するものであり、後述する熱処理(焼成)によってチタン酸化物を形成し、前述した二酸化チタン粒子のバインダーとしての機能と、逆電子防止層形成機能とを有している。また、化合物の形態は、熱処理により酸化物を形成し且つ有機溶媒に溶解し得るようなものであれば、特に制限されないが、一般的には、容易に入手でき、しかも熱処理によって速やかに酸化物を形成し、且つ有機溶媒に対する溶解度が高いことなどから、アルコキシド或いは水酸化物、塩化物であることが好適である。また、二酸化チタン粒子のバインダーとしての機能という観点から、チタンアルコキシド、特にチタンイソプロポキシドが好適であり、チタンテトライソプロポキシドが最適である。
(B) a titanium compound;
The titanium compound (b) contained in the coating composition exists as a solute, forms a titanium oxide by heat treatment (firing) described later, functions as a binder of the titanium dioxide particles described above, and reverse electrons. And a prevention layer forming function. The form of the compound is not particularly limited as long as it can form an oxide by heat treatment and can be dissolved in an organic solvent. In general, it can be easily obtained, and the oxide can be quickly obtained by heat treatment. And is preferably an alkoxide, hydroxide, or chloride because of its high solubility in organic solvents. Further, from the viewpoint of the function of the titanium dioxide particles as a binder, titanium alkoxide, particularly titanium isopropoxide is preferable, and titanium tetraisopropoxide is most preferable.
 即ち、上記のチタン化合物(b)は、熱処理によるゲル化によってチタン酸化物を形成するが、この際に酸素原子に結合しているアルキル基或いはアルコキシ基と下地金属などとの縮合により生成した金属アルコキシド等がチタン酸化物中に組み込まれるため、生成するチタン酸化物は、前述した式:
  TiO・nTiOR
  式中、nは正の数であり、
     Rはアルキル基等の有機基或いは金属原子を示す、
で表されるモル組成を示し、このような組成の複合酸化物チタン層領域53(例えばTi/Oエネルギー強度比Xが1.20乃至2.39)を形成するのである。
 尚、上記のアルキル等の有機基は、チタン化合物に含まれるアルキル基等の有機基や用いた溶媒が有する有機基などに由来するものであり、また、金属原子は、このコーティング組成物が塗布される金属基板に由来するもの(例えばAl)と考えられる。
That is, the titanium compound (b) forms a titanium oxide by gelation by heat treatment, and at this time, a metal formed by condensation of an alkyl group or an alkoxy group bonded to an oxygen atom and a base metal. Since the alkoxide or the like is incorporated in the titanium oxide, the titanium oxide to be generated has the formula:
TiO 2 · nTiOR
Where n is a positive number;
R represents an organic group such as an alkyl group or a metal atom,
The composite oxide titanium layer region 53 (for example, Ti / O energy intensity ratio X is 1.20 to 2.39) having such a composition is formed.
The organic group such as alkyl is derived from an organic group such as an alkyl group contained in the titanium compound or an organic group included in the solvent used, and a metal atom is applied by this coating composition. It is considered to be derived from a metal substrate (for example, Al).
 本発明において、上記のチタン化合物は、二酸化チタン粒子当り0.01乃至50重量%、特に0.03乃至30重量%の量(金属換算での量であり、二酸化チタン中のTi量に対するチタン化合物中のTi量の割合である)でコーティング組成物中に含まれていることが好適である。即ち、この量が少なすぎると、前述した図1に示されている高結晶化度チタンからなる多孔質層領域55の下に形成される複合酸化物チタン層領域53の厚みが不十分となり、整流特性が不満足となったり、或いはピンホール等の欠陥を生じ易くなり、変換効率の低下を招き易くなってしまう。 In the present invention, the above titanium compound is an amount of 0.01 to 50% by weight, particularly 0.03 to 30% by weight per titanium dioxide particle (amount in terms of metal, and the titanium compound relative to the amount of Ti in the titanium dioxide. It is preferable that it is contained in the coating composition at a ratio of Ti content in the coating composition). That is, if this amount is too small, the thickness of the composite oxide titanium layer region 53 formed under the porous layer region 55 made of high crystallinity titanium shown in FIG. The rectification characteristics are unsatisfactory, or defects such as pinholes are likely to occur, leading to a decrease in conversion efficiency.
(c)分散剤;
 本発明のコーティング組成物中には、分散剤として、二酸化チタンの粒子(a)を有機溶媒中に安定に分散させるための分散機能を有する分散成分(以下、第1の分散剤と呼ぶ)と、チタン化合物(b)を溶質安定化するための相溶化機能を有する相溶化成分(以下、第2の分散剤と呼ぶ)とが含まれている。
(C) a dispersant;
In the coating composition of the present invention, as a dispersant, a dispersion component (hereinafter referred to as a first dispersant) having a dispersion function for stably dispersing the titanium dioxide particles (a) in an organic solvent. And a compatibilizing component (hereinafter referred to as a second dispersant) having a compatibilizing function for stabilizing the solute of the titanium compound (b).
 上記の第1の分散剤としては、グリコールエーテル、酢酸、トリメチル酢酸、β-ジケトン及び水を挙げることができ、第2の分散剤としては、グリコールエーテルを挙げることができる。 Examples of the first dispersant include glycol ether, acetic acid, trimethylacetic acid, β-diketone, and water, and examples of the second dispersant include glycol ether.
 上記の例示から理解されるように、グリコールエーテルは、第1の分散剤及び第2の分散剤としての機能を有しており、さらには、加熱により該粒子の半導体特性に悪影響を与えることなく、容易に揮散することができるため、本発明においては、最も好適な分散剤である。 As understood from the above examples, the glycol ether functions as a first dispersant and a second dispersant, and further, without adversely affecting the semiconductor characteristics of the particles by heating. Since it can be easily volatilized, it is the most preferred dispersant in the present invention.
 このような機能を有しているグリコールエーテルは、下記式:
   HOCHCHOR
  式中、Rは、アルキル基、アリール基またはアラルキル基である、
で表される化合物であり、アルキル基としては、メチル基、エチル基、イソプロピル基、n-プロピル基、イソブチル基、n-ブチル基、イソアミル基等の炭素数が8以下の低級アルキル基が代表的であり、アリール基としてはフェニル基、アラルキル基としてはベンジル基を例示することができる。これらの中では、Rがアルキル基であるグリコールエーテルが好適であり、特に、相溶化成分として機能に優れ、溶質として存在しているチタン化合物(b)の析出を防止し、しかも、それ自体有機溶媒に可溶で且つチタン化合物に対して高い親和性を有するという点で、ブチルセロソルブ(エチレングリコールモノブチルエーテル、R=イソブチル基或いはn-ブチル基)及びプロピルセロソルブ(エチレングリコールモノプロピルエーテル、R=プロピル基)が好ましく、ブチルセロソルブが最適である。
A glycol ether having such a function has the following formula:
HOCH 2 CH 2 OR 1
In the formula, R 1 is an alkyl group, an aryl group, or an aralkyl group.
The alkyl group is typically a lower alkyl group having 8 or less carbon atoms, such as a methyl group, an ethyl group, an isopropyl group, an n-propyl group, an isobutyl group, an n-butyl group, and an isoamyl group. Examples of the aryl group include a phenyl group, and examples of the aralkyl group include a benzyl group. Among these, glycol ethers in which R 1 is an alkyl group are preferable, and in particular, the titanium compound (b) that has an excellent function as a compatibilizing component and prevents the precipitation of the titanium compound (b) as a solute is present. Butyl cellosolve (ethylene glycol monobutyl ether, R 1 = isobutyl group or n-butyl group) and propyl cellosolve (ethylene glycol monopropyl ether, R) are soluble in organic solvents and have high affinity for titanium compounds. 1 = propyl group), and butyl cellosolve is most preferable.
 また、グリコールエーテル以外に使用される他の分散剤、即ち、酢酸、トリメチル酢酸、β-ジケトン及び水は、第1の分散剤(即ち、二酸化チタンの粒子(a)を有機溶媒中に安定に分散させるため分散機能を有する分散成分)として使用されるものであり、これらは、相溶化成分としては機能しないため、上記の第2の分散剤(グリコールエーテル)と併用されるものである。これらは、用いる有機溶媒の種類に応じて適宜のものが使用されるが、何れも、二酸化チタンの粒子を比較的安定に有機溶媒中に分散させることができ、また、加熱により該粒子の半導体特性に悪影響を与えることなく、容易に揮散することができる。 In addition to the glycol ether, other dispersants, that is, acetic acid, trimethylacetic acid, β-diketone, and water are used to stabilize the first dispersant (that is, titanium dioxide particles (a) in an organic solvent. The dispersion component is used as a dispersion component having a dispersion function in order to disperse, and since these do not function as a compatibilizing component, they are used in combination with the second dispersant (glycol ether). Any of these may be used depending on the type of the organic solvent used. In any case, the titanium dioxide particles can be dispersed in the organic solvent relatively stably, and the semiconductor of the particles can be heated. It can be easily stripped without adversely affecting the properties.
 また、上記の第1の分散剤の中で、β-ジケトンとしては、例えば、以下のものを例示することができる。
   アセチルアセトン
   1,3-シクロヘキサジオン
   メチレンビス-1,3ーシクロヘキサジオン
   2-ベンジル-1,3-シクロヘキサジオン
   アセチルテトラロン
   パルミトイルテトラロン
   ステアロイルテトラロン
   ベンゾイルテトラロン
   2-アセチルシクロヘキサノン
   2-ベンゾイルシクロヘキサノン
   2-アセチル-1,3-シクロヘキサンジオン
   ビス(ベンゾイル)メタン
   ベンゾイル-p-クロルベンゾイルメタン
   ビス(4-メチルベンゾイル)メタン
   ビス(2-ヒドロキシベンゾイル)メタン
   ベンゾイルアセトン
   トリベンゾイルメタン
   ジアセチルベンゾイルメタン
   ステアロイルベンゾイルメタン
   パルミトイルベンゾイルメタン
   ラウロイルベンゾイルメタン
   ジベンゾイルメタン
   ビス(4-クロルベンゾイル)メタン
   ビス(メチレン-3,4-ジオキシベンゾイル)メタン
   ベンゾイルアセチルフェニルメタン
   ステアロイル(4-メトキシベンゾイル)メタン
   ブタノイルアセトン
   ジステアロイルメタン
   ステアロイルアセトン
   ビス(シクロヘキサノイル)-メタン
   ジピバロイルメタン
 上記で例示したβ-ジケトンの中では、アセチルアセトンが最も好適である。
Examples of the β-diketone in the first dispersant include the following.
Acetylacetone 1,3-Cyclohexadione Methylenebis-1,3-cyclohexadione 2-Benzyl-1,3-cyclohexadione Acetyltetralone Palmitoyltetralone Stearoyltetralone Benzoyltetralone 2-Acetylcyclohexanone 2-Benzoylcyclohexanone 2- Acetyl-1,3-cyclohexanedione Bis (benzoyl) methane Benzoyl-p-chlorobenzoylmethane Bis (4-methylbenzoyl) methane Bis (2-hydroxybenzoyl) methane Benzoylacetone Tribenzoylmethane Diacetylbenzoylmethane Stearoylbenzoylmethane Palmitoylbenzoylmethane Lauroylbenzoylmethane dibenzoylmethane bis (4-chloroben Yl) methane bis (methylene-3,4-dioxybenzoyl) methane benzoylacetylphenylmethane stearoyl (4-methoxybenzoyl) methane butanoylacetone distearoylmethane stearoylacetone bis (cyclohexanoyl) -methane dipivaloylmethane Among the β-diketones exemplified above, acetylacetone is most preferred.
 尚、第1の分散剤として使用される水は、通常、酢酸と併用される。 In addition, the water used as the first dispersant is usually used in combination with acetic acid.
 本発明において、上述した第1の分散剤は、Ti換算で、二酸化チタン粒子(a)当り0.01乃至50重量%、特に0.02乃至20重量%の量で使用されているのがよい。
 また、第2の分散剤は、Ti換算で、前記チタン化合物(b)当り0.01乃至50重量%、特に0.02乃至30重量%の量で使用されているのがよい。
In the present invention, the above-mentioned first dispersant is preferably used in an amount of 0.01 to 50% by weight, particularly 0.02 to 20% by weight, in terms of Ti, per titanium dioxide particle (a). .
The second dispersant is preferably used in an amount of 0.01 to 50% by weight, particularly 0.02 to 30% by weight, in terms of Ti, per titanium compound (b).
 尚、上述したグリコールエーテルを、第1の分散剤及び第2の分散剤として併用している場合、そのコーティング組成物中の含有量は、第1の分散剤としての量と第2の分散剤としての量との合計量である。 In addition, when the above-mentioned glycol ether is used in combination as the first dispersant and the second dispersant, the content in the coating composition is the amount as the first dispersant and the second dispersant. The total amount as the amount.
(d)有機溶媒;
 本発明において、有機溶媒としては、前述した二酸化チタン粒子(a)の分散媒として使用でき、さらに前述したチタン化合物(b)が溶解し、且つ分散剤(c)との親和性が高いものであれば、特に制限なく、各種のものを使用することができるが、特にスクリーン印刷に適した粘性のコーティング液を形成し、且つ加熱によって、二酸化チタンの電気特性に悪影響を与えることなく揮散できるという観点から、炭素数4以下の低級アルコール、エチルセルロース及びテルピネオールからなる群より選択された少なくとも1種が好適である。
(D) an organic solvent;
In the present invention, the organic solvent can be used as a dispersion medium for the above-described titanium dioxide particles (a), further dissolves the above-described titanium compound (b), and has high affinity with the dispersant (c). If it is, various types can be used without any particular limitation, but a viscous coating solution particularly suitable for screen printing can be formed and can be volatilized by heating without adversely affecting the electrical properties of titanium dioxide. From the viewpoint, at least one selected from the group consisting of lower alcohols having 4 or less carbon atoms, ethyl cellulose, and terpineol is preferable.
 特に上記の低級アルコールとしては、メタノール、エタノール、イソプロパノール及びブタノールを例示することができ、これらは、特にニ酸化チタン粒子(a)の分散媒及びチタン化合物(b)の溶剤として好適であり、スクリーン印刷等の高粘度塗装適正を考慮する場合は、テルピネオール及びエチルセルロースとの混合溶媒として使用することが好ましい。 In particular, examples of the lower alcohol include methanol, ethanol, isopropanol, and butanol, which are particularly suitable as a dispersion medium for titanium dioxide particles (a) and a solvent for the titanium compound (b), and a screen. When considering the suitability for high-viscosity coating such as printing, it is preferably used as a mixed solvent with terpineol and ethyl cellulose.
 尚、テルピネオール(C1018O)は、1,8-テルビンから水が1分子脱水して生じる不飽和アルコールであり、α、β及びγの3タイプのものが知られており、何れのタイプも使用できるが、一般には、α-テルピネオール(Bp:219~221℃)、或いはα-テルピネオールを主成分とし、これにβ-テルピネオールなどの他のタイプものが混合された混合物(一般に、市販されているものは混合物である)が好適である。 Terpineol (C 10 H 18 O) is an unsaturated alcohol produced by dehydrating one molecule of water from 1,8-terbin, and three types of α, β and γ are known. Although types can be used, generally α-terpineol (Bp: 219 to 221 ° C.) or a mixture containing α-terpineol as a main component and other types such as β-terpineol mixed (generally commercially available) What is being done is a mixture).
 また、テルピネオールは、粘稠な液体であるが、前述した低級アルコールに分散させた金属酸化物微粒子及び金属化合物と親和性が良好であり、低級アルコールと同様、加熱により、生成する金属酸化物(例えば二酸化チタン)の電気特性に悪影響を与えることなく、容易に揮散させることができる。 Terpineol is a viscous liquid, but has good affinity with the metal oxide fine particles and metal compound dispersed in the above-mentioned lower alcohol. Similarly to the lower alcohol, terpineol is a metal oxide produced by heating ( For example, it can be easily volatilized without adversely affecting the electrical properties of titanium dioxide).
 さらに、エチルセルロースは、テルピネオールと同様に、チタン化合物から生成するチタン酸化物の電気特性に悪影響を与えることなく、熱処理によって容易に分解除去することができるが、特に粘度調整剤としての機能とバインダーとしての機能を有する。従って、エチルセルロースは、他の有機溶媒との併用が最適であり、例えば、低級アルコールやテルピネオールのみを有機溶媒として用い、チタン化合物の溶液を調製したときには、コーティング組成物の粘度が極めて低粘性となり、コーティングに際してダレ等を生じ易くなってしまうが、エチルセルロースの併用により、コーティング組成物の粘度をコーティングに適した範囲に調整することができる。 Furthermore, as with terpineol, ethyl cellulose can be easily decomposed and removed by heat treatment without adversely affecting the electrical properties of the titanium oxide produced from the titanium compound. It has the function of. Accordingly, ethyl cellulose is optimally used in combination with other organic solvents.For example, when only a lower alcohol or terpineol is used as an organic solvent and a titanium compound solution is prepared, the viscosity of the coating composition becomes extremely low, Although dripping or the like tends to occur during coating, the viscosity of the coating composition can be adjusted to a range suitable for coating by using ethyl cellulose in combination.
 尚、エチルセルロースとしては、種々の分子量のものが市販されているが、コーティング液をスクリーン印刷に特に適した粘度に調整するという観点から、トルエンを溶媒とし、固形分エチルセルロース濃度10%溶液の場合の粘度(25℃)が30~50cPの範囲にあるものが好適である。 In addition, although ethyl cellulose having various molecular weights is commercially available, from the viewpoint of adjusting the coating liquid to a viscosity particularly suitable for screen printing, toluene is used as a solvent, and a solid ethylcellulose concentration 10% solution is used. Those having a viscosity (25 ° C.) in the range of 30 to 50 cP are preferred.
 本発明において有機溶媒として使用される混合溶媒は、上記のような観点から、一般に、エチルセルロース/テルピネオール(重量比)が=0.1/99.9乃至20/80、特に3/97の範囲で含有しているのがよく、さらに、コーティング組成物の粘度がコーティングに適した範囲(例えば25℃で15乃至500cP)となるように、適宜の量の低級アルコールを二酸化チタン粒子(a)の分散媒として使用するのがよい。 From the above viewpoint, the mixed solvent used as the organic solvent in the present invention is generally in the range of ethyl cellulose / terpineol (weight ratio) = 0.1 / 99.9 to 20/80, particularly 3/97. In addition, an appropriate amount of lower alcohol is dispersed in the titanium dioxide particles (a) so that the viscosity of the coating composition is in a range suitable for coating (for example, 15 to 500 cP at 25 ° C.). It is good to use as a medium.
<コーティング組成物の調製>
 上述した各成分を含むコーティング組成物は、特にチタン化合物(b)を溶質として安定に存在させるために、二酸化チタン粒子(a)が分散した分散液と、チタン化合物(b)が溶解した溶液とを別個に調製した後、これらの分散液と溶液とを混合することにより調製するのがよい。各成分を一挙に混合すると、チタン化合物(b)が凝集した状態で析出してしまうおそれがあり、このような場合には、二酸化チタンの結晶粒子55aの焼結によって形成される高結晶化度酸化チタンの多孔質層領域55の下地に、緻密な複合酸化物チタン層領域53を形成することが困難となってしまうからである。
<Preparation of coating composition>
The coating composition containing each component described above includes a dispersion in which the titanium dioxide particles (a) are dispersed, and a solution in which the titanium compound (b) is dissolved, in particular, in order to allow the titanium compound (b) to exist stably as a solute. Is preferably prepared by mixing these dispersions and solutions. When the components are mixed all at once, the titanium compound (b) may be precipitated in an aggregated state. In such a case, the high crystallinity formed by sintering the titanium dioxide crystal particles 55a. This is because it becomes difficult to form a dense complex oxide titanium layer region 53 on the base of the porous layer region 55 of titanium oxide.
 上記のようにしてコーティング組成物を調製するにあたって、二酸化チタン粒子(a)が分散した分散液は、前述した有機溶媒の一部、特に低級アルコールに二酸化チタン粒子と第1の分散剤(グリコールエーテル及び/または他の分散成分)とを、前述した量割合で混合し、攪拌することにより得られる。また、チタン化合物(b)が溶解した溶液は、残りの有機溶媒、特にエチルセルロース/テルピネオール混合溶媒に、チタン化合物と第2の分散剤(グリコールエーテル)とを、所定の量比で混合し、攪拌することにより得られる。この際、適宜の温度に加熱することもできる。尚、これらの分散液或いは溶液に用いる有機溶媒の量は、両者を混合してコーティング組成物を調製したときに、コーティング組成物の粘度がコーティングに適した範囲(例えば、25℃での粘度が10cP以上、特に50乃至2000cP)となり、且つ溶解しているチタンが析出しない程度の量とすればよい。 In preparing the coating composition as described above, the dispersion in which the titanium dioxide particles (a) are dispersed is obtained by using titanium dioxide particles and a first dispersant (glycol ether) in a part of the organic solvent described above, particularly in a lower alcohol. And / or other dispersion components) are mixed in the above-mentioned proportions and stirred. The solution in which the titanium compound (b) is dissolved is mixed with the remaining organic solvent, particularly an ethyl cellulose / terpineol mixed solvent, with a titanium compound and a second dispersant (glycol ether) in a predetermined amount ratio, and stirred. Can be obtained. At this time, it can be heated to an appropriate temperature. The amount of the organic solvent used in these dispersions or solutions is such that the viscosity of the coating composition is suitable for coating when the coating composition is prepared by mixing the two (for example, the viscosity at 25 ° C. The amount may be 10 cP or more, particularly 50 to 2000 cP), and the amount is such that the dissolved titanium does not precipitate.
<光電変換コーティング層51の形成>
 本発明においては、上記のコーティング組成物を用いることにより、一段のコーティングで、逆電子防止特性を備えた上述した構造の光電変換コーティング層51を電極基板50の表面に形成することができる。
<Formation of photoelectric conversion coating layer 51>
In the present invention, by using the coating composition described above, the photoelectric conversion coating layer 51 having the above-described structure having the reverse electron prevention property can be formed on the surface of the electrode substrate 50 by one-step coating.
 図1を用いて説明すると、このコーティング組成物を電極基板として使用される金属基板50の発電領域となる面に塗布し、次いで熱処理(乾燥及び焼成)することにより、光電変換コーティング層51が形成される。この熱処理によって、有機溶媒等が揮散、熱分解等により除去され、且つ二酸化チタン粒子の焼結及びチタン化合物のゲル化によって、焼結した二酸化チタンの結晶粒子55aからなる多孔質層領域55と緻密な複合酸化物チタン層領域53とが形成されるわけであるが、チタン化合物のゲル化が二酸化チタン粒子を取り込んだ形で行われるため、二酸化チタンの結晶粒子55aが複合酸化物チタン層領域53中に食い込み、しかも二酸化チタンの結晶粒子55aが非晶質部を有する複合酸化物チタン、例えばTi/Oエネルギー強度比が1.20乃至2.39の複合酸化物チタンによって被覆された構造となるのである。 Referring to FIG. 1, this coating composition is applied to the surface of the metal substrate 50 used as the electrode substrate, which will be the power generation region, and then heat-treated (dried and fired) to form the photoelectric conversion coating layer 51. Is done. By this heat treatment, the organic solvent and the like are removed by volatilization, thermal decomposition, etc., and the porous layer region 55 composed of the sintered titanium dioxide crystal particles 55a is densely formed by sintering the titanium dioxide particles and gelling the titanium compound. The composite oxide titanium layer region 53 is formed. Since the gelation of the titanium compound is performed in the form of incorporating the titanium dioxide particles, the titanium dioxide crystal particles 55a are converted into the composite oxide titanium layer region 53. Further, the titanium dioxide crystal particles 55a have a structure in which the titanium dioxide crystal particles 55a are coated with a composite oxide titanium having an amorphous part, for example, a composite oxide titanium having a Ti / O energy intensity ratio of 1.20 to 2.39. It is.
 コーティング組成物の塗布は、スクリーン印刷、スプレー噴霧、刷毛塗り、スピンコート、ディピングなど、公知の塗布手段を採用することができるが、効率よく、連続的に塗布を行うという点で、スクリーン印刷が好適である。 The coating composition can be applied by known application means such as screen printing, spray spraying, brush coating, spin coating, dipping, etc., but screen printing is effective in that it can be applied efficiently and continuously. Is preferred.
 塗布後の熱処理条件は、用いるチタン化合物の種類によっても異なるが、一般に、300乃至600℃の高温に、10乃至180分間、塗布層を加熱保持することにより行われる。 The heat treatment conditions after coating vary depending on the type of titanium compound used, but are generally performed by heating and holding the coating layer at a high temperature of 300 to 600 ° C. for 10 to 180 minutes.
 また、コーティング組成物の塗布量は、通常、下層の複合酸化物チタン層領域53の厚みが前述した範囲(0.5乃至500nm、特に30乃至200nm)となり、その上の多孔質層領域55の厚みが5乃至20μm程度となるように設定される。 The coating amount of the coating composition is usually such that the thickness of the lower composite oxide titanium layer region 53 is in the above-described range (0.5 to 500 nm, particularly 30 to 200 nm), and the porous layer region 55 on the upper layer. The thickness is set to be about 5 to 20 μm.
 上記のようにして得られる光電変換コーティング層51(具体的には多孔質層領域55)には、常法にしたがって色素を吸着担持させ、このような色素で増感された光電変換コーティング層51を表面に有する金属基板50を電極(負極基板)として、太陽電池の電極基板としての使用に供せられる。 The photoelectric conversion coating layer 51 (specifically, the porous layer region 55) obtained as described above adsorbs and supports a dye according to a conventional method, and the photoelectric conversion coating layer 51 sensitized with such a dye. The surface of the metal substrate 50 is used as an electrode substrate of a solar cell as an electrode (negative electrode substrate).
 尚、上記の光電変換コーティング層51を、逆電防止層や化成処理層の上に形成する場合には、製造時の位置決め誤差などによる欠陥の発生を防止するために、例えば金属基板50の発電領域となる面はもちろんのこと、封止領域となる面にまで逆電防止層や化成処理層を形成するのがよい。 In the case where the photoelectric conversion coating layer 51 is formed on the reverse current prevention layer or the chemical conversion treatment layer, for example, power generation of the metal substrate 50 is performed in order to prevent the occurrence of defects due to positioning errors during manufacturing. It is preferable to form a reverse current prevention layer and a chemical conversion treatment layer not only on the surface to be the region but also on the surface to be the sealing region.
 上記の光電変換コーティング層51に吸着させる色素は、この多孔質層領域55に色素溶液を接触させることにより、吸着担持される。色素溶液の接触は、通常は、ディッピングにより行われ、吸着処理時間(浸漬時間)は、通常、30分~24時間程度であり、吸着後、乾燥して色素溶液の溶媒を除去することにより、前述した多孔質層領域55の表面及び内部に増感色素が吸着担持される。 The dye adsorbed on the photoelectric conversion coating layer 51 is adsorbed and supported by bringing the dye solution into contact with the porous layer region 55. The contact of the dye solution is usually performed by dipping, and the adsorption treatment time (immersion time) is usually about 30 minutes to 24 hours. After adsorption, the solvent of the dye solution is removed by drying. A sensitizing dye is adsorbed and supported on the surface and inside of the porous layer region 55 described above.
 用いる色素は、増感色素として機能し得るものであり、カルボキシレート基、シアノ基、ホスフェート基、オキシム基、ジオキシム基、ヒドロキシキノリン基、サリチレート基、α-ケト-エノール基などの結合基を有するそれ自体公知のものが使用される。例えばルテニウム錯体、オスミウム錯体、鉄錯体などを何ら制限なく使用することができる。特に幅広い吸収帯を有するなどの点で、ルテニウム-トリス(2,2’-ビスピリジル-4,4’-ジカルボキシラート)、ルテニウム-シス-ジアクア-ビス(2,2’-ビスピリジル-4,4’-ジカルボキシラート)などのルテニウム系錯体が好適である。このような増感色素の色素溶液は、溶媒としてエタノールやブタノールなどのアルコール系有機溶媒を用いて調製され、その色素濃度は、通常、3×10-4乃至5×10-4mol/l程度とするのがよい。 The dye used can function as a sensitizing dye and has a linking group such as a carboxylate group, a cyano group, a phosphate group, an oxime group, a dioxime group, a hydroxyquinoline group, a salicylate group, and an α-keto-enol group. Those known per se are used. For example, a ruthenium complex, an osmium complex, an iron complex, etc. can be used without any limitation. Ruthenium-tris (2,2′-bispyridyl-4,4′-dicarboxylate), ruthenium-cis-diaqua-bis (2,2′-bispyridyl-4,4) in that it has a particularly broad absorption band. Ruthenium-based complexes such as' -dicarboxylate) are preferred. Such a dye solution of a sensitizing dye is prepared using an alcohol-based organic solvent such as ethanol or butanol as a solvent, and the dye concentration is usually about 3 × 10 −4 to 5 × 10 −4 mol / l. It is good to do.
<色素増感太陽電池>
 上記のようにして色素で増感された多孔質層領域55を有する光電変換コーティング層51を表面に有する電極は、例えば図5に示す構造の色素増感太陽電池の負極基板として使用される。
<Dye-sensitized solar cell>
The electrode having on the surface the photoelectric conversion coating layer 51 having the porous layer region 55 sensitized with the dye as described above is used as, for example, a negative electrode substrate of a dye-sensitized solar cell having a structure shown in FIG.
 図5を参照して、この構造の太陽電池では、金属基板11の表面に、色素で増感された多孔質光電変換層13が形成されており、これを負極基板10として、電解質層20を間に挟んで透明電極基板(正極基板)1と対峙させ、その周囲が封止剤30で封止された構造を有するものであり、この負極基板10が、前述したコーティング組成物を用いての一段のコーティングにより形成された光電変換コーティング層51が電極基板50の表面に形成された構造を有する本発明の電極である。即ち、この光電変換コーティング層13は、色素が主に吸着担持されている多孔質の酸化チタン層領域13aと、金属基板(電極基板)11の表面側に形成された緻密な複合酸化物チタン層領域13bとからなっている。 Referring to FIG. 5, in the solar cell having this structure, a porous photoelectric conversion layer 13 sensitized with a dye is formed on the surface of metal substrate 11, and this is used as negative electrode substrate 10 to form electrolyte layer 20. The transparent electrode substrate (positive electrode substrate) 1 is sandwiched between and has a structure in which the periphery thereof is sealed with a sealant 30. The negative electrode substrate 10 is formed by using the coating composition described above. This is an electrode of the present invention having a structure in which the photoelectric conversion coating layer 51 formed by one-stage coating is formed on the surface of the electrode substrate 50. That is, the photoelectric conversion coating layer 13 includes a porous titanium oxide layer region 13a on which a dye is mainly adsorbed and supported, and a dense complex oxide titanium layer formed on the surface side of the metal substrate (electrode substrate) 11. It consists of a region 13b.
 尚、図5から理解されるように、光電変換コーティング層13は、発電領域Xとなる部分に形成されるものであり、その周囲が発電に関与しない封止領域Yとなる。 As understood from FIG. 5, the photoelectric conversion coating layer 13 is formed in a portion that becomes the power generation region X, and the periphery thereof is a sealed region Y that does not participate in power generation.
 上記のような金属基板11及び色素で増感された光電変換コーティング層13からなる負極基板10(本発明の電極)に対向して配置される透明電極基板1は、透明基板3の表面に透明導電膜5及び電子還元性導電層7が形成されたものである。 The transparent electrode substrate 1 disposed opposite to the negative electrode substrate 10 (electrode of the present invention) comprising the metal substrate 11 and the photoelectric conversion coating layer 13 sensitized with the dye as described above is transparent on the surface of the transparent substrate 3. The conductive film 5 and the electron reducing conductive layer 7 are formed.
 透明基板3は、高い光透過性を有していればよく、例えば透明ガラスや透明樹脂フィルムなどから形成される。その厚みや大きさは、最終的に形成される色素増感太陽電池の用途に応じて適宜決定される。 The transparent substrate 3 only needs to have high light transmittance, and is formed of, for example, transparent glass or a transparent resin film. The thickness and size are appropriately determined according to the intended use of the dye-sensitized solar cell to be finally formed.
 透明基板3の上に形成される透明導電膜5としては、酸化インジウム-酸化錫合金からなる膜(ITO膜)、酸化錫にフッ素をドープした膜(FTO膜)などが代表的であるが、電子還元性が高く、特にカソードとして望ましい特性を有していることから、ITO膜が好適である。これらは蒸着により上記の透明基板3上に形成され、その厚みは、通常、500nm乃至700nm程度である。 Typical examples of the transparent conductive film 5 formed on the transparent substrate 3 include a film made of an indium oxide-tin oxide alloy (ITO film) and a film in which tin oxide is doped with fluorine (FTO film). An ITO film is preferable because of its high electron reducing property and particularly desirable characteristics as a cathode. These are formed on the transparent substrate 3 by vapor deposition, and the thickness is usually about 500 nm to 700 nm.
 また、上記の透明導電膜5上に形成される電子還元導電層7は、一般に白金の薄層からなり、透明導電膜5に流れ込んだ電子を電解質層20に速やかに移行せしめる機能を有するものである。このような電子還元導電層7は、光透過性が損なわれないように、その平均厚みが0.1乃至1.5nm程度となるように蒸着により薄く形成される。 The electron reduction conductive layer 7 formed on the transparent conductive film 5 is generally made of a thin platinum layer, and has a function of quickly transferring electrons flowing into the transparent conductive film 5 to the electrolyte layer 20. is there. Such an electron reduction conductive layer 7 is formed thinly by vapor deposition so that the average thickness thereof is about 0.1 to 1.5 nm so as not to impair the light transmittance.
 上記のようにして形成された負極基板10と透明電極基板(正極基板)1は、電解質層20を間に挟んで対峙され、電解質層20と色素で増感された光電変換コーティング層13(特に酸化チタンの多孔質層領域13a)とによって発電領域Xが形成されることとなる。このような電解質層20は、公知の太陽電池と同様、リチウムイオン等の陽イオンや塩素イオン等の陰イオンを含む種々の電解質溶液により形成される。また、この電解質20中には、酸化型構造及び還元型構造を可逆的にとり得るような酸化還元対を存在させることが好ましく、このような酸化還元対としては、例えばヨウ素-ヨウ素化合物、臭素-臭素化合物、キノン-ヒドロキノンなどを挙げることができる。かかる電解質層20は、発電領域Xの周縁に位置する封止領域Yに設けられる封止材30により封止され、電極間からの液の漏洩が防止されることとなるわけである。一般に、このような電解質層20の厚みは、最終的に形成される電池の大きさによっても異なるが、通常、10乃至50μm程度である。 The negative electrode substrate 10 and the transparent electrode substrate (positive electrode substrate) 1 formed as described above are opposed to each other with the electrolyte layer 20 interposed therebetween, and the photoelectric conversion coating layer 13 (particularly, sensitized with the electrolyte layer 20 and the dye). The power generation region X is formed by the porous layer region 13a) of titanium oxide. Such an electrolyte layer 20 is formed of various electrolyte solutions containing cations such as lithium ions and anions such as chlorine ions as in the case of known solar cells. Further, it is preferable that an oxidation-reduction pair capable of reversibly taking an oxidized structure and a reduced structure is present in the electrolyte 20, and examples of such an oxidation-reduction pair include iodine-iodine compounds, bromine- Examples thereof include bromine compounds and quinone-hydroquinone. The electrolyte layer 20 is sealed by the sealing material 30 provided in the sealing region Y located at the periphery of the power generation region X, and liquid leakage from between the electrodes is prevented. In general, the thickness of the electrolyte layer 20 is generally about 10 to 50 μm, although it varies depending on the size of the battery finally formed.
 封止材30としては、ヒートシール可能な各種の熱可塑性樹脂乃至熱可塑性エラストマー、例えば、低密度ポリエチレン、高密度ポリエチレン、ポリプロピレン、ポリ1-ブテン、ポリ4-メチル-1-ペンテン、或いはエチレン、プロピレン、1-ブテン、4-メチル-1-ペンテン等のα-オレフィン同士のランダム乃至ブロック共重合体等のポリオレフィン系樹脂;エチレン-酢酸ビニル共重合体、エチレン-ビニルアルコール共重合体、エチレン-塩化ビニル共重合体等のエチレン-ビニル化合物共重合体樹脂;ポリスチレン、アクリロニトリル-スチレン共重合体、ABS、α-メチルスチレン-スチレン共重合体等のスチレン系樹脂;ポリビニルアルコール、ポリビニルピロリドン、ポリ塩化ビニル、ポリ塩化ビニリデン、塩化ビニル-塩化ビニリデン共重合体、ポリアクリル酸、ポリメタクリル酸、ポリアクリル酸メチル、ポリメタクリル酸メチル等のビニル系樹脂;ナイロン6、ナイロン6-6、ナイロン6-10、ナイロン11、ナイロン12等のポリアミド樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル樹脂;ポリカーボネート;ポリフェニレンオキサイド;カルボキシメチルセルロース、ヒドロキシエチルセルロースなどのセルロース誘導体;酸化澱粉、エーテル化澱粉、デキストリンなどの澱粉;及びこれらの混合物からなる樹脂;などが使用される。 Examples of the sealing material 30 include various heat-sealable thermoplastic resins or thermoplastic elastomers such as low-density polyethylene, high-density polyethylene, polypropylene, poly-1-butene, poly-4-methyl-1-pentene, or ethylene, Polyolefin resins such as random or block copolymers of α-olefins such as propylene, 1-butene and 4-methyl-1-pentene; ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer, ethylene- Ethylene-vinyl compound copolymer resin such as vinyl chloride copolymer; Styrenic resin such as polystyrene, acrylonitrile-styrene copolymer, ABS, α-methylstyrene-styrene copolymer; polyvinyl alcohol, polyvinyl pyrrolidone, polychlorinated Vinyl, polyvinylidene chloride, chloride Vinyl resins such as vinyl-vinylidene chloride copolymer, polyacrylic acid, polymethacrylic acid, polymethyl acrylate, polymethyl methacrylate; nylon 6, nylon 6-6, nylon 6-10, nylon 11, nylon 12, etc. Polyamide resin; Polyester resin such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate; Polycarbonate; Polyphenylene oxide; Cellulose derivatives such as carboxymethyl cellulose and hydroxyethyl cellulose; Starch such as oxidized starch, etherified starch, dextrin; and mixtures thereof A resin comprising, for example, is used.
 即ち、封止材30は、上記の熱可塑性樹脂等を用いての押出成形、射出成形等によって、例えば、封止領域Yに対応する幅のリング形状に成形することにより得られ、この封止材30を、互いに対抗して配置された負極基板10と透明電極基板1との間に挟んだ状態でヒートシール(加熱圧着)することにより、負極基板10と透明電極基板1とが接合され、次いで、この封止材30に注入管を挿入し、該注入管を介して、両電極基板の間の空間内に、電解質層20を形成する電解質溶液を注入することにより、図5に示す構造の色素増感太陽電池を得ることができる。 That is, the sealing material 30 is obtained by molding into a ring shape having a width corresponding to the sealing region Y, for example, by extrusion molding, injection molding, or the like using the above-described thermoplastic resin. By heat sealing (thermocompression bonding) in a state where the material 30 is sandwiched between the negative electrode substrate 10 and the transparent electrode substrate 1 arranged to face each other, the negative electrode substrate 10 and the transparent electrode substrate 1 are joined. Next, an injection tube is inserted into the sealing material 30, and an electrolyte solution for forming the electrolyte layer 20 is injected into the space between the two electrode substrates through the injection tube, whereby the structure shown in FIG. The dye-sensitized solar cell can be obtained.
 尚、透明基板3として透明樹脂フィルムなどを用いるときには、例えば負極基板10と透明電極基板1との3方を封止剤30でシールし、次いでシールされていない開口部から電解質液を充填し、最後に、開口部を封止剤30で完全に封止することによっても図5に示す構造の色素増感太陽電池を作製することができる。 When a transparent resin film or the like is used as the transparent substrate 3, for example, the negative electrode substrate 10 and the transparent electrode substrate 1 are sealed with a sealing agent 30, and then filled with an electrolyte solution from an unsealed opening, Finally, the dye-sensitized solar cell having the structure shown in FIG. 5 can also be manufactured by completely sealing the opening with the sealant 30.
 このようにして形成される色素増感太陽電池では、透明電極基板1側から可視光を照射することにより、光電変換コーティング層13(酸化チタンの多孔質層領域13a)に担持されている色素が励起され、基底状態から励起状態へと遷移し、励起された色素の電子が、光電変換層13中の伝導帯へ注入され、金属電極基板10(金属基板11)を介して外部回路(図示せず)を通って透明電極基板1に移動する。透明電極基板1に移動した電子は、電解質層20中のイオンによって運ばれ、色素に戻る。このような過程の繰り返しにより電気エネルギーが取り出され、発電が行われることとなる。即ち、かかる太陽電池では、光電変換層13中の金属基板11と対面する領域に整流障壁として機能する複合酸化物チタン層領域13bが形成されているため、逆電流が有効に防止され、高い変換効率を得ることができる。 In the dye-sensitized solar cell thus formed, the dye carried on the photoelectric conversion coating layer 13 (titanium oxide porous layer region 13a) is irradiated with visible light from the transparent electrode substrate 1 side. Excited and transitioned from the ground state to the excited state, the excited electrons of the dye are injected into the conduction band in the photoelectric conversion layer 13, and the external circuit (not shown) is passed through the metal electrode substrate 10 (metal substrate 11). To the transparent electrode substrate 1. The electrons that have moved to the transparent electrode substrate 1 are carried by the ions in the electrolyte layer 20 and return to the pigment. By repeating such a process, electric energy is extracted and electric power is generated. That is, in such a solar cell, the composite oxide titanium layer region 13b that functions as a rectifying barrier is formed in the region facing the metal substrate 11 in the photoelectric conversion layer 13, so that reverse current is effectively prevented and high conversion is achieved. Efficiency can be obtained.
 また、上記のような2層構造の光電変換コーティング層13は、一段のコーティングで形成されている。即ち、金属基板11表面に存在する緻密な複合酸化物チタン層領域13bとその上の酸化チタンの多孔質層領域13aは一段のコーティングにより一体的に形成されるため、多孔質層領域13aを形成する際の熱処理に起因するピンホール等の欠陥が複合酸化物チタン層領域13bに生じることがない。従って、金属基板11の表面が表面粗さの大きな粗面であったとしても、発電領域Xでは、その表面は完全に緻密な複合酸化物チタン層13bで被覆されているため、金属基板11の表面が露出して直接多孔質の酸化物半導体層13aに接触することがない。加えるに、この複合酸化物チタン層領域13bは電解質に対して耐性を有する金属酸化物で形成されている。従って、電解質層20からの電解質液による金属基板11の腐食を確実に防止することができ、この色素増感太陽電池は、極めて高い耐久性を示し、経時による変換効率の低下が有効に防止されている。 Further, the photoelectric conversion coating layer 13 having the two-layer structure as described above is formed by one-step coating. That is, the dense composite oxide titanium layer region 13b existing on the surface of the metal substrate 11 and the titanium oxide porous layer region 13a formed thereon are integrally formed by one-step coating, so that the porous layer region 13a is formed. Defects such as pinholes due to the heat treatment at the time do not occur in the composite oxide titanium layer region 13b. Therefore, even if the surface of the metal substrate 11 is a rough surface having a large surface roughness, in the power generation region X, the surface is completely covered with the complex oxide titanium layer 13b. The surface is not exposed and does not directly contact the porous oxide semiconductor layer 13a. In addition, the composite oxide titanium layer region 13b is formed of a metal oxide having resistance to the electrolyte. Therefore, corrosion of the metal substrate 11 by the electrolyte solution from the electrolyte layer 20 can be surely prevented, and this dye-sensitized solar cell exhibits extremely high durability and effectively prevents a decrease in conversion efficiency over time. ing.
 さらに、上記の太陽電池では、複合酸化物チタン層領域13bと酸化チタンの多孔質層領域13aとからなる光電変換コーティング層13を一段のコーティングで形成することができるため、その生産性は極めて高い。 Furthermore, in the above solar cell, since the photoelectric conversion coating layer 13 composed of the composite oxide titanium layer region 13b and the porous layer region 13a of titanium oxide can be formed by one-step coating, its productivity is extremely high. .
 尚、上述した例では、コーティング組成物により形成する光電変換コーティング層を金属基板の表面に形成する場合を例にとって説明したが、このような光電変換コーティング層は、上記の例に限定されるものではなく、例えば透明電極基板の表面に形成することも勿論可能である。 In the above example, the case where the photoelectric conversion coating layer formed by the coating composition is formed on the surface of the metal substrate has been described as an example. However, such a photoelectric conversion coating layer is limited to the above example. However, it is of course possible to form it on the surface of the transparent electrode substrate, for example.
 本発明の優れた効果を次の実験例で説明する。
 以下の例において、多孔質光電変換層における各層の厚みの測定及びTi/Oエネルギー強度比Xの測定は、以下の方法により行った。
The excellent effects of the present invention will be described in the following experimental examples.
In the following examples, the thickness of each layer in the porous photoelectric conversion layer and the measurement of the Ti / O energy intensity ratio X were performed by the following methods.
<酸化チタンの多孔質層領域及び複合酸化物チタン層領域の厚みの測定>
 酸化チタンの多孔質層領域及び複合酸化物チタン層領域の厚みの測定は、走査型電子顕微鏡によるSEM観察、及び電解放射型透過分析電子顕微鏡によるTEM観察により、実施した。
<Measurement of the thickness of the porous layer region of titanium oxide and the composite oxide titanium layer region>
The thickness of the porous layer region of titanium oxide and the composite oxide titanium layer region was measured by SEM observation with a scanning electron microscope and TEM observation with an electrolytic emission transmission analysis electron microscope.
<Ti/Oエネルギー強度比Xの測定>
 多孔質層領域及び複合酸化チタン層領域のTi/Oエネルギー強度比の測定は、まず、収束イオン加工装置(装置名:低加速FIB/SEM複合装置 SIINT製 Xvision 200DB)を用いて超薄切片を作製し、その後、その超薄切片をEDX(装置名:エネルギー分散型X線分光分析装置 EDAX製 γ-TEM)によって、元素分析を実施することにより測定した。
<Measurement of Ti / O energy intensity ratio X>
To measure the Ti / O energy intensity ratio of the porous layer region and the composite titanium oxide layer region, first, ultrathin sections were obtained using a focused ion processing device (device name: Xvision 200DB manufactured by SIINT, a low acceleration FIB / SEM composite device). After that, the ultrathin section was measured by performing elemental analysis with EDX (device name: γ-TEM manufactured by EDAX, an energy dispersive X-ray spectroscopic analyzer).
<実施例1>
(多孔質層領域形成用のペースト作製)
 球状の粒径30nmと不定形状(多面体形状)の粒径15nmの市販TiO粒子2種類を主剤とし、溶媒としてエタノールをペースト中70重量%の量で含み、分散剤としてブチルセロソルブをペースト中0.05重量%の量で含むTiOペースト(第1のペースト)を調製した。
<Example 1>
(Paste preparation for porous layer region formation)
Two types of commercially available TiO 2 particles having a spherical particle size of 30 nm and an irregular shape (polyhedral shape) of 15 nm are mainly used, ethanol is used as a solvent in an amount of 70% by weight, and butyl cellosolve is used as a dispersant. A TiO 2 paste (first paste) containing in an amount of 05% by weight was prepared.
(複合酸化物チタン層領域形成用ペースト作製)
 溶媒としてテルピネオールとエチルセルロースを2/98の重量比の混合溶媒を使用し、この混合溶媒に、チタンテトライソプロポキシド(主剤)及び分散剤(安定化成分)としてブチルセロソルブを混合し、複合酸化物チタン層領域形成用のペースト(第2のペースト)を調製した(ブチルセロソルブ濃度;3重量%、チタン濃度;0.5重量%)。
(Preparation of composite oxide titanium layer region forming paste)
A mixed solvent of terpineol and ethyl cellulose in a weight ratio of 2/98 is used as a solvent, and titanium tetraisopropoxide (main agent) and butyl cellosolve as a dispersing agent (stabilizing component) are mixed with this mixed solvent, and the composite oxide titanium. A layer region forming paste (second paste) was prepared (butyl cellosolve concentration: 3% by weight, titanium concentration: 0.5% by weight).
(光電変換コーティング層形成用のコーティング組成物の調製)
 上記の第1のペースト及び第2のペーストを1:1の重量比で撹拌させながら混合し、光電変換コーティング層形成用のコーティング組成物を作製した。
(Preparation of coating composition for forming photoelectric conversion coating layer)
The first paste and the second paste were mixed while being stirred at a weight ratio of 1: 1 to prepare a coating composition for forming a photoelectric conversion coating layer.
(電極の作製)
 次いで、金属基板として、市販のアルミニウム板(厚み0.3mm)を用意し、このアルミニウム板上に、上記で調製したコーティング組成物を塗布し、その後、450℃で30分間焼成して、光電変換コーティング層を作製した。
(Production of electrodes)
Next, a commercially available aluminum plate (thickness: 0.3 mm) is prepared as a metal substrate, and the coating composition prepared above is applied onto the aluminum plate, and then baked at 450 ° C. for 30 minutes to produce a photoelectric conversion. A coating layer was prepared.
 上記電極の断面について、透過型電子顕微鏡(TEM)によるHAADF像により観察したところ、光電変換コーティング層内の上部領域には、二酸化チタンの結晶粒子が層状に分布している多孔質層領域が形成されており、その下部に、緻密な複合酸化チタン層領域が形成されていること、及び、多孔質層領域の二酸化チタンの結晶粒子は、下部の複合酸化物チタン層領域に食い込んでいること及び該二酸化チタンの結晶粒子の表面は非晶質部を含有する複合酸化物チタンで被覆されていることが確認された。 When the cross section of the electrode was observed with a HAADF image by a transmission electron microscope (TEM), a porous layer region in which titanium dioxide crystal particles were distributed in layers was formed in the upper region in the photoelectric conversion coating layer. The dense composite titanium oxide layer region is formed in the lower part thereof, and the titanium dioxide crystal particles in the porous layer region bite into the lower composite oxide titanium layer region and It was confirmed that the surface of the titanium dioxide crystal particles was coated with a composite oxide titanium containing an amorphous part.
 また、上部の多孔質層領域及び下部の複合酸化物チタン層領域について、EDX分析を行い、各領域の中心部分での分析チャートを図6及び図7に示した。この分析チャートから、上部の多孔質層領域のTi/Oエネルギー強度比Xの平均値は2.45であり、下部の複合酸化物チタン層領域のTi/Oエネルギー強度比Xは1.82であった。
 また、下部の複合酸化物チタン層領域の厚みは約150nm、上部の多孔質層領域の厚みは約10μmであった。
Further, EDX analysis was performed on the upper porous layer region and the lower composite oxide titanium layer region, and the analysis charts at the center of each region are shown in FIGS. 6 and 7. From this analysis chart, the average value of the Ti / O energy intensity ratio X in the upper porous layer region is 2.45, and the Ti / O energy intensity ratio X in the lower composite oxide titanium layer region is 1.82. there were.
The lower complex oxide titanium layer region had a thickness of about 150 nm, and the upper porous layer region had a thickness of about 10 μm.
 さらに、純度99.5%のエタノールに分散させたルテニウム錯体色素からなる色素溶液中に、上記の光電変換コーティング層を24時間漬浸させ、次いで乾燥することにより、負極を得た。尚、用いたルテニウム錯体色素は、下記式で表される。
  [Ru(dcbpy)(NCS)]・2H
Further, the photoelectric conversion coating layer was immersed in a dye solution composed of a ruthenium complex dye dispersed in ethanol having a purity of 99.5% for 24 hours, and then dried to obtain a negative electrode. The ruthenium complex dye used is represented by the following formula.
[Ru (dcbpy) 2 (NCS) 2 ] · 2H 2 O
(色素増感型太陽電池の作製及び評価)
 一方、白金を蒸着したITO/PENフィルムで構成される対向電極(正極)を用意した。
(Production and evaluation of dye-sensitized solar cell)
On the other hand, a counter electrode (positive electrode) composed of an ITO / PEN film deposited with platinum was prepared.
 この対向電極と上記で作製した負電極との間に電解質液を挟みこんで色素増感型太陽電池を作製した。尚、電解質液としては、LiI/I(0.5mol/0.025mol)をメトキシプロピオニトリルに溶かしたものに4-tert-ブチルピリジンを添加したものを用いた。
 得られた電池を、室温環境下にて保管し、1000時間後に確認したところ、腐食は未発現であり、変換効率の低下もなかった。
A dye-sensitized solar cell was manufactured by sandwiching an electrolyte solution between the counter electrode and the negative electrode prepared above. As the electrolyte solution, a solution obtained by dissolving LiI / I 2 (0.5 mol / 0.025 mol) in methoxypropionitrile and adding 4-tert-butylpyridine was used.
The obtained battery was stored in a room temperature environment and checked after 1000 hours. As a result, corrosion was not developed and there was no decrease in conversion efficiency.
<実施例2>
 多孔質層領域形成用のペーストの分散剤として、酢酸を使用した以外は実施例1と同様の条件で電極および色素増感太陽電池の作成を行った。
 電極の断面観察をTEMで行ったところ、実施例1と同様の断面が形成されていることが観察された。また、EDX分析、電池での評価結果は表1に示した。
<Example 2>
An electrode and a dye-sensitized solar cell were prepared under the same conditions as in Example 1 except that acetic acid was used as a dispersant for the paste for forming the porous layer region.
When the cross section of the electrode was observed with TEM, it was observed that the same cross section as in Example 1 was formed. The results of EDX analysis and battery evaluation are shown in Table 1.
<実施例3>
 多孔質層領域形成用のペーストの分散剤として、トリメチル酢酸を使用した以外は実施例1と同様の条件で電極および色素増感太陽電池の作成を行った。
 電極の断面観察をTEMで行ったところ、実施例1と同様の断面が形成されていることが観察された。また、EDX分析、電池での評価結果は表1に示した。
<Example 3>
An electrode and a dye-sensitized solar cell were prepared under the same conditions as in Example 1 except that trimethylacetic acid was used as a dispersant for the paste for forming the porous layer region.
When the cross section of the electrode was observed with TEM, it was observed that the same cross section as in Example 1 was formed. The results of EDX analysis and battery evaluation are shown in Table 1.
<実施例4>
 多孔質層領域形成用のペーストの分散剤として、酢酸と蒸留水の混合品(酢酸/蒸留水=50/50wt%)を使用した以外は実施例1と同様の条件で電極および色素増感太陽電池の作成を行った。
 電極の断面観察をTEMで行ったところ、実施例1と同様の断面が形成されていることが観察された。また、EDX分析、電池での評価結果は表1に示した。
<Example 4>
The electrode and dye-sensitized sun were used under the same conditions as in Example 1 except that a mixture of acetic acid and distilled water (acetic acid / distilled water = 50/50 wt%) was used as a dispersant for the paste for forming the porous layer region. A battery was created.
When the cross section of the electrode was observed with TEM, it was observed that the same cross section as in Example 1 was formed. The results of EDX analysis and battery evaluation are shown in Table 1.
<実施例5>
 多孔質層領域形成用のペーストの分散剤として、アセチルアセトンを使用した以外は実施例1と同様の条件で電極および色素増感太陽電池の作成を行った。
 電極の断面観察をTEMで行ったところ、実施例1と同様の断面が形成されていることが観察された。また、EDX分析、電池での評価結果は表1に示した。
<Example 5>
An electrode and a dye-sensitized solar cell were prepared under the same conditions as in Example 1 except that acetylacetone was used as a dispersant for the paste for forming the porous layer region.
When the cross section of the electrode was observed with TEM, it was observed that the same cross section as in Example 1 was formed. The results of EDX analysis and battery evaluation are shown in Table 1.
<実施例6>
 多孔質層領域形成用のペーストの分散剤として、酢酸と蒸留水の混合品(酢酸/蒸留水=50/50wt%)、複合酸化物チタン層領域形成用ペーストに、溶媒としてテルピネオールとエチルセルロースを2/98の重量比の混合溶媒を使用し、この混合溶媒に、チタンテトライソプロポキシド(主剤)及び分散剤(安定化成分)としてプロピルセロソルブを混合し、複合酸化物チタン層領域形成用のペースト(第2のペースト)を調製した(プロピルセロソルブ濃度;3重量%、チタン濃度;0.5重量%)以外は、実施例1と同様の条件で電極および色素増感太陽電池の作成を行った。
 電極の断面観察をTEMで行ったところ、実施例1と同様の断面が形成されていることが観察された。また、EDX分析、電池での評価結果は表1に示した。
<Example 6>
As a dispersant for the paste for forming the porous layer region, a mixture of acetic acid and distilled water (acetic acid / distilled water = 50/50 wt%), 2 for the composite oxide titanium layer region forming paste, terpineol and ethyl cellulose as the solvent. / 98 weight ratio mixed solvent, and mixed with propyl cellosolve as titanium tetraisopropoxide (main agent) and dispersant (stabilizing component), and mixed oxide titanium layer region forming paste An electrode and a dye-sensitized solar cell were prepared under the same conditions as in Example 1 except that (second paste) was prepared (propyl cellosolve concentration: 3% by weight, titanium concentration: 0.5% by weight). .
When the cross section of the electrode was observed with TEM, it was observed that the same cross section as in Example 1 was formed. The results of EDX analysis and battery evaluation are shown in Table 1.
<実施例7>
 多孔質層領域形成用のペーストの分散剤として、酢酸と蒸留水の混合品(酢酸/蒸留水=50/50wt%)、複合酸化物チタン層領域形成用ペーストの分散剤(安定化成分)としてブチルセロソルブの濃度を0.01重量%とした以外は、実施例1と同様の条件で電極および色素増感太陽電池の作成を行った。
 電極の断面観察をTEMで行ったところ、実施例1と同様の断面が形成されていることが観察された。また、EDX分析、電池での評価結果は表1に示した。
<Example 7>
As a dispersant for the paste for forming the porous layer region, as a mixture of acetic acid and distilled water (acetic acid / distilled water = 50/50 wt%), as a dispersant (stabilizing component) for the paste for forming the composite oxide titanium layer region An electrode and a dye-sensitized solar cell were prepared under the same conditions as in Example 1 except that the concentration of butyl cellosolve was 0.01% by weight.
When the cross section of the electrode was observed with TEM, it was observed that the same cross section as in Example 1 was formed. The results of EDX analysis and battery evaluation are shown in Table 1.
<実施例8>
 多孔質層領域形成用のペーストの分散剤として、酢酸と蒸留水の混合品(酢酸/蒸留水=50/50wt%)、複合酸化物チタン層領域形成用ペーストの分散剤(安定化成分)としてブチルセロソルブの濃度を20重量%とした以外は、実施例1と同様の条件で電極および色素増感太陽電池の作成を行った。
 電極の断面観察をTEMで行ったところ、実施例1と同様の断面が形成されていることが観察された。また、EDX分析、電池での評価結果は表1に示した。
<Example 8>
As a dispersant for the paste for forming the porous layer region, as a mixture of acetic acid and distilled water (acetic acid / distilled water = 50/50 wt%), as a dispersant (stabilizing component) for the paste for forming the composite oxide titanium layer region An electrode and a dye-sensitized solar cell were prepared under the same conditions as in Example 1 except that the concentration of butyl cellosolve was 20% by weight.
When the cross section of the electrode was observed with TEM, it was observed that the same cross section as in Example 1 was formed. The results of EDX analysis and battery evaluation are shown in Table 1.
<実施例9>
 多孔質層領域形成用のペーストの分散剤として、酢酸と蒸留水の混合品(酢酸/蒸留水=50/50wt%)、複合酸化物チタン層領域形成用ペーストの分散剤(安定化成分)としてブチルセロソルブの濃度を50重量%とした以外は、実施例1と同様の条件で電極および色素増感太陽電池の作成を行った。
 電極の断面観察をTEMで行ったところ、実施例1と同様の断面が形成されていることが観察された。また、EDX分析、電池での評価結果は表1に示した。
<Example 9>
As a dispersant for the paste for forming the porous layer region, as a mixture of acetic acid and distilled water (acetic acid / distilled water = 50/50 wt%), as a dispersant (stabilizing component) for the paste for forming the composite oxide titanium layer region An electrode and a dye-sensitized solar cell were prepared under the same conditions as in Example 1 except that the concentration of butyl cellosolve was 50% by weight.
When the cross section of the electrode was observed with TEM, it was observed that the same cross section as in Example 1 was formed. The results of EDX analysis and battery evaluation are shown in Table 1.
<比較例1>
 実施例2において調製された複合酸化物チタン層領域形成用ペースト(第2のペースト)を使用し、このペーストを、実施例2と同様のアルミニウム板上に塗布し、120℃で乾燥させ、その後、その上に、実施例2で調製された多孔質領域形成用のペースト(第1のペースト)を塗布し、120℃で乾燥した。このとき、下層の複合酸化物チタン層のコーティング層の厚みは、約150nm、多孔質酸化チタン層のコーティング層の厚みは約10μmであった。
<Comparative Example 1>
Using the composite oxide titanium layer region forming paste (second paste) prepared in Example 2, this paste was applied on the same aluminum plate as in Example 2, dried at 120 ° C., and then On top of this, the paste for forming a porous region (first paste) prepared in Example 2 was applied and dried at 120 ° C. At this time, the thickness of the coating layer of the lower composite oxide titanium layer was about 150 nm, and the thickness of the coating layer of the porous titanium oxide layer was about 10 μm.
 次いで、上記のように積層されたコーティング層を450℃で30分間焼成して、複合酸化物チタン層と多孔質酸化チタン層とを形成した。
 このようにして形成された各層の厚みを測定したところ、上層の多孔質酸化チタン層の厚みは約10μmとほぼ同じであったが、下層の複合酸化物チタン層は約20~500nmと不均一な膜厚となっていた。このことから、下層の複合酸化物チタン層は大きく熱収縮していることが判る。
Subsequently, the coating layer laminated | stacked as mentioned above was baked for 30 minutes at 450 degreeC, and the complex oxide titanium layer and the porous titanium oxide layer were formed.
When the thickness of each layer thus formed was measured, the thickness of the upper porous titanium oxide layer was approximately the same as about 10 μm, but the lower composite oxide titanium layer was non-uniform, about 20 to 500 nm. It was a thick film. From this, it can be seen that the lower composite oxide titanium layer is largely thermally contracted.
 また、各層のTi/Oエネルギー強度比Xは、実施例2と同様であったが、複合酸化物チタン層への二酸化チタン結晶粒子の食い込みは観察されず、さらに、二酸化チタン結晶粒子表面での酸化チタンの被覆も観察されなかった。 Further, the Ti / O energy intensity ratio X of each layer was the same as that in Example 2, but the biting of the titanium dioxide crystal particles into the composite oxide titanium layer was not observed, and further, on the surface of the titanium dioxide crystal particles. No titanium oxide coating was observed.
 さらに、実施例2と同様に電池を作製し、室温環境下にて保管し、24時間後に確認したところ、腐食が発現しており、電池としてほぼ機能していなかった。
 腐食形態が孔食であり、このことより、これは、アルミニウム表面の露出部の存在を有することが原因と考えられる。
Further, a battery was produced in the same manner as in Example 2, stored in a room temperature environment, and confirmed after 24 hours. As a result, corrosion occurred and the battery was hardly functioning.
The corrosion form is pitting corrosion, which is considered to be due to the presence of exposed portions of the aluminum surface.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
  50:電極基板
  51:多孔質光電変換層
  53:複合酸化物チタン層
  55:多孔質酸化チタン層
  55a:二酸化チタンの結晶粒子
  55b:複合酸化物チタン被覆層
50: Electrode substrate 51: Porous photoelectric conversion layer 53: Composite oxide titanium layer 55: Porous titanium oxide layer 55a: Crystal particles of titanium dioxide 55b: Composite oxide titanium coating layer

Claims (15)

  1.  色素増感型太陽電池に使用される電極であって、電極基板と該電極基板上に設けられた光電変換コーティング層とからなり、該光電変換コーティング層は、二酸化チタンの結晶粒子が層状に分布した多孔質層領域と、該多孔質層領域に対して電極基板側に位置する複合酸化物チタン層領域とから形成されており、該複合酸化物チタン層領域には、前記二酸化チタンの結晶粒子の一部が食い込んでいることを特徴とする電極。 An electrode used in a dye-sensitized solar cell, comprising an electrode substrate and a photoelectric conversion coating layer provided on the electrode substrate, wherein the photoelectric conversion coating layer has a distribution of titanium dioxide crystal particles in layers. And a composite oxide titanium layer region positioned on the electrode substrate side with respect to the porous layer region, and the titanium oxide crystal particles are formed in the composite oxide titanium layer region. An electrode characterized by part of the bite.
  2.  前記複合酸化物チタン層領域は、下記式:
      TiO・nTiOR
      式中、nは正の数であり、
         Rは有機基或いは金属原子を示す、
    で表されるモル組成を有している請求項1に記載の電極。
    The complex oxide titanium layer region has the following formula:
    TiO 2 · nTiOR
    Where n is a positive number;
    R represents an organic group or a metal atom,
    The electrode according to claim 1, having a molar composition represented by:
  3.  前記二酸化チタンの結晶粒子は、その表面が複合酸化物チタンで被覆されている請求項1に記載の電極。 The electrode according to claim 1, wherein the surface of the titanium dioxide crystal particles is coated with a composite oxide titanium.
  4.  前記複合酸化物チタン層領域は、0.5乃至500nmの厚みを有している請求項1に記載の電極。 The electrode according to claim 1, wherein the complex oxide titanium layer region has a thickness of 0.5 to 500 nm.
  5.  前記光電変換コーティング層には色素が担持されている請求項1に記載の電極。 The electrode according to claim 1, wherein a dye is supported on the photoelectric conversion coating layer.
  6.  前記電極基板が金属基板である請求項1に記載の電極。 The electrode according to claim 1, wherein the electrode substrate is a metal substrate.
  7.  電極基板上に光電変換コーティング層を形成するために使用されるコーティング組成物であって、チタン酸化物、熱処理により酸化物を形成し得るチタン化合物、分散剤及び有機溶媒を含み、該チタン酸化物は分散粒子として存在し、該チタン化合物は溶質として存在していることを特徴とするコーティング組成物。 A coating composition used for forming a photoelectric conversion coating layer on an electrode substrate, comprising titanium oxide, a titanium compound capable of forming an oxide by heat treatment, a dispersant and an organic solvent, the titanium oxide Exists as dispersed particles, and the titanium compound is present as a solute.
  8.  前記チタン化合物が、チタンのアルコキシドもしくは塩化物である請求項7に記載のコーティング組成物。 The coating composition according to claim 7, wherein the titanium compound is an alkoxide or chloride of titanium.
  9.  前記チタン化合物を、金属換算で、前記チタン酸化物当り0.01乃至50重量%の量で含有している請求項7に記載のコーティング組成物。 The coating composition according to claim 7, wherein the titanium compound is contained in an amount of 0.01 to 50 wt% per titanium oxide in terms of metal.
  10.  前記有機溶媒が、炭素数4以下の低級アルコール、エチルセルロース及びテルピネオールからなる群より選択された少なくとも1種である請求項7に記載のコーティング組成物。 The coating composition according to claim 7, wherein the organic solvent is at least one selected from the group consisting of lower alcohols having 4 or less carbon atoms, ethyl cellulose, and terpineol.
  11.  前記分散剤として、前記チタン酸化物を分散させるための分散成分と、前記チタン化合物を溶質安定化するための相溶化成分とを含有している請求項7に記載のコーティング組成物。 The coating composition according to claim 7, comprising a dispersing component for dispersing the titanium oxide and a compatibilizing component for solute stabilization of the titanium compound as the dispersant.
  12.  前記分散成分が、グリコールエーテル、酢酸、トリメチル酢酸、β-ジケトン及び水からなる群より選択された少なくとも1種であり、前記相溶化成分がグリコールエーテルである請求項11に記載のコーティング組成物。 The coating composition according to claim 11, wherein the dispersion component is at least one selected from the group consisting of glycol ether, acetic acid, trimethylacetic acid, β-diketone, and water, and the compatibilizing component is glycol ether.
  13.  前記グリコールエーテルがブチルセロソルブまたはプロピルセロソルブである請求項12に記載のコーティング組成物。 The coating composition according to claim 12, wherein the glycol ether is butyl cellosolve or propyl cellosolve.
  14.  金属換算で、前記分散成分を、前記チタン酸化物当り0.01乃至50重量%の量で含有し、前記相溶化成分を、前記チタン化合物当り0.01乃至50重量%の量で含有している請求項11に記載のコーティング組成物。 In terms of metal, the dispersion component is contained in an amount of 0.01 to 50% by weight per titanium oxide, and the compatibilizing component is contained in an amount of 0.01 to 50% by weight per titanium compound. The coating composition according to claim 11.
  15.  前記分散成分及び前記相溶化成分の何れもがグリコールエーテルである請求項12に記載のコーティング組成物。 The coating composition according to claim 12, wherein both the dispersion component and the compatibilizing component are glycol ethers.
PCT/JP2010/056457 2009-04-09 2010-04-09 Electrode used in dye-sensitized solar cell, and coating composition used for producing the electrode WO2010117062A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-094694 2009-04-09
JP2009094694 2009-04-09
JP2009152837A JP5458694B2 (en) 2009-06-26 2009-06-26 Electrodes used in dye-sensitized solar cells
JP2009-152837 2009-06-26

Publications (1)

Publication Number Publication Date
WO2010117062A1 true WO2010117062A1 (en) 2010-10-14

Family

ID=42936343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/056457 WO2010117062A1 (en) 2009-04-09 2010-04-09 Electrode used in dye-sensitized solar cell, and coating composition used for producing the electrode

Country Status (1)

Country Link
WO (1) WO2010117062A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012089380A (en) * 2010-10-20 2012-05-10 Toyo Seikan Kaisha Ltd Substrate for semiconductor electrode and electrode for use in dye-sensitized solar battery
JP2012124055A (en) * 2010-12-09 2012-06-28 Toyo Seikan Kaisha Ltd Coating composition for forming protective film on metal electrode substrate
US10964486B2 (en) * 2013-05-17 2021-03-30 Exeger Operations Ab Dye-sensitized solar cell unit and a photovoltaic charger including the solar cell unit
US10971312B2 (en) 2013-05-17 2021-04-06 Exeger Operations Ab Dye-sensitized solar cell and a method for manufacturing the solar cell

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002075477A (en) * 2000-08-31 2002-03-15 Tdk Corp Photoelectric conversion film, photoelectric conversion electrode, and photoelectric conversion element
JP2003281947A (en) * 2002-03-25 2003-10-03 Tayca Corp Low temperature synthesizing of conductive titanium oxide porous thick film
JP2005116415A (en) * 2003-10-09 2005-04-28 Sk Kaken Co Ltd Laminated body
JP2007115602A (en) * 2005-10-21 2007-05-10 Fuji Shikiso Kk Titanium dioxide dispersing element for dye sensitized solar battery
JP2008053165A (en) * 2006-08-28 2008-03-06 Toyo Seikan Kaisha Ltd Dye-sensitized solar battery
JP2008053140A (en) * 2006-08-28 2008-03-06 Toyo Seikan Kaisha Ltd Semiconductor particulate paste

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002075477A (en) * 2000-08-31 2002-03-15 Tdk Corp Photoelectric conversion film, photoelectric conversion electrode, and photoelectric conversion element
JP2003281947A (en) * 2002-03-25 2003-10-03 Tayca Corp Low temperature synthesizing of conductive titanium oxide porous thick film
JP2005116415A (en) * 2003-10-09 2005-04-28 Sk Kaken Co Ltd Laminated body
JP2007115602A (en) * 2005-10-21 2007-05-10 Fuji Shikiso Kk Titanium dioxide dispersing element for dye sensitized solar battery
JP2008053165A (en) * 2006-08-28 2008-03-06 Toyo Seikan Kaisha Ltd Dye-sensitized solar battery
JP2008053140A (en) * 2006-08-28 2008-03-06 Toyo Seikan Kaisha Ltd Semiconductor particulate paste

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012089380A (en) * 2010-10-20 2012-05-10 Toyo Seikan Kaisha Ltd Substrate for semiconductor electrode and electrode for use in dye-sensitized solar battery
JP2012124055A (en) * 2010-12-09 2012-06-28 Toyo Seikan Kaisha Ltd Coating composition for forming protective film on metal electrode substrate
US10964486B2 (en) * 2013-05-17 2021-03-30 Exeger Operations Ab Dye-sensitized solar cell unit and a photovoltaic charger including the solar cell unit
US10971312B2 (en) 2013-05-17 2021-04-06 Exeger Operations Ab Dye-sensitized solar cell and a method for manufacturing the solar cell

Similar Documents

Publication Publication Date Title
KR101369961B1 (en) Dye-sensitized solar cell
KR101470680B1 (en) Dye-sensitized solar cell and electrode substrate therefor, method of producing an electrode substrate, and paste for forming a semiconductor porous layer
JP5458694B2 (en) Electrodes used in dye-sensitized solar cells
Huang et al. Solution-based synthesis of ultrasmall Nb2O5 nanoparticles for functional thin films in dye-sensitized and perovskite solar cells
JP2000285974A (en) Photosensitized photovolatic power generation element
Kim et al. Influence of the size-controlled TiO 2 nanotubes fabricated by low-temperature chemical synthesis on the dye-sensitized solar cell properties
JP5266524B2 (en) Electrode substrate for dye-sensitized solar cell and dye-sensitized solar cell
WO2010117062A1 (en) Electrode used in dye-sensitized solar cell, and coating composition used for producing the electrode
JP4807020B2 (en) Method for producing binder composition for dispersing semiconductor fine particles
JP5168854B2 (en) Semiconductor fine particle paste
JP5135737B2 (en) Dye-sensitized solar cell
JP2004164950A (en) Electrode substrate, photoelectric conversion element, and dye-sensitized solar cell
JP5332358B2 (en) Coating solution for reverse electron prevention layer formation
Kiran et al. Preparation and thickness optimization of TiO2/Nb2O5 photoanode for dye sensitized solar cells
JP5140964B2 (en) Back-illuminated dye-sensitized large-scale solar cell
JP5601007B2 (en) Coating composition for forming porous photoelectric conversion layer and method for forming porous photoelectric conversion layer
JP2010020938A (en) Dye-sensitized solar battery
JP5617583B2 (en) Coating composition used for forming a protective film on a metal electrode substrate
US20130228214A1 (en) Dye-sensitized solar cell on nickel-coated paper substrate
JP5024581B2 (en) Oxide semiconductor electrode, method for producing the same, and dye-sensitized solar cell provided with the same
JP5286496B2 (en) Semiconductor porous layer forming paste
JP5736721B2 (en) Semiconductor electrode substrate and electrode used in dye-sensitized solar cell
JP5396757B2 (en) Coating composition for forming electron reducing layer and method for forming electron reducing layer
JP2009129574A (en) Dye-sensitized solar cell
JP2010080090A (en) Negative electrode substrate used for pigment sensitized solar battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10761761

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10761761

Country of ref document: EP

Kind code of ref document: A1