JP2002184475A - Method of manufacturing semiconductor electrode and photochemical battery - Google Patents

Method of manufacturing semiconductor electrode and photochemical battery

Info

Publication number
JP2002184475A
JP2002184475A JP2000376939A JP2000376939A JP2002184475A JP 2002184475 A JP2002184475 A JP 2002184475A JP 2000376939 A JP2000376939 A JP 2000376939A JP 2000376939 A JP2000376939 A JP 2000376939A JP 2002184475 A JP2002184475 A JP 2002184475A
Authority
JP
Japan
Prior art keywords
oxide semiconductor
substrate
semiconductor electrode
heat
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000376939A
Other languages
Japanese (ja)
Other versions
JP4850338B2 (en
Inventor
Masahito Nakabayashi
正仁 中林
Yasukazu Nakada
安一 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lintec Corp
Original Assignee
Lintec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lintec Corp filed Critical Lintec Corp
Priority to JP2000376939A priority Critical patent/JP4850338B2/en
Publication of JP2002184475A publication Critical patent/JP2002184475A/en
Application granted granted Critical
Publication of JP4850338B2 publication Critical patent/JP4850338B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a semiconductor electrode enabling use of not only glass but also a certain translucent base as the base material of the semiconductor electrode for a photochemical battery, while providing a practical current/voltage curve, and a photochemical battery using the semiconductor electrode. SOLUTION: The method of manufacturing the semiconductor electrode includes forming a layer containing an oxide semiconductor and/or its precursor on a heat resistant base, heating and baking the layer to obtain an oxide semiconductor film, and transferring the film onto a transfer base.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光化学電池用の半
導体電極及びその製造方法、並びに該電極を用いた光化
学電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor electrode for a photochemical cell, a method for producing the same, and a photochemical cell using the electrode.

【0002】[0002]

【従来の技術】色素で増感された酸化物半導体を含む太
陽電池が知られている。例えば、特開平1-220380号公報
には、多孔質で結晶型の酸化チタンのうような金属酸化
物からなる半導体に、ルテニウム金属錯体のような光増
感色素を吸着させた酸化物半導体電極を用いた色素増感
型太陽電池が提案されている。上記色素増感型太陽電池
は、具体的には、導電性表面を有する透明基板と、その
導電性表面に形成された、増感色素を吸着した酸化物半
導体膜を光電極とし、対極として導電性表面を有する透
明基板を用い、これらの電極間に電解質溶液を封入して
作製される。
2. Description of the Related Art A solar cell including an oxide semiconductor sensitized with a dye is known. For example, Japanese Patent Application Laid-Open No. 1-220380 discloses an oxide semiconductor electrode in which a photosensitizing dye such as a ruthenium metal complex is adsorbed on a semiconductor made of a metal oxide such as porous and crystalline titanium oxide. There has been proposed a dye-sensitized solar cell using the same. Specifically, the dye-sensitized solar cell includes a transparent substrate having a conductive surface and an oxide semiconductor film formed on the conductive surface and adsorbing a sensitizing dye serving as a photoelectrode, and a conductive material serving as a counter electrode. It is manufactured by using a transparent substrate having a neutral surface and sealing an electrolyte solution between these electrodes.

【0003】導電性表面に形成される酸化物半導体膜
は、酸化物半導体微粒子集合体の焼成物から形成され
る。具体的には金属アルコキシドを出発原料とし、加水
分解と重縮合を経て酸化物を得るゾル-ゲル法、酸化物
半導体の微粒子をスラリーにして導電性表面に塗布する
方法、水溶液中における化学反応を利用して、導電性表
面上に酸化物半導体薄膜を析出させる液相析出法などが
用いられ、これらの方法で導電性表面上に形成された酸
化物半導体やその前駆体を焼成して形成される。
An oxide semiconductor film formed on a conductive surface is formed from a fired product of an aggregate of oxide semiconductor fine particles. Specifically, a metal alkoxide is used as a starting material, a sol-gel method of obtaining an oxide through hydrolysis and polycondensation, a method of applying oxide semiconductor fine particles as a slurry to a conductive surface, and a chemical reaction in an aqueous solution. Utilizing, for example, a liquid phase deposition method of depositing an oxide semiconductor thin film on a conductive surface is used, and the oxide semiconductor formed on the conductive surface and a precursor thereof are formed by sintering in these methods. You.

【0004】上記のように酸化物半導体電極は、その耐
久性や実用的なエネルギー変換効率を得る目的で、焼成
の工程を必要とする。そのため、電極となる基板には高
い耐熱性が要求され、実際上、酸化錫、錫ドープ酸化イ
ンジュウム、フッ素ドープ酸化錫、アンチモンドープ酸
化錫などをコートした透明導電性ガラス基板に限られて
おり、耐熱性に劣る樹脂等を半導体電極基板として用い
ることは困難であった。
[0004] As described above, the oxide semiconductor electrode requires a firing step in order to obtain its durability and practical energy conversion efficiency. Therefore, the substrate serving as an electrode is required to have high heat resistance, and is actually limited to a transparent conductive glass substrate coated with tin oxide, tin-doped indium oxide, fluorine-doped tin oxide, antimony-doped tin oxide, and the like. It has been difficult to use a resin or the like having poor heat resistance as the semiconductor electrode substrate.

【0005】[0005]

【発明が解決しようとする課題】本発明は、光化学電池
用の半導体電極の基板材料としてガラスだけでなく任意
の光透過性基板、特に耐熱性に劣る合成樹脂等を適用す
ることができ、かつ実用性のあるエネルギー変換効率を
得ることができる半導体電極の製造方法、及び前記半導
体電極を用いた光化学電池を提供することを目的とす
る。さらには、屈曲性、加工成形性等に優れた半導体電
極及び光化学電池を提供することを目的とする。
According to the present invention, not only glass but also any light-transmitting substrate, particularly a synthetic resin having poor heat resistance, can be used as a substrate material of a semiconductor electrode for a photochemical battery. It is an object of the present invention to provide a method for manufacturing a semiconductor electrode capable of obtaining practical energy conversion efficiency, and a photochemical battery using the semiconductor electrode. It is a further object of the present invention to provide a semiconductor electrode and a photochemical cell which are excellent in flexibility and workability.

【0006】[0006]

【課題を解決するための手段】本発明者らは上記の課題
について検討した結果、耐熱性基板上に酸化物半導体及
び/又はその前駆体からなる層を形成させ、これを加熱
焼成した後に、得られた酸化物半導体膜を任意の光透過
性基板上に転写して酸化物半導体電極を形成することに
より、当該課題を解決できることを見出した。
Means for Solving the Problems As a result of studying the above problems, the present inventors formed a layer made of an oxide semiconductor and / or a precursor thereof on a heat-resistant substrate, and fired and fired the layer. It has been found that the problem can be solved by transferring the obtained oxide semiconductor film onto an arbitrary light-transmitting substrate to form an oxide semiconductor electrode.

【0007】即ち、本発明は以下の発明を包含する。 (1)耐熱性基板上に酸化物半導体及び/又はその前駆
体を含む層を形成させ、これを加熱焼成して得られる酸
化物半導体膜を、被転写基板上に転写することを特徴と
する半導体電極の製造方法。 (2)前記被転写基板が合成樹脂である前記(1)に記
載の製造方法。 (3)耐熱性基板上に酸化物半導体及び/又はその前駆
体を含む層を形成させ、これを加熱焼成して得られる酸
化物半導体膜を、合成樹脂の基板上に転写して得られる
半導体電極。 (4)前記(3)に記載の半導体電極を用いた光化学電
池。 (5)耐熱性基板上に酸化物半導体及び/又はその前駆
体を含む層を形成させ、これを加熱焼成して得られる、
転写のための酸化物半導体膜を有する耐熱性基板。
That is, the present invention includes the following inventions. (1) A layer containing an oxide semiconductor and / or a precursor thereof is formed on a heat-resistant substrate, and an oxide semiconductor film obtained by heating and sintering the layer is transferred onto a substrate to be transferred. A method for manufacturing a semiconductor electrode. (2) The manufacturing method according to (1), wherein the substrate to be transferred is a synthetic resin. (3) A semiconductor obtained by forming a layer containing an oxide semiconductor and / or a precursor thereof on a heat-resistant substrate and heating and firing the layer to transfer an oxide semiconductor film onto a synthetic resin substrate. electrode. (4) A photochemical battery using the semiconductor electrode according to (3). (5) A layer containing an oxide semiconductor and / or a precursor thereof is formed over a heat-resistant substrate, and the layer is obtained by heating and baking.
A heat-resistant substrate having an oxide semiconductor film for transfer.

【0008】[0008]

【発明の実施の形態】本発明で用いる酸化物半導体とし
ては特に限定されず、従来公知の半導体を用いることが
できる。例えば、Ti、Nb、Zn、Sn、Zr、Y、La、Ta、H
f、Sr、In、V、Cr、Mo、W等の遷移金属の酸化物のほ
か、SrTiO3、CaTiO3、BaTiO3、MgTiO3、SrNb2O6、等の
ペロブスカイト系酸化物、あるいはこれらの複合酸化物
又は酸化物混合物等が挙げられる。特に半導体特性、耐
食性、安定性及び安全性の点からTiO2、ZnOが好適であ
る。なお、これらの酸化物半導体は微粒子として用いる
ことが好ましく、その平均粒径は通常1〜1000n
m、好ましくは5〜200nmである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The oxide semiconductor used in the present invention is not particularly limited, and a conventionally known semiconductor can be used. For example, Ti, Nb, Zn, Sn, Zr, Y, La, Ta, H
f, Sr, In, V, Cr, Mo, other oxides of transition metals such as W, SrTiO 3, CaTiO 3, BaTiO 3, MgTiO 3, SrNb 2 O 6, perovskite oxides etc., or their A composite oxide or an oxide mixture is exemplified. In particular, TiO 2 and ZnO are preferred from the viewpoint of semiconductor characteristics, corrosion resistance, stability and safety. Note that these oxide semiconductors are preferably used as fine particles, and the average particle diameter is usually 1 to 1000 n.
m, preferably 5 to 200 nm.

【0009】また、本明細書でいう「酸化物半導体の前
駆体」とは、最終的に得られる酸化物半導体の前段階の
状態のもので、加熱焼成により酸化物半導体になり得る
ものをいう。そのようなものとしては、例えば、上記の
酸化物半導体を形成しうる金属アルコキシド及びその加
水分解物や縮合物、金属錯体、金属有機酸塩、金属ハロ
ゲン化物等、さらには結晶構造の変化により半導体とし
ての物性を示すもの等が挙げられる。例えば、TiO2半導
体の前駆体としては、チタンエトキシド、チタンプロポ
キシドのような金属アルコキシド、又はこのような金属
アルコキシドを加水分解、重縮合させた縮合物、あるい
はチタンアセチルアセトナートのような金属錯体、オク
チル酸チタンのような金属有機酸塩、四塩化チタンのよ
うな金属ハロゲン化物を原料とし、これらの溶液を加水
分解したものが挙げられる。
[0009] The term "precursor of an oxide semiconductor" as used herein means a precursor of an oxide semiconductor finally obtained, which can be turned into an oxide semiconductor by heating and baking. . As such, for example, a metal alkoxide and a hydrolyzate or a condensate thereof, which can form the above-described oxide semiconductor, a metal complex, a metal organic acid salt, a metal halide, and the like; And the like which exhibit physical properties. For example, as a precursor of the TiO 2 semiconductor, titanium ethoxide, metal alkoxide such as titanium propoxide, or a hydrolysis product of such a metal alkoxide, a condensate obtained by polycondensation, or a metal such as titanium acetylacetonate A complex, a metal organic acid salt such as titanium octylate, or a metal halide such as titanium tetrachloride as a raw material, and a solution obtained by hydrolyzing these solutions can be used.

【0010】本発明で用いられる耐熱性基板の材料とし
ては、通常の焼成条件に耐えうるものであれば特に制限
されないが、300〜1000℃の焼成条件下でも変
形、化学変化等を起こさないものが好ましい。このよう
な基板材料としてはステンレス、ニッケル、白金、金、
チタン等の金属、ガラス、及びポリイミド等の耐熱性樹
脂等が挙げられる。前記材料からなる板やシートを耐熱
性基板として用いることができる。これらの耐熱性基板
は単独で用いても良いが、酸化物半導体膜の転写性(剥
れやすさ)を付与する目的で、耐熱性基板に表面処理を
施しても良い。このような処理としては、エチレン-テ
トラフルオロエチレン共重合体、ポリビニルフルオリ
ド、ポリクロロトリフルオロエチレン等のフッ素樹脂か
らなる離型層を設けたり、焼成時の熱により燃焼・分解
するような合成樹脂類、例えばポリ(2-エチルヘキシル
(メタ)アクリレート)、ポリエチル(メタ)アクリレー
ト等の(メタ)アクリレート樹脂、エチルセルロース等の
セルロース系樹脂、ポリエチレングリコール等の熱分解
性樹脂の層を設ける等の方法がある。
The material of the heat-resistant substrate used in the present invention is not particularly limited as long as it can withstand ordinary firing conditions, but it does not cause deformation or chemical change even under firing conditions of 300 to 1000 ° C. Is preferred. Such substrate materials include stainless steel, nickel, platinum, gold,
Examples include metals such as titanium, glass, and heat-resistant resins such as polyimide. A plate or sheet made of the above material can be used as a heat-resistant substrate. These heat-resistant substrates may be used alone, but may be subjected to a surface treatment for the purpose of imparting transferability (ease of peeling) of the oxide semiconductor film. As such a treatment, a release layer made of a fluororesin such as an ethylene-tetrafluoroethylene copolymer, polyvinyl fluoride, or polychlorotrifluoroethylene may be provided, or a synthesis such as burning and decomposing by heat during firing. A method of providing a layer of a resin, for example, a layer of a (meth) acrylate resin such as poly (2-ethylhexyl (meth) acrylate) or polyethyl (meth) acrylate, a cellulosic resin such as ethyl cellulose, or a thermally decomposable resin such as polyethylene glycol; There is.

【0011】前記耐熱性基板上に酸化物半導体及び/又
はその前駆体の層を形成させる方法としては、例えば次
のようにしてできる。酸化物半導体の微粒子を水若しく
は有機溶媒又はこれらの混合溶媒に分散させた液や、酸
化物半導体の前駆体の溶液若しくは懸濁液、或はこれら
を混合した液やスラリーを調製して塗布液とする。塗布
液中の酸化物半導体及び/又はその前駆体の濃度は1〜
70重量%とすることが好ましい。次いで、塗布液をス
ピンコート法、ディップコート法、スクリーン印刷法、
ブレードコート法などによって耐熱性基板上に塗布し、
必要に応じて乾燥させることにより、酸化物半導体及び
/又は前駆体の層を形成させることができる。なお、塗
布液には、必要に応じて界面活性剤、粘度調整剤、分散
剤等の添加剤を加えてもよい。
A method for forming a layer of an oxide semiconductor and / or a precursor thereof on the heat-resistant substrate can be, for example, as follows. A solution in which fine particles of an oxide semiconductor are dispersed in water or an organic solvent or a mixed solvent thereof, a solution or suspension of a precursor of an oxide semiconductor, or a liquid or slurry in which these are mixed to prepare a coating liquid And The concentration of the oxide semiconductor and / or its precursor in the coating solution is 1 to
Preferably it is 70% by weight. Next, the coating solution is spin-coated, dip-coated, screen-printed,
Apply on heat-resistant substrate by blade coating method, etc.
By drying as necessary, a layer of an oxide semiconductor and / or a precursor can be formed. In addition, additives such as a surfactant, a viscosity modifier, and a dispersant may be added to the coating liquid as needed.

【0012】次に、酸化物半導体及び/又は前駆体を含
む層が形成された耐熱性基板を加熱焼成する。加熱焼成
の条件としては300〜1000℃で1〜120分間と
することが好ましい。300℃未満では十分に焼結が進
まず、十分な膜強度が得られなかったり、膜中の電子の
移動度が低下するためにエネルギー変換効率が低下する
おそれがある。また、1000℃よりも高くなると焼結
が進みすぎて多孔質となり得ず、後述する色素の吸着量
が減少するためエネルギー変換効率が低下する。酸化物
半導体及び/又は前駆体を含む層が形成された耐熱性基
板を加熱焼成することにより、耐熱性基板上に酸化物半
導体膜が形成される。
Next, the heat-resistant substrate on which the layer containing the oxide semiconductor and / or the precursor is formed is heated and fired. The heating and firing conditions are preferably at 300 to 1000 ° C. for 1 to 120 minutes. If the temperature is lower than 300 ° C., sintering does not proceed sufficiently, and sufficient film strength may not be obtained, or the mobility of electrons in the film may be reduced, so that energy conversion efficiency may be reduced. On the other hand, if the temperature is higher than 1000 ° C., the sintering proceeds too much to make it porous, and the amount of dye adsorbed as described below decreases, so that the energy conversion efficiency decreases. By baking the heat-resistant substrate over which the layer containing the oxide semiconductor and / or the precursor is formed, an oxide semiconductor film is formed over the heat-resistant substrate.

【0013】加熱焼成して得られる酸化物半導体膜は、
多孔質構造の膜であり、その厚さは通常1〜50μm程
度であり、好ましくは5〜20μm程度である。また、
見かけの面積に対する実表面積の比が10以上、好まし
くは100以上である。なお、実表面積とはBET法に
より求められる多孔質膜の総表面積である。
An oxide semiconductor film obtained by heating and baking is
It is a film having a porous structure, and its thickness is usually about 1 to 50 μm, preferably about 5 to 20 μm. Also,
The ratio of the actual surface area to the apparent area is 10 or more, preferably 100 or more. The actual surface area is the total surface area of the porous membrane determined by the BET method.

【0014】このようにして形成された酸化物半導体膜
には、電流の取り出しのための集電電極が配置される。
集電電極の形成は、加熱焼成処理の前後いずれに行って
もよく、その方法としては、蒸着法やスパッタ法によっ
て酸化物半導体やその前駆体上に金属や酸化物導電体を
層を堆積させる方法、金属微粒子や酸化物導電体微粒子
を樹脂や溶剤と共に混ぜて酸化物半導体やその前駆体上
に塗布する方法、耐熱性基板上に光透過性の金属メッシ
ュを配置し、メッシュ上に上記塗布液を塗布して金属メ
ッシュと一体化した酸化物半導体膜を形成する方法等が
挙げられる。
In the oxide semiconductor film thus formed, a current collecting electrode for extracting a current is disposed.
The formation of the current collecting electrode may be performed before or after the heating and baking treatment. As the method, a metal or oxide conductor is deposited over an oxide semiconductor or a precursor thereof by an evaporation method or a sputtering method. Method, a method of mixing metal fine particles or oxide conductive fine particles with a resin or a solvent and applying the mixture on an oxide semiconductor or a precursor thereof, disposing a light-transmitting metal mesh on a heat-resistant substrate, and applying the above-mentioned coating on the mesh And a method of applying a liquid to form an oxide semiconductor film integrated with the metal mesh.

【0015】このようにして形成された酸化物半導体膜
に、増感剤として色素を吸着(化学吸着、物理吸着、堆
積等)させてもよい。色素の吸着は、被転写基板に転写
する前後のいずれに行っても良い。色素を吸着させる方
法としては、例えば色素を有機溶媒に溶解させた溶液中
に、前記酸化物半導体膜が形成された基板を浸漬すれば
よい。必要に応じ、溶液が半導体膜の内部に速やかに進
入するよう、減圧処理を行ったり、吸着を促進する目的
で溶液を加熱しても良い。
A dye may be adsorbed (chemical adsorption, physical adsorption, deposition, etc.) as a sensitizer to the oxide semiconductor film formed in this manner. The dye may be adsorbed before or after the transfer to the substrate to be transferred. As a method for adsorbing the dye, for example, the substrate provided with the oxide semiconductor film may be immersed in a solution in which the dye is dissolved in an organic solvent. If necessary, the solution may be subjected to a reduced pressure treatment or the solution may be heated for the purpose of promoting adsorption so that the solution quickly enters the inside of the semiconductor film.

【0016】本発明で用いることのできる色素として
は、可視光領域及び/又は赤外光領域に吸収を持つもの
であれば特に制限されず、例えば金属錯体や有機色素等
が挙げられる。金属錯体としては、ルテニウム、オスミ
ウム、鉄、亜鉛、白金等の金属錯体、銅フタロシアニ
ン、チタニルフタロシアニン等の金属フタロシアニン、
クロロフィル又はその誘導体等がある。これらの中で、
増感効果や耐久性の面からルテニウム錯体が好適であ
る。ルテニウム錯体としては、RuL2(CN)2、RuL2(SC
N)2、RuL 3(CN)等が挙げられる。ここでLは、2,2'-ビピ
リジル-4,4'-ジカルボキシレート等の配位子であり、カ
ルボキシル基、ヒドロキシル基、スルホン基等の官能基
を持つものが酸化物半導体膜への吸着性の点から好まし
い。
As the dye which can be used in the present invention
Has absorption in the visible light region and / or infrared light region
Is not particularly limited as long as it is a metal complex, an organic dye, or the like.
Is mentioned. Metal complexes include ruthenium, osmium
Metal complexes of aluminum, iron, zinc, platinum, etc., copper phthalocyanine
Metal phthalocyanines such as titanyl phthalocyanine,
Chlorophyll or derivatives thereof. Among these,
Ruthenium complexes are preferred in terms of sensitizing effect and durability.
You. As ruthenium complex, RuLTwo(CN)Two, RuLTwo(SC
N)Two, RuL Three(CN) and the like. Where L is 2,2'-bipi
A ligand such as lysyl-4,4'-dicarboxylate,
Functional groups such as ruboxyl group, hydroxyl group and sulfone group
Are preferred in terms of their ability to adsorb to oxide semiconductor films.
No.

【0017】また、有機色素としては、フタロシアニ
ン、シアニン系色素、メロシアニン系色素、キサンテン
系色素、トリフェニルメタン系色素、ローズベンガル、
ローダミンB等が挙げられ、同様の理由からカルボキシ
ル基、ヒドロキシル基、スルホン基等の官能基を導入す
ることが好ましい。
The organic dyes include phthalocyanine, cyanine dye, merocyanine dye, xanthene dye, triphenylmethane dye, rose bengal,
Rhodamine B and the like are mentioned, and for the same reason, it is preferable to introduce a functional group such as a carboxyl group, a hydroxyl group or a sulfone group.

【0018】次に、耐熱性基板上に形成させた酸化物半
導体膜を被転写基板に転写する方法について説明する。
被転写基板としては、光透過性のものであれば特に制限
されず、従来から用いられているガラス基板の他に、合
成樹脂を材料とする基板を用いることができる。
Next, a method for transferring an oxide semiconductor film formed on a heat-resistant substrate to a substrate to be transferred will be described.
The substrate to be transferred is not particularly limited as long as it is light-transmitting, and a substrate made of a synthetic resin can be used in addition to a conventionally used glass substrate.

【0019】前記合成樹脂の例としては、例えば、ポリ
エチレン、ポリプロピレン、ポリイソブチレン、ポリス
チレン、エチレン‐プロピレンゴム等のポリオレフィ
ン、ポリエチレンテレフタレート、ポリブチレンテレフ
タレート等のポリエステル樹脂エチレン‐酢酸ビニル共
重合体、エチレン‐アクリル酸共重合体、エチルセルロ
ース、トリ酢酸セルロース等のセルロース誘導体、ポリ
(メタ)アクリル酸とそのエステル化合物、ポリ酢酸ビ
ニル、ポリビニルアルコール、ポリビニルブチラール等
のポリビニルアセタール、ポリアセタール、ポリアミ
ド、ポリイミド、ナイロン、ウレタン樹脂、エポキシ樹
脂、シリコーン樹脂、フッ素樹脂、ポリカーボネート、
尿素樹脂、メラミン樹脂、フェノール樹脂、レゾルシノ
ール樹脂、フラン樹脂等が挙げられる。これらの合成樹
脂の中でも、良好な光線透過率や電解液に対する耐性、
気体の透過が少ない等のことから、ポリオレフィン又は
ポリエステル樹脂が好ましい。
Examples of the synthetic resin include polyolefins such as polyethylene, polypropylene, polyisobutylene, polystyrene, and ethylene-propylene rubber; polyester resins such as polyethylene terephthalate and polybutylene terephthalate; ethylene-vinyl acetate copolymer; Acrylic acid copolymers, cellulose derivatives such as ethyl cellulose and cellulose triacetate, poly (meth) acrylic acid and its ester compounds, polyvinyl acetals such as polyvinyl acetate, polyvinyl alcohol and polyvinyl butyral, polyacetals, polyamides, polyimides, nylons and urethanes Resin, epoxy resin, silicone resin, fluororesin, polycarbonate,
Examples include urea resin, melamine resin, phenol resin, resorcinol resin, furan resin and the like. Among these synthetic resins, good light transmittance and resistance to electrolytes,
Polyolefin or polyester resins are preferred because they have low gas transmission.

【0020】合成樹脂を用いる場合は、厚さ10〜10
00μmのフィルム状としたものを被転写基板として用
いることもできる。酸化物半導体膜を被転写基板に転写
する方法としては、酸化物半導体膜と被転写基板とを接
着剤等を用いて貼り合わせた後、耐熱性基板から引き剥
がして行う方法、接着剤自体を被転写基板として酸化物
半導体膜と貼り合わせた後、耐熱性基板から引き剥がし
て行う方法等が挙げられる。
When a synthetic resin is used, a thickness of 10 to 10
A film having a thickness of 00 μm can also be used as the substrate to be transferred. As a method of transferring the oxide semiconductor film to the substrate to be transferred, a method in which the oxide semiconductor film and the substrate to be transferred are bonded to each other using an adhesive or the like and then peeled off from the heat-resistant substrate, and the adhesive itself is used. After the substrate is bonded to an oxide semiconductor film as a substrate to be transferred, the substrate is peeled off from the heat-resistant substrate.

【0021】上記の転写工程で用いることのできる接着
剤は特に限定されるものではなく、各種合成樹脂や無機
接着剤を用いることができる。合成樹脂としては、例え
ば、ポリエチレン、ポリプロピレン、ポリイソブチレ
ン、ポリスチレン、エチレン‐プロピレンゴム等のポリ
オレフィン、エチレン‐酢酸ビニル共重合体、エチレン
‐アクリル酸共重合体、エチルセルロース、トリ酢酸セ
ルロース等のセルロース誘導体、ポリ(メタ)アクリル
酸とそのエステルとの共重合体、ポリ酢酸ビニル、ポリ
ビニルアルコール、ポリビニルブチラール等のポリビニ
ルアセタール、ポリアセタール、ポリアミド、ポリイミ
ド、ナイロン、ポリエステル樹脂、ウレタン樹脂、エポ
キシ樹脂、シリコーン樹脂、フッ素樹脂等が挙げられ
る。無機接着剤としては、例えば、低融点ガラス、ケイ
酸ソーダ等のアルカリ金属ケイ酸塩等が挙げられる。こ
れらの接着剤の中でも、接着性、電解液に対する耐性、
光透過性及び転写性の点から、ポリオレフィン、エチレ
ン‐酢酸ビニル共重合体、ウレタン樹脂、エポキシ樹
脂、シリコーン樹脂が好ましい。また、これらの接着剤
には、必要に応じて添加剤を用いることができる。添加
剤としては、架橋剤、分散剤、タッキファイヤー、レベ
リング剤、可塑剤、消泡剤等が挙げられる。
The adhesive that can be used in the transfer step is not particularly limited, and various synthetic resins and inorganic adhesives can be used. As the synthetic resin, for example, polyethylene, polypropylene, polyisobutylene, polystyrene, polyolefins such as ethylene-propylene rubber, ethylene-vinyl acetate copolymer, ethylene-acrylic acid copolymer, ethyl cellulose, cellulose derivatives such as cellulose triacetate, Copolymer of poly (meth) acrylic acid and its ester, polyvinyl acetal such as polyvinyl acetate, polyvinyl alcohol, polyvinyl butyral, polyacetal, polyamide, polyimide, nylon, polyester resin, urethane resin, epoxy resin, silicone resin, fluorine Resins. Examples of the inorganic adhesive include low-melting glass, alkali metal silicates such as sodium silicate, and the like. Among these adhesives, adhesion, resistance to electrolytes,
Polyolefin, ethylene-vinyl acetate copolymer, urethane resin, epoxy resin, and silicone resin are preferred from the viewpoint of light transmittance and transferability. Additives can be used as necessary for these adhesives. Examples of the additive include a crosslinking agent, a dispersant, a tackifier, a leveling agent, a plasticizer, an antifoaming agent, and the like.

【0022】このような接着剤を用いて、酸化物半導体
膜と被転写基板とを接着する方法についてより具体的に
説明すると、例えば、有機溶剤や水に溶解又は分散した
接着剤を酸化物半導体膜上、又は被転写基板上に塗布
し、酸化物半導体膜と被転写基板とを貼り合わせて乾燥
する方法、加熱溶融させた接着剤を酸化物半導体膜上、
又は被転写基板上に塗布して貼り合わせた後に冷却する
方法、上記のような合成樹脂からなる樹脂フィルムを酸
化物半導体膜と被転写基板との間に挟み込み、加熱して
接着する方法等が挙げられる。接着剤層の厚さは特に限
定されないが5〜300μm、好ましくは10〜200
μmである。上述のようにして製造した半導体電極を用
いて光化学電池を製造することができる。
A method for bonding an oxide semiconductor film and a transfer substrate using such an adhesive will be described more specifically. For example, an adhesive dissolved or dispersed in an organic solvent or water may be used as an oxide semiconductor. On the film, or coated on the substrate to be transferred, a method of bonding and drying the oxide semiconductor film and the substrate to be transferred, the adhesive melted and heated on the oxide semiconductor film,
Alternatively, a method of cooling after coating and bonding on a substrate to be transferred, a method of sandwiching a resin film made of a synthetic resin as described above between an oxide semiconductor film and a substrate to be transferred, and bonding by heating. No. The thickness of the adhesive layer is not particularly limited, but is 5 to 300 μm, preferably 10 to 200 μm.
μm. A photochemical battery can be manufactured using the semiconductor electrode manufactured as described above.

【0023】電解質層としては、通常、電解質溶液が使
用される。その他、ゲル状或いは固体の電解質も使用さ
れる。電解質溶液は、特に限定されないが、I/I3、Br/B
r3、キノン/ハイドロキノン等のレドックス対を含む溶
液が挙げられる。具体的には、I/I3の場合、ヨウ素とヨ
ウ素のアンモニウム塩とを、アセトニトリル、エチレン
カーボネート、プロピレンカーボネート等の有機溶媒に
溶解させた溶液が用いられる。
As the electrolyte layer, an electrolyte solution is usually used. In addition, a gel or solid electrolyte is also used. Electrolyte solution is not particularly limited, I / I 3 , Br / B
r 3 , a solution containing a redox couple such as quinone / hydroquinone. Specifically, in the case of I / I 3 , a solution in which iodine and an ammonium salt of iodine are dissolved in an organic solvent such as acetonitrile, ethylene carbonate, propylene carbonate, or the like is used.

【0024】また、電子やホールを輸送する材料も適用
でき、各種金属フタロシアニン、ペリレンテトラカルボ
ン酸、ペリレンやコロネン等多環芳香族、アリールアミ
ン類等の電荷輸送材料、ポリピロール、ポリフェニレン
ビニレン等の導電性高分子などが使用可能である。これ
らの電解質層の厚みとしては、通常、1〜50μm程度
である。
Materials for transporting electrons and holes can also be used, such as various metal phthalocyanines, perylenetetracarboxylic acids, charge transport materials such as polycyclic aromatics such as perylene and coronene, and arylamines, and conductive materials such as polypyrrole and polyphenylenevinylene. A hydrophilic polymer or the like can be used. The thickness of these electrolyte layers is usually about 1 to 50 μm.

【0025】対向電極としては、任意の導電性材料が使
用でき、例えば、金、白金、銀、銅等の金属材料や、前
述の導電性ガラス、カーボン等が挙げられるが、レドッ
クス対の反応を十分な速度で行わせる触媒能を持つもの
が好ましく、白金、導電材料表面に白金メッキや白金蒸
着を施したもの、カーボン等が挙げられる。本発明の半
導体電極を用いて光化学電池を製造する場合、本発明の
半導体電極と対向電極とを電解質に接触させることによ
り色素増感型太陽電池等の光化学電池を製造することが
できる。
As the counter electrode, any conductive material can be used. Examples thereof include metal materials such as gold, platinum, silver, and copper, and the above-described conductive glass and carbon. Those having a catalytic ability to perform the reaction at a sufficient speed are preferable, and examples thereof include platinum, platinum-plated or platinum-deposited conductive material surfaces, and carbon. When manufacturing a photochemical cell using the semiconductor electrode of the present invention, a photochemical cell such as a dye-sensitized solar cell can be manufactured by bringing the semiconductor electrode of the present invention and a counter electrode into contact with an electrolyte.

【0026】[0026]

【実施例】(実施例1) <TiO2膜の形成>水3.6mlとアセチルアセトン0.4mlの混
合液中に結晶性酸化チタン粒子(日本アエロジル社製
商品名P-25、平均粒径21nm)12gを加え、乳鉢でよく分
散させた。さらに、水16mlを、かき混ぜながら徐々に加
え、最後に界面活性剤(Aldrich製 Triton X-100)0.2
mlを加えてよく撹拌し、酸化チタンを38重量%含有する
酸化チタンスラリーを調製した。
EXAMPLES (Example 1) <Formation of TiO 2 film> Crystalline titanium oxide particles (manufactured by Nippon Aerosil Co., Ltd.) in a mixture of 3.6 ml of water and 0.4 ml of acetylacetone
12 g of trade name P-25 (average particle size: 21 nm) was added and dispersed well in a mortar. Further, 16 ml of water was gradually added with stirring, and finally a surfactant (Triton X-100 manufactured by Aldrich) 0.2
The resulting mixture was stirred well, and a titanium oxide slurry containing 38% by weight of titanium oxide was prepared.

【0027】次に、耐熱性基板として厚さ1.1mmのステ
ンレス板にポリ(2-エチルへキシルメタクリレート)を
約10μmの厚みで塗布し、該ポリ(2-エチルヘキシルメタ
クリレート)上に集電電極として使用する100メッシュの
金の網(ニラコ社製)を貼り合わせたものを別途用意し
た。この基板上に、上記のスラリーを1.5×1.5cmの面
積、厚さ50μmで塗布し、室温で5時間乾燥させた。次に
450℃で30分間、空気中で加熱焼成を行うとともに、ポ
リ(2-エチルヘキシルメタクリレート)を熱分解させ、集
電電極を有する酸化チタン半導体電極を作製した。
Next, poly (2-ethylhexyl methacrylate) was applied to a stainless steel plate having a thickness of 1.1 mm as a heat-resistant substrate at a thickness of about 10 μm, and a current collecting electrode was formed on the poly (2-ethylhexyl methacrylate). A 100-mesh gold net (made by Nilaco Co., Ltd.) to be used was separately prepared. On the substrate, the above slurry was applied in an area of 1.5 × 1.5 cm and a thickness of 50 μm, and dried at room temperature for 5 hours. next
Heating and baking was performed at 450 ° C. for 30 minutes in air, and poly (2-ethylhexyl methacrylate) was thermally decomposed to produce a titanium oxide semiconductor electrode having a current collecting electrode.

【0028】<転写>得られた半導体電極上に熱溶融性
のEVA(エチレン-酢酸ビニル共重合体)シート(武田薬
品工業製 商品名 タケメルト 厚さ150μm)、コロナ
処理した50μmの二軸延伸ポリエチレンテレフタレート
(PET)フィルムを順次重ね、110℃に加熱されたヒートロ
ールラミネータで接着した。ついでステンレス板から半
導体電極を剥離し、被転写基板として前記PETフィルム
上にEVAを介して酸化チタン半導体が形成されたPET基板
半導体電極を得た。
<Transfer> A hot-melt EVA (ethylene-vinyl acetate copolymer) sheet (trade name: Takemelt, 150 μm thick, manufactured by Takeda Pharmaceutical Co., Ltd.) on the obtained semiconductor electrode, 50 μm corona-treated biaxially stretched polyethylene Terephthalate
(PET) films were sequentially stacked and bonded with a heat roll laminator heated to 110 ° C. Then, the semiconductor electrode was peeled off from the stainless steel plate to obtain a PET substrate semiconductor electrode in which a titanium oxide semiconductor was formed on the PET film via EVA as a substrate to be transferred.

【0029】<色素の吸着>得られたPET基板半導体電
極をシス-ビス(イソチオシアネート)ビス(2,2'-ビピ
リジル-4,4'-ジカルボキシレート)ルテニウムのエタノ
ール溶液(3×10-4M)に24時間浸漬し、酸化チタン上に
増感色素を吸着させ、色素増感酸化チタン半導体電極を
作製した。
<Dye Adsorption> The obtained PET substrate semiconductor electrode was treated with an ethanol solution of cis-bis (isothiocyanate) bis (2,2′-bipyridyl-4,4′-dicarboxylate) ruthenium (3 × 10 − 4 M) for 24 hours to adsorb the sensitizing dye on the titanium oxide to produce a dye-sensitized titanium oxide semiconductor electrode.

【0030】<光化学電池の作製>色素増感酸化チタン
半導体電極とその対向電極とを電解液に接触させて光化
学電池を構成した。対向電極としては、表面抵抗50Ω/
□のITOコートPETフィルムのITO面に白金を蒸着したも
のを用いた。電解液としては、エチレンカーボネートと
アセトニトリルとの混合液(容量比80/20)に、電解質
として0.5Mのテトラプロピルアンモニウムヨーダイドと
0.05Mのヨウ素とを含むものを用いた。また、両電極間
には25μmのPETフィルムをスペーサーとして挟み、端部
はエポキシ樹脂で封止した。
<Preparation of Photochemical Battery> A photochemical battery was constructed by bringing a dye-sensitized titanium oxide semiconductor electrode and its counter electrode into contact with an electrolytic solution. For the counter electrode, surface resistance 50Ω /
The ITO coated PET film of □ was prepared by depositing platinum on the ITO surface. As an electrolyte, a mixed solution of ethylene carbonate and acetonitrile (volume ratio of 80/20) and 0.5 M tetrapropylammonium iodide as an electrolyte were used.
Those containing 0.05M iodine were used. A 25 μm PET film was sandwiched between both electrodes as a spacer, and the ends were sealed with epoxy resin.

【0031】<光化学電池の特性評価>作製した光化学
電池の特性評価を、JIS C8911で定義されるAM1.5の疑似
太陽光(1000W/m2)を照射して行った結果、エネルギー
変換効率は5.5%であった。さらに、この光化学電池の
表側に直径1cmの棒を当てて折り曲げ、次にその裏面に
あてて反対側に折り曲げる操作を10回繰り返した後、エ
ネルギー変換効率の測定を行ったところ、5.0%であっ
た。
<Characteristic Evaluation of Photochemical Battery> The characteristic evaluation of the fabricated photochemical battery was performed by irradiating the AM1.5 simulated sunlight (1000 W / m 2 ) defined in JIS C8911. 5.5%. Furthermore, after repeating the operation of applying a rod having a diameter of 1 cm to the front side of the photochemical cell and then bending the photochemical cell on the back side and bending it to the opposite side ten times, the energy conversion efficiency was measured to be 5.0%. Was.

【0032】(参考例1)実施例と同様にして調製した
酸化チタンスラリーを、表面抵抗50Ω/□のITOコートPE
TフィルムのITO面に塗布した。室温で5時間乾燥した
後、100℃で30分間熱処理を行い、酸化チタン半導体電
極を作製した。色素の吸着、光化学電池の作製は実施例
と同様にして行った。このエネルギー変換効率を測定し
たところ2.7%であった。さらに、実施例と同様に、折
り曲げる操作を行い、エネルギー変換効率の測定を行っ
たところ、0.8%であった。この酸化チタン膜の状態を
目視で観察したところ、酸化チタン膜の一部がITOコー
トPET基板から剥がれ落ちた状態であった。
(Reference Example 1) A titanium oxide slurry prepared in the same manner as in the example was mixed with ITO-coated PE having a surface resistance of 50Ω / □.
Coated on ITO surface of T film. After drying at room temperature for 5 hours, heat treatment was performed at 100 ° C. for 30 minutes to produce a titanium oxide semiconductor electrode. Adsorption of the dye and fabrication of the photochemical cell were performed in the same manner as in the example. The measured energy conversion efficiency was 2.7%. Furthermore, bending operation was performed in the same manner as in the example, and the energy conversion efficiency was measured. As a result, it was 0.8%. When the state of the titanium oxide film was visually observed, a part of the titanium oxide film was peeled off from the ITO-coated PET substrate.

【0033】[0033]

【発明の効果】本発明により、任意の材料の基板を用い
て半導体電極を製造する方法を提供できる。特に、本発
明により、従来の加熱焼成条件では適用できないような
耐熱性の劣る合成樹脂基板等を用いて実用的なエネルギ
ー変換効率を有する半導体電極を提供でき、さらには該
電極を用いて高耐久性、高効率の光化学電池を提供でき
る。本発明により、従来基板として用いられていたガラ
スに比較して、屈曲性及び加工成形性に優れ、軽量であ
る合成樹脂を基板として用いることができるため、設置
箇所の自由度が高く、平面でも曲面でも設置でき、かつ
設置作業の容易な半導体電極及び光化学電池を提供でき
る。
According to the present invention, it is possible to provide a method for manufacturing a semiconductor electrode using a substrate of any material. In particular, according to the present invention, a semiconductor electrode having practical energy conversion efficiency can be provided by using a synthetic resin substrate or the like having inferior heat resistance, which cannot be applied under conventional heating and firing conditions, and furthermore, a highly durable semiconductor electrode can be provided by using the electrode. And a highly efficient photochemical battery can be provided. According to the present invention, as compared with glass that has been conventionally used as a substrate, since it is possible to use a lightweight synthetic resin that is excellent in flexibility and workability and can be used as a substrate, the degree of freedom of an installation place is high, and even in a flat surface. A semiconductor electrode and a photochemical battery which can be installed on a curved surface and which can be easily installed can be provided.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 耐熱性基板上に酸化物半導体及び/又は
その前駆体を含む層を形成させ、これを加熱焼成して得
られる酸化物半導体膜を、被転写基板上に転写すること
を特徴とする半導体電極の製造方法。
An oxide semiconductor film obtained by forming a layer containing an oxide semiconductor and / or a precursor thereof on a heat-resistant substrate and heating and firing the layer is transferred onto a substrate to be transferred. Of manufacturing a semiconductor electrode.
【請求項2】 前記被転写基板が合成樹脂である請求項
1に記載の製造方法。
2. The method according to claim 1, wherein the substrate to be transferred is a synthetic resin.
【請求項3】 耐熱性基板上に酸化物半導体及び/又は
その前駆体を含む層を形成させ、これを加熱焼成して得
られる酸化物半導体膜を、合成樹脂の基板上に転写して
得られる半導体電極。
3. A layer containing an oxide semiconductor and / or a precursor thereof is formed on a heat-resistant substrate, and an oxide semiconductor film obtained by heating and sintering the layer is transferred onto a synthetic resin substrate. Semiconductor electrodes.
【請求項4】 請求項3に記載の半導体電極を用いた光
化学電池。
4. A photochemical battery using the semiconductor electrode according to claim 3.
【請求項5】 耐熱性基板上に酸化物半導体及び/又は
その前駆体を含む層を形成させ、これを加熱焼成して得
られる、転写のための酸化物半導体膜を有する耐熱性基
板。
5. A heat-resistant substrate having an oxide semiconductor film for transfer, which is obtained by forming a layer containing an oxide semiconductor and / or a precursor thereof on a heat-resistant substrate and heating and firing the layer.
JP2000376939A 2000-12-12 2000-12-12 Semiconductor electrode manufacturing method and photochemical battery Expired - Lifetime JP4850338B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000376939A JP4850338B2 (en) 2000-12-12 2000-12-12 Semiconductor electrode manufacturing method and photochemical battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000376939A JP4850338B2 (en) 2000-12-12 2000-12-12 Semiconductor electrode manufacturing method and photochemical battery

Publications (2)

Publication Number Publication Date
JP2002184475A true JP2002184475A (en) 2002-06-28
JP4850338B2 JP4850338B2 (en) 2012-01-11

Family

ID=18845728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000376939A Expired - Lifetime JP4850338B2 (en) 2000-12-12 2000-12-12 Semiconductor electrode manufacturing method and photochemical battery

Country Status (1)

Country Link
JP (1) JP4850338B2 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005032917A (en) * 2003-07-10 2005-02-03 Dainippon Printing Co Ltd Method for manufacturing organic thin film solar cell and transfer sheet
JP2005166648A (en) * 2003-11-10 2005-06-23 Dainippon Printing Co Ltd Method of manufacturing base material for dye sensitized solar cell, and method for manufacturing the dye sensitized solar cell
US20060219294A1 (en) * 2005-03-30 2006-10-05 Dai Nippon Printing Co., Ltd. Oxide semiconductor electrode, dye-sensitized solar cell, and, method of producing the same
JP2006278298A (en) * 2005-03-30 2006-10-12 Dainippon Printing Co Ltd Manufacturing method of substrate for dye-sensitized solar cell and dye-sensitized solar cell substrate
JP2006523369A (en) * 2003-03-24 2006-10-12 コナルカ テクノロジーズ インコーポレイテッド Photoelectric cell using mesh electrode
JP2006310255A (en) * 2005-03-30 2006-11-09 Dainippon Printing Co Ltd Manufacturing method of oxide semiconductor electrode
JP2006313693A (en) * 2005-05-09 2006-11-16 Dainippon Printing Co Ltd Manufacturing method of intermediate transfer medium, manufacturing method of oxide semiconductor electrode, and manufacturing method of dye-sensitized solar cell
JP2006313668A (en) * 2005-05-06 2006-11-16 Dainippon Printing Co Ltd Transfer material for oxide semiconductor electrode, substrate for dye-sensitized solar cell, dye-sensitized solar cell, and method of manufacturing them
JP2007087844A (en) * 2005-09-26 2007-04-05 Dainippon Printing Co Ltd Laminate for oxide semiconductor electrode
JP2007273426A (en) * 2006-03-31 2007-10-18 Dainippon Printing Co Ltd Dye-sensitized solar cell
JP2007534119A (en) * 2004-04-23 2007-11-22 ソニー ドイチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for producing porous semiconductor film on substrate
JP2008091084A (en) * 2006-09-29 2008-04-17 Dainippon Printing Co Ltd Stack for oxide semiconductor electrode, oxide semiconductor electrode, and dye-sensitized solar cell using it
WO2010050575A1 (en) 2008-10-29 2010-05-06 富士フイルム株式会社 Dye, photoelectric conversion element and photoelectrochemical cell each comprising the dye, and process for producing dye
EP2302650A2 (en) 2009-09-28 2011-03-30 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
EP2306479A2 (en) 2009-09-28 2011-04-06 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
JP2011513899A (en) * 2008-02-26 2011-04-28 ダイソル・リミテッド Subassembly used for manufacturing photoelectrochemical device and method for manufacturing subassembly
WO2011118581A1 (en) 2010-03-24 2011-09-29 富士フイルム株式会社 Method for manufacturing photoelectric conversion element, photoelectric conversion element and photoelectrochemical cell
JP2012038634A (en) * 2010-08-10 2012-02-23 Doshisha Creation method of titania nanotube array and titania electrode, titania electrode, and dye-sensitized solar cell applying titania electrode
JP2012507841A (en) * 2008-11-05 2012-03-29 ゼファー・アクチエンゲゼルシャフト Substrates for optoelectronic devices
JP2012146505A (en) * 2011-01-12 2012-08-02 Soken Chem & Eng Co Ltd Sheet formation material, and method for producing porous semiconductor electrode using the sheet formation material
WO2012132855A1 (en) 2011-03-30 2012-10-04 富士フイルム株式会社 Photoelectric converter and photoelectrochemical cell
JP2012199175A (en) * 2011-03-23 2012-10-18 Sony Corp Photoelectric conversion device and manufacturing method of the same
WO2014129575A1 (en) 2013-02-22 2014-08-28 富士フイルム株式会社 Photoelectric conversion element, method for manufacturing photoelectric conversion element and dye-sensitized solar cell
US9184317B2 (en) 2007-04-02 2015-11-10 Merck Patent Gmbh Electrode containing a polymer and an additive

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11102734A (en) * 1997-09-29 1999-04-13 Sharp Corp Semiconductor of photoelectric conversion material, its manufacture and solar cell
JP2001160426A (en) * 1999-09-24 2001-06-12 Toshiba Corp Dye-sensitization type solar battery, its manufacturing method and portable equipment using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11102734A (en) * 1997-09-29 1999-04-13 Sharp Corp Semiconductor of photoelectric conversion material, its manufacture and solar cell
JP2001160426A (en) * 1999-09-24 2001-06-12 Toshiba Corp Dye-sensitization type solar battery, its manufacturing method and portable equipment using the same

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006523369A (en) * 2003-03-24 2006-10-12 コナルカ テクノロジーズ インコーポレイテッド Photoelectric cell using mesh electrode
JP2005032917A (en) * 2003-07-10 2005-02-03 Dainippon Printing Co Ltd Method for manufacturing organic thin film solar cell and transfer sheet
JP2005166648A (en) * 2003-11-10 2005-06-23 Dainippon Printing Co Ltd Method of manufacturing base material for dye sensitized solar cell, and method for manufacturing the dye sensitized solar cell
JP2007534119A (en) * 2004-04-23 2007-11-22 ソニー ドイチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for producing porous semiconductor film on substrate
US20060219294A1 (en) * 2005-03-30 2006-10-05 Dai Nippon Printing Co., Ltd. Oxide semiconductor electrode, dye-sensitized solar cell, and, method of producing the same
JP2006278298A (en) * 2005-03-30 2006-10-12 Dainippon Printing Co Ltd Manufacturing method of substrate for dye-sensitized solar cell and dye-sensitized solar cell substrate
JP2006310255A (en) * 2005-03-30 2006-11-09 Dainippon Printing Co Ltd Manufacturing method of oxide semiconductor electrode
DE102006062815B4 (en) * 2005-03-30 2011-09-15 Dai Nippon Printing Co., Ltd. Oxide semiconductor electrode, dye-sensitized solar cell and process for their preparation
JP2006313668A (en) * 2005-05-06 2006-11-16 Dainippon Printing Co Ltd Transfer material for oxide semiconductor electrode, substrate for dye-sensitized solar cell, dye-sensitized solar cell, and method of manufacturing them
JP2006313693A (en) * 2005-05-09 2006-11-16 Dainippon Printing Co Ltd Manufacturing method of intermediate transfer medium, manufacturing method of oxide semiconductor electrode, and manufacturing method of dye-sensitized solar cell
JP2007087844A (en) * 2005-09-26 2007-04-05 Dainippon Printing Co Ltd Laminate for oxide semiconductor electrode
JP2007273426A (en) * 2006-03-31 2007-10-18 Dainippon Printing Co Ltd Dye-sensitized solar cell
JP2008091084A (en) * 2006-09-29 2008-04-17 Dainippon Printing Co Ltd Stack for oxide semiconductor electrode, oxide semiconductor electrode, and dye-sensitized solar cell using it
US9184317B2 (en) 2007-04-02 2015-11-10 Merck Patent Gmbh Electrode containing a polymer and an additive
JP2011513899A (en) * 2008-02-26 2011-04-28 ダイソル・リミテッド Subassembly used for manufacturing photoelectrochemical device and method for manufacturing subassembly
WO2010050575A1 (en) 2008-10-29 2010-05-06 富士フイルム株式会社 Dye, photoelectric conversion element and photoelectrochemical cell each comprising the dye, and process for producing dye
EP2845882A2 (en) 2008-10-29 2015-03-11 Fujifilm Corporation Dye, Photoelectric Conversion Element and Photoelectrochemical Cell
JP2012507841A (en) * 2008-11-05 2012-03-29 ゼファー・アクチエンゲゼルシャフト Substrates for optoelectronic devices
EP2306479A2 (en) 2009-09-28 2011-04-06 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
EP2302650A2 (en) 2009-09-28 2011-03-30 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
WO2011118581A1 (en) 2010-03-24 2011-09-29 富士フイルム株式会社 Method for manufacturing photoelectric conversion element, photoelectric conversion element and photoelectrochemical cell
JP2012038634A (en) * 2010-08-10 2012-02-23 Doshisha Creation method of titania nanotube array and titania electrode, titania electrode, and dye-sensitized solar cell applying titania electrode
JP2012146505A (en) * 2011-01-12 2012-08-02 Soken Chem & Eng Co Ltd Sheet formation material, and method for producing porous semiconductor electrode using the sheet formation material
JP2012199175A (en) * 2011-03-23 2012-10-18 Sony Corp Photoelectric conversion device and manufacturing method of the same
WO2012132855A1 (en) 2011-03-30 2012-10-04 富士フイルム株式会社 Photoelectric converter and photoelectrochemical cell
WO2014129575A1 (en) 2013-02-22 2014-08-28 富士フイルム株式会社 Photoelectric conversion element, method for manufacturing photoelectric conversion element and dye-sensitized solar cell

Also Published As

Publication number Publication date
JP4850338B2 (en) 2012-01-11

Similar Documents

Publication Publication Date Title
JP4850338B2 (en) Semiconductor electrode manufacturing method and photochemical battery
KR100839371B1 (en) Dye-sensitized solar cell
JP5029015B2 (en) Dye-sensitized metal oxide semiconductor electrode, method for producing the same, and dye-sensitized solar cell
US7323635B2 (en) Photovoltaic cell
KR101172374B1 (en) Dye-sensitized solar cell based on perovskite sensitizer and manufacturing method thereof
JP5191647B2 (en) Titanium oxide film, titanium oxide film electrode film structure, and dye-sensitized solar cell
JP3717506B2 (en) Dye-sensitized solar cell module
JPH11273753A (en) Coloring matter sensitizing type photocell
JP2005174934A (en) Dye-sensitive solar cell, and method for manufacturing the same
JP2005516364A (en) Solar cell interconnection
WO2008004556A1 (en) Dye-sensitized solar cell module and method for fabricating same
JP2002008740A (en) Dye sensitized photocell and its manufacturing method
JP4848666B2 (en) Oxide semiconductor electrode transfer material, dye-sensitized solar cell substrate, dye-sensitized solar cell, and methods for producing the same
EP2267831A1 (en) Paste for dye-sensitized solar cell, transparent insulation film for dye-sensitized solar cell, dye-sensitized solar cell, and dye-sensitized solar cell fabrication method
JP4596305B2 (en) Semiconductor electrode, manufacturing method thereof, and dye-sensitized solar cell using the same
JP4637470B2 (en) Manufacturing method of laminate
JP2011165469A (en) Semiconductor electrode layer, method of manufacturing the same, and electrochemical device
JPH11219734A (en) Semiconductor for photoelectric conversion material, laminate using the semiconductor, manufacture of those and photocell
JP5102921B2 (en) Manufacturing method of semiconductor electrode
KR101166515B1 (en) Photoelectrode for dye-sensitized solar cell, preparing method of the same, and dye-sensitized solar cell having the same
JP2002314108A (en) Solar cell
JP4377627B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JP2004146663A (en) Photoelectric conversion element
KR101408888B1 (en) Dye-sensitized solar cell and preparing method thereof
WO2012033049A1 (en) Dye-sensitized solar cell and dye-sensitized solar cell module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111019

R150 Certificate of patent or registration of utility model

Ref document number: 4850338

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term