JP2012146505A - Sheet formation material, and method for producing porous semiconductor electrode using the sheet formation material - Google Patents

Sheet formation material, and method for producing porous semiconductor electrode using the sheet formation material Download PDF

Info

Publication number
JP2012146505A
JP2012146505A JP2011003889A JP2011003889A JP2012146505A JP 2012146505 A JP2012146505 A JP 2012146505A JP 2011003889 A JP2011003889 A JP 2011003889A JP 2011003889 A JP2011003889 A JP 2011003889A JP 2012146505 A JP2012146505 A JP 2012146505A
Authority
JP
Japan
Prior art keywords
sheet
material layer
kneaded material
oxide semiconductor
porous semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011003889A
Other languages
Japanese (ja)
Other versions
JP5554725B2 (en
Inventor
Seiichi Kadokura
誠一 角倉
Hiroto Matsumoto
広斗 松本
Hideji Okamoto
秀二 岡本
Fumiaki Kobayashi
文明 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soken Kagaku KK
Soken Chemical and Engineering Co Ltd
Original Assignee
Soken Kagaku KK
Soken Chemical and Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Soken Kagaku KK, Soken Chemical and Engineering Co Ltd filed Critical Soken Kagaku KK
Priority to JP2011003889A priority Critical patent/JP5554725B2/en
Publication of JP2012146505A publication Critical patent/JP2012146505A/en
Application granted granted Critical
Publication of JP5554725B2 publication Critical patent/JP5554725B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sheet formation material capable of easily and efficiently producing a porous semiconductor electrode which can enhance the photoelectric efficiency of a photoelectric conversion element, and a method for producing the porous semiconductor electrode.SOLUTION: The present invention relates to a sheet formation material for transfer and a method for producing a porous semiconductor electrode. In the sheet formation material for transfer, a kneaded material layer containing an oxide semiconductor particle and a binder is formed on a film comprising a resin. In the method for producing the porous semiconductor electrode, the porous semiconductor electrode is obtained by laminating the kneaded material layer of the sheet formation material on a transparent conductive layer of a laminate comprising a transparent heat resistance substrate and the transparent conductive layer and then firing the kneaded material layer.

Description

本願発明は、酸化物半導体を含有する転写用シート形成物および該シート形成物を用いた多孔質半導体電極の製造方法に関する。   The present invention relates to a transfer sheet formation containing an oxide semiconductor and a method for producing a porous semiconductor electrode using the sheet formation.

光電変換素子として、色素増感型太陽電池が開発されている。色素増感型太陽電池は、透明基板および透明導電層を通過した光が、酸化物半導体に担持された増感色素を励起し、励起された電子が酸化物半導体を経由して透明電極に移動し、一方で電解質が対電極から得た電子を、電荷輸送層を介して増感色素に伝達し、増感色素が元の状態に戻る。従って、光電変換効率を高めるためには、酸化物半導体が入射された光を最大限吸収することが重要となる。   As a photoelectric conversion element, a dye-sensitized solar cell has been developed. In dye-sensitized solar cells, light passing through a transparent substrate and a transparent conductive layer excites a sensitizing dye carried on an oxide semiconductor, and the excited electrons move to the transparent electrode via the oxide semiconductor. On the other hand, the electrolyte transmits electrons obtained from the counter electrode to the sensitizing dye via the charge transport layer, and the sensitizing dye returns to its original state. Therefore, in order to increase the photoelectric conversion efficiency, it is important to absorb the incident light as much as possible to the oxide semiconductor.

入射光を酸化物半導体が効率よく利用する方法として、たとえば、非特許文献1には、光の入射側から次第に酸化物半導体粒子の平均粒子径が大きくなるように、酸化物半導体粒子の多層構造を形成することにより光電効率が上昇させる方法が記載されている(非特許文献1参照)。また、非特許文献2には、入射光の太陽電池内の散乱光および反射光を利用する方法が記載されている(非特許文献2参照)。   As a method of efficiently using incident light by an oxide semiconductor, for example, Non-Patent Document 1 discloses a multilayer structure of oxide semiconductor particles so that the average particle diameter of the oxide semiconductor particles gradually increases from the light incident side. A method is described in which the photoelectric efficiency is increased by forming (see Non-Patent Document 1). Non-Patent Document 2 describes a method of using scattered light and reflected light in a solar cell of incident light (see Non-Patent Document 2).

一方、色素増感型太陽電池の色素増感半導体電極は、透明電極の上に酸化物半導体粒子をバインダーに分散させたペーストを塗工した層を焼成することにより多孔質半導体電極を形成し、該電極を色素溶液に浸漬することで得ることができる。焼成は、溶媒やバインダーを除去するのみならず、酸化物半導体粒子同士を融着させ(ネッキング)、多孔質の構造とするために必要であり、その結果、色素吸着面積を増大させつつ、電子の移動が可能なネットワークを形成することができる。   On the other hand, the dye-sensitized semiconductor electrode of the dye-sensitized solar cell forms a porous semiconductor electrode by firing a layer coated with a paste in which oxide semiconductor particles are dispersed in a binder on a transparent electrode, It can be obtained by immersing the electrode in a dye solution. Firing is necessary not only to remove the solvent and binder, but also to fuse the oxide semiconductor particles (necking) together to form a porous structure. As a result, while increasing the dye adsorption area, Can be formed.

よって、酸化物半導体粒子層の多層構造を有する色素増感半導体電極を製造するためには、塗布および乾燥という工程を繰り返した後焼成を行う、または塗布、乾燥および焼成という工程を繰り返す必要がある。前者の場合、焼成は繰り返す必要はないが、バインダーに用いられる溶媒は、水などの低沸点溶媒を用いる必要がある。しかしながら、低沸点溶媒は制御が困難であるため、前者は実用性に乏しい。一方、後者の場合、バインダーに用いられる溶媒として高沸点溶媒を用いることが可能であるため、制御は容易であるが、焼成を繰り返す必要がある。後者のように塗布、乾燥および焼成を繰り返すと、繰り返し工程毎に形成される層同士の界面に抵抗が形成されるという問題、焼成を繰り返すことによって、ネッキングが過度に促進され、酸化物半導体粒子の粒子径が増大して色素吸着面積が減少する、および、空孔が縮小して電解液中のイオン拡散スペースが減少するという問題があり、光電効率の向上を妨げる要因となっていた。   Therefore, in order to produce a dye-sensitized semiconductor electrode having a multilayer structure of oxide semiconductor particle layers, it is necessary to repeat the steps of coating and drying and then baking, or to repeat the steps of coating, drying and baking. . In the former case, the firing need not be repeated, but the solvent used for the binder must be a low boiling point solvent such as water. However, since the low boiling point solvent is difficult to control, the former is not practical. On the other hand, in the latter case, since a high boiling point solvent can be used as the solvent used in the binder, control is easy, but it is necessary to repeat firing. When coating, drying and firing are repeated as in the latter case, resistance is formed at the interface between the layers formed in each repeated process, and by repeating firing, necking is excessively promoted, and oxide semiconductor particles There is a problem that an increase in the particle size of the dye causes a decrease in the dye adsorption area, and a decrease in pores and a decrease in ion diffusion space in the electrolytic solution, which hinders improvement in photoelectric efficiency.

上記問題を解決する方法として、耐熱基板上に小粒径の酸化物半導体粒子を含む層と大粒径または小粒径および大粒径の酸化物半導体粒子の層を有する焼結体を転写材として、電極となる基板フィルムまたは透明導電層上に転写する方法が知られている(特許文献1参照)。しかしながら、この方法であると、粒子の組み合わせの自由度が少なく、このように複数の粒径の酸化物半導体粒子を有する焼結層の形成には、また酸化物半導体粒子を含むペーストの調整法および塗工法などのノウハウを必要とした。また、上記転写材は、ガラス、セラミックス、金属等の硬質の耐熱基材上に形成されているため、ローラーに転写材を巻きつけて効率よく生産する方法を採用することができなかった。   As a method for solving the above problem, a sintered body having a layer containing oxide semiconductor particles having a small particle size and a layer having large particle size or a small particle size and a large particle size oxide semiconductor particle on a heat-resistant substrate is used as a transfer material. As a method, a method of transferring onto a substrate film or a transparent conductive layer serving as an electrode is known (see Patent Document 1). However, with this method, the degree of freedom of the combination of particles is small, and thus, in the formation of a sintered layer having oxide semiconductor particles having a plurality of particle sizes, a method for preparing a paste containing oxide semiconductor particles is also used. And know-how such as coating method was required. Moreover, since the said transfer material is formed on hard heat-resistant base materials, such as glass, ceramics, and a metal, the method of winding a transfer material around a roller and producing efficiently was not employable.

特開2006−313668号公報JP 2006-313668 A

Coordination Chemistry Reviews, Elsevier, 2004, 248,1381-1389Coordination Chemistry Reviews, Elsevier, 2004, 248,1381-1389 Solar Energy Materials & Solar Cells, Elsevier, 1999, 58, 321-326Solar Energy Materials & Solar Cells, Elsevier, 1999, 58, 321-326

本発明は光電変換素子の光電効率を上げることが可能な多孔質半導体電極を、容易に、効率よく製造することが可能とするシート形成物および製造方法を提供することを課題とする。   This invention makes it a subject to provide the sheet | seat formation material and manufacturing method which can manufacture the porous semiconductor electrode which can raise the photoelectric efficiency of a photoelectric conversion element easily and efficiently.

本発明は、たとえば以下の[1]〜[10]からなる。
[1]樹脂からなるフィルム上に
酸化物半導体粒子とバインダーとを含有する混練物層が形成されていることを特徴とするシート形成物。
[2](工程1−1)透明耐熱基板上の透明導電層上に、請求項1に記載のシート形成物をその混練物層が前記透明導電層に接するように積層し、次いで該シート形成物のフィルムを混練物層から剥離する工程と、
(工程2)前記混練物層を焼成する工程とを含むことを特徴とする多孔質半導体電極の製造方法。
[3]前記工程1−1の後、工程2の前に
(工程1−2)工程1−1で得られた積層物の混練物層上に、請求項1に記載のシート形成物をその混練物層が前記積層物の混練物層に接するように積層し、次いで該シート形成物のフィルムを剥離する工程を1回から複数回行う工程を含むことを特徴とする[2]に記載の多孔質半導体電極の製造方法。
[4]工程1−1および工程1−2において、シート形成物の混練物層中の酸化物半導体粒子の平均粒子径が、各工程に用いるシート形成物毎に異なることを特徴とする[3]に記載の多孔質半導体電極の製造方法。
The present invention comprises, for example, the following [1] to [10].
[1] A sheet-formed product, wherein a kneaded material layer containing oxide semiconductor particles and a binder is formed on a resin film.
[2] (Step 1-1) On the transparent conductive layer on the transparent heat-resistant substrate, the sheet-formed product according to claim 1 is laminated so that the kneaded material layer is in contact with the transparent conductive layer, and then the sheet is formed. Peeling the film of the product from the kneaded material layer,
(Step 2) A method for producing a porous semiconductor electrode, comprising a step of firing the kneaded material layer.
[3] After step 1-1, before step 2 (step 1-2) On the kneaded material layer of the laminate obtained in step 1-1, the sheet formed product according to claim 1 is The method according to [2], including a step of laminating the kneaded material layer so as to be in contact with the kneaded material layer of the laminate and then peeling the film of the sheet-formed material from one time to a plurality of times. A method for producing a porous semiconductor electrode.
[4] In the step 1-1 and the step 1-2, the average particle diameter of the oxide semiconductor particles in the kneaded material layer of the sheet formed product is different for each sheet formed product used in each step [3] ] The manufacturing method of the porous semiconductor electrode of description.

[5]シート形成物毎に混練物層中の酸化物半導体粒子の平均粒子径が異なるシート形成物群の中で、最小の平均粒子径の酸化物半導体粒子を含有する混練物層を有するシート形成物を工程1−1に用い、その他のシート形成物を工程1−2に用いることを特徴とする[3]または[4]に記載の光電変換素子の製造方法。
[6]前記透明導電層上に積層された混練物層中の酸化物半導体粒子の平均粒子径が透明導電層側から段階的に大きくなるように、工程1−1および工程1−2を行うことを特徴とする[3]〜[5]のいずれか一項に記載の多孔質半導体電極の製造方法。
[7]工程1−1および工程1−2において、シート形成物の混練物層中の酸化物半導体粒子の平均粒子径が、いずれの工程に用いるシート形成物においても同一であることを特徴とする[3]に記載の多孔質半導体電極の製造方法。
[8][2]〜[7]のいずれかに記載の製造方法で製造された多孔質半導体電極。
[9][2]〜[7]のいずれかに記載の製造方法で製造された多孔質半導体電極を用いた光電変換素子。
[10]光電変換素子の多孔質半導体電極製造用である[1]に記載のシート形成物。
[5] A sheet having a kneaded material layer containing oxide semiconductor particles having the smallest average particle size in a group of sheet formed materials in which the average particle size of the oxide semiconductor particles in the kneaded material layer differs for each sheet formed material. The method for producing a photoelectric conversion element according to [3] or [4], wherein the formed product is used in Step 1-1 and another sheet-formed product is used in Step 1-2.
[6] Step 1-1 and Step 1-2 are performed so that the average particle diameter of the oxide semiconductor particles in the kneaded material layer laminated on the transparent conductive layer increases stepwise from the transparent conductive layer side. The method for producing a porous semiconductor electrode according to any one of [3] to [5], wherein:
[7] In the step 1-1 and the step 1-2, the average particle diameter of the oxide semiconductor particles in the kneaded product layer of the sheet formation is the same in the sheet formation used in any step, The method for producing a porous semiconductor electrode according to [3].
[8] A porous semiconductor electrode manufactured by the manufacturing method according to any one of [2] to [7].
[9] A photoelectric conversion element using the porous semiconductor electrode manufactured by the manufacturing method according to any one of [2] to [7].
[10] The sheet formed product according to [1], which is for producing a porous semiconductor electrode of a photoelectric conversion element.

本発明のシート形成物を光電変換素子の多孔質半導体電極の製造に用いると、光電変換素子において、入射光の酸化物半導体粒子による吸収量が増大するように、多孔質半導体電極の酸化物半導体粒子の配列を任意に調整可能であり、容易に光電変換素子の光電効率を向上させることができる。また、軟質のフィルムを基板としたシート形成物とすることで、多孔質半導体電極の多孔質半導体層を、ローラー等を用いて効率よく製造することができるとともに、シート形成物をロール状にして運搬することも容易になる。   When the sheet-formed product of the present invention is used for producing a porous semiconductor electrode of a photoelectric conversion element, the oxide semiconductor of the porous semiconductor electrode is increased in the photoelectric conversion element so that the amount of incident light absorbed by the oxide semiconductor particles is increased. The arrangement of the particles can be arbitrarily adjusted, and the photoelectric efficiency of the photoelectric conversion element can be easily improved. In addition, by forming a sheet formation using a soft film as a substrate, the porous semiconductor layer of the porous semiconductor electrode can be efficiently produced using a roller or the like, and the sheet formation is made into a roll. It is also easy to carry.

図1は、多孔質半導体の製造方法を示す。FIG. 1 shows a method for manufacturing a porous semiconductor. 光電変換素子の電流電圧特性を示すグラフである。It is a graph which shows the current-voltage characteristic of a photoelectric conversion element.

以下、本発明について具体的に説明する。
本明細書においてシート形成物とは半導体を製造する際の被焼結物となるものがフィルム上に層を形成しているものであって、酸化物半導体粒子をバインダー樹脂等と混合して塗料とし、該塗料をフィルム上に数μmから数百μmの厚さに成膜した後乾燥してなるシートをいう。粒子とは、SEM観察によって測定した平均粒子径が1〜1000nmのものであれば、形状は球状に限らず、棒状、針状等も含むものをいう。
Hereinafter, the present invention will be specifically described.
In the present specification, the sheet-formed product is a material to be sintered when a semiconductor is manufactured, in which a layer is formed on a film, and oxide semiconductor particles are mixed with a binder resin or the like to form a paint And a sheet formed by depositing the coating material on a film to a thickness of several μm to several hundred μm and then drying. The particle is not limited to a spherical shape but also includes a rod shape, a needle shape and the like as long as the average particle diameter measured by SEM observation is 1 to 1000 nm.

1.シート形成物
本発明のシート形成物は、転写用であり、樹脂からなるフィルム上に酸化物半導体粒子とバインダーとを含有する混練物層が形成されたことを特徴とする。
1. Sheet-formed product The sheet-formed product of the present invention is for transfer, and is characterized in that a kneaded material layer containing oxide semiconductor particles and a binder is formed on a resin film.

本発明のシート形成物に用いるフィルムに使用される樹脂としては、ポリエチレンテレフタレート、ポリ塩化ビニル、ポリエチレン、ポリプロピレン、ポリビニルアルコール、ビニロン、ポリ塩化ビニリデン、アクリル、トリアセチルセルロース、ポリカーボネート、ポリエーテルサルフォン、ポリフェニルサルファイド、ポリイミド、ポリウレタン、ポリエチレンナフタレート、ポリエーテルイミド、ポリエーテルエーテルケトン、シクロオレフィンが挙げられ、好ましくはポリエチレンテレフタレートが挙げられる。   As the resin used for the film used in the sheet-formed product of the present invention, polyethylene terephthalate, polyvinyl chloride, polyethylene, polypropylene, polyvinyl alcohol, vinylon, polyvinylidene chloride, acrylic, triacetylcellulose, polycarbonate, polyethersulfone, Examples thereof include polyphenyl sulfide, polyimide, polyurethane, polyethylene naphthalate, polyetherimide, polyether ether ketone, and cycloolefin, and preferably polyethylene terephthalate.

フィルムは混練物層と剥離する必要があることから、混練物層と接する面に通常シリコーン等の剥離剤が塗布されている。
フィルムの厚さは、シート巻取り時の加工性の観点から10〜200μmが好ましく、25〜100μmがより好ましい。
Since the film needs to be peeled off from the kneaded material layer, a release agent such as silicone is usually applied to the surface in contact with the kneaded material layer.
The thickness of the film is preferably 10 to 200 μm, and more preferably 25 to 100 μm, from the viewpoint of workability at the time of winding the sheet.

本発明のシート形成物の酸化物半導体粒子とバインダーとを含む混練物層の酸化物半導体粒子としては、酸化チタン、酸化亜鉛、酸化タングステン、酸化スズ、酸化ニオブ、酸化インジウムが挙げられ、好ましくは酸化チタン、酸化亜鉛、酸化スズが挙げられ、より好ましくは酸化チタンが挙げられる。これらの酸化物半導体粒子は1種用いても良いし、2種以上組み合わせて用いてもよい。酸化物半導体粒子の平均粒子径としては、SEM観察による平均粒子径が1〜1000nmであることが好ましく、10〜500nmであることがより好ましい。混練物層中の酸化物半導体粒子の平均粒子径は1種類でも良いし、2種以上であってもよい。   Examples of the oxide semiconductor particles of the kneaded material layer containing the oxide semiconductor particles of the sheet-formed product of the present invention and a binder include titanium oxide, zinc oxide, tungsten oxide, tin oxide, niobium oxide, and indium oxide, preferably Titanium oxide, zinc oxide, and tin oxide are mentioned, More preferably, titanium oxide is mentioned. These oxide semiconductor particles may be used alone or in combination of two or more. As the average particle diameter of the oxide semiconductor particles, the average particle diameter by SEM observation is preferably 1 to 1000 nm, and more preferably 10 to 500 nm. The average particle diameter of the oxide semiconductor particles in the kneaded material layer may be one type or two or more types.

酸化物半導体粒子の形状は、特に限定されず、球状、棒状、針状、鱗状等であってよい。
混練物層に含まれるバインダーは、酸化物半導体粒子を担持して、混練物層中に分散させる。バインダーとしては、(メタ)アクリル樹脂、ブチラール樹脂、ポリエーテル、エチルセルロース、ポリエステル、ポリアセタール、ポリスチレン、ポリオレフィン、ポリウレタン等が挙げられ、好ましくは(メタ)アクリル樹脂、ブチラール樹脂、ポリエーテル、エチルセルロール、ポリエステルが挙げられ、より好ましくは(メタ)アクリル樹脂、ブチラール樹脂が挙げられる。好ましい理由としては酸化物微粒子の分散性および焼成性が良好だからである。
The shape of the oxide semiconductor particles is not particularly limited, and may be a spherical shape, a rod shape, a needle shape, a scale shape, or the like.
The binder contained in the kneaded material layer carries oxide semiconductor particles and is dispersed in the kneaded material layer. Examples of the binder include (meth) acrylic resin, butyral resin, polyether, ethyl cellulose, polyester, polyacetal, polystyrene, polyolefin, polyurethane, etc., preferably (meth) acrylic resin, butyral resin, polyether, ethyl cellulose, Polyester is mentioned, More preferably, (meth) acrylic resin and butyral resin are mentioned. The reason why it is preferable is that the dispersibility and firing properties of the oxide fine particles are good.

混練物層は、本発明の目的を損なわない範囲で、さらに混練物層焼成後の多孔質の孔の調整のために、アクリル微粒子、オレフィン微粒子、ブチラール微粒子、エチルセルロール微粒子等の微粒子を含んでいてよく、酸化物半導体粒子の混練物層中での分散安定剤としてアセチルアセトンや酸やアミンを含んでいてよく、混練物層に接着力を与えるために可塑剤を含んでいてよく、トルエン、キシレン、シクロヘキサン、n-ヘキサン、n-ヘプタン、n-オクタン、塩化メチレン、1,1-ジクロロエタン、1,2-ジクロロエタン、トリクロロエタン、臭化エチル、臭化プロピル、臭化イソプロピル、ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、1,2-ジメトキシエタン、ジメチルホルムアミド、ジメチルアセトアミド、アセトニトリル、n-ブチルニトリル、ニトロメタン、ニトロエタン、エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノブチルエーテルアセテート、アセトン、メチルエチルケトン、メチルイソブチルケトン、メチルイソアミルケトン、アセチルアセトン、酢酸メチル、酢酸エチル、酢酸イソプロピル、酢酸n-ブチル、酢酸アミル、n-酪酸ブチル、メタノール、エタノール、イソプロパノール、n-ブタノール、2-ブタノール、t-ブタノール、シクロヘキサノール、2-エチルヘキサノール、エチレングリコール、プロピレングリコール、1,3-ブタンジオール、ジエチレングリコール、メチルセロソルブ、エチルセロソルブ、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、3-メトキシ-3-メチル-1-ブタノール等の分散溶媒を含んでいてよい。   The kneaded material layer contains fine particles such as acrylic fine particles, olefin fine particles, butyral fine particles, and ethyl cellulose fine particles in order to adjust the porous pores after firing the kneaded material layer, as long as the object of the present invention is not impaired. The dispersion stabilizer in the kneaded material layer of oxide semiconductor particles may contain acetylacetone, an acid or an amine, and may contain a plasticizer to give adhesion to the kneaded material layer. Xylene, cyclohexane, n-hexane, n-heptane, n-octane, methylene chloride, 1,1-dichloroethane, 1,2-dichloroethane, trichloroethane, ethyl bromide, propyl bromide, isopropyl bromide, diethyl ether, diisopropyl ether , Tetrahydrofuran, 1,2-dimethoxyethane, dimethylformamide, dimethylacetamide, acetonitrile n-butylnitrile, nitromethane, nitroethane, ethylene glycol monomethyl ether acetate, propylene glycol monomethyl ether acetate, propylene glycol monobutyl ether acetate, acetone, methyl ethyl ketone, methyl isobutyl ketone, methyl isoamyl ketone, acetylacetone, methyl acetate, ethyl acetate, isopropyl acetate, N-butyl acetate, amyl acetate, n-butyl butyrate, methanol, ethanol, isopropanol, n-butanol, 2-butanol, t-butanol, cyclohexanol, 2-ethylhexanol, ethylene glycol, propylene glycol, 1,3-butane Diol, diethylene glycol, methyl cellosolve, ethyl cellosolve, propylene glycol monomethyl ether, propylene group Monoethyl ether, may contain a dispersing solvent such as 3-methoxy-3-methyl-1-butanol.

混練物層は、酸化物半導体粒子とバインダーとの質量比が、固形分比で好ましくは80:20〜40:60、より好ましくは70:30〜50:50である。上記配合比とするのは、酸化物半導体粒子の分散性および転写性が良好だからである。また、混練物層中、分散溶媒の質量は、全固形分の質量に対して好ましくは1〜7倍量である。   In the kneaded material layer, the mass ratio of the oxide semiconductor particles and the binder is preferably 80:20 to 40:60, more preferably 70:30 to 50:50 in terms of solid content. The above compounding ratio is because the dispersibility and transferability of the oxide semiconductor particles are good. In the kneaded product layer, the mass of the dispersion solvent is preferably 1 to 7 times the mass of the total solid content.

フィルムに塗布され、乾燥後の混練物層の厚さは、焼成後の膜厚、転写性およびシート強度の観点から5〜50μmが好ましく、15〜40μmがより好ましい。
シート形成物の製造方法は、先ず、上記成分を例えば自転・公転ミキサー、ビーズミルおよび3本ロールミル等の酸化物半導体粒子が均一に分散できる方法により混練する。次に、前記フィルム上に、前記混練物を、10〜100μm厚に例えば、グラビアコーター、マイヤーバーコーター、ドクターブレード、ダイコーター等により塗布した後、80〜150℃で1〜10分程度で乾燥する。
The thickness of the kneaded material layer applied to the film and dried is preferably 5 to 50 μm, more preferably 15 to 40 μm from the viewpoints of the film thickness after firing, transferability and sheet strength.
In the method for producing a sheet-formed product, first, the above components are kneaded by a method capable of uniformly dispersing oxide semiconductor particles such as a rotation / revolution mixer, a bead mill, and a three roll mill. Next, the kneaded product is applied on the film to a thickness of 10 to 100 μm by, for example, a gravure coater, a Meyer bar coater, a doctor blade, a die coater, etc., and then dried at 80 to 150 ° C. for about 1 to 10 minutes. To do.

2.多孔質半導体電極の製造方法
本発明の多孔質半導体電極の製造方法を図1を用いて説明する。
本発明の多孔質半導体電極の製造方法は、
(工程1−1)透明耐熱基板上の透明導電層上に、本発明のシート形成物をその混練物層が前記透明導電層に接するように積層し、次いで該シート形成物のフィルムを混練物層から剥離する工程と、
(工程2)前記混練物層を焼成する工程とを含み、好ましくはさらに
前記工程1−1の後、工程2の前に
(工程1−2)工程1−1で得られた積層物の混練物層上に、本発明のシート形成物をその混練物層が前記積層物の混練物層に接するように積層し、次いで該シート形成物のフィルムを剥離する工程を1回から複数回行う工程を含んでいてもよい。
2. Manufacturing method of porous semiconductor electrode The manufacturing method of the porous semiconductor electrode of this invention is demonstrated using FIG.
The method for producing the porous semiconductor electrode of the present invention comprises:
(Step 1-1) The sheet-formed product of the present invention is laminated on the transparent conductive layer on the transparent heat-resistant substrate so that the kneaded material layer is in contact with the transparent conductive layer, and then the film of the sheet-formed product is kneaded. Peeling from the layer;
(Step 2) including the step of firing the kneaded product layer, preferably further after Step 1-1 and before Step 2 (Step 1-2) kneading the laminate obtained in Step 1-1 A step of laminating the sheet-formed product of the present invention on the material layer so that the kneaded material layer is in contact with the kneaded material layer of the laminate, and then peeling the film of the sheet-formed product from once to a plurality of times May be included.

(工程1−1)
図1の(I)に示すように、透明耐熱基板1上の透明導電層2上に、本発明のシート形成物A−1を、混練物層3−1が透明導電層2と接するように積層する。次にシート形成物A−1のフィルム4を混練物層3−1から剥離して、図1の(II)に示すように、下から順に透明耐熱基板1、透明導電層2および混練物層3−1が積層された積層物を製造する。
(Step 1-1)
As shown in (I) of FIG. 1, the sheet-formed product A-1 of the present invention is placed on the transparent conductive layer 2 on the transparent heat-resistant substrate 1 so that the kneaded product layer 3-1 is in contact with the transparent conductive layer 2. Laminate. Next, the film 4 of the sheet-formed product A-1 is peeled from the kneaded material layer 3-1, and as shown in FIG. 1 (II), the transparent heat-resistant substrate 1, the transparent conductive layer 2, and the kneaded material layer are sequentially formed from the bottom. A laminate in which 3-1 is laminated is manufactured.

透明耐熱基板1としては、透明性と耐熱性を有する板であれば特に制限されないが、ガラスなどのセラミックスが挙げられる。透明性が良好で且つ焼成に耐えうるものであるからである。   The transparent heat-resistant substrate 1 is not particularly limited as long as it is a plate having transparency and heat resistance, but includes ceramics such as glass. This is because it has good transparency and can withstand firing.

透明導電層2としては、透明性を有する導電物質の層であれば特に制限されないが、フッ素ドープ酸化スズ(FTO)、スズドープ酸化インジウム(ITO)、酸化スズ、酸化アンチモン、アンチモンドープ酸化スズ(ATO)、ニオブドープ酸化チタン等を1種または2種以上組み合わせた層が挙げられる。   The transparent conductive layer 2 is not particularly limited as long as it is a conductive material layer having transparency, but fluorine-doped tin oxide (FTO), tin-doped indium oxide (ITO), tin oxide, antimony oxide, antimony-doped tin oxide (ATO). ), A layer obtained by combining one or more of niobium-doped titanium oxide and the like.

透明導電層2上に混練物層3−1を積層する際の透明耐熱基板1および透明導電層の積層物の温度は、20〜120℃であることが、貼り合わせ後の密着性の観点から好ましい。
混練物層3−1の厚さとしては、5〜50μm、好ましくは15〜40μmである。
From the viewpoint of adhesion after bonding, the temperature of the laminate of the transparent heat-resistant substrate 1 and the transparent conductive layer when the kneaded material layer 3-1 is laminated on the transparent conductive layer 2 is 20 to 120 ° C. preferable.
The thickness of the kneaded material layer 3-1 is 5 to 50 μm, preferably 15 to 40 μm.

(工程1−2)
図1の(III)に示すように、本発明のシート形成物A−2を、工程1−1で製造された透明耐熱基板1、透明導電層2および混練物層3−1の積層物の混練物層3−1上に、混練物層3−2が接するように積層する。次にシート形成物A−2のフィルム4を混練物層3−2から剥離して、図1の(IV)に示すように、下から順に透明耐熱基板1、透明導電層2、混練物層3−1および混練物層3−2が積層された積層物を製造する。
(Step 1-2)
As shown in FIG. 1 (III), the sheet-formed product A-2 of the present invention is formed of a laminate of the transparent heat-resistant substrate 1, the transparent conductive layer 2 and the kneaded material layer 3-1 produced in step 1-1. It laminates | stacks so that the kneaded material layer 3-2 may contact | connect on the kneaded material layer 3-1. Next, the film 4 of the sheet-formed product A-2 is peeled from the kneaded material layer 3-2, and as shown in FIG. 1 (IV), the transparent heat-resistant substrate 1, the transparent conductive layer 2, and the kneaded material layer are sequentially arranged from the bottom. A laminate in which the 3-1 and the kneaded material layer 3-2 are laminated is manufactured.

工程1−2は、繰り返されてもよい。すなわち、シート形成物A−nを用いて、混練物層3−2上にさらなる混練物層3−n(nは3以上の整数)を積層してもよい。
混練物層3−2〜3−nのそれぞれの厚さとしては、5〜50μm、好ましくは15〜40μmである。
Step 1-2 may be repeated. That is, you may laminate | stack the further kneaded material layer 3-n (n is an integer greater than or equal to 3) on the kneaded material layer 3-2 using sheet | seat formation material An.
As thickness of each kneaded material layer 3-2-3-n, it is 5-50 micrometers, Preferably it is 15-40 micrometers.

工程1−1で用いるシート形成物A−1および工程1−2で用いるシート形成物A−2〜A−nは、シート毎に混練物層中の酸化物半導体粒子の平均粒子径が異なっていることが好ましい。たとえば混練物層3−1には、小粒(SEM観察による平均粒子径10〜30nm)の酸化物半導体粒子が含有され、混練物層3−2には大粒(SEM観察による平均粒子径100〜500nm)の酸化物半導体粒子が含有される場合の他、混練物層3−1には小粒の酸化物半導体粒子が含有され、混練物層3−2には中粒(SEM観察による平均粒子径30nm以上100nm未満)と大粒の酸化物半導体粒子が含有される場合、混練物層3−1には小粒の酸化物半導体粒子、3−2には中粒の酸化物半導体粒子、3−3には大粒の酸化物半導体粒子が含有される場合等が挙げられる。その中でも酸化物半導体粒子の平均粒子径が異なるシート形成物群の中で、工程1−1で用いられるシート形成物A−1の混練物層3−1に含有される酸化物半導体粒子の平均粒子径が、他のシート形成物A−2〜A−nの混練物層3−2〜3−nに含有される酸化物半導体粒子の平均粒子径よりも小さいことが好ましい。また、酸化物半導体粒子の平均粒子径が透明導電層側から段階的に大きくなるように、酸化物半導体粒子の平均粒子径が異なるシート形成物群の中からシート形成物を選択して、混練物層を積層することも好ましい。
その理由は次の通りである。
The sheet formed product A-1 used in the step 1-1 and the sheet formed products A-2 to An used in the step 1-2 have different average particle diameters of the oxide semiconductor particles in the kneaded material layer for each sheet. Preferably it is. For example, the kneaded material layer 3-1 contains small particles (average particle size of 10 to 30 nm by SEM observation) of oxide semiconductor particles, and the kneaded material layer 3-2 has large particles (average particle size of 100 to 500 nm by SEM observation). In addition, the kneaded material layer 3-1 contains small oxide semiconductor particles, and the kneaded material layer 3-2 contains medium particles (average particle diameter of 30 nm by SEM observation). And less than 100 nm) and large oxide semiconductor particles are contained, the kneaded material layer 3-1 has small oxide semiconductor particles, 3-2 has medium oxide semiconductor particles, 3-3 has Examples include large oxide semiconductor particles. Among these, the average of the oxide semiconductor particles contained in the kneaded material layer 3-1 of the sheet formation A-1 used in step 1-1 among the group of sheet formations having different average particle diameters of the oxide semiconductor particles. The particle diameter is preferably smaller than the average particle diameter of the oxide semiconductor particles contained in the kneaded material layers 3-2 to 3-n of the other sheet-formed products A-2 to An. In addition, the sheet formation is selected from a group of sheet formations having different average particle diameters of the oxide semiconductor particles so that the average particle diameter of the oxide semiconductor particles gradually increases from the transparent conductive layer side, and kneaded. It is also preferable to stack physical layers.
The reason is as follows.

光電変換素子は、透明基板および透明導電層を通過した光を増感色素の吸着された酸化物半導体粒子を含む混練物層で効率よく利用することが求められる。そのためには、入射の際に酸化物半導体粒子で吸収されずに通過した光を散乱させ、再度吸収に利用することが望ましい。よって、混練物層の酸化物半導体粒子の平均粒子径は、その観点から選択され、複数の平均粒子径を有する酸化物半導体粒子を用いることが好ましい。たとえば、工程1−1で形成される透明導電層側に一番近い混練物層3−1に含まれる酸化物半導体粒子の平均粒子径が最小であり、工程1−2で形成される混練物層3−2〜3−nにおいて、混練物層3−1中の酸化物半導体粒子の平均粒子径よりも大きい平均粒子径の酸化物半導体粒子を用いれば、混練物層3−1で吸収されなかった光を、混練物層3−2〜3−nで散乱させて、混練物層3−1に戻し、混練物層3−1中の酸化物半導体粒子で吸収することにより、光を効率よく利用することができる。酸化物半導体粒子の平均粒子径が透明導電層側から段階的に大きくなる場合も同様である。   A photoelectric conversion element is required to efficiently use light that has passed through a transparent substrate and a transparent conductive layer in a kneaded material layer containing oxide semiconductor particles adsorbed with a sensitizing dye. For this purpose, it is desirable to scatter the light that has passed without being absorbed by the oxide semiconductor particles upon incidence and use it again for absorption. Therefore, the average particle diameter of the oxide semiconductor particles in the kneaded material layer is selected from that viewpoint, and it is preferable to use oxide semiconductor particles having a plurality of average particle diameters. For example, the average particle diameter of the oxide semiconductor particles contained in the kneaded material layer 3-1 closest to the transparent conductive layer side formed in step 1-1 is the smallest, and the kneaded material formed in step 1-2 In the layers 3-2 to 3 -n, if oxide semiconductor particles having an average particle size larger than the average particle size of the oxide semiconductor particles in the kneaded material layer 3-1 are used, they are absorbed by the kneaded material layer 3-1. The light which was not present is scattered by the kneaded material layers 3-2 to 3 -n, returned to the kneaded material layer 3-1, and absorbed by the oxide semiconductor particles in the kneaded material layer 3-1. Can be used well. The same applies to the case where the average particle diameter of the oxide semiconductor particles increases stepwise from the transparent conductive layer side.

上記のような酸化物半導体粒子を含有する層における粒子配列の調整は、従来、塗工技術に委ねられていたが、本発明では工程1−1および1−2で、シート形成物毎に酸化物半導体粒子の平均粒子径が異なるシート形成物群から選ばれるシート形成物を用いて、その混練物層を積層することで容易に行うことができる。   The adjustment of the particle arrangement in the layer containing the oxide semiconductor particles as described above has been conventionally left to the coating technique, but in the present invention, in steps 1-1 and 1-2, oxidation is performed for each sheet formed product. This can be easily carried out by laminating the kneaded product layer using a sheet-formed product selected from a group of sheet-formed products having different average particle diameters.

さらには、工程1−1で用いるシート形成物A−1および工程1−2で用いるシート形成物A−2〜A−nは、シート毎の混練物層中の酸化物半導体粒子の平均粒子径が同一であってもよい。   Furthermore, the sheet formed product A-1 used in step 1-1 and the sheet formed products A-2 to An used in step 1-2 are the average particle diameters of the oxide semiconductor particles in the kneaded product layer for each sheet. May be the same.

同じ平均粒子径の酸化物半導体粒子を含有する混練物層を重ねることによって、セル中の色素吸着量が増大し、セルの光の吸収量を増大させることができる。   By stacking the kneaded material layers containing oxide semiconductor particles having the same average particle diameter, the amount of dye adsorbed in the cell can be increased, and the amount of light absorbed in the cell can be increased.

(工程2)
工程1−1および任意の工程1−2で形成された単層または積層の混練物層3−1、または3−1および3−2、または3−1および3−2〜3−n(nは3以上の整数)を焼成する。
(Process 2)
Single layer or laminated kneaded material layer 3-1 formed in Step 1-1 and optional Step 1-2, or 3-1 and 3-2, or 3-1 and 3-2 to 3-n (n Is an integer of 3 or more.

焼成の条件としては、バインダーが消失する温度であることが必要とされ、例えば400℃〜1000℃程度である。
焼成により、バインダー、添加剤等が消失し、多孔質半導体電極が製造される。
焼成後の混練物層3−1〜3−nの各層の厚さは3〜40μmが好ましく、5〜30μmがより好ましい。
The firing condition is required to be a temperature at which the binder disappears, and is, for example, about 400 ° C to 1000 ° C.
By baking, a binder, an additive, etc. lose | disappear, and a porous semiconductor electrode is manufactured.
3-40 micrometers is preferable and, as for the thickness of each layer of the kneaded material layer 3-1 to 3-n after baking, 5-30 micrometers is more preferable.

3.光電変換素子
本発明の製造方法により、製造された多孔質半導体電極は、光電変換素子に用いることができる。光電変換素子の製造方法は、本発明の製造方法により製造された多孔質半導体電極を光増感色素に浸漬した後、色素の吸着した多孔質半導体電極と対極を有する光電子変換素子基材とを接着剤等を用いて接合する。そして、多孔質半導体電極および対極間を電解質液で満たす。前記光増感色素はRu錯体、フタロシアニン、ポルフィリンなどの錯体色素のほか、カルバゾール系、クマリン系、キサンテン系、インドリン系などの有機色素を用いることができる。前記対極を有する光電子変換素子基材は公知の導電材料を制限なく用いることができ、プラチナ、金、銀、パラジウム、アルミニウム、炭素の他、PEDOTのような有機導電材料および本願の多孔質半導体電極の透明導電層に用いた材料も用いることができる。前記電解質液は、ヨウ素、ヨウ化物塩、イミダゾリウム塩、ピリジン等の公知の電解質を含む液体のほか、固体の有機無機ホール輸送材を用いることもできる。
3. Photoelectric Conversion Element The porous semiconductor electrode manufactured by the manufacturing method of the present invention can be used for a photoelectric conversion element. A method for producing a photoelectric conversion element comprises: immersing a porous semiconductor electrode produced by the production method of the present invention in a photosensitizing dye; and then adsorbing the porous semiconductor electrode adsorbed with the dye and a photoelectric conversion element substrate having a counter electrode. Join using an adhesive or the like. Then, the space between the porous semiconductor electrode and the counter electrode is filled with the electrolyte solution. As the photosensitizing dye, in addition to complex dyes such as Ru complex, phthalocyanine, and porphyrin, organic dyes such as carbazole, coumarin, xanthene, and indoline can be used. As the photoelectric conversion element substrate having the counter electrode, a known conductive material can be used without limitation, in addition to platinum, gold, silver, palladium, aluminum, carbon, an organic conductive material such as PEDOT, and the porous semiconductor electrode of the present application. The material used for the transparent conductive layer can also be used. The electrolyte solution may be a liquid containing a known electrolyte such as iodine, iodide salt, imidazolium salt, pyridine, or a solid organic / inorganic hole transport material.

上記光電変換素子は、本発明の多孔質半導体電極の電極側から光を入射することにより発電する。   The photoelectric conversion element generates power when light enters from the electrode side of the porous semiconductor electrode of the present invention.

以下、実施例に基づいて本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
本明細書において、以下の値は、特にことわりのない限り、以下の測定方法で測定した。
EXAMPLES Hereinafter, although this invention is demonstrated further more concretely based on an Example, this invention is not limited to these Examples.
In the present specification, the following values were measured by the following measuring methods unless otherwise specified.

<平均粒子径>
SEM観察による粒度分布測定による。
[ポリマー製造例1(バインダー用)]
攪拌装置、窒素ガス導入管、温度計および還流冷却管を備えたフラスコに、トルエン60重量部、2−エチルヘキシルメタクリレート98重量部、2−ヒドロキシエチルメタクリレート2重量部を仕込み、フラスコ内に窒素ガスを導入しながら30分攪拌して窒素置換を行った後、フラスコの内容物を90℃まで昇温した。ついで、フラスコ内の内容物を90℃に維持しながら、ジメチル 2,2-アゾビス(2-メチルプロピネート)0.3重量部添加し、重合を開始した。重合開始から1時間毎に2,2-アゾビス(2-メチルプロピネート)0.3重量部を計3回添加した。重合開始から12時間後、トルエン10重量部を添加し、室温まで冷却して、ポリマー固形分55%のポリマー(A)を得た。得られたポリマー(A)の重量平均分子量(GPC法で用いて測定したポリスチレン換算、以下同じ)は15万であった。
<Average particle size>
By particle size distribution measurement by SEM observation.
[Polymer production example 1 (for binder)]
A flask equipped with a stirrer, a nitrogen gas inlet tube, a thermometer and a reflux condenser was charged with 60 parts by weight of toluene, 98 parts by weight of 2-ethylhexyl methacrylate, and 2 parts by weight of 2-hydroxyethyl methacrylate, and nitrogen gas was introduced into the flask. The mixture was stirred for 30 minutes and purged with nitrogen, and then the contents of the flask were heated to 90 ° C. Then, while maintaining the contents in the flask at 90 ° C., 0.3 part by weight of dimethyl 2,2-azobis (2-methylpropinate) was added to initiate polymerization. Every 2 hours from the start of polymerization, 0.3 part by weight of 2,2-azobis (2-methylpropinate) was added three times in total. 12 hours after the start of polymerization, 10 parts by weight of toluene was added and cooled to room temperature to obtain a polymer (A) having a polymer solid content of 55%. The obtained polymer (A) had a weight average molecular weight (in terms of polystyrene measured by GPC method, hereinafter the same) of 150,000.

[ポリマー製造例2(バインダー用)]
攪拌装置、窒素ガス導入管、温度計および還流冷却管を備えたフラスコに、トルエン60重量部、2−エチルヘキシルメタクリレート98重量部、アクリル酸2重量部を仕込み、フラスコ内に窒素ガスを導入しながら30分攪拌して窒素置換を行った後、フラスコの内容物を90℃まで昇温した。ついで、フラスコ内の内容物を90℃に維持しながら、ジメチル 2,2-アゾビス(2-メチルプロピネート)0.3重量部添加し、重合を開始した。重合開始から1時間毎に2,2-アゾビス(2-メチルプロピネート)0.3重量部を計3回添加した。重合開始から12時間後、トルエン10重量部を添加し、室温まで冷却して、ポリマー固形分55%のポリマー(B)を得た。得られたポリマー(B)の重量平均分子量は15万であった。
[Polymer production example 2 (for binder)]
A flask equipped with a stirrer, a nitrogen gas inlet tube, a thermometer and a reflux condenser is charged with 60 parts by weight of toluene, 98 parts by weight of 2-ethylhexyl methacrylate, and 2 parts by weight of acrylic acid, while introducing nitrogen gas into the flask. After stirring for 30 minutes and purging with nitrogen, the contents of the flask were heated to 90 ° C. Then, while maintaining the contents in the flask at 90 ° C., 0.3 part by weight of dimethyl 2,2-azobis (2-methylpropinate) was added to initiate polymerization. Every 2 hours from the start of polymerization, 0.3 part by weight of 2,2-azobis (2-methylpropinate) was added three times in total. 12 hours after the start of polymerization, 10 parts by weight of toluene was added and cooled to room temperature to obtain a polymer (B) having a polymer solid content of 55%. The weight average molecular weight of the obtained polymer (B) was 150,000.

[実施例1]
酸化チタン粒子(商品名P−25、平均粒子径21nm(SEM観察の粒度分布測定による)、Degussa社製)4gをビーズミル(製品名pulverisette7、FRITSCH社製、以下同じ)を用いて、ブタノール16g中に分散させ酸化チタン粒子分散液を得た。得られた分散液にポリマー(A)を4.85g加え、自転・公転ミキサー(製品名 あわとり練太郎 ARE-310、シンキー社製、以下同じ)を用いて混合攪拌し、混練物を得た(酸化物チタン粒子とポリマー(A)の配合質量比=60:40(固形分比))。
[Example 1]
4g of titanium oxide particles (trade name P-25, average particle size 21nm (by SEM observation particle size distribution measurement), manufactured by Degussa) in a butanol 16g using a bead mill (product name pulverisette7, manufactured by FRITSCH, the same shall apply hereinafter) To obtain a titanium oxide particle dispersion. 4.85 g of the polymer (A) was added to the obtained dispersion, and the mixture was stirred using a rotation / revolution mixer (product name: Awatori Nertaro ARE-310, manufactured by Shinky Co., Ltd., hereinafter the same) to obtain a kneaded product. (Mixed mass ratio of titanium oxide particles and polymer (A) = 60: 40 (solid content ratio)).

上記混練物をドクターブレード(クリアランス60μm)により、シリコーンで剥離処理がなされたポリエチレンテレフタレートフィルム(厚さ40μm)(商品名セラピールMFA、東レフィルム加工社製、以下同じ)の剥離処理面上に60μmの厚さに塗布した後、熱風循環式乾燥機で90℃で10分間乾燥して、シート形成物(a)を得た。混練物層の厚さは25μmであった。   60 μm of the kneaded product was peeled onto the surface of a polyethylene terephthalate film (thickness: 40 μm) (trade name: MERAPE, manufactured by Toray Film Processing Co., Ltd., the same applies hereinafter) that was peeled off with silicone by a doctor blade (clearance 60 μm) After coating to a thickness, the sheet was dried at 90 ° C. for 10 minutes with a hot air circulation dryer to obtain a sheet formed product (a). The thickness of the kneaded material layer was 25 μm.

このシート形成物(a)の混練物層を100℃でフッ素ドープ酸化スズの薄膜を有するガラス(以下FTOガラスともいう)(商品名A110U80、旭硝子(株)製、以下同じ)の透明導電層上に転写し、450℃のオーブンで15分間で焼結することで多孔質酸化チタン電極(a)を得た。焼成後の混練物層の厚さは、16.1μmであった。   The kneaded material layer of the sheet-formed product (a) is formed on a transparent conductive layer of glass having a fluorine-doped tin oxide thin film (hereinafter also referred to as FTO glass) (trade name A110U80, manufactured by Asahi Glass Co., Ltd., the same shall apply hereinafter) at 100 ° C. The porous titanium oxide electrode (a) was obtained by sintering in an oven at 450 ° C. for 15 minutes. The thickness of the kneaded material layer after firing was 16.1 μm.

[実施例2]
ポリマー(A)の代わりにポリマー(B)を用いた以外は同様の操作で、シート形成物(b)を得た。シート形成物(b)を用いて実施例1と同様の転写方法および焼成方法にて、多孔質酸化チタン電極(b)を得た。
[Example 2]
A sheet formed product (b) was obtained by the same operation except that the polymer (B) was used instead of the polymer (A). A porous titanium oxide electrode (b) was obtained by the same transfer method and firing method as in Example 1 using the sheet formed product (b).

[実施例3]
酸化チタン粒子(P−25)4gをビーズミルを用いてブタノール16g中に分散させた。その分散液にトルエンとエタノール50:50(重量比)に固形分10%となるように溶解したポリビニルブチラール(商品名エスレックBH−3、積水化学工業社製、以下同じ)溶液を28gと、さらに可塑剤としてジブチルオクチルフタレート1.2gを加え、自転・公転ミキサーを用いて混合攪拌し、混練物を得た(酸化物チタン粒子とポリビニルブチラールと可塑剤の配合質量比=50:35:15(固形分比))。
[Example 3]
4 g of titanium oxide particles (P-25) were dispersed in 16 g of butanol using a bead mill. 28 g of a polyvinyl butyral (trade name ESREC BH-3, manufactured by Sekisui Chemical Co., Ltd., the same applies hereinafter) solution dissolved in toluene and ethanol 50:50 (weight ratio) in the dispersion so as to have a solid content of 10%, As a plasticizer, 1.2 g of dibutyloctyl phthalate was added and mixed and stirred using a rotation / revolution mixer to obtain a kneaded product (mixing mass ratio of titanium oxide particles, polyvinyl butyral, and plasticizer = 50: 35: 15 ( Solids ratio)).

上記混練物をドクターブレード(クリアランス150μm)により、ポリエチレンテレフタレートフィルム(セラピールMFA)の剥離処理面上に90μmの厚さに塗布した後、熱風循環式乾燥機で90℃で10分間乾燥して、シート形成物(c)を得た。混練物層の厚さは25μmであった。
このシート形成物(C)を用いて、実施例1と同様の転写方法および焼成方法にて、多孔質酸化チタン電極(c)を得た。
The kneaded material was applied to a thickness of 90 μm on the surface of the polyethylene terephthalate film (therapeutic MFA) with a doctor blade (clearance 150 μm), and then dried at 90 ° C. for 10 minutes with a hot air circulation dryer. A formation (c) was obtained. The thickness of the kneaded material layer was 25 μm.
Using this sheet formed product (C), a porous titanium oxide electrode (c) was obtained by the same transfer method and firing method as in Example 1.

[実施例4]
酸化チタン粒子(P−25)4gをビーズミルを用いて、ブタノール16g中に分散させた。その分散液に酢酸エチルに固形分10%となるように溶解したエチルセルロース(商品名エトセルGr.10、日進化成社製、以下同じ)溶液を28gと、さらに可塑剤としてジブチルオクチルフターレート1.2gを加え、自転・公転ミキサーを用いて混合攪拌し、混練物を得た(酸化物チタン粒子とエチルセルロースと可塑剤の配合質量比=50:35:15(固形分比))。
[Example 4]
4 g of titanium oxide particles (P-25) were dispersed in 16 g of butanol using a bead mill. 28 g of an ethyl cellulose solution (trade name Etcel Gr. 10, manufactured by Nisshinsei Co., Ltd., the same applies hereinafter) dissolved in ethyl acetate so as to have a solid content of 10% in the dispersion, and dibutyloctylphthalate as a plasticizer. 2 g was added and mixed and stirred using a rotation / revolution mixer to obtain a kneaded product (mixed mass ratio of titanium oxide particles, ethyl cellulose and plasticizer = 50: 35: 15 (solid content ratio)).

上記混練物をドクターブレード(クリアランス150μm)により、セラピールMFAの剥離処理面上に90μmの厚さに塗布した後、熱風循環式乾燥機で90℃で10分間乾燥して、シート形成物(d)を得た。混練物層の厚さは25μmであった。
このシート形成物(d)を用いて実施例1と同様の転写方法および焼成方法にて、多孔質酸化チタン電極(d)を得た。
The above kneaded material is applied to the surface of the peeled surface of the therapeutic MFA with a doctor blade (clearance 150 μm) to a thickness of 90 μm, and then dried at 90 ° C. for 10 minutes with a hot air circulating drier to form a sheet formed product (d) Got. The thickness of the kneaded material layer was 25 μm.
Using this sheet-formed product (d), a porous titanium oxide electrode (d) was obtained by the same transfer method and firing method as in Example 1.

[実施例5]
実施例3で作製したシート形成物(c)の混練物層を実施例1と同様の方法でFTOガラス(A110U80)の透明導電層上に転写し、更に、その混練物層上に100℃でシート形成物(c)の混練物層をもう一層転写し積層物を得た。該積層物を実施例1と同様の方法で焼成し、2層積層した多孔質酸化チタン電極(c−c)を得た。
[Example 5]
The kneaded material layer of the sheet-formed product (c) produced in Example 3 was transferred onto the transparent conductive layer of FTO glass (A110U80) in the same manner as in Example 1, and further, the kneaded material layer at 100 ° C. on the kneaded material layer. The kneaded product layer of the sheet-formed product (c) was further transferred to obtain a laminate. The laminate was fired in the same manner as in Example 1 to obtain a porous titanium oxide electrode (cc) in which two layers were laminated.

[実施例6]
粒子径が大きい酸化チタン(商品名ST41、平均粒子径160nm(BET法からの換算)、石原産業社製)を用いた以外、実施例3と同様の条件でシート形成物(e)を作製した。FTOガラス(A110U80)の透明導電層上にシート形成物(c)の混練物層を転写後、その混練物層上にシート形成物(e)の混練物層を100℃で転写して積層した。該積層物を実施例1と同様の方法で焼成し、2層積層した多孔質酸化チタン電極(c−e)を得た。
[Example 6]
A sheet-formed product (e) was produced under the same conditions as in Example 3 except that titanium oxide having a large particle size (trade name ST41, average particle size 160 nm (converted from the BET method), manufactured by Ishihara Sangyo Co., Ltd.) was used. . After transferring the kneaded product layer of the sheet formed product (c) onto the transparent conductive layer of FTO glass (A110U80), the kneaded product layer of the sheet formed product (e) was transferred onto the kneaded product layer at 100 ° C. and laminated. . The laminate was fired in the same manner as in Example 1 to obtain a porous titanium oxide electrode (ce) in which two layers were laminated.

[製造例1]
実施例1で得られた焼成後の多孔質酸化チタン電極を、Ru錯体(通称N719)色素(PECD07、ペクセルテクノロジーズ社製)アセトニトリル溶液に18時間浸漬し、次にアセトニトリルで濯ぎ、乾燥させ色素増感電極を作製した。上記色素増感電極の半導体面を30μmの熱接着フィルム(商品名HM−52 、タマポリ社製)を介して、プラチナ電極と貼り合わせた。その後、上記貼合物をヨウ素、ヨウ化リチウム、1,2-ジメチル-3-プロピルイミダゾリウムヨージドおよび4-tert-ブチルピリジンをアセトニトリルに溶解した溶液を電極間に注入し、色素増感光電変換素子を作製した。
[Production Example 1]
The calcined porous titanium oxide electrode obtained in Example 1 was immersed in an Ru complex (commonly known as N719) dye (PECD07, manufactured by Pexel Technologies) acetonitrile solution for 18 hours, then rinsed with acetonitrile, dried and dyed. A sensitizing electrode was prepared. The semiconductor surface of the dye-sensitized electrode was bonded to a platinum electrode via a 30 μm thermal adhesive film (trade name HM-52, manufactured by Tamapoly). Thereafter, a solution of iodine, lithium iodide, 1,2-dimethyl-3-propylimidazolium iodide and 4-tert-butylpyridine dissolved in acetonitrile was injected between the electrodes, and the dye-sensitized photoelectron was then added. A conversion element was produced.

[製造例2]
実施例2で得られた焼成後の多孔質酸化チタン電極(b)を用いて、製造例1と同様にして、色素増感光電変換素子を作製した。
[Production Example 2]
A dye-sensitized photoelectric conversion element was produced in the same manner as in Production Example 1 using the fired porous titanium oxide electrode (b) obtained in Example 2.

[製造例3]
実施例3で得られた焼成後の多孔質酸化チタン電極(c)を用いて、製造例1と同様にして、色素増感光電変換素子を作製した。
[Production Example 3]
A dye-sensitized photoelectric conversion element was produced in the same manner as in Production Example 1 using the fired porous titanium oxide electrode (c) obtained in Example 3.

[製造例4]
実施例4で得られた焼成後の多孔質酸化チタン電極(d)を用いて、製造例1と同様にして、色素増感光電変換素子を作製した。
[Production Example 4]
A dye-sensitized photoelectric conversion element was produced in the same manner as in Production Example 1 using the fired porous titanium oxide electrode (d) obtained in Example 4.

[製造例5]
実施例5で得られた焼成後の多孔質酸化チタン電極(c−c)を用いて、製造例1と同様にして、色素増感光電変換素子を作製した。
[Production Example 5]
A dye-sensitized photoelectric conversion element was produced in the same manner as in Production Example 1 using the fired porous titanium oxide electrode (cc) obtained in Example 5.

[製造例6]
実施例6で得られた焼成後の多孔質酸化チタン電極(c−e)を用いて、製造例1と同様にして、色素増感光電変換素子を作製した。
[Production Example 6]
A dye-sensitized photoelectric conversion element was produced in the same manner as in Production Example 1 using the fired porous titanium oxide electrode (ce) obtained in Example 6.

[光電変換素子の性能評価]
1SUN、擬似太陽光(入射光強度100mW/cm2(AM1. 5)を光源として、光電変換素子の色素増感電極側から入射させ、電圧/電流発生器(R6243, ADVANTEST社製)によって電圧印加し、電流電圧特性を測定した。
[Performance evaluation of photoelectric conversion elements]
1SUN, simulated sunlight (incident light intensity 100mW / cm 2 (AM1.5) is used as the light source, incident from the dye-sensitized electrode side of the photoelectric conversion element, and voltage is applied by a voltage / current generator (R6243, manufactured by ADVANTEST) The current-voltage characteristics were measured.

Figure 2012146505
Figure 2012146505

本発明のシート形成物および多孔質半導体の製造方法は、光電変換素子の製造に用いることができる。   The sheet-formed product and porous semiconductor manufacturing method of the present invention can be used for manufacturing a photoelectric conversion element.

1:透明耐熱基板
2:透明導電層
3−1、3−2:混練物層
4:フィルム
A−1、A−2:シート形成物
1: Transparent heat-resistant substrate 2: Transparent conductive layer 3-1, 3-2: Kneaded material layer 4: Film A-1, A-2: Sheet formed product

Claims (10)

樹脂からなるフィルム上に
酸化物半導体粒子とバインダーとを含有する混練物層が形成されていることを特徴とするシート形成物。
A sheet-formed product, wherein a kneaded material layer containing oxide semiconductor particles and a binder is formed on a resin film.
(工程1−1)透明耐熱基板上の透明導電層上に、請求項1に記載のシート形成物をその混練物層が前記透明導電層に接するように積層し、次いで該シート形成物のフィルムを混練物層から剥離する工程と、
(工程2)前記混練物層を焼成する工程とを含むことを特徴とする多孔質半導体電極の製造方法。
(Step 1-1) On the transparent conductive layer on the transparent heat-resistant substrate, the sheet-formed product according to claim 1 is laminated so that the kneaded material layer is in contact with the transparent conductive layer, and then the film of the sheet-formed product Peeling from the kneaded material layer,
(Step 2) A method for producing a porous semiconductor electrode, comprising a step of firing the kneaded material layer.
前記工程1−1の後、工程2の前に
(工程1−2)工程1−1で得られた積層物の混練物層上に、請求項1に記載のシート形成物をその混練物層が前記積層物の混練物層に接するように積層し、次いで該シート形成物のフィルムを剥離する工程を1回から複数回行う工程を含むことを特徴とする請求項2に記載の多孔質半導体電極の製造方法。
After step 1-1, before step 2 (Step 1-2) On the kneaded product layer of the laminate obtained in Step 1-1, the sheet-formed product according to claim 1 is added to the kneaded product layer. 3. The porous semiconductor according to claim 2, further comprising a step of laminating the laminate so as to be in contact with the kneaded material layer of the laminate and then peeling the film of the sheet-formed product from one time to a plurality of times. Electrode manufacturing method.
工程1−1および工程1−2において、シート形成物の混練物層中の酸化物半導体粒子の平均粒子径が、各工程に用いるシート形成物毎に異なることを特徴とする請求項3に記載の多孔質半導体電極の製造方法。   The average particle diameter of the oxide semiconductor particles in the kneaded material layer of the sheet formation in Step 1-1 and Step 1-2 is different for each sheet formation used in each step. Manufacturing method of porous semiconductor electrode. シート形成物毎に混練物層中の酸化物半導体粒子の平均粒子径が異なるシート形成物群の中で、最小の平均粒子径の酸化物半導体粒子を含有する混練物層を有するシート形成物を工程1−1に用い、その他のシート形成物を工程1−2に用いることを特徴とする請求項3または4に記載の多孔質半導体電極の製造方法。   A sheet-formed product having a kneaded material layer containing oxide semiconductor particles having the smallest average particle size among the group of sheet-formed products in which the average particle size of the oxide semiconductor particles in the kneaded material layer is different for each sheet-formed material. The method for producing a porous semiconductor electrode according to claim 3 or 4, wherein the other sheet-formed product is used in the step 1-1 and used in the step 1-1. 前記透明導電層上に積層された混練物層中の酸化物半導体粒子の平均粒子径が透明導電層側から段階的に大きくなるように、工程1−1および工程1−2を行うことを特徴とする請求項3〜5のいずれか一項に記載の多孔質半導体電極の製造方法。   Step 1-1 and Step 1-2 are performed such that the average particle diameter of the oxide semiconductor particles in the kneaded material layer laminated on the transparent conductive layer is increased stepwise from the transparent conductive layer side. The manufacturing method of the porous semiconductor electrode as described in any one of Claims 3-5. 工程1−1および工程1−2において、シート形成物の混練物層中の酸化物半導体粒子の平均粒子径が、いずれの工程に用いるシート形成物においても同一であることを特徴とする請求項3に記載の多孔質半導体電極の製造方法。   The average particle diameter of the oxide semiconductor particles in the kneaded product layer of the sheet formed product in Step 1-1 and Step 1-2 is the same in any sheet formed product used in any step. 4. A method for producing a porous semiconductor electrode according to 3. 請求項2〜7のいずれか一項に記載の製造方法で製造された多孔質半導体電極。   The porous semiconductor electrode manufactured with the manufacturing method as described in any one of Claims 2-7. 請求項2〜7のいずれか一項に記載の製造方法で製造された多孔質半導体電極を用いた光電変換素子。   The photoelectric conversion element using the porous semiconductor electrode manufactured with the manufacturing method as described in any one of Claims 2-7. 光電変換素子の多孔質半導体電極製造用である請求項1に記載のシート形成物。   The sheet-formed product according to claim 1, which is for producing a porous semiconductor electrode of a photoelectric conversion element.
JP2011003889A 2011-01-12 2011-01-12 Method for producing porous semiconductor electrode using sheet formed material Expired - Fee Related JP5554725B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011003889A JP5554725B2 (en) 2011-01-12 2011-01-12 Method for producing porous semiconductor electrode using sheet formed material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011003889A JP5554725B2 (en) 2011-01-12 2011-01-12 Method for producing porous semiconductor electrode using sheet formed material

Publications (2)

Publication Number Publication Date
JP2012146505A true JP2012146505A (en) 2012-08-02
JP5554725B2 JP5554725B2 (en) 2014-07-23

Family

ID=46789898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011003889A Expired - Fee Related JP5554725B2 (en) 2011-01-12 2011-01-12 Method for producing porous semiconductor electrode using sheet formed material

Country Status (1)

Country Link
JP (1) JP5554725B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002184475A (en) * 2000-12-12 2002-06-28 Lintec Corp Method of manufacturing semiconductor electrode and photochemical battery
JP2005135798A (en) * 2003-10-31 2005-05-26 Tomoegawa Paper Co Ltd Semiconductor film for photocell, lamination body, and paint for manufacturing semiconductor film
JP2007534119A (en) * 2004-04-23 2007-11-22 ソニー ドイチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for producing porous semiconductor film on substrate
JP2010232078A (en) * 2009-03-27 2010-10-14 Sharp Corp Dye-sensitized solar cell, manufacturing method of dye-sensitized solar cell, and manufacturing device of dye-sensitized solar cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002184475A (en) * 2000-12-12 2002-06-28 Lintec Corp Method of manufacturing semiconductor electrode and photochemical battery
JP2005135798A (en) * 2003-10-31 2005-05-26 Tomoegawa Paper Co Ltd Semiconductor film for photocell, lamination body, and paint for manufacturing semiconductor film
JP2007534119A (en) * 2004-04-23 2007-11-22 ソニー ドイチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for producing porous semiconductor film on substrate
JP2010232078A (en) * 2009-03-27 2010-10-14 Sharp Corp Dye-sensitized solar cell, manufacturing method of dye-sensitized solar cell, and manufacturing device of dye-sensitized solar cell

Also Published As

Publication number Publication date
JP5554725B2 (en) 2014-07-23

Similar Documents

Publication Publication Date Title
CN100587971C (en) Dye-sensitized solar cell and manufacturing method thereof
JP5191647B2 (en) Titanium oxide film, titanium oxide film electrode film structure, and dye-sensitized solar cell
JP2007095682A (en) Laminate type photovoltaic element and its manufacturing method
KR20090091870A (en) Multiple-dyes sensitized solar cells and method for preparing the same
JP4659954B2 (en) Method for producing dye-sensitized solar cell and method for producing dye-sensitized solar cell module
JP2002093476A (en) Coloring matter sensitization type solar battery cell, coloring matter sensitization type solar battery module, using the same, and their manufacturing method
Kuo et al. Preparation of the working electrode of dye-sensitized solar cells: Effects of screen printing parameters
KR101172361B1 (en) Manufacturing method of photo electrode for dye-sensitized solar cell
TWI533493B (en) Photoelectrode and dye-sensitised solar cell having the photoelectrode
CN101950674A (en) Dye for dye-sensitized solar cell and dye-sensitized solar cell including the same
KR101312335B1 (en) Hierarchical porous transition metal oxide structure, preparing method of the same, photoelectrode including the same, and dye-sensitized solar cell including the photoelectrode
WO2012101939A1 (en) Dye-sensitized solar cell and method for manufacturing same
KR20110086269A (en) Preparing method of photoelectrode and dye-sensitized solar cell having photoelectrode prepared by the same
KR101274948B1 (en) Porous transition metal oxide structure, preparing method of the same, photoelectrode including the same, and dye-sensitized solar cell including the photoelectrode
KR20130030897A (en) Dye-sensitized solar cell including scattering layer containing colloid crystal, and preparing method of the same
KR101166515B1 (en) Photoelectrode for dye-sensitized solar cell, preparing method of the same, and dye-sensitized solar cell having the same
JP2011142024A (en) Method of manufacturing oxide semiconductor electrode substrate, and dye-sensitized solar cell
JP5554725B2 (en) Method for producing porous semiconductor electrode using sheet formed material
US20130319512A1 (en) Electrode, photoelectric conversion element, electronic apparatus and architectural structure
JP5521419B2 (en) Electrolyte forming coating solution and dye-sensitized solar cell using the same
Ko et al. Photoanode using hollow spherical TiO2 for duel functions in dye-sensitized solar cell
JP2011040288A (en) Method of manufacturing semiconductor film, the semiconductor film, and dye-sensitized solar cell
JP5212750B2 (en) Method for producing dye-sensitized solar cell and method for producing dye-sensitized solar cell module
KR101624520B1 (en) Photoelectrode for dye sensitized solar cell and manufacturing method thereof
Hsu et al. Highly efficient quasi-solid state flexible dye-sensitized solar cells using a compression method and light-confined effect for preparation of TiO2 photoelectrodes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140320

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140520

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140529

R150 Certificate of patent or registration of utility model

Ref document number: 5554725

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees