JP2005114356A - Instrument and method for measuring ultra-high resistance - Google Patents

Instrument and method for measuring ultra-high resistance Download PDF

Info

Publication number
JP2005114356A
JP2005114356A JP2003344571A JP2003344571A JP2005114356A JP 2005114356 A JP2005114356 A JP 2005114356A JP 2003344571 A JP2003344571 A JP 2003344571A JP 2003344571 A JP2003344571 A JP 2003344571A JP 2005114356 A JP2005114356 A JP 2005114356A
Authority
JP
Japan
Prior art keywords
electrode
resistance
measurement
sample
ionization chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003344571A
Other languages
Japanese (ja)
Other versions
JP3817537B2 (en
Inventor
Toshiro Kawaguchi
俊郎 川口
Koji Futagami
光次 二神
Masaru Matoba
優 的場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nakamura Sangyo Gakuen
Original Assignee
Nakamura Sangyo Gakuen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nakamura Sangyo Gakuen filed Critical Nakamura Sangyo Gakuen
Priority to JP2003344571A priority Critical patent/JP3817537B2/en
Publication of JP2005114356A publication Critical patent/JP2005114356A/en
Application granted granted Critical
Publication of JP3817537B2 publication Critical patent/JP3817537B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an instrument and method for measuring an ultra-high resistance, enabling continuous measurement under environmental stress, and allowing the measurement up to 10<SP>18</SP>to 10<SP>20</SP>Ω of ultra-high resistance. <P>SOLUTION: This ultra-high resistance measuring instrument is provided, in parallel with a background measuring side magnetic levitation electrode ionization chamber 1a with a magnetically levitated electrode 3a, and a resistance-measuring side ionization chamber 1b where an electrode 3b is connected with an external electrode with a sample 13. The electrodes 3a, 3b of the respective ionization chambers are charged; the potentials of the respective electrodes 3a, 3b are measured by a Faraday cage 5; a reduction in charge for each of the electrodes is found, based on a variation per a unit time of each of the potentials, currents are found based thereon to find a difference therebetween; and the voltage in the sample 13 is divided by the difference so as to measure the electrical resistance of the sample 13. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、1015Ω〜1020Ωの絶縁体、とくに1018Ω〜1020Ωの絶縁体の電気抵抗を測定可能な超高抵抗測定装置、及びそれを実施する超高抵抗測定方法に関するものである。 The present invention relates to an ultra-high resistance measuring apparatus capable of measuring an electrical resistance of an insulator having a resistance of 10 15 Ω to 10 20 Ω, particularly an insulator having a resistance of 10 18 Ω to 10 20 Ω, and an ultra-high resistance measuring method for implementing the same. Is.

従来、1012Ω以上の高抵抗の測定方法に関しては、検流計法、直流増幅器による方法、超絶縁計、あるいは1014Ω程度までの高抵抗を測定する超高抵抗測定法等が知られている(非特許文献1、非特許文献2、非特許文献3参照)。しかし、これらの測定方法では1015Ωが測定の限界とされる。このほかに、半減期の長いアイソトープを封入した電離箱が電圧の変化にかかわらず一定なことを利用して、これを安定な定電流源兼高抵抗標準器として用いる電離箱法が存在する(非特許文献4参照)。この方法では1017Ωまでの測定が可能とされている。 Conventionally, as a method of measuring a high resistance of 10 12 Ω or more, a galvanometer method, a method using a DC amplifier, a super insulation meter, or an ultra high resistance measurement method for measuring a high resistance up to about 10 14 Ω, etc. are known. (See Non-Patent Document 1, Non-Patent Document 2, and Non-Patent Document 3). However, in these measurement methods, 10 15 Ω is the limit of measurement. In addition to this, there is an ionization chamber method in which an ionization chamber filled with an isotope having a long half-life is constant regardless of a change in voltage, and this is used as a stable constant current source and a high resistance standard ( Non-patent document 4). In this method, measurement up to 10 17 Ω is possible.

また、情報電子分野においては、ガラスや薄膜部品等の表面抵抗値を正確に測定する必要があり、この方法を規定したJIS−C−2141に従って測定した典型的な事例においては、表面抵抗値は抵抗値(5×1015Ω)が測定限界であり、表面抵抗率では1017Ω/cm程度の測定が可能という報告がなされている。 In the information electronics field, it is necessary to accurately measure the surface resistance value of glass, thin film components, etc., and in a typical case measured in accordance with JIS-C-2141 that defines this method, the surface resistance value is The resistance value (5 × 10 15 Ω) is the measurement limit, and it has been reported that the surface resistivity can be measured at about 10 17 Ω / cm.

通常、電気機器は長時間通電状態で使用され、従って電気抵抗も使用環境とその時間変化で特性が変化する。このため電子機器の信頼性評価は不可欠であり、環境試験が行われることが多いが、現状ではほとんどの場合、環境試験ごとに試験前後の測定値を比較する間欠測定が実施されている。というのは、温度、X線、放射線等の様々の環境ストレスはこのような特性の変化をもたらすだけでなく、測定結果にノイズを混入させるため、長時間の連続測定を行った場合、ノイズの変動で測定データがかくれ無意味なデータとなってしまうからである。そして、この傾向は、高感度の測定が求められるほど、測定値/ノイズの比率が悪化し、顕著に現れる。   Normally, electric devices are used in a state of being energized for a long time, and therefore, the characteristics of electric resistance also change depending on the use environment and its change over time. For this reason, reliability evaluation of electronic devices is indispensable and environmental tests are often performed. However, in most cases, intermittent measurements are performed in each case to compare measured values before and after each test. This is because various environmental stresses such as temperature, X-rays, radiation, etc. not only change these characteristics, but also mix noise in the measurement results. This is because the measurement data becomes meaningless data due to fluctuations. This tendency becomes more pronounced as the measurement with higher sensitivity is required and the ratio of measured value / noise is deteriorated.

このように連続測定は感度を上げるとノイズが増すという矛盾を孕んでいるが、環境ストレスに影響されずに連続測定が行える方法があれば、電子機器の信頼性評価は格段に有効なものとなる。例えば非特許文献5がこの有効性について報告している。非特許文献5は、電気抵抗が1011Ω程度のガラスエポキシ基板にプリント配線の表面処理を施したものを試料として特性値の変動を連続測定したものである。そして、実際の環境ストレス下における連続測定が劣化要因、故障要因を見つけ出す信頼性評価に有効である旨の結論を得ている。しかし、この報告のための測定で用いられた直流電流は3×10−12Aより大きく、抵抗は10Ω〜1012Ωを測定するものであった。比較的感度が低い測定であるため上述の矛盾が小さくノイズも小さかったから連続測定が可能になったと考えられる。従って非特許文献5の方法は、高感度の測定が必要な10−15A以下の微小な電流、1018Ω以上の長時間の連続測定に対して示唆するところはない。 In this way, there is a contradiction that continuous measurement increases noise when sensitivity is increased, but if there is a method that can perform continuous measurement without being affected by environmental stress, the reliability evaluation of electronic equipment will be much more effective. Become. For example, Non-Patent Document 5 reports this effectiveness. Non-Patent Document 5 is obtained by continuously measuring fluctuations in characteristic values using a sample obtained by subjecting a glass epoxy substrate having an electrical resistance of about 10 11 Ω to a surface treatment of printed wiring. And we have concluded that continuous measurement under actual environmental stress is effective for reliability evaluation to find the cause of deterioration and failure. However, the direct current used in the measurement for this report was greater than 3 × 10 −12 A, and the resistance measured 10 6 Ω to 10 12 Ω. Since the measurement is relatively low in sensitivity, the above contradiction is small and the noise is small, so it is considered that continuous measurement is possible. Therefore, the method of Non-Patent Document 5 has no suggestion for a continuous measurement for a long time of 10 18 Ω or more, a minute current of 10 −15 A or less that requires high-sensitivity measurement.

なお、以上説明した抵抗測定装置とは無関係であるが、本発明者の一人は、他の発明者とともに感度良く放射線を測定する放射線検出装置を提案した(特許文献1参照)。電離箱本体の上部に電磁石を配設し、電離箱本体内には電極を磁気浮上させ、電極に帯電させるための静電帯電器を設け、電離箱本体の底部のシャッターからファラデーケージを入出自在とするものである。ファラデーケージにより非接触で電荷の読出しが行え、感度が向上するものである。   Although not related to the resistance measurement apparatus described above, one of the inventors of the present invention has proposed a radiation detection apparatus that measures radiation with high sensitivity together with other inventors (see Patent Document 1). An electromagnet is arranged on the top of the ionization chamber body, an electrode is magnetically levitated inside the ionization chamber body, and an electrostatic charger for charging the electrode is installed. The Faraday cage is moved in and out from the shutter at the bottom of the ionization chamber body. It is what it is. The Faraday cage can read out charges without contact and improves sensitivity.

特許第3061798号公報Japanese Patent No. 3061798 電気書院編集部編「電験ハンドブック」、電気書院、昭和43年7月、p.345〜p.358Denshu Shoin editorial department “Denki Handbook”, Denki Shoin, July 1968, p. 345-p. 358 山内二郎監修「電気計測便覧」、オーム社、昭和46年5月、p.390〜p.394Supervised by Jiro Yamauchi, “Electrical Measurement Handbook”, Ohmsha, May 1971, p. 390-p. 394 電気学会編「電気工学ハンドブック」第6版、オーム社、平成13年2月、p.249The 6th edition of the "Electronic Engineering Handbook" edited by the Institute of Electrical Engineers, Ohmsha, February 2001, p. 249 近角聡信著「電気計測」、共立出版、昭和44年7月、p.259Konnobu Nobunobu, “Electrical Measurement”, Kyoritsu Shuppan, July 1969, p. 259 田中浩和他著「電子部品の信頼性評価方法に関する一考察」、ESPEC技術情報、No.3、タバイエスペック株式会社、平成7年9月、p.4〜p.7Tanaka Hirokazu et al. "A Study on Reliability Evaluation Method for Electronic Components", ESPEC Technical Information, No. 3, Tabai Espec Co., Ltd., September 1995, p. 4-p. 7

電子機器の精度は、そこで用いられている電子部品の性能と信頼性に依存し、さらには外的要因である環境ストレスに依存する。例えば高感度エレクトロメータやピコアンメータ等は、きわめて微小な電流や電圧測定が可能という性能と信頼性が要求され、この性能を発現させるための前提として、測定系を構成する高抵抗や超高抵抗が、様々の環境下で信頼性高く検定されていることが必要である。   The accuracy of electronic equipment depends on the performance and reliability of the electronic components used there, and also on environmental stress, which is an external factor. For example, high-sensitivity electrometers and picoammeters are required to have the performance and reliability of being able to measure extremely small currents and voltages. As a precondition for realizing this performance, the high resistance and ultrahigh resistance that constitute the measurement system Must be tested reliably in various environments.

従来の検流計法、直流増幅器による方法、超絶縁計、超高抵抗測定法、電離箱法等でこのような高抵抗の測定を行うと、1017Ω程度の測定が限界であり、これを越える1018Ω〜1020Ωの超高抵抗を測定するのは困難であった。このような超高抵抗を測定できる測定方法の開発が望まれるが、このような測定方法は高感度であり、これが高感度になればなるほど周囲の環境ストレスが影響し、正確な情報がノイズの中に埋没するという矛盾が生じる。これでは高感度で連続測定を行うというニーズに応えることができない。非特許文献5でも連続測定を行っているが、10Ω〜1012Ωの抵抗を測定するもので、超高抵抗の連続測定に対して示唆するものではない。 When such high resistance is measured by the conventional galvanometer method, DC amplifier method, superinsulator, ultrahigh resistance measurement method, ionization chamber method, etc., measurement of about 10 17 Ω is the limit. It was difficult to measure an ultrahigh resistance exceeding 10 18 Ω to 10 20 Ω. Development of a measurement method that can measure such ultra-high resistance is desired, but such a measurement method is highly sensitive. The higher the sensitivity, the greater the influence of environmental stress on the surroundings. The contradiction of being buried inside arises. This cannot meet the need for continuous measurement with high sensitivity. Although non-patent document 5 also performs continuous measurement, it measures a resistance of 10 6 Ω to 10 12 Ω and is not suggested for continuous measurement of ultrahigh resistance.

また、電離箱に関して、本発明者の一人が提案した電離箱は高感度の放射線検出装置であって、超高抵抗を測定できる抵抗測定装置ではない。定電流源とはならず、従来の電離箱法では使用できないものである。   Regarding the ionization chamber, the ionization chamber proposed by one of the present inventors is a highly sensitive radiation detection device, not a resistance measurement device capable of measuring ultrahigh resistance. It is not a constant current source and cannot be used in the conventional ionization chamber method.

そこで、本発明が解決しようとする問題点は、長時間の通電状態、X線・放射線照射下での使用等の環境ストレス下で連続的に、1018Ω〜1020Ωの超高抵抗まで測定可能な超高抵抗測定装置と、超高抵抗測定方法を実現する点である。 Therefore, the problem to be solved by the present invention is that the resistance is continuously increased to an ultrahigh resistance of 10 18 Ω to 10 20 Ω under an environmental stress such as a long-time energization state or use under X-ray irradiation. It is the point which implement | achieves the ultrahigh resistance measuring apparatus which can be measured, and an ultrahigh resistance measuring method.

そこで本発明は、環境ストレス下で連続的に、1018Ω〜1020Ωの超高抵抗まで測定可能な抵抗測定装置と抵抗測定方法を提供することを目的とする。 The present invention is continuously under environmental stress, and to provide a 10 18 Ω~10 20 Ω and resistance measurement method capable of measuring resistance measuring device to ultra-high resistance.

本発明は、電離性ガスを収容した容器内に設けられ、試料をセットすることにより電気的に接続される第1内部電極と第1外部電極とを備え、測定時に所定量帯電された電荷がバックグラウンド放射線量と試料の電気抵抗に応じて減少する第1内部電極の電位を第1ファラデーケージで測定する抵抗測定側電離箱と、電離性ガスを収容した容器内に設けられて磁気浮上する第2内部電極と該容器内に設けられた第2外部電極とを備え、測定時に所定量帯電された電荷がバックグラウンド放射線量に応じて減少する第2電極の電位を第2ファラデーケージによって測定するバックグラウンド測定側磁気浮上電極電離箱と、第1内部電極の電位の時間当たり変化量に基づいて第1の電流値を計算するとともに、第2内部電極の電位の時間当たり変化量に基づいて第2の電流値を計算し、該第1及び第2の電流値の差を求める演算部と、第2内部電極を磁気浮上させるとともに各ファラデーケージの制御を行う制御部を備えた超高抵抗測定装置であって、演算部が、試料に印加された電圧と、第1及び第2の電流値の差に基づいて、測定試料の電気抵抗をもとめることを主要な特徴とする。   The present invention includes a first internal electrode and a first external electrode which are provided in a container containing an ionizing gas and are electrically connected by setting a sample. A resistance measurement-side ionization chamber that measures the potential of the first internal electrode, which decreases in accordance with the background radiation dose and the electrical resistance of the sample, with a first Faraday cage, and a container that contains an ionizing gas, are magnetically levitated. A second Faraday cage is used to measure the potential of the second electrode, which includes a second internal electrode and a second external electrode provided in the container, and the charge charged by a predetermined amount during measurement decreases according to the amount of background radiation. The first current value is calculated based on the background measurement side magnetically levitated electrode ionization chamber and the change amount of the potential of the first internal electrode per time, and the change of the potential of the second internal electrode per time A calculation unit for calculating the second current value based on the difference between the first and second current values and a control unit for magnetically levitating the second internal electrode and controlling each Faraday cage. The main feature of the ultrahigh resistance measurement device is that the calculation unit obtains the electrical resistance of the measurement sample based on the voltage applied to the sample and the difference between the first and second current values.

本発明の超高抵抗測定装置と超高抵抗測定方法によれば、長時間の通電、X線・放射線照射等の環境ストレスのため測定結果にバックグラウンド電流が混入してノイズとなるような場合であっても、連続的に測定でき、1018Ω〜1020Ωの超高抵抗まで測定することができる。 According to the ultra-high resistance measuring apparatus and ultra-high resistance measuring method of the present invention, when background current is mixed into the measurement result due to environmental stress such as long-time energization and X-ray / radiation irradiation, it becomes noise Even so, it can be measured continuously and can be measured up to an ultrahigh resistance of 10 18 Ω to 10 20 Ω.

上記課題を解決するために本発明の実施のための第1の形態は、電離性ガスを収容した容器内に設けられ、試料をセットすることにより電気的に接続される第1内部電極と第1外部電極とを備え、測定時に所定量帯電された電荷がバックグラウンド放射線量と試料の電気抵抗に応じて減少する第1内部電極の電位を第1ファラデーケージで測定する抵抗測定側電離箱と、電離性ガスを収容した容器内に設けられて磁気浮上する第2内部電極と該容器内に設けられた第2外部電極とを備え、測定時に所定量帯電された電荷がバックグラウンド放射線量に応じて減少する第2電極の電位を第2ファラデーケージによって測定するバックグラウンド測定側磁気浮上電極電離箱と、第1内部電極の電位の時間当たり変化量に基づいて第1の電流値を計算するとともに、第2内部電極の電位の時間当たり変化量に基づいて第2の電流値を計算し、該第1及び第2の電流値の差を求める演算部と、第2内部電極を磁気浮上させるとともに各ファラデーケージの制御を行う制御部を備えた超高抵抗測定装置であって、演算部が、試料に印加された電圧と、第1及び第2の電流値の差に基づいて、測定試料の電気抵抗をもとめる超高抵抗測定装置であり、抵抗測定側電離箱の内部電極を帯電させ、ファラデーケージによってバックグラウンド電流と試料を流れる電流の合計電流を測定し、バックグラウンド測定側磁気浮上電極電離箱の内部電極を帯電させてバックグラウンド電流を測定して、合計電流とバックグラウンド電流の差を計算することで試料を流れる電流を算出できる。試料間の電圧をこの電流値で割ることにより抵抗値が算出できる。この装置と方法によって、前記の環境ストレスがあっても連続的に、1018Ω〜1020Ωの超高抵抗まで測定することができる。従来の電離箱法はアイソトープを封入して電離箱を電流源兼高抵抗標準器として用いるものであるが、本発明の抵抗測定側電離箱、バックグラウンド測定側磁気浮上電極電離箱は電流源兼高抵抗標準器ではなく、環境ストレスを除去するためのものである。 In order to solve the above-mentioned problems, a first embodiment for carrying out the present invention includes a first internal electrode and a first internal electrode which are provided in a container containing ionizing gas and are electrically connected by setting a sample. A resistance measurement-side ionization chamber comprising a first external electrode and measuring the potential of the first internal electrode with a first Faraday cage in which the charge charged by a predetermined amount during measurement decreases according to the background radiation dose and the electrical resistance of the sample; A second internal electrode provided in a container containing an ionizing gas and magnetically levitated, and a second external electrode provided in the container, and a charge charged by a predetermined amount at the time of measurement becomes a background radiation dose The first current value is calculated based on the background measurement side magnetic levitation electrode ionization chamber that measures the potential of the second electrode that decreases in accordance with the second Faraday cage, and the amount of change in the potential of the first internal electrode per hour. And calculating a second current value based on the amount of change of the potential of the second internal electrode per time and obtaining a difference between the first and second current values, and magnetically levitating the second internal electrode. And an ultra-high resistance measuring device including a control unit for controlling each Faraday cage, wherein the arithmetic unit measures based on the voltage applied to the sample and the difference between the first and second current values. This is an ultra-high resistance measuring device that determines the electrical resistance of a sample. The internal electrode of the ionization chamber on the resistance measurement side is charged, the total current of the background current and the current flowing through the sample is measured by a Faraday cage, and the magnetic levitation on the background measurement side The current flowing through the sample can be calculated by charging the internal electrode of the electrode ionization chamber, measuring the background current, and calculating the difference between the total current and the background current. The resistance value can be calculated by dividing the voltage between the samples by this current value. With this apparatus and method, even when there is the environmental stress, it is possible to continuously measure to an ultrahigh resistance of 10 18 Ω to 10 20 Ω. The conventional ionization chamber method is one in which an isotope is enclosed and the ionization chamber is used as a current source and high resistance standard. The resistance measurement side ionization chamber and the background measurement side magnetic levitation electrode ionization chamber of the present invention are also used as a current source. It is not a high-resistance standard but for removing environmental stress.

本発明の実施のための第2の形態は、第1の形態において、試料ホルダーが第1内部電極と第1外部電極に電気的に接続され、該試料ホルダーに試料をセットして抵抗測定を行う抵抗測定装置であり、試料ホルダーが設けられているので、試料をセットするだけで容易に抵抗測定できる。   According to a second embodiment for implementing the present invention, in the first embodiment, the sample holder is electrically connected to the first internal electrode and the first external electrode, and the resistance is measured by setting the sample in the sample holder. This is a resistance measurement device to be used, and since a sample holder is provided, resistance can be easily measured by simply setting a sample.

本発明の実施のための第3の形態は、第1または2の形態において、外部電極が接地された抵抗測定装置であり、回路構成が簡単になり、取り扱いも容易になる。   A third embodiment for carrying out the present invention is a resistance measurement device in which the external electrode is grounded in the first or second embodiment, and the circuit configuration is simplified and the handling is facilitated.

本発明の実施のための第4の形態は、それぞれ電離性ガスを収容した抵抗測定側電離箱とバックグラウンド測定側磁気浮上電極電離箱とを接近して設け、抵抗測定側電離箱では内部電極と外部電極を試料によって電気的に接続し、バックグラウンド測定側磁気浮上電極電離箱では内部電極を磁気浮上させ、各内部電極を所定量帯電させてからバックグラウンド放射線の作用により電離性ガスを電離させ、ファラデーケージによって各内部電極の電位を測定し、各内部電極の電位の時間当たり変化量を基に電流値を計算して双方の差を計算し、試料に印加された電圧を該差で割ることにより試料の電気抵抗を測定する抵抗測定方法であり、抵抗測定側電離箱の内部電極を帯電させ、ファラデーケージによってバックグラウンド電流と試料を流れる電流の合計電流を測定し、バックグラウンド測定側磁気浮上電極電離箱の内部電極を帯電させてバックグラウンド電流を測定して、合計電流とバックグラウンド電流の差を計算することで試料を流れる電流を算出できる。試料間の電圧をこの電流値で割ることにより抵抗値が算出できる。環境ストレスの下で連続的に測定でき、1018Ω〜1020Ωの超高抵抗まで測定することができる。 According to a fourth embodiment for carrying out the present invention, a resistance measurement side ionization chamber containing an ionizing gas and a background measurement side magnetic levitation electrode ionization chamber are provided close to each other. And external electrodes are electrically connected by a sample. In the background measurement side magnetic levitation electrode ionization chamber, internal electrodes are magnetically levitated, and each internal electrode is charged a predetermined amount, and then ionizing gas is ionized by the action of background radiation. Then, the potential of each internal electrode is measured by a Faraday cage, the current value is calculated based on the amount of change in the potential of each internal electrode per hour, the difference between the two is calculated, and the voltage applied to the sample is calculated based on the difference. This is a resistance measurement method that measures the electrical resistance of a sample by splitting. The internal electrode of the resistance measurement side ionization chamber is charged and the background current and sample flow through the Faraday cage. Measure the total current, charge the internal electrode of the magnetic levitation electrode ionization chamber on the background measurement side, measure the background current, and calculate the difference between the total current and the background current to calculate the current flowing through the sample. It can be calculated. The resistance value can be calculated by dividing the voltage between the samples by this current value. It can be measured continuously under environmental stress, and can be measured up to an ultrahigh resistance of 10 18 Ω to 10 20 Ω.

(実施の形態)
以下、本発明の超高抵抗測定装置と超高抵抗測定方法について説明する。超高抵抗測定装置は、磁気浮上可能な電極を備えた電離箱と、試料をセットして電流測定する電離箱を備えたものである。前者を使ってこの場所に注ぐ放射線等に起因するバックグラウンド電流を測定し、後者を使って試料を流れる電流とバックグラウンド電流の総和を測定する。この2つの電流の差をとることによって、バックグラウンド電流分を取り除き、この結果得られる試料を流れる電流とその試料に加わる印加電圧を使って、高抵抗から超高抵抗までの抵抗測定を可能にするものである。図1は本発明の実施の形態における超高抵抗測定装置の構成図、図2は本発明の実施の形態における超高抵抗測定装置のバックグラウンド測定側磁気浮上電極電離箱の説明図、図3は本発明の実施の形態における超高抵抗測定装置の抵抗測定側電離箱の説明図である。
(Embodiment)
Hereinafter, the ultrahigh resistance measuring device and the ultrahigh resistance measuring method of the present invention will be described. The ultra-high resistance measuring device includes an ionization chamber having electrodes capable of magnetic levitation and an ionization chamber for setting a sample and measuring current. The former is used to measure the background current due to radiation injected into this location, and the latter is used to measure the sum of the current flowing through the sample and the background current. By taking the difference between the two currents, the background current is removed, and the resistance from high resistance to ultra-high resistance can be measured using the resulting current flowing through the sample and the applied voltage applied to the sample. To do. FIG. 1 is a configuration diagram of an ultrahigh resistance measurement device according to an embodiment of the present invention, FIG. 2 is an explanatory diagram of a background measurement side magnetic levitation electrode ionization chamber of the ultrahigh resistance measurement device according to an embodiment of the present invention, and FIG. These are explanatory drawings of the resistance measurement side ionization chamber of the ultrahigh resistance measurement device in the embodiment of the present invention.

図1において、1aはバックグラウンド測定側磁気浮上電極電離箱外ケース、1bは測定試料をセットして電流を測定して抵抗値を求めるための抵抗測定側電離箱外ケース、2aは外部の放射線等によって電離可能な空気(本発明の電離性ガス)を容器内に収容するバックグラウンド測定側磁気浮上電極電離箱、2bは外部の放射線等によって電離可能な空気(本発明の電離性ガス)を容器内に収容する抵抗測定側電離箱、3aはバックグラウンド測定側磁気浮上電極電離箱2a内で磁気浮上し、放射線で電離した陰イオン(または陽イオン)を収集する電極(本発明の第1内部電極)、3bは抵抗測定側電離箱2bの中に後述の試料13を介して吊り下げられる電極(本発明の第2内部電極)、4は電極3aを磁気浮上させるための電磁石である。なお、バックグラウンド測定側磁気浮上電極電離箱2a,抵抗測定側電離箱2bはいずれも容器の円筒部分がアクリルで、内表面に導電材を塗布して構成された外部電極(本発明の第1外部電極,本発明の第2外部電極)を備えており、適宜個所で接地されている。また二つの電離箱の電離部分の体積は同じである。   In FIG. 1, 1a is a background measurement side magnetic levitation electrode ionization case outer case, 1b is a resistance measurement side ionization case outer case for setting a measurement sample and measuring a current to obtain a resistance value, and 2a is external radiation. Background measurement-side magnetic levitation electrode ionization chamber that accommodates air that can be ionized by the like (ionizing gas of the present invention) in the container, 2b is air that can be ionized by external radiation or the like (ionizing gas of the present invention) The resistance measurement side ionization chamber 3a accommodated in the container is an electrode that collects negative ions (or cations) ionized by radiation by magnetic levitation in the background measurement side magnetic levitation electrode ionization chamber 2a. (Internal electrode), 3b is an electrode (second internal electrode of the present invention) that is suspended in a resistance measurement side ionization chamber 2b via a sample 13 described later, and 4 is an electromagnet for magnetically levitating the electrode 3a.The background measurement side magnetic levitation electrode ionization chamber 2a and the resistance measurement side ionization chamber 2b are both external electrodes formed by applying a conductive material to the inner surface of the cylindrical portion of the container. An external electrode, and a second external electrode of the present invention), and is appropriately grounded. Moreover, the volume of the ionization part of two ionization chambers is the same.

5はバックグラウンド測定側磁気浮上電極電離箱2a,抵抗測定側電離箱2b内に昇降して電極3a,3b上の電荷をケージ電圧として読み取るファラデーケージ、8は圧電素子等で構成されコロナ放電により電極3上に所定量の電荷を帯電させる静電帯電器(本発明の帯電手段)である。9aは位置検出センサを構成する発光素子、9bは発光素子9aが発光した光を受光する位置検出センサの受光素子である。10はバックグラウンド測定側磁気浮上電極電離箱外ケース1a,抵抗測定側電離箱外ケース1bの底板に設けられた開閉自在のシャッター、11は電圧を測定するエレクトロメータ、12はファラデーケージ5を昇降するためのアクチュエータである。シャッター10の開閉はスライドさせるのでも、取り外しやヒンジによる開閉でもよい。自動化のためにはスライドかヒンジによる開閉が好適である。シャッター10の大きさは、ファラデーケージ5が電離箱2a2b内に挿通できる大きさであればよい。   5 is a Faraday cage that reads and charges the charges on the electrodes 3a and 3b as a cage voltage by moving up and down into the background measurement side magnetic levitation electrode ionization chamber 2a and the resistance measurement side ionization chamber 2b. This is an electrostatic charger (charging means of the present invention) that charges a predetermined amount of charge on the electrode 3. Reference numeral 9a denotes a light-emitting element that constitutes the position detection sensor, and reference numeral 9b denotes a light-receiving element of the position detection sensor that receives light emitted from the light-emitting element 9a. Reference numeral 10 denotes a background measurement side magnetic levitation electrode outer case 1a, an openable / closable shutter provided on the bottom plate of the resistance measurement side ionization case 1b, 11 an electrometer for measuring a voltage, and 12 an elevator for the Faraday cage 5. It is an actuator for doing. The shutter 10 can be opened and closed by sliding, or can be removed or opened by a hinge. For automation, opening and closing by slide or hinge is preferable. The size of the shutter 10 may be any size as long as the Faraday cage 5 can be inserted into the ionization chamber 2a2b.

放射線で電離した陰イオン(または陽イオン)は、静電帯電器8によって帯電された電極3a,3b上で収集され、3a,3b上の電荷の帯電量は放射線量に応じて減少する。一定時間経過した後シャッター10を開け、ファラデーケージ5を上げてケージ電圧をエレクトロメータ11で読み取る。この一定時間経過させたときのその前後のケージ電圧の差を求めれば、ファラデーケージ5の静電容量と測定時間間隔を使って、この時間に流れる電流の平均値が演算できる。   The anions (or cations) ionized by radiation are collected on the electrodes 3a and 3b charged by the electrostatic charger 8, and the charge amount of the charges on the 3a and 3b decreases according to the radiation dose. After a certain period of time, the shutter 10 is opened, the Faraday cage 5 is raised, and the cage voltage is read by the electrometer 11. If the difference between the cage voltages before and after the lapse of this fixed time is obtained, the average value of the current flowing during this time can be calculated using the capacitance of the Faraday cage 5 and the measurement time interval.

13は電気抵抗を測定するための試料、18はバックグラウンド測定側磁気浮上電極電離箱2aの電極3aを位置検出センサの位置に浮上させるための浮上ドライバ手段である。浮上ドライバ手段18には位置検出センサで検出した目標位置との差がフィードバックされて、電極3aの重力と電磁石4の磁力との釣り合いで、電極3aを浮上状態に維持する。釣り合いが破れると位置検出センサでフィードバックがかかり、電極3aは所定位置に浮上する。   Reference numeral 13 denotes a sample for measuring electric resistance, and 18 denotes a levitation driver means for levitation of the electrode 3a of the background measurement side magnetic levitation electrode ionization chamber 2a to the position of the position detection sensor. A difference from the target position detected by the position detection sensor is fed back to the levitating driver means 18, and the electrode 3 a is kept in a levitating state by balancing the gravity of the electrode 3 a and the magnetic force of the electromagnet 4. When the balance is broken, feedback is applied by the position detection sensor, and the electrode 3a rises to a predetermined position.

19はエレクトロメータ11で検出したアナログデータをA/D変換後に演算する演算部である。演算部19では、エレクトロメータ11で読み取ったバックグラウンド測定側磁気浮上電極電離箱2a,抵抗測定側電離箱2bのファラデーケージ5のケージ電圧と、後述の入力部23から入力した各ファラデーケージ5の静電容量、測定時間間隔に基づいてこの測定時間における平均の電流値を計算する。   Reference numeral 19 denotes an arithmetic unit that calculates analog data detected by the electrometer 11 after A / D conversion. In the calculation unit 19, the cage voltage of the Faraday cage 5 of the background measurement side magnetic levitation electrode ionization chamber 2a and the resistance measurement side ionization chamber 2b read by the electrometer 11, and each Faraday cage 5 input from the input unit 23 described later. Based on the capacitance and the measurement time interval, an average current value in this measurement time is calculated.

20は超高抵抗測定装置のシステムを制御する制御部、20aは超高抵抗測定装置による測定を自動的に行うためにバックグラウンド測定側磁気浮上電極電離箱2a,抵抗測定側電離箱2bに対する抵抗測定の制御を行う測定管理手段、20bはアクチュエータ12を制御するための昇降制御手段、20cは演算部19で演算を行う演算処理手段、21は測定結果や入力用画面、エラー発生をディスプレーに表示する表示部である。   20 is a control unit that controls the system of the ultrahigh resistance measurement device, and 20a is a resistance to the background measurement side magnetic levitation electrode ionization chamber 2a and the resistance measurement side ionization chamber 2b in order to automatically perform measurement by the ultrahigh resistance measurement device. Measurement management means for controlling the measurement, 20b is an elevation control means for controlling the actuator 12, 20c is a calculation processing means for calculating in the calculation unit 19, 21 is a measurement result, an input screen, and an error occurrence is displayed on the display. It is a display part to do.

22はデータを記憶するとともに制御プログラムを記憶した記憶部、23はキーボード等の入力部、24はエレクトロメータ11によって電荷を検出するため所定の時間をカウントする計時手段、25はデータの総数をカウントするカウント手段である。なお、制御部20は中央処理装置(以下、CPU)に記憶部22に格納された制御プログラムを読み込んで機能実現手段として構成される。測定管理手段20a、昇降制御手段20b、演算処理手段20cは、いずれもこの機能実現手段として構成された機能手段である。また、演算部19は制御部20と共通のCPUで構成するのでもよい。   22 is a storage unit for storing data and a control program, 23 is an input unit such as a keyboard, 24 is a time counting means for counting a predetermined time in order to detect charges by the electrometer 11, and 25 is a total number of data Counting means. The control unit 20 is configured as a function realizing unit by reading a control program stored in the storage unit 22 into a central processing unit (hereinafter referred to as CPU). The measurement management means 20a, the elevation control means 20b, and the arithmetic processing means 20c are all functional means configured as this function realization means. Further, the calculation unit 19 may be configured by a CPU common to the control unit 20.

続いて、バックグラウンド測定側磁気浮上電極電離箱2a側の構成について図2に基づいて説明する。図2において、2cは電極3aの浮上制御のために開けられた光透過用の透明ガラス窓、4aは電磁石4を構成する磁性体に巻線するコイル、5aはファラデーケージ5の内部電極、5bはファラデーケージ5の外部電極、6は内部電極5aと外部電極5bとの間に設けられたコンデンサ、7a,7bは内部電極5aと外部電極5bとの間を絶縁する絶縁体、外部電極5bはバックグラウンド測定側磁気浮上電極電離箱2と同様に接地される。そして、図示はしないが、バックグラウンド測定側磁気浮上電極電離箱2aの前面には蓋が設けられ、電極3aを磁気浮上させるとき開閉する。また外部電極2aの下部とこれを載せている導電性の床部とは密着していて、計測中は、電離体積部分は密閉状態である。   Next, the configuration on the background measurement side magnetic levitation electrode ionization chamber 2a side will be described with reference to FIG. In FIG. 2, 2c is a transparent glass window for light transmission opened for the control of the floating of the electrode 3a, 4a is a coil wound around a magnetic body constituting the electromagnet 4, 5a is an internal electrode of the Faraday cage 5, 5b Is an external electrode of the Faraday cage 5, 6 is a capacitor provided between the internal electrode 5a and the external electrode 5b, 7a and 7b are insulators that insulate between the internal electrode 5a and the external electrode 5b, and the external electrode 5b is As with the background measurement side magnetic levitation electrode ionization chamber 2, it is grounded. Although not shown, a lid is provided on the front surface of the background measurement side magnetic levitation electrode ionization chamber 2a and opens and closes when the electrode 3a is magnetically levitated. Further, the lower portion of the external electrode 2a and the conductive floor portion on which the external electrode 2a is placed are in close contact with each other, and the ionization volume portion is in a sealed state during measurement.

ファラデーケージ5の静電容量は予めテスターで測定しておき、この値と測定時間間隔を入力部23から入力することによって、バックグラウンド測定側磁気浮上電極電離箱2a,抵抗測定側電離箱2bの各ファラデーケージで測定したケージ電圧を使って、ケージ電圧の時間当たり変化量と静電容量との積を計算する。これによって電離箱2a、2bの電荷及び電流を計算できる。詳細は後述する。   The capacitance of the Faraday cage 5 is measured in advance by a tester, and this value and the measurement time interval are input from the input unit 23, whereby the background measurement side magnetic levitation electrode ionization chamber 2a and the resistance measurement side ionization chamber 2b. Using the cage voltage measured at each Faraday cage, the product of the change in cage voltage per hour and the capacitance is calculated. Thereby, the charge and current of the ionization chambers 2a and 2b can be calculated. Details will be described later.

次に、抵抗測定側電離箱2bの構成について図3に基づいて説明する。図3において、13は高抵抗または超高抵抗の試料、14は試料13を測定のために装着できる試料ホルダー、15は電極3b,試料ホルダー14をこの順に吊り下げてすべて電気的に接続する細導線である。16は、細導線15の端部が接続されて電極3bと試料ホルダー14を吊り下げるとともに、抵抗測定側電離箱2bの上面に開けられた開口を塞ぐ支持キャップである。支持キャップ16は接地される。抵抗測定側電離箱2bの外部電極も接地されるので、支持キャップ16はこの外部電極に接続するのがよい。なお、ファラデーケージ5の内部電極5a、外部電極5b、コンデンサ6、絶縁体7a,7bについては、上述したバックグラウンド測定側磁気浮上電極電離箱2aで説明した通りであり、説明は省略する。そして、図示はしないが、抵抗測定側電離箱2bの前面には蓋が設けられ、試料ホルダー14に試料13をセットするときに開閉する。この電離箱2bもバックグラウンド測定側磁気浮上電極電離箱と同様に、計測中は、電離体積部分は密閉状態である。   Next, the structure of the resistance measurement side ionization chamber 2b will be described with reference to FIG. In FIG. 3, 13 is a high-resistance or ultra-high resistance sample, 14 is a sample holder to which the sample 13 can be mounted for measurement, 15 is a thin electrode that suspends the electrode 3b and the sample holder 14 in this order and electrically connects them. It is a conducting wire. Reference numeral 16 denotes a support cap that is connected to the end of the thin conducting wire 15 to suspend the electrode 3b and the sample holder 14 and closes an opening opened on the upper surface of the resistance measurement side ionization chamber 2b. The support cap 16 is grounded. Since the external electrode of the resistance measurement side ionization chamber 2b is also grounded, the support cap 16 is preferably connected to this external electrode. In addition, about the internal electrode 5a of the Faraday cage 5, the external electrode 5b, the capacitor | condenser 6, and the insulators 7a and 7b, it is as having demonstrated in the background measurement side magnetic levitation electrode ionization chamber 2a mentioned above, and description is abbreviate | omitted. Although not shown, a lid is provided on the front surface of the resistance measurement side ionization chamber 2 b and opens and closes when the sample 13 is set on the sample holder 14. Similarly to the background measurement side magnetic levitation electrode ionization chamber, this ionization chamber 2b is in a sealed state during the measurement.

この抵抗測定側電離箱2bの試料ホルダー14に試料13を装着すると、試料13と試料ホルダー14が電気的に接続され、さらに電極3bと試料ホルダー14間、支持キャップ16と試料ホルダー14間が、細導線15によって電気的に接続される。静電帯電器8で電極3bに帯電させると、帯電した電荷(正電荷)が帯電後、細導線15、試料ホルダー14、高抵抗または超高抵抗の試料13、支持キャップ16を介して移動を始め、微弱なリーク電流が流れ始める。同時に、帯電後に外部の放射線等によって抵抗測定側電離箱2b内の空気が電離し、電離した陰イオン(または陽イオン)が電極3bに収集されて帯電された電荷が減少する。これをファラデーケージ5で測定すると、リークされた電荷と電離で減少した電荷の分だけ低下したケージ電圧の変化が測定され、入力部23から入力されたファラデーケージ5の静電容量と測定時間間隔とを使って、ケージ電圧の時間当たり変化量と静電容量との積を計算する。これによって抵抗測定側電離箱2bにおいてはリーク電流とバックグラウンド電流を合計した電流が測定される。ここで、電極3aと電極3bの表面積は同じであり、電極3bには試料をセットするための試料ホルダー14と細導線15とが取り付けてあるが、試料ホルダー14と細導線15の表面積の合計は電極3bの表面積に比べて無視できるほど小さく、したがって電離箱2aと電離箱2bの電荷収集特性は同じとみなしてよい。   When the sample 13 is mounted on the sample holder 14 of the resistance measurement side ionization chamber 2b, the sample 13 and the sample holder 14 are electrically connected, and further, between the electrode 3b and the sample holder 14, and between the support cap 16 and the sample holder 14, It is electrically connected by the thin conducting wire 15. When the electrode 3 b is charged by the electrostatic charger 8, the charged charge (positive charge) is charged and then moved through the thin conductive wire 15, the sample holder 14, the high resistance or ultrahigh resistance sample 13, and the support cap 16. At first, a weak leak current starts to flow. At the same time, after charging, the air in the resistance measurement side ionization chamber 2b is ionized by external radiation or the like, and the ionized anions (or cations) are collected by the electrode 3b to reduce the charged charge. When this is measured by the Faraday cage 5, the change in the cage voltage is reduced by the amount of the leaked charge and the charge reduced by the ionization, and the capacitance of the Faraday cage 5 input from the input unit 23 and the measurement time interval are measured. Is used to calculate the product of the cage voltage variation per hour and the capacitance. As a result, in the resistance measurement side ionization chamber 2b, a current obtained by adding the leakage current and the background current is measured. Here, the electrode 3a and the electrode 3b have the same surface area, and the sample holder 14 and the thin wire 15 for setting the sample are attached to the electrode 3b, but the total surface area of the sample holder 14 and the thin wire 15 is the same. Is negligibly small compared to the surface area of the electrode 3b. Therefore, the charge collection characteristics of the ionization chamber 2a and the ionization chamber 2b may be regarded as the same.

続いて、超高抵抗測定装置による抵抗測定の手順について説明する。図4は本発明の抵抗測定のフローチャートである。測定を開始する前に次のような準備を行う。まず、バックグラウンド測定側磁気浮上電極電離箱2aの前面の蓋を開け、電極3aを磁気浮上させる(step1)。その後蓋を閉めて密閉する。一旦電極3aが磁気浮上したら、浮上ドライバ手段18の作用でこの電源を切るまで電極3aは浮上し続ける。次いで、抵抗測定側電離箱2b内の前面の蓋を開け、試料ホルダー14に試料13をセットし(step2)、蓋を閉じて密閉する。そして、バックグラウンド測定側磁気浮上電極電離箱2a,抵抗測定側電離箱2bの静電帯電器8を使って電極3a,3bに正電荷を帯電させる(step3)。   Subsequently, a procedure of resistance measurement by the ultrahigh resistance measurement device will be described. FIG. 4 is a flowchart of resistance measurement according to the present invention. Make the following preparations before starting measurement. First, the front cover of the background measurement side magnetic levitation electrode ionization chamber 2a is opened, and the electrode 3a is magnetically levitated (step 1). Then close the lid and seal. Once the electrode 3a is magnetically levitated, the electrode 3a continues to levitate until the power is turned off by the action of the levitating driver means 18. Next, the front lid in the resistance measurement side ionization chamber 2b is opened, the sample 13 is set in the sample holder 14 (step 2), and the lid is closed and sealed. Then, positive charges are charged to the electrodes 3a and 3b by using the electrostatic charger 8 of the background measurement side magnetic levitation electrode ionization chamber 2a and the resistance measurement side ionization chamber 2b (step 3).

次に、表示部21のディスプレーに表示された入力用画面上で、入力部23によって測定時間間隔、予め測定しておいたファラデーケージ5の静電容量、測定終了時間、その他の測定条件を入力すると(step4)、測定管理手段20aが抵抗測定を自動的に行うための制御を開始する。まず、測定時間がタイムアップした場合や強制終了等の測定終了の指示が入力されているか否かがチェックされ(step5)、測定終了の指示がない場合には、所定時間が経過したかチェックされる(step6)。所定時間が経過すると、制御部20がシャッター10を開け、昇降制御手段20bがアクチュエータ12を動作させてファラデーケージ5を上昇させ、エレクトロメータ11で電極3a,3bの電位(ケージ電圧)を読み取り(step7)、ファラデーケージ5を降下させ、同時にシャッター10が閉じられる。読み取ったデータは演算部19に送られ、読み取った電圧とファラデーケージ5の静電容量から電極3a,3b上の電荷が計算される。   Next, on the input screen displayed on the display of the display unit 21, the input unit 23 inputs the measurement time interval, the previously measured capacitance of the Faraday cage 5, the measurement end time, and other measurement conditions. Then (step 4), the measurement management means 20a starts control for automatically performing resistance measurement. First, it is checked whether or not a measurement end instruction such as forced end is input (step 5). If there is no measurement end instruction, it is checked whether a predetermined time has elapsed. (Step 6). When a predetermined time elapses, the control unit 20 opens the shutter 10, the elevation control means 20 b operates the actuator 12 to raise the Faraday cage 5, and reads the potentials (cage voltages) of the electrodes 3 a and 3 b with the electrometer 11 ( Step 7) The Faraday cage 5 is lowered and the shutter 10 is closed at the same time. The read data is sent to the calculation unit 19, and the charges on the electrodes 3 a and 3 b are calculated from the read voltage and the capacitance of the Faraday cage 5.

ここで、エレクトロメータ11で測定したケージ電圧をV、予め測定しておいたファラデーケージ5の静電容量をCとすると、電極3a,3b上の電荷Qは、Q=C×Vとして計算される。また、測定する時間間隔をΔtとし、このΔtの間に起こったケージ電圧の差をΔV、この間に減少した電荷の減少量をΔQとすると、ΔQ=C×ΔVとなり、この時間間隔Δtの間に流れた電流iはi=ΔQ/Δt、すなわちケージ電圧Vの時間当たり変化量ΔV/Δtを使って、i=C×ΔV/Δtとして計算される。 Here, if the cage voltage measured by the electrometer 11 is V K and the capacitance of the Faraday cage 5 measured in advance is C K , the charge Q on the electrodes 3a and 3b is Q = C K × V Calculated as K. Further, if the time interval to be measured is Δt, the difference in the cage voltage generated during this Δt is ΔV K , and the amount of charge decrease during this time is ΔQ, then ΔQ = C K × ΔV K , and this time interval The current i flowing during Δt is calculated as i = C K × ΔV K / Δt using i = ΔQ / Δt, that is, the change amount ΔV K / Δt per hour of the cage voltage V K.

電極3aの電流をi、電極3bの電流をiとし、それぞれのバックグラウンド電流をi b、iB b、試料13のリーク電流をiとすると、電極3aの電流は、i=i bであり、電極3bの電流は、i=iB b+iとなる。バックグラウンド測定側磁気浮上電極電離箱2aと抵抗測定側電離箱2bの配置は接近しており、バックグラウンド電流i bはバックグラウンド電流iB bと実質的に差はなくi b=iB bであるから、リーク電流iはi=i−iとして計算できる。そして、抵抗測定側電離箱2bの静電容量をCとし、電極3bと接地された外部電極との間にかかっている印加電圧(試料にかかっている電圧)をVとすると、Q=C×V=C×Vであるから、V=V×C/Cが得られる。試料13の抵抗値をRとすると、この抵抗値RはR=V/iとして計算される。このVは時間間隔Δtの前後のVの平均値(加算平均)を使うのでも、前後のうちの一方を使うのでもよい。しかし、測定開始時のVを使うのが計算を容易にする。 Assuming that the current of the electrode 3a is i A , the current of the electrode 3b is i B , the respective background currents are i A b and i B b , and the leakage current of the sample 13 is i, the current of the electrode 3a is i A = i A b , and the current of the electrode 3b is i B = i B b + i. Arrangement of background measurement side magnetic levitation electrode ionization chamber 2a and the resistance measurement side ionization chamber 2b are close, background current i A b is not substantially different and background current i B b i A b = i Since B b , the leakage current i can be calculated as i = i B −i A. When the capacitance of the resistance measurement side ionization chamber 2b is C B and the applied voltage (voltage applied to the sample) applied between the electrode 3b and the grounded external electrode is V B , Q = Since C K × V K = C B × V B , V B = V K × C K / C B is obtained. When the resistance value of the sample 13 is R, the resistance value R is calculated as R = V B / i. As this V B, an average value (addition average) of V B before and after the time interval Δt may be used, or one of the front and rear may be used. However, using V B at the start of measurement makes the calculation easier.

このようにstep7でケージ電圧Vを読み取ると、電極3a,3b上の電荷の減少量ΔQから、時間間隔Δtに電極3a,3bから流れた電流i,iBを計算し(step8)、両者の差から試料13を流れたリーク電流iを求め、抵抗測定側電離箱2bとファラデーケージ5の静電容量C、Cを使って、試料13の抵抗値Rを計算する(step9)。 With such read the cage voltage V K at step7, electrodes 3a, the reduction amount ΔQ of charge on 3b, the electrode 3a to the time interval Delta] t, the current i A flowing from 3b, calculate a i B (step8), The leakage current i flowing through the sample 13 is obtained from the difference between the two, and the resistance value R of the sample 13 is calculated using the resistance measurement side ionization chamber 2b and the capacitances C B and C K of the Faraday cage 5 (step 9). .

その後、step5に戻って、測定終了の指示があるまで測定を繰り返し、測定終了の指示があったとき、測定を終了する。   Thereafter, returning to step 5, the measurement is repeated until an instruction to end the measurement is given. When the instruction to end the measurement is given, the measurement is ended.

実施例1はテフロン(登録商標)系材料の電気抵抗を超高抵抗測定装置により測定した。測定は図3に示した試料ホルダーに径10mm、厚さ2mmの円盤状のテフロン(登録商標)板をセットし、静電帯電器8を使ってバックグラウンド測定側磁気浮上電極電離箱2aと、抵抗測定側電離箱2bに正電荷を帯電させ、電極3a,3b上の電荷の減少を長時間にわたって調べた。ここで二つの電離箱の電離体積は共に1リットルである。図5は本発明の実施例1の抵抗測定を行ったときの各電離箱での電流の変化図である。(1)はバックグラウンド測定側磁気浮上電極電離箱2aで測定されるバックグラウンド電流の測定値、(2)は抵抗測定側電離箱2bで測定されるバックグラウンド電流とリーク電流の合計を示すの測定値である。従って各時刻における(2)(1)間の電流値の差がテフロン(登録商標)板を通してのリーク電流である。上述したように、試料13に対する印加電圧はケージ電圧を測定することにより電極3bと外部電極間(アース電極)の電圧に換算できるので、この印加電圧とリーク電流から電気抵抗を求めることができる。なお、試料13は絶縁体であり、この抵抗値と比較すると、細導線15,試料ホルダー14の抵抗値は無視できる程小さい。図6は本発明の実施例1の抵抗測定を行ったときの印加電圧と電気抵抗の関係図である。   In Example 1, the electrical resistance of a Teflon (registered trademark) material was measured with an ultrahigh resistance measuring device. The measurement is performed by setting a disk-shaped Teflon (registered trademark) plate having a diameter of 10 mm and a thickness of 2 mm on the sample holder shown in FIG. 3, and using the electrostatic charger 8, the background measurement side magnetic levitation electrode ionization chamber 2 a, The resistance measurement side ionization chamber 2b was charged with a positive charge, and the decrease in charge on the electrodes 3a and 3b was examined over a long period of time. Here, the ionization volumes of the two ionization chambers are both 1 liter. FIG. 5 is a change diagram of current in each ionization chamber when the resistance measurement of Example 1 of the present invention is performed. (1) shows the measured value of the background current measured in the background measurement side magnetic levitation electrode ionization chamber 2a, and (2) shows the total of the background current and leakage current measured in the resistance measurement side ionization chamber 2b. It is a measured value. Accordingly, the difference in current value between (2) and (1) at each time is the leakage current through the Teflon (registered trademark) plate. As described above, since the voltage applied to the sample 13 can be converted into a voltage between the electrode 3b and the external electrode (ground electrode) by measuring the cage voltage, the electric resistance can be obtained from the applied voltage and the leakage current. Note that the sample 13 is an insulator, and the resistance values of the thin wire 15 and the sample holder 14 are negligibly small compared to this resistance value. FIG. 6 is a relationship diagram between applied voltage and electrical resistance when resistance measurement is performed in Example 1 of the present invention.

図6によれば、印加電圧と電気抵抗の関係には段階状の相関がみられる。図6において、階段状を示す各領域をそれぞれ(a),(b),(c),(d)とすると、(a)の領域は、印加電圧300V付近を中心に、電気抵抗は8.0×1016Ωを示している。この数値と試料の形状(直径10mm、厚さ2mm)から体積抵抗率(比抵抗値)を計算すれば3.1×1017Ω・cmである。同様に(b)の領域は、250V付近を中心に、電気抵抗は1.5×1017Ωであり、体積抵抗率は6.0×1017Ω・cmとなる。また、(c)の領域は210V付近を中心に、電気抵抗は8×1017Ωであり、体積抵抗率は1.1×1018Ω・cmとなる。これに対し、(d)の領域では印加電圧が小さくなるとともに、電気抵抗は1018Ωのオーダーでバラツキは大きくなっている。 According to FIG. 6, there is a stepwise correlation between the applied voltage and the electrical resistance. In FIG. 6, assuming that each region showing a staircase shape is (a), (b), (c), (d), the region (a) has an electric resistance of 8.0 × centered around an applied voltage of 300V. 10 16 Ω is shown. The volume resistivity (specific resistance value) calculated from this value and the sample shape (diameter 10 mm, thickness 2 mm) is 3.1 × 10 17 Ω · cm. Similarly, the region (b) has an electric resistance of 1.5 × 10 17 Ω and a volume resistivity of 6.0 × 10 17 Ω · cm, centering around 250V. In the region (c), the electric resistance is 8 × 10 17 Ω and the volume resistivity is 1.1 × 10 18 Ω · cm, centering around 210V. On the other hand, in the region (d), the applied voltage decreases and the electrical resistance increases on the order of 10 18 Ω.

絶縁体のリーク電流は表面リークと体積リークが存在するため、測定によって得られた体積抵抗率の数値だけでこの超高抵抗測定装置の評価をするのはやや早計であるが、従来、テフロン(登録商標)の体積抵抗率は1018Ω・cmを越える程度の値であるとの報告がなされていることを考慮すると、実施例1の結果は、電気抵抗と印加電圧との関係を明らかにするととともに、オーダー的にもほぼ合致しており、本発明の超高抵抗測定装置による測定データの信頼性は十分評価できると考えられる。 Since there are surface leakage and volume leakage in the insulator leakage current, it is somewhat early to evaluate this ultra-high resistance measuring device only with the volume resistivity value obtained by measurement. Considering that the volume resistivity of the registered trademark is reported to be a value exceeding 10 18 Ω · cm, the result of Example 1 clearly shows the relationship between the electrical resistance and the applied voltage. At the same time, the orders are almost matched, and it is considered that the reliability of the measurement data obtained by the ultrahigh resistance measuring device of the present invention can be sufficiently evaluated.

実施例2はテフロン(登録商標)糸を複数本束ねた試料について電気抵抗を測定した。測定は図3に示す細導線と試料ホルダーの13、14、15部分を、1本の径がおよそ30μmのテフロン(登録商標)糸を複数本束ねたものに取り替えて行った。測定試料として(a)長さ20mm、径30μm、数10本、(b)長さ20mm、径30μm、数8本、(c)長さ20mm、径30μm、数6本、の3種類を用意した。   In Example 2, the electrical resistance of a sample in which a plurality of Teflon (registered trademark) yarns were bundled was measured. The measurement was performed by replacing the thin wire and the sample holders 13, 14, and 15 shown in FIG. 3 with a bundle of a plurality of Teflon (registered trademark) yarns each having a diameter of approximately 30 μm. Three types of measurement samples are available: (a) 20 mm long, 30 μm in diameter, several tens, (b) 20 mm long, 30 μm in diameter, several eight, (c) 20 mm long, 30 μm in diameter, several six did.

図7は本発明の実施例2の抵抗測定を行ったときの各電離箱での電流の変化図である。図7の(a)(b)(c)は時間経過における上述の(a)(b)(c)の各試料を使用した時間帯である。   FIG. 7 is a change diagram of current in each ionization chamber when the resistance measurement of Example 2 of the present invention is performed. (A), (b), and (c) of FIG. 7 are time zones in which the above-described samples (a), (b), and (c) are used over time.

測定は2003年4月7日11時から4月8日11時にかけて、福岡県福岡市東区で行ったものである。図7に示す(1)は図3のバックグラウンド測定側磁気浮上電極電離箱2aで計測されたバックグランド電流を示し、(2)は、(a)(b)(c)の時間帯においては抵抗測定側電離箱2bで計測されたバックグラウンド電流とリーク電流の和を示し、(a)(b)(c)以外の時間帯では試料がセットされていないバックグランド電流を示している。バックグラウンド測定側磁気浮上電極電離箱2aと抵抗測定側電離箱2bはいずれも体積1リットルに構成されている。(1)と(2)の電流値の差が、各テフロン(登録商標)糸によるリーク電流となる。   The measurement was carried out in Higashi-ku, Fukuoka City, Fukuoka Prefecture, from 11:00 on April 7, 2003 to 11:00 on April 8. (1) shown in FIG. 7 shows the background current measured by the background measurement side magnetic levitation electrode ionization chamber 2a of FIG. 3, and (2) shows the time zone of (a), (b) and (c). The sum of the background current and leakage current measured by the resistance measurement side ionization chamber 2b is shown, and the background current in which the sample is not set is shown in the time zone other than (a), (b) and (c). The background measurement side magnetic levitation electrode ionization chamber 2a and the resistance measurement side ionization chamber 2b are both configured to have a volume of 1 liter. The difference between the current values of (1) and (2) is the leakage current due to each Teflon (registered trademark) yarn.

図7から分かるように(1)の時間変動と(2)の時間変動の変動パターンはほぼ同期しており、形態はほぼ一致している。これは、(a)(b)(c)の時間帯においてはバックグラウンド電流に一定量のリーク電流がそのまま上乗せされていることを示している。また、(a)(b)(c)の時間帯以外のところは、試料をセットしていない状態で測定したものであるが、(1)(2)がほぼ同期しており、おおむね2.2×10−17Aの許容範囲内にある。この最小計測可能電離電流の2.2×10−17Aについては後述する。 As can be seen from FIG. 7, the variation pattern of the time variation (1) and the variation pattern of the time variation (2) are almost synchronized, and the forms are almost the same. This indicates that a certain amount of leakage current is directly added to the background current in the time periods (a), (b), and (c). In addition, (a), (b), and (c) other than the time zone were measured with the sample not set, but (1) and (2) are almost synchronized, and are approximately 2.2 ×. It is within the allowable range of 10 −17 A. This minimum measurable ionization current of 2.2 × 10 −17 A will be described later.

図8は、上述した図7(a)のテフロン(登録商標)糸10本を使い、本発明の実施例2の抵抗測定を行ったときの電圧−電気抵抗図である。この測定時間の間の試料に加わった印加電圧は(電極3bと接地された外部電極との電位差)630Vから615Vであった。電圧によって測定した電気抵抗値にはバラツキがみられるが、電気抵抗の平均は3.0×1018Ωである。単純には評価できないが、テフロン(登録商標)糸は10本であるから、平均的にはテフロン(登録商標)糸1本当たり電気抵抗は3×1019Ωとなる。 FIG. 8 is a voltage-electric resistance diagram when the resistance measurement of Example 2 of the present invention is performed using the ten Teflon (registered trademark) yarns of FIG. 7A described above. The applied voltage applied to the sample during this measurement time (potential difference between the electrode 3b and the grounded external electrode) was 630V to 615V. The electric resistance measured by the voltage varies, but the average electric resistance is 3.0 × 10 18 Ω. Although it cannot be simply evaluated, since there are ten Teflon (registered trademark) yarns, the electrical resistance per Teflon (registered trademark) yarn is 3 × 10 19 Ω on average.

ここで、本発明の抵抗測定装置で測定可能な最大の電気抵抗を推定する。バックグラウンド測定側磁気浮上電極電離箱を2台並べてバックグラウンド電流だけの並列計測を行った場合、2台の計測値の差はバックグラウンド電流値の1.6%を超えないことがこれまでの実験例から判明している。言い換えると、2台の計測値で有意な差として判定できる計測可能な最小電流値はバックグラウンド電流値の1.6%以上ということになる。本発明の超高抵抗測定装置では、抵抗測定側電離箱2bにおいて、電荷収集電極は試料ホルダー14、細導線15に接続されているため、バックグラウンド測定側磁気浮上電極電離箱2aを2台並べた場合に比べて、有意な差として判定できる計測可能な最小電流値は1.6%より大きくなることも考えられる。従って、さまざまな計測条件を考慮し、統計的に測定不能となる値が通常この2倍を越えることはないから、1.6%の2倍の3.2%を本発明の超高抵抗測定装置で測定可能な最小計測可能電流値とみなせば、この装置の最小計測可能電流は平均的バックグラウンド電流値7×10−16Aの3.2%である2.2×10−17Aということになる。従って、例えば印加電圧が600Vであったならば計測可能な最大電気抵抗は2.7×1019Ωとなる。 Here, the maximum electric resistance measurable with the resistance measuring apparatus of this invention is estimated. Example of previous experiments that the difference between the measured values of two units does not exceed 1.6% of the background current value when two background magnetic side electrode ionization chambers are arranged side by side and parallel measurement of only the background current is performed. It turns out. In other words, the minimum measurable current value that can be determined as a significant difference between the two measured values is 1.6% or more of the background current value. In the ultrahigh resistance measurement device of the present invention, in the resistance measurement side ionization chamber 2b, since the charge collection electrode is connected to the sample holder 14 and the thin wire 15, two background measurement side magnetic levitation electrode ionization chambers 2a are arranged side by side. The minimum measurable current value that can be determined as a significant difference may be larger than 1.6%. Therefore, considering various measurement conditions, the value that is not statistically measurable usually does not exceed twice this, so 3.2%, which is twice 1.6%, can be measured with the ultrahigh resistance measuring device of the present invention. The minimum measurable current value is 2.2 × 10 −17 A, which is 3.2% of the average background current value of 7 × 10 −16 A. Accordingly, for example, if the applied voltage is 600 V, the maximum electric resistance that can be measured is 2.7 × 10 19 Ω.

さらに、一般に電離箱は電離体積の増加に比例して感度は良くなることが知られているが、実施例1,2で使用した2台の電離箱の電離体積は共に1リットルであるので、体積を10倍の10リットルに増やす等の改良を行うことにより、1020Ωの電気抵抗を測定することが可能なことが分かる。なお、放射性ガス等を測定する電離箱の体積には10リットルを超えるものが多く、電離箱としてはこのサイズの電離箱の方がむしろ一般的であって、このような感度の向上はきわめて容易に行える。 Furthermore, it is generally known that the sensitivity of the ionization chamber increases in proportion to the increase in the ionization volume. However, since the ionization volumes of the two ionization chambers used in Examples 1 and 2 are both 1 liter, It can be seen that an electrical resistance of 10 20 Ω can be measured by making improvements such as increasing the volume by 10 times to 10 liters. Note that the volume of ionization chambers for measuring radioactive gas and the like often exceeds 10 liters, and ionization chambers of this size are more common as ionization chambers, and it is extremely easy to improve such sensitivity. Can be done.

本発明の抵抗測定装置と抵抗測定方法は、1015Ω〜1020Ωの絶縁体、とくに1018Ω〜1020Ωの絶縁体の電気抵抗まで測定する場合に適用できる。 The resistance measuring apparatus and the resistance measuring method of the present invention can be applied to the case of measuring the electrical resistance of an insulator of 10 15 Ω to 10 20 Ω, particularly an insulator of 10 18 Ω to 10 20 Ω.

本発明の実施の形態における超高抵抗測定装置の構成図The block diagram of the ultrahigh resistance measuring apparatus in embodiment of this invention 本発明の実施の形態における超高抵抗測定装置のバックグラウンド測定側磁気浮上電極電離箱の説明図Explanatory drawing of the background measurement side magnetic levitation electrode ionization chamber of the ultrahigh resistance measurement device in the embodiment of the present invention 本発明の実施の形態における超高抵抗測定装置の抵抗測定側電離箱の説明図Explanatory drawing of the resistance measurement side ionization chamber of the ultrahigh resistance measurement device in the embodiment of the present invention 本発明の実施の形態における抵抗測定のフローチャートFlow chart of resistance measurement in the embodiment of the present invention 本発明の実施例1の抵抗測定を行ったときの各電離箱での電流の変化図Variation diagram of current in each ionization chamber when performing resistance measurement of Example 1 of the present invention 本発明の実施例1の抵抗測定を行ったときの印加電圧と電気抵抗の関係図Relationship diagram between applied voltage and electrical resistance when resistance measurement of Example 1 of the present invention is performed 本発明の実施例2の抵抗測定を行ったときの各電離箱での電流の変化図FIG. 6 is a diagram showing changes in current in each ionization chamber when resistance measurement is performed in Example 2 of the present invention. 本発明の実施例2の抵抗測定を行ったときの電圧−電気抵抗図Voltage-electric resistance diagram when resistance measurement of Example 2 of the present invention was performed

符号の説明Explanation of symbols

1a バックグラウンド測定側磁気浮上電極電離箱外ケース
1b 抵抗測定側電離箱外ケース
2a バックグラウンド測定側磁気浮上電極電離箱
2b 抵抗測定側電離箱
2c 透明ガラス窓
3a,3b 電極
4 電磁石
4a コイル
5 ファラデーケージ
5a 内部電極
5b 外部電極
6 コンデンサ
7a,7b 絶縁体
8 静電帯電器
9a 発光素子
9b 受光素子
10 シャッター
11 エレクトロメータ
12 アクチュエータ
13 試料
14 試料ホルダー
15 細導線
16 支持キャップ
18 浮上ドライバ手段
19 演算部
20 制御部
20a 測定管理手段
20b 昇降制御手段
20c 演算処理手段
21 表示部
22 記憶部
23 入力部
24 計時手段
25 カウント手段
DESCRIPTION OF SYMBOLS 1a Background measurement side magnetic levitation electrode ionization chamber outer case 1b Resistance measurement side ionization chamber outer case 2a Background measurement side magnetic levitation electrode ionization chamber 2b Resistance measurement side ionization chamber 2c Transparent glass window 3a, 3b Electrode 4 Electromagnet 4a Coil 5 Faraday Cage 5a Internal electrode 5b External electrode 6 Capacitors 7a, 7b Insulator 8 Electrostatic charger 9a Light emitting element 9b Light receiving element 10 Shutter 11 Electrometer 12 Actuator 13 Sample 14 Sample holder 15 Thin wire 16 Support cap 18 Floating driver means 19 Calculation unit DESCRIPTION OF SYMBOLS 20 Control part 20a Measurement management means 20b Elevation control means 20c Arithmetic processing means 21 Display part 22 Memory | storage part 23 Input part 24 Time measuring means 25 Count means

Claims (4)

電離性ガスを収容した容器内に設けられ、試料をセットすることにより電気的に接続される第1内部電極と第1外部電極とを備え、測定時に所定量帯電された電荷がバックグラウンド放射線量と前記試料の電気抵抗に応じて減少する第1内部電極の電位を第1ファラデーケージで測定する抵抗測定側電離箱と、
電離性ガスを収容した容器内に設けられて磁気浮上する第2内部電極と該容器内に設けられた第2外部電極とを備え、測定時に所定量帯電された電荷がバックグラウンド放射線量に応じて減少する第2電極の電位を第2ファラデーケージによって測定するバックグラウンド測定側磁気浮上電極電離箱と、
前記第1内部電極の電位の時間当たり変化量に基づいて第1の電流値を計算するとともに、前記第2内部電極の電位の時間当たり変化量に基づいて第2の電流値を計算し、該第1及び第2の電流値の差を求める演算部と、
前記第2内部電極を磁気浮上させるとともに各ファラデーケージの制御を行う制御部を備えた超高抵抗測定装置であって、
前記演算部が、前記試料に印加された電圧と、前記第1及び前記第2の電流値の差に基づいて、前記測定試料の電気抵抗をもとめることを特徴とする超高抵抗測定装置。
A first internal electrode and a first external electrode, which are provided in a container containing an ionizing gas and are electrically connected by setting a sample, are charged with a predetermined amount of charge during the measurement. And a resistance measurement side ionization chamber for measuring the potential of the first internal electrode, which decreases according to the electrical resistance of the sample, with a first Faraday cage,
A second internal electrode provided in a container containing an ionizing gas and magnetically levitated and a second external electrode provided in the container are provided, and a charge charged by a predetermined amount at the time of measurement depends on a background radiation dose A background measurement side magnetically levitated electrode ionization chamber for measuring the potential of the second electrode that decreases by the second Faraday cage;
Calculating a first current value based on a change amount of the potential of the first internal electrode per time, and calculating a second current value based on a change amount of the potential of the second internal electrode per time; An arithmetic unit for obtaining a difference between the first and second current values;
An ultra-high resistance measuring device including a control unit for magnetically levitating the second internal electrode and controlling each Faraday cage,
The ultrahigh resistance measurement apparatus, wherein the calculation unit obtains an electric resistance of the measurement sample based on a voltage applied to the sample and a difference between the first and second current values.
試料ホルダーが前記第1内部電極と前記第1外部電極に電気的に接続され、該試料ホルダーに前記試料をセットして抵抗測定を行うことを特徴とする請求項1記載の超高抵抗測定装置。 2. The ultrahigh resistance measuring device according to claim 1, wherein a sample holder is electrically connected to the first internal electrode and the first external electrode, and the sample is set in the sample holder to perform resistance measurement. . 外部電極が接地されたことを特徴とする請求項1または2に記載の超高抵抗測定装置。 The ultrahigh resistance measuring device according to claim 1 or 2, wherein the external electrode is grounded. それぞれ電離性ガスを収容した抵抗測定側電離箱とバックグラウンド測定側磁気浮上電極電離箱とを接近して設け、前記抵抗測定側電離箱では内部電極と外部電極を試料によって電気的に接続し、前記バックグラウンド測定側磁気浮上電極電離箱では内部電極を磁気浮上させ、各内部電極を所定量帯電させてからバックグラウンド放射線の作用により電離性ガスを電離させ、ファラデーケージによって各内部電極の電位を測定し、各内部電極の電位の時間当たり変化量を基に電流値を計算して双方の差を計算し、前記試料に印加された電圧を該差で割ることにより前記試料の電気抵抗を測定することを特徴とする超高抵抗測定方法。 Each of the resistance measurement side ionization chamber containing the ionizing gas and the background measurement side magnetic levitation electrode ionization chamber are provided close to each other, and in the resistance measurement side ionization chamber, the internal electrode and the external electrode are electrically connected by the sample, In the background measurement side magnetic levitation electrode ionization chamber, internal electrodes are magnetically levitated, each internal electrode is charged by a predetermined amount, ionized gas is ionized by the action of background radiation, and the potential of each internal electrode is set by a Faraday cage. Measure the electrical resistance of the sample by calculating the current value based on the amount of change in potential of each internal electrode per hour, calculating the difference between the two, and dividing the voltage applied to the sample by the difference An ultra-high resistance measurement method characterized by:
JP2003344571A 2003-10-02 2003-10-02 Ultra high resistance measuring device and ultra high resistance measuring method Expired - Fee Related JP3817537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003344571A JP3817537B2 (en) 2003-10-02 2003-10-02 Ultra high resistance measuring device and ultra high resistance measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003344571A JP3817537B2 (en) 2003-10-02 2003-10-02 Ultra high resistance measuring device and ultra high resistance measuring method

Publications (2)

Publication Number Publication Date
JP2005114356A true JP2005114356A (en) 2005-04-28
JP3817537B2 JP3817537B2 (en) 2006-09-06

Family

ID=34538157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003344571A Expired - Fee Related JP3817537B2 (en) 2003-10-02 2003-10-02 Ultra high resistance measuring device and ultra high resistance measuring method

Country Status (1)

Country Link
JP (1) JP3817537B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013054782A1 (en) * 2011-10-12 2013-04-18 シャープ株式会社 Resistance measuring device, connection resistance measuring method
JP2013181805A (en) * 2012-03-01 2013-09-12 Toshiro Kawaguchi Plant ion charge measuring instrument and plant ion charge measurement method
JP2013195168A (en) * 2012-03-16 2013-09-30 Hitachi Kokusai Denki Engineering:Kk Resistivity measurement apparatus
CN105158574A (en) * 2015-10-13 2015-12-16 哈尔滨工业大学 Inverter direct-current spot-welding dynamic resistance real-time measuring device and measuring method
CN109001535A (en) * 2018-08-10 2018-12-14 惠州市盛联电子有限公司 A kind of DC resistance meter
CN112083214A (en) * 2020-08-28 2020-12-15 广东电网有限责任公司广州供电局 Current measuring device for pilot discharge process
CN117607546A (en) * 2024-01-24 2024-02-27 合肥巨阙电子有限公司 Multi-channel high-speed high-resistance measurement system and measurement method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013054782A1 (en) * 2011-10-12 2013-04-18 シャープ株式会社 Resistance measuring device, connection resistance measuring method
JP2013181805A (en) * 2012-03-01 2013-09-12 Toshiro Kawaguchi Plant ion charge measuring instrument and plant ion charge measurement method
JP2013195168A (en) * 2012-03-16 2013-09-30 Hitachi Kokusai Denki Engineering:Kk Resistivity measurement apparatus
CN105158574A (en) * 2015-10-13 2015-12-16 哈尔滨工业大学 Inverter direct-current spot-welding dynamic resistance real-time measuring device and measuring method
CN109001535A (en) * 2018-08-10 2018-12-14 惠州市盛联电子有限公司 A kind of DC resistance meter
CN112083214A (en) * 2020-08-28 2020-12-15 广东电网有限责任公司广州供电局 Current measuring device for pilot discharge process
CN112083214B (en) * 2020-08-28 2023-05-16 广东电网有限责任公司广州供电局 Current measuring device for pilot discharge process
CN117607546A (en) * 2024-01-24 2024-02-27 合肥巨阙电子有限公司 Multi-channel high-speed high-resistance measurement system and measurement method
CN117607546B (en) * 2024-01-24 2024-04-16 合肥巨阙电子有限公司 Multi-channel high-speed high-resistance measurement system and measurement method

Also Published As

Publication number Publication date
JP3817537B2 (en) 2006-09-06

Similar Documents

Publication Publication Date Title
US9588180B2 (en) Architecture and method to determine leakage impedance and leakage voltage node
JP3817537B2 (en) Ultra high resistance measuring device and ultra high resistance measuring method
JP4653158B2 (en) Electrode structure for LiMCA
US6717413B1 (en) Contact potential difference ionization detector
KR102483516B1 (en) Radon detector using pulsified alpha particle
Chubb Instrumentation and standards for testing static control materials
JP5510629B2 (en) Charge transfer rate measuring device and method, surface resistance measuring device and method, and program for them
KR20000017230A (en) Microcapacity measuring system and probing system
US7161352B2 (en) Beam current measuring device and apparatus using the same
US5602468A (en) Method and apparatus for ion chamber identification
Buchman et al. Charge measurement
EP0395945B1 (en) Ionization chamber
KR101193318B1 (en) ELECTRODE CONFIGURATION FOR LMCiA
JP3061798B1 (en) Radiation measurement device
Isern et al. Characterization of a floating-gate radiation sensor for X-ray dose detection
JP2004354216A (en) Radiation measuring device
JP2002148297A (en) Method and instrument for measuring induction potential
US2802113A (en) Apparatus for measuring exposure to radiant energy
JPH04238281A (en) Electrochemical reaction measuring device
Colvin A Simple Monitor for Tritium Contamination on Surfaces
Shambon Ionization chambers for environmental radiation measurements
Mester et al. Saps Buchman
SU1160334A1 (en) Device for analysing electrostatic properties of non-metal materials
Horenstein et al. Measurement of electrostatic fields, voltages, and charges
De Valence Instability of photomultipliers

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060612

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140616

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees