JPH04238281A - Electrochemical reaction measuring device - Google Patents

Electrochemical reaction measuring device

Info

Publication number
JPH04238281A
JPH04238281A JP524991A JP524991A JPH04238281A JP H04238281 A JPH04238281 A JP H04238281A JP 524991 A JP524991 A JP 524991A JP 524991 A JP524991 A JP 524991A JP H04238281 A JPH04238281 A JP H04238281A
Authority
JP
Japan
Prior art keywords
measuring device
electrochemical reaction
magnetic field
reaction
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP524991A
Other languages
Japanese (ja)
Inventor
Manabu Omi
学 大海
Nobuhiro Shimizu
信宏 清水
Shunji Watanabe
俊二 渡邊
Tatsuaki Ataka
龍明 安宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP524991A priority Critical patent/JPH04238281A/en
Publication of JPH04238281A publication Critical patent/JPH04238281A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

PURPOSE:To measure the current, which really flows in a part where an electrochemical reaction is generated, at high sensitivity by using a measuring device with a high sensitivity magnetic sensor which uses Josephson effect. CONSTITUTION:A reaction cell 1 holds the solution 2, and a magnetic field or inclination of the magnetic field is measured by a measuring device 4, which is located in a dewar 3 made of the chemically non-active material, with Josephson effect. The dewar 3 is soaked in the solution 2. When an electrochemical reaction is generated in the surface of a sample 5, the material having an electric charge is moved to generate a magnetic field in the surroundings. This magnetic field is measured by a measuring device 4, and this measurement data is analyzed to know that what degree of electrochemical reaction is generated in what part of the surface of the sample 5.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は例えば電池、化学センサ
、めっき、防食など電気化学分野において利用される電
気化学反応測定装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrochemical reaction measuring device used in electrochemical fields such as batteries, chemical sensors, plating, and anticorrosion.

【0002】0002

【従来の技術】従来、電気化学反応を測定する方法とし
ては、例えばめっきの場合には電極間に流している電流
を測定し、その値から換算して電着しつつある皮膜の総
量を推定している。また、腐食の場合には腐食電位に近
い電位における分極曲線の直線部分の勾配から腐食速度
を求めたり、腐食した部分から発生する電気的ノイズを
測定する事により、腐食を測定している。
[Background Art] Conventionally, in the case of plating, for example, the method of measuring electrochemical reactions is to measure the current flowing between electrodes, and use that value to estimate the total amount of the film being electrodeposited. are doing. In the case of corrosion, corrosion is measured by determining the corrosion rate from the slope of the linear portion of the polarization curve at a potential close to the corrosion potential, or by measuring the electrical noise generated from the corroded area.

【0003】0003

【発明が解決しようとする課題】電極間に流している電
流を測定すると、実際に電着反応が起きている表面での
電流を測定しているわけではないため正確な測定にはな
っていないし、電気的ノイズを測定した場合でも測定さ
れたノイズの発生場所を特定する事は不可能であり、特
定の位置に特定の電気化学反応が起きている事を測定す
る事はできなかった。
[Problem to be solved by the invention] Measuring the current flowing between the electrodes is not an accurate measurement because it does not measure the current at the surface where the electrodeposition reaction is actually occurring. Even when electrical noise is measured, it is impossible to specify the location where the measured noise is generated, and it is not possible to determine that a specific electrochemical reaction is occurring at a specific location.

【0004】0004

【課題を解決するための手段】本発明は上記のような課
題を解決するために、電気化学反応を起こす溶液を保持
する反応セルと、前記電気化学反応を測定する測定装置
から構成される電気化学反応測定装置において、前記測
定装置をジョセフソン効果を利用した高感度磁気センサ
ーによる構成とした。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the present invention provides an electrical system comprising a reaction cell that holds a solution that causes an electrochemical reaction, and a measuring device that measures the electrochemical reaction. In the chemical reaction measuring device, the measuring device is configured with a highly sensitive magnetic sensor that utilizes the Josephson effect.

【0005】[0005]

【作用】上記のようにジョセフソン効果を利用した高感
度磁気センサーによる測定装置を用いる事により、電気
化学反応が起きている場所で実際に流れている電流を高
感度に測定する事が可能である。
[Operation] As mentioned above, by using a measuring device with a highly sensitive magnetic sensor that utilizes the Josephson effect, it is possible to measure with high sensitivity the current actually flowing in a place where an electrochemical reaction is occurring. be.

【0006】[0006]

【実施例】以下に本発明の実施例について図面を参照し
て説明する。図1は本発明の一実施例を示す電気化学反
応測定装置である。反応セル1は溶液2を保持している
が、化学的に不活性な材料で作られたデュワー3内に設
置された測定装置4がジョセフソン効果を利用して磁場
あるいは磁場勾配を測定する。デュワー3は溶液2の中
に浸されている。試料5の表面で電気化学反応が起きる
と電荷を持つ物質が移動する事により、周囲に磁場を発
生させる。この磁場を測定装置4が測定し、その測定デ
ータを解析する事によって試料5の表面上のどの場所に
どの程度の電気化学反応が起きているかを知る事ができ
る。すべての実施例において測定装置4は磁場を測定す
るマグネットメータである事もできるし、また磁場勾配
を測定するグラジオメータである事も可能である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of the present invention will be described below with reference to the drawings. FIG. 1 shows an electrochemical reaction measuring device showing one embodiment of the present invention. While the reaction cell 1 holds a solution 2, a measuring device 4 installed in a dewar 3 made of chemically inert material measures the magnetic field or magnetic field gradient using the Josephson effect. Dewar 3 is immersed in solution 2. When an electrochemical reaction occurs on the surface of the sample 5, charged substances move, thereby generating a magnetic field around it. The measuring device 4 measures this magnetic field, and by analyzing the measured data, it is possible to know where and how much electrochemical reaction is occurring on the surface of the sample 5. In all embodiments, the measuring device 4 can be a magnetometer, which measures the magnetic field, or a gradiometer, which measures the magnetic field gradient.

【0007】図2に本発明による第2の実施例を示す。 各部分の構成は図1と同じだが、デュワー3及び測定装
置4が反応セル1の外部に設置されている。電気化学反
応が作る磁場は反応が起こっている場所からすべての方
向に広がって分布するため、磁場の測定は反応セル1の
外部に設置しても問題なく行える。図3に本発明による
第3の実施例を示す。反応セル1の中に溶液2が保持さ
れ、溶液2の中にアノード6とカソード7が浸されてい
る。アノード6とカソード7の近傍には測定装置4と測
定装置9が設置され、アノード6の表面での電気化学反
応を測定装置4が測定し、カソード7の表面での電気化
学反応を測定装置9が測定する。アノード6とカソード
7は十分に離れているため、アノード6の表面での電気
化学反応が測定装置9に与える影響、及びカソード7の
表面での電気化学反応が測定装置4に与える影響は無視
できる。めっきプロセスの場合、カソード7の表面での
電気化学反応の位置と速度を測定する事により、カソー
ド7における電着量の分布を得ることができる。それに
応じてアノード6のカソード7に対する相対的位置を変
化させ、望ましい膜厚分布を持っためっきを行うことが
できる。
FIG. 2 shows a second embodiment of the present invention. The configuration of each part is the same as in FIG. 1, but the dewar 3 and measuring device 4 are installed outside the reaction cell 1. Since the magnetic field created by the electrochemical reaction spreads and is distributed in all directions from the location where the reaction is occurring, the magnetic field can be measured even if it is installed outside the reaction cell 1 without any problem. FIG. 3 shows a third embodiment of the present invention. A solution 2 is held in the reaction cell 1, and an anode 6 and a cathode 7 are immersed in the solution 2. A measuring device 4 and a measuring device 9 are installed near the anode 6 and the cathode 7, and the measuring device 4 measures the electrochemical reaction on the surface of the anode 6, and the measuring device 9 measures the electrochemical reaction on the surface of the cathode 7. is measured. Since the anode 6 and cathode 7 are sufficiently far apart, the effect of the electrochemical reaction on the surface of the anode 6 on the measuring device 9 and the effect of the electrochemical reaction on the surface of the cathode 7 on the measuring device 4 can be ignored. . In the case of a plating process, the distribution of the amount of electrodeposition on the cathode 7 can be obtained by measuring the position and speed of the electrochemical reaction on the surface of the cathode 7. By changing the relative position of the anode 6 to the cathode 7 accordingly, plating with a desired film thickness distribution can be performed.

【0008】図4に本発明による第4の実施例を示す。 測定装置4と測定装置9が反応セル1の外部に設置され
ている点以外は第3の実施例と同じである。この実施例
においては第2の実施例と同様デュワー3と反応溶液2
の反応を考慮する必要がない。
FIG. 4 shows a fourth embodiment of the present invention. This embodiment is the same as the third embodiment except that the measuring device 4 and the measuring device 9 are installed outside the reaction cell 1. In this example, as in the second example, a dewar 3 and a reaction solution 2 are used.
There is no need to consider the reaction of

【0009】[0009]

【発明の効果】本発明によるジョセフソン効果を利用し
た高感度磁気センサー、例えば平面型マグネットメータ
あるいは平面型グラジオメータから構成された電気化学
反応測定装置により、めっき等の電気化学反応の発生場
所や反応量を高感度かつ精密に測定することが可能とな
る。
[Effects of the Invention] The electrochemical reaction measuring device composed of a high-sensitivity magnetic sensor that utilizes the Josephson effect, such as a flat magnet meter or a flat gradiometer, according to the present invention, can detect the location where electrochemical reactions such as plating occur. It becomes possible to measure the reaction amount with high sensitivity and precision.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明による電気化学反応測定装置を示す図で
ある。
FIG. 1 is a diagram showing an electrochemical reaction measuring device according to the present invention.

【図2】本発明の第2の実施例による電気化学反応測定
装置を示す図である。
FIG. 2 is a diagram showing an electrochemical reaction measuring device according to a second embodiment of the present invention.

【図3】本発明の第3の実施例による電気化学反応測定
装置を示す図である。
FIG. 3 is a diagram showing an electrochemical reaction measuring device according to a third embodiment of the present invention.

【図4】本発明の第4の実施例による電気化学反応測定
装置を示す図である。
FIG. 4 is a diagram showing an electrochemical reaction measuring device according to a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1  反応セル 2  溶液 3  デュワー 4  測定装置 5  試料 6  アノード 7  カソード 8  デュワー 9  測定装置 1 Reaction cell 2 Solution 3 Dewar 4 Measuring device 5 Sample 6 Anode 7 Cathode 8 Dewar 9 Measuring device

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  電気化学反応を起こす溶液を保持する
反応セルと、前記電気化学反応を測定する測定装置から
構成される電気化学反応測定装置において、前記測定装
置がジョセフソン効果を利用した磁気センサーを有する
事を特徴とする電気化学反応測定装置。
1. An electrochemical reaction measuring device comprising a reaction cell that holds a solution that causes an electrochemical reaction, and a measuring device that measures the electrochemical reaction, wherein the measuring device is a magnetic sensor that utilizes the Josephson effect. An electrochemical reaction measuring device characterized by having:
【請求項2】  請求項1記載の電気化学反応測定装置
において、前記磁気センサーが少なくとも一つの検出コ
イルを同一平面上に構成した平面型マグネットメータで
ある事を特徴とする電気化学反応測定装置。
2. The electrochemical reaction measuring device according to claim 1, wherein the magnetic sensor is a flat magnet meter having at least one detection coil arranged on the same plane.
【請求項3】  請求項1記載の電気化学反応測定装置
において、前記磁気センサーが少なくとも一つの検出コ
イルを同一平面上に構成した平面型グラジオメータであ
る事を特徴とする電気化学反応測定装置。
3. The electrochemical reaction measuring device according to claim 1, wherein the magnetic sensor is a planar gradiometer having at least one detection coil arranged on the same plane.
【請求項4】  請求項2および3記載の電気化学反応
測定装置において、前記検出コイルが超伝導薄膜あるい
は超伝導線で形成されている事を特徴とする電気化学反
応測定装置。
4. The electrochemical reaction measuring device according to claim 2, wherein the detection coil is formed of a superconducting thin film or a superconducting wire.
JP524991A 1991-01-21 1991-01-21 Electrochemical reaction measuring device Pending JPH04238281A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP524991A JPH04238281A (en) 1991-01-21 1991-01-21 Electrochemical reaction measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP524991A JPH04238281A (en) 1991-01-21 1991-01-21 Electrochemical reaction measuring device

Publications (1)

Publication Number Publication Date
JPH04238281A true JPH04238281A (en) 1992-08-26

Family

ID=11605938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP524991A Pending JPH04238281A (en) 1991-01-21 1991-01-21 Electrochemical reaction measuring device

Country Status (1)

Country Link
JP (1) JPH04238281A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995023339A3 (en) * 1994-02-21 1995-10-05 Univ Manitoba Detection of electromagnetic fields
WO1999026305A1 (en) * 1997-11-15 1999-05-27 Deutsches Zentrum für Luft- und Raumfahrt e.V. Method for determining materials conversion in electrochemical reactions and electrochemical unit
US6036838A (en) * 1997-11-15 2000-03-14 Deutsches Zentrum Fuer Luft -Und Raumfahrt E.V. Method for determining the substance conversion during electrochemical reactions and electrochemical unit
JP2008014699A (en) * 2006-07-04 2008-01-24 Tokyo Institute Of Technology Film thickness measuring method and film thickness measuring device in electrolysis processing
US7477053B2 (en) 1994-02-21 2009-01-13 Carl Pinsky Detection of electromagnetic fields

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63309876A (en) * 1987-06-12 1988-12-16 Nippon Telegr & Teleph Corp <Ntt> Multi-type dcsquid magnetometer
JPH0270099A (en) * 1988-09-05 1990-03-08 Sumitomo Metal Ind Ltd Method and apparatus for electroplating

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63309876A (en) * 1987-06-12 1988-12-16 Nippon Telegr & Teleph Corp <Ntt> Multi-type dcsquid magnetometer
JPH0270099A (en) * 1988-09-05 1990-03-08 Sumitomo Metal Ind Ltd Method and apparatus for electroplating

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995023339A3 (en) * 1994-02-21 1995-10-05 Univ Manitoba Detection of electromagnetic fields
US6150812A (en) * 1994-02-21 2000-11-21 Fermion Inc. Detection of electromagnetic fields as a determinant of an event
US7477053B2 (en) 1994-02-21 2009-01-13 Carl Pinsky Detection of electromagnetic fields
WO1999026305A1 (en) * 1997-11-15 1999-05-27 Deutsches Zentrum für Luft- und Raumfahrt e.V. Method for determining materials conversion in electrochemical reactions and electrochemical unit
US6036838A (en) * 1997-11-15 2000-03-14 Deutsches Zentrum Fuer Luft -Und Raumfahrt E.V. Method for determining the substance conversion during electrochemical reactions and electrochemical unit
JP2008014699A (en) * 2006-07-04 2008-01-24 Tokyo Institute Of Technology Film thickness measuring method and film thickness measuring device in electrolysis processing

Similar Documents

Publication Publication Date Title
Isaacs The effect of height on the current distribution measured with a vibrating electrode probe
Kounaves Voltammetric techniques
Frankel et al. Potential control under thin aqueous layers using a Kelvin Probe
US5343146A (en) Combination coating thickness gauge using a magnetic flux density sensor and an eddy current search coil
US4808931A (en) Conductivity probe
US3331021A (en) A. c. corrosion-rate meter and method
US7913570B2 (en) Environmental damage sensor
US6821552B2 (en) Method and apparatus for determining the pass through flux of magnetic materials
JPH04238281A (en) Electrochemical reaction measuring device
Wang et al. An ultralow-noise Ag/AgCl electric field sensor with good stability for marine EM applications
US4881037A (en) Apparatus and method for measuring the interfacial impedance in an electrochemical cell
Misra et al. NDE applications of SQUID magnetometry to electrochemical systems
US3305457A (en) Hydrocarbon detection
EP1488230B1 (en) Drift compensated magnetic permeability detector
Bardin et al. Investigation of quasi-stationary magnetic fields of corrosion currents of zinc-copper cells using giant magneto-impedance magnetometer
Matysik et al. Convection independent detection with voltammetric single microdisk electrodes
US3631338A (en) Method and apparatus for determining galvanic corrosion by polarization techniques
HU181287B (en) Electroanalytic measuring arrangement
Kiwa et al. Ion transportation of electrolytes in a flow channel mapped by an HTS SQUID scanning system
CA2754181C (en) Environmental damage sensor
CN219201448U (en) Experimental device for be used for transparent liquid concentration measurement
Riess Potential measurements using mixed ionic electronic conductors as probes
CN116699181A (en) In-situ determination method for ion conductivity of solid electrolyte
JPH10239289A (en) Inline acid concentration measurement method and measurement probe
Zoski Charging current discrimination in analytical voltammetry