JP2005113467A - Method of constructing reinforced soil abutment and pier, and structures of the same - Google Patents

Method of constructing reinforced soil abutment and pier, and structures of the same Download PDF

Info

Publication number
JP2005113467A
JP2005113467A JP2003347702A JP2003347702A JP2005113467A JP 2005113467 A JP2005113467 A JP 2005113467A JP 2003347702 A JP2003347702 A JP 2003347702A JP 2003347702 A JP2003347702 A JP 2003347702A JP 2005113467 A JP2005113467 A JP 2005113467A
Authority
JP
Japan
Prior art keywords
abutment
reinforced
pier
embankment
cement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003347702A
Other languages
Japanese (ja)
Inventor
Masaru Tateyama
勝 舘山
Kenji Watanabe
健治 渡辺
Fumio Tatsuoka
文夫 龍岡
Taro Uchimura
太郎 内村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2003347702A priority Critical patent/JP2005113467A/en
Publication of JP2005113467A publication Critical patent/JP2005113467A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of constructing a reinforced soil abutment and a pier, which facilitates maintenance of a bridge, simplifies the structure of an anchorage portion, and contributes to cost reduction, and to provide structures of the reinforced soil abutment and the pier. <P>SOLUTION: According to the method of constructing the reinforced soil abutment and the pier, (a) a finished thickness of each layer of gravelly soil (cement stabilized soil) 2 such as size-regulated debris mixed with cement is set to 50 to 15 cm, and each layer is rolled such that a compaction degree is set to 90 % or more, (b) followed by arranging a tensile reinforcing member 3 on each finished surface. Then (c) the steps of (a) and (b) are repeatedly carried out until the layers are piled up to a predetermined height, to thereby construct a reinforced mound body. Further (d) a small abutment 6 is set on an upper portion of the piled-up reinforced mound body, for mounting thereon a bridge girder 7, and then (e) cast-in-place concrete wall works 5 are set on an open surface of the reinforced mound body. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、補強土橋台・橋脚の構築工法及びその構造物に関するものである。   The present invention relates to a construction method of a reinforced earth abutment / pier and a structure thereof.

従来、補強土壁の上端に小橋台を設置して補強土橋台を構築する方法としては、以下に示す方法が一般的であった。   Conventionally, as a method for constructing a reinforced earth abutment by installing a small abutment on the upper end of the reinforced earth wall, the following methods are generally used.

図5はかかる従来の補強土橋台の構築方法を示す模式図である。   FIG. 5 is a schematic view showing a conventional method for constructing a reinforced earth bridge.

この図において、100は地盤、101は粒度調整砕石、102はジオテキスタイル、103は盛土、104は壁面工、105は小橋台、106は橋桁である。   In this figure, 100 is the ground, 101 is a crushed stone, 102 is a geotextile, 103 is embankment, 104 is a wall work, 105 is a small abutment, and 106 is a bridge girder.

この方法では、下記の特許文献1に示すように、粒度調整砕石101、ジオテキスタル102、盛土103、壁面工104からなる補強土壁が小橋台105や橋桁106の荷重を十分に支持できることが前提となるため、粒度調整砕石101のような良質な盛土材を用いて、壁面剛性が高く載荷耐力が大きい補強土壁を構築し、その上に小橋台105を設置する方法が一般に用いられてきた。実際、この方法は鉄道橋台として数十例の施工実績を有する。しかしながら、支えられる荷重に限界があるため、通常は桁長15m以下の橋台の場合に適用されていた。   In this method, as shown in the following Patent Document 1, it is assumed that a reinforced soil wall composed of a grain size-adjusted crushed stone 101, geotextile 102, embankment 103, and wall work 104 can sufficiently support the load of the small abutment 105 or the bridge girder 106. Therefore, a method has been generally used in which a reinforced earth wall having a high wall rigidity and a high load bearing capacity is constructed using a high-quality embankment material such as the particle size-adjusted crushed stone 101, and a small abutment 105 is installed thereon. In fact, this method has several decades of construction experience as a railway abutment. However, since there is a limit to the load that can be supported, it was usually applied to an abutment with a girder length of 15 m or less.

そこで、長大桁のような、より大きな荷重を支持できる方法として、以下に示すような方法が用いられている。   Therefore, as a method capable of supporting a larger load such as a long girder, the following method is used.

図6は従来のPL/PS(プレローディド・プレストレス)補強土工法を示す模式図である。   FIG. 6 is a schematic diagram showing a conventional PL / PS (preloaded prestress) reinforced earth method.

この工法は、下記の特許文献2に示すように、鉛直緊張材111によって、粒度調整砕石101、ジオテキスタル102、盛土103からなる補強盛土体に事前に荷重履歴(プレロード)を加え、荷重を半分程度除荷してプレストレス状態で鉛直緊張材111を固定することによって、図5の方法に比べて、補強盛土体の載荷耐力、圧縮剛性が著しく改善される。特に、補強盛土体を粒度調整砕石101などのレキ材でよく締め固めて造った場合には、格段の効果が得られ、50m以上の桁であっても適用可能となる。この形式の橋脚は鉄道工事で1箇所採用され、4年間の仮設橋脚として、列車荷重を十分に支持した実績がある。
特公平4−53204号 特許第2895401号
As shown in Patent Document 2 below, this construction method applies a load history (preload) in advance to a reinforced embankment composed of a grain size-adjusted crushed stone 101, geotextile 102, and embankment 103 by means of a vertical tension material 111, and the load is about half. By unloading and fixing the vertical tension member 111 in a prestressed state, the load bearing capacity and compression rigidity of the reinforced embankment are significantly improved compared to the method of FIG. In particular, when the reinforced embankment is made by compacting with a reticulated material such as a particle size-adjusted crushed stone 101, a remarkable effect can be obtained, and it can be applied even with a digit of 50 m or more. This type of pier was adopted at one place in railway construction, and has a track record of fully supporting train loads as a temporary pier for 4 years.
Japanese Patent Publication No. 4-53204 Patent No. 28895401

しかしながら、上記したPL/PS(プレローディド・プレストレス)補強土工法の欠点としては、鉛直緊張材111によるプレストレスが、微小ではあるが補強盛土体のクリープ変形によってリラクゼーション(応力緩和)するため、長期にわたって使用する場合には定期的に鉛直緊張材111を締め付け直すか、もしくは鉛直緊張材111と小橋台105の定着部に変形に追随できるようなバネなどを配置する必要がある。   However, as a drawback of the above-mentioned PL / PS (preloaded prestress) reinforced earth method, the prestress due to the vertical tension material 111 is small but relaxed (stress relaxation) due to creep deformation of the reinforced embankment. When using for a long time, it is necessary to periodically retighten the vertical tension member 111 or to arrange a spring or the like that can follow the deformation in the fixing part of the vertical tension member 111 and the small abutment 105.

このため保守手間が増加し、もしくは定着部が複雑となり、経済的でなくなるなどの問題が指摘されてきた。したがって、恒久構造物に対して採用された事例はまだない。   For this reason, problems have been pointed out, such as an increase in maintenance labor or a complicated fixing portion, which is not economical. Therefore, there are still no cases adopted for permanent structures.

本発明は、上記状況に鑑みて、保守が簡単で、定着部が簡素化され、コストを低減することができる補強土橋台・橋脚の構築工法及びその構造物を提供することを目的とする。   In view of the above circumstances, an object of the present invention is to provide a method for constructing a reinforced earth abutment / pier and a structure thereof, which can be easily maintained, a fixing portion can be simplified, and costs can be reduced.

本発明は、上記目的を達成するために、
〔1〕補強土橋台・橋脚の構築工法において、(a)セメント安定処理土を仕上がり厚さ50〜10cmに設定して、締固め度90%以上となるように1層毎に転圧し、(b)仕上がり面に対して引張り補強材を配置し、(c)前記(a)、(b)の工程を繰り返すことによって、所定の高さまで積み上げて補強盛土体を構成し、(d)この積み上げられた補強盛土体の上部に、橋桁を載せるための小橋台を設置し、(e)前記補強盛土体開放面に場所打ちコンクリート壁面工を設置することを特徴とする。
In order to achieve the above object, the present invention provides
[1] In the construction method of the reinforced earth abutment / pier, (a) the cement-stabilized soil is set to a finished thickness of 50 to 10 cm, and rolled by layer so that the compaction degree is 90% or more. b) A tensile reinforcing material is arranged on the finished surface, and (c) the steps (a) and (b) are repeated to build up a reinforced embankment by stacking up to a predetermined height. A small abutment for placing a bridge girder is installed on the upper part of the reinforced embankment formed, and (e) a cast-in-place concrete wall construction is installed on the open surface of the reinforced embankment.

〔2〕補強土橋台・橋脚構造物であって、上記〔1〕記載の補強土橋台・橋脚の構築工法によって構築された、セメント安定処理土による補強盛土体、橋桁を設置するための小橋台を有する。   [2] A reinforced earth abutment / pier pier structure, which is constructed by the construction method of the reinforced earth abutment / pier pier described in [1] above, a reinforced embankment with cement-stabilized soil, and a small abutment for installing a bridge girder Have

〔3〕補強土橋台・橋脚の構築工法において、(a)地盤に盛土体を設置し、それらを反力として鉛直緊張材を鉛直方向に配置し、(b)その後、セメント安定処理土を仕上がり厚さ50〜15cmに設定して締固め度90%以上となるように1層毎に転圧し、(c)仕上がり面に対して引張り補強材を配置し、(d)上記(b)、(c)の工程を繰り返すことによって、所定の高さまで積み上げて補強盛土体を構成し、(e)この積み上げられた補強盛土体の上部に、橋桁を載せるための小橋台を設置し、(f)前記小橋台と前記鉛直緊張材を締め付けて連結し、(g)前記補強盛土体開放面に場所打ちコンクリート壁面工を設置することを特徴とする。   [3] In the construction method of reinforced soil abutments and piers, (a) embankment bodies are installed on the ground, vertical tension materials are placed in the vertical direction using them as reaction force, and (b) the cement-stabilized soil is finished. The thickness is set to 50 to 15 cm, and the layers are rolled for each layer so that the degree of compaction is 90% or more, (c) a tensile reinforcing material is disposed on the finished surface, and (d) (b), ( By repeating the step c), a reinforced embankment is constructed by stacking up to a predetermined height, (e) a small abutment for placing a bridge girder is installed on the upper part of the accumulated reinforced embankment, and (f) The small abutment and the vertical tension member are fastened and connected, and (g) a cast-in-place concrete wall surface is installed on the reinforced embankment open surface.

〔4〕補強土橋台・橋脚構造物であって、上記〔3〕記載の補強土橋台・橋脚の構築工法によって構築された、前記セメント安定処理土による補強盛土体、鉛直緊張材、橋桁を設置するための小橋台を有する。   [4] Reinforced clay abutment / pier pier structure, which is constructed by the method of constructing a reinforced earth abutment / pier according to the above [3], and is provided with a reinforced embankment, a vertical tension member, and a bridge girder with the cement-stabilized soil It has a small abutment.

〔5〕補強土橋台・橋脚の構築工法において、上記〔1〕記載の補強土橋台・橋脚の構築工法に、更に前記小橋台と壁面工の間に緩衝材を配置することを特徴とする。   [5] In the construction method of the reinforced earth abutment / pier, in the construction method of the reinforced earth abutment / pier, the cushioning material is further arranged between the small abutment and the wall surface.

〔6〕補強土橋台・橋脚構造物であって、請求項5記載の補強土橋台・橋脚の構築工法によって構築された、前記小橋台と壁面工の間に緩衝材を具備する。   [6] A reinforced earth abutment / pier pier structure comprising a buffer material between the small abutment and the wall surface constructed by the construction method of the reinforced earth abutment / pier pier according to claim 5.

本発明によれば、次のような効果を奏することができる。   According to the present invention, the following effects can be achieved.

長大桁を地震時を含めて合理的に支持することが可能となる。また、本発明による橋台・橋脚は、土で造った構造物であるため、従来の鉄筋コンクリート構造物に比べてコストを低減することができる。   It is possible to support long girder reasonably including during an earthquake. Moreover, since the abutment / pier according to the present invention is a structure made of soil, the cost can be reduced as compared with a conventional reinforced concrete structure.

また、保守が容易であり、定着部が簡素化できる。   In addition, maintenance is easy and the fixing unit can be simplified.

粒度調整砕石のような良質な盛土材に対して、さらにセメントなどの固化粉体を事前混合し、それらを十分に転圧してセメント安定処理土による橋台・橋脚のための補強盛土体を構築する。これによって、補強盛土体のせん断強度を極端に大きくすることが可能となる。   Pre-mixed cement and other solidified powders to a high-quality embankment material such as grain size-adjusted crushed stone, and then fully compacted them to construct a reinforced embankment for abutments and piers with cement-stabilized soil. . This makes it possible to extremely increase the shear strength of the reinforced embankment.

以下、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

上記したように補強盛土体を橋台や橋脚として使用する場合には、補強盛土体に対して小橋台や橋桁の自重などによる著大荷重が長期にわたって作用することになる。補強盛土体は間隙を有するため、基本的には圧縮性が高い材料である。したがって、橋桁荷重や列車荷重による残留沈下量を抑制するためには、上記したPL/PS補強土工法のように、これらの荷重が作用する前に、予め補強盛土体に荷重履歴(プレロード)を与えることが有効である。しかし、この工法は、上記したように定着部や保守、経済性に関する問題を有している。   As described above, when the reinforced embankment is used as an abutment or a pier, a large load due to the weight of the small abutment or the bridge girder acts on the reinforced embankment for a long period of time. Since the reinforced embankment has a gap, it is basically a highly compressible material. Therefore, in order to suppress the residual settlement due to bridge girder loads and train loads, load history (preload) is applied to the reinforced embankment in advance before these loads act, as in the PL / PS reinforced earth method described above. It is effective to give. However, this construction method has problems related to the fixing portion, maintenance, and economy as described above.

これらの問題を解決できるその他の変形抑制法として、補強盛土体そのもののせん断強度や剛性を極端に増加させる方法が考えられる。   As another method of suppressing deformation that can solve these problems, a method of extremely increasing the shear strength and rigidity of the reinforced embankment itself can be considered.

図1は本発明の第1実施例を示す補強土橋台を示す模式図である。   FIG. 1 is a schematic view showing a reinforced earth abutment showing a first embodiment of the present invention.

この図において、1は地盤、2はセメントを混合した粒度調整砕石などのレキ質土(セメント安定処理土;セメント安定処理アプローチブロック)、3はジオテキスタイル(引張り補強材)、4は盛土、5は壁面工、6は小橋台、7は橋桁である。なお、引張り補強材3としては、ジオテキスタイルの他に金網などを用いてもよい。   In this figure, 1 is the ground, 2 is a repellent soil such as a grain-sized crushed stone mixed with cement (cement stable treated soil; cement stabilized treated approach block), 3 is a geotextile (tensile reinforcement), 4 is embankment, 5 is Wall work, 6 is a bridge, 7 is a bridge girder. In addition, as the tensile reinforcement member 3, a wire mesh or the like may be used in addition to the geotextile.

この方法は、従来の粒度調整砕石のような良質の盛土材に対して、さらにセメントなどの固化粉体を事前混合し、それらを十分に転圧してセメント安定処理土2による補強盛土体を構築するものである。セメント安定処理は、従来、粘性土などの悪質な盛土材の改良や、良質土であっても転圧などの施工を簡素化する際に行われてきた。本実施例の工法は、粒度調整砕石のような良質土を用いてジオテキスタイル3や溶接金網のような引張り補強材を配置するにも関わらず、さらにセメント安定処理を施した上で、十分な転圧を行うことに特徴がある。これによって、補強盛土体のせん断強度を極端に大きくすることが可能となる。   In this method, solidified powder such as cement is pre-mixed with a high-quality embankment material such as conventional crushed stone, and a reinforced embankment with cement-stabilized soil 2 is constructed. To do. Conventionally, cement stabilization treatment has been performed to improve malicious embankment materials such as cohesive soil, and to simplify construction such as rolling compaction even if it is good quality soil. Although the construction method of this example uses a high-quality soil such as a grain-size-adjusted crushed stone and arranges a tensile reinforcement such as geotextile 3 and a welded wire mesh, a sufficient cement rolling treatment is performed and sufficient rolling is performed. It is characterized by performing pressure. This makes it possible to extremely increase the shear strength of the reinforced embankment.

以下、その補強土橋台・橋脚の構築工法について、図1を参照しながら説明する。
(1)セメントを混合した粒度調整砕石などのレキ質土(セメント安定処理土)2を仕上がり厚さ50〜10cmに設定して、締固め度90%以上となるように1層毎に転圧し、
(2)1層毎の仕上がり面に対してジオテキスタイルや金網などの引張り補強材3を配置し、
(3)上記(1)、(2)の工程を繰り返すことによって、所定の高さまで積み上げ、
(4)積み上げられた補強盛土体の上部に、橋桁7を載せるための小橋台6を設置し、
(5)補強盛土体開放面に場所打ちコンクリート壁面工5を設置する。
Hereinafter, the construction method of the reinforced earth abutment / pier will be described with reference to FIG.
(1) Set the finished thickness of 50 to 10 cm of reclaimed soil (cement stabilized soil) 2 such as particle size-adjusted crushed stone mixed with cement, and roll it for each layer so that the compaction degree is 90% or more. ,
(2) Place tension reinforcement 3 such as geotextile or wire mesh on the finished surface of each layer,
(3) By repeating the steps (1) and (2) above, stacking up to a predetermined height,
(4) A small abutment 6 for placing the bridge girder 7 is installed on the upper part of the stacked reinforcing embankment,
(5) A cast-in-place concrete wall work 5 is installed on the open side of the reinforced embankment.

このような工程によって、セメント改良砕石による補強盛土体、橋桁を設置するための小橋台からなる橋台・橋脚構造物を構築することができる。 図2は三軸圧縮試験で本発明にかかるセメント安定処理土からなる補強盛土体の強度を測定した例である。この図において、横軸は軸ひずみεa (%)、縦軸は軸差応力q(kPa )をそれぞれ示している。この試験では、粒度調整砕石1m3 に対してわずか50kg程度のセメントを添加して、転圧エネルギーを調整して乾燥密度ρd を変化させた供試体を作製し、その場合の強度比較を行った。 By such a process, it is possible to construct an abutment / pier pier structure composed of a reinforced embankment made of cement-modified crushed stone and a small abutment for installing a bridge girder. FIG. 2 is an example in which the strength of a reinforced embankment made of cement-stabilized soil according to the present invention was measured in a triaxial compression test. In this figure, the horizontal axis indicates the axial strain ε a (%), and the vertical axis indicates the axial differential stress q (kP a ). In this test, only 50 kg of cement was added to 1 m 3 of particle size-adjusted crushed stone, and specimens with varying dry density ρ d were prepared by adjusting the rolling energy and the strength was compared in that case. It was.

この図から明らかなように、転圧を十分に行い乾燥密度を高めた場合は、そうでない場合に比べて極端に強度が増加することが確認できる。また、図示しないが、セメントを添加しない土に比べれば、添加量にもよるが、数倍〜数十倍の強度増加が得られる。   As is clear from this figure, it can be confirmed that when the rolling density is sufficiently increased and the dry density is increased, the strength is extremely increased as compared with the case where the dry density is not increased. Moreover, although not shown in figure, compared with the soil which does not add a cement, although depending on the addition amount, the intensity | strength increase of several times-dozens of times is obtained.

したがって、本実施例によれば、セメントを混合した粒度調整砕石などのレキ質土(セメント安定処理土)を用いることによって、PL/PS補強土工法を加えなくても、長大桁を支持できる十分なせん断強度を確保できることになる。   Therefore, according to the present embodiment, it is possible to support a large girder without adding a PL / PS reinforced earth method by using a reclaimed soil (cement stable treated soil) such as a particle size-adjusted crushed stone mixed with cement. A sufficient shear strength can be secured.

図3は本発明の第2実施例を示す補強土橋台を示す模式図である。なお、第1実施例と共通の部分には同じ符号を付している。   FIG. 3 is a schematic view showing a reinforced earth abutment showing a second embodiment of the present invention. In addition, the same code | symbol is attached | subjected to the part which is common in 1st Example.

この図において、11は小橋台6が回転もしくは滑動しないように引き留めておくための鉛直緊張材、12はその鉛直緊張材11の締着ナットである。   In this figure, 11 is a vertical tension material for keeping the abutment 6 so as not to rotate or slide, and 12 is a fastening nut for the vertical tension material 11.

上記した第1実施例では、長大桁等の鉛直荷重に対しては十分な耐力を有するが、特に大地震時のように極端に大きな水平慣性力が小橋台に作用した場合には、小橋台6の滑動や回転運動によって補強盛土体上端との間で剥離が生じて小橋台6の水平方向の安定性が確保できなくなることが想定される。   In the first embodiment described above, it has sufficient strength against vertical loads such as long girders. However, particularly when an extremely large horizontal inertia force acts on the small abutment as in a large earthquake, the small abutment It is assumed that the horizontal stability of the small abutment 6 cannot be secured due to separation between the upper end of the reinforced embankment due to the sliding and rotational movement of 6.

そのような場合には、図3に示すように、鉛直緊張材11を用いて小橋台6を固定することが有効である。この場合の鉛直緊張材11は、図6に示した従来のPL/PS補強土工法のように、鉛直方向に所定の荷重を作用もしくは保持させることが役割ではなく、地震時に小橋台6が回転もしくは滑動しないように引き留めておくだけの役割なので、特に定着部にバネなどを配置しておく必要はない。よって、鉛直緊張材11を締着ナット12などで締め付けて置くだけでよいため、定着は簡便となり、地震時などにおける小橋台6の水平方向の安定性も飛躍的に高まる。   In such a case, as shown in FIG. 3, it is effective to fix the small abutment 6 using the vertical tension material 11. In this case, unlike the conventional PL / PS reinforced earth method shown in FIG. 6, the vertical tension member 11 does not have a role of acting or holding a predetermined load in the vertical direction, and the small abutment 6 rotates during an earthquake. Or, since it only serves to keep it from sliding, it is not particularly necessary to arrange a spring or the like in the fixing portion. Therefore, since it is only necessary to fasten and put the vertical tension member 11 with the fastening nut 12 or the like, the fixing becomes simple, and the horizontal stability of the small abutment 6 at the time of an earthquake or the like is dramatically increased.

以下、その小橋台・橋脚の構築工法について、図3を参照しながら説明する。
(1)地盤1上に盛土体を設置し、それらを反力としてPC鋼棒などの鉛直緊張材11を鉛直方向に配置し、
(2)その後、セメントを混合した粒度調整砕石などのレキ質土(セメント安定処理土)2を仕上がり厚さ50〜10cmに設定して締固め度90%以上となるように1層毎に転圧し、
(3)その1層毎の仕上がり面に対してジオテキスタイルや金網などの引張り補強材3を配置し、
(4)上記(2)、(3)の工程を繰り返すことによって、所定の高さまで積み上げ、
(5)積み上げられた補強盛土体の上部に、橋桁7を載せるための小橋台6を設置し、
(6)小橋台6と鉛直緊張材11を締着ナット12で締め付けて連結し、
(7)最終的には補強盛土体開放面を場所打ちコンクリート壁面工5などで被覆する。 このように、本実施例によれば、セメントを混合した粒度調整砕石などのレキ質土(セメント安定処理土)からなる盛土材とジオテキスタイルなどの引張り補強材よりなる補強盛土体に、鉛直緊張材を固定することによって、小橋台の回転、滑動を防ぎ、鉛直方向だけでなく水平方向の安定性も確保することができる。
Hereinafter, the construction method of the small abutment / pier will be described with reference to FIG.
(1) An embankment body is installed on the ground 1, and vertical tension members 11 such as PC steel bars are arranged in the vertical direction using them as a reaction force,
(2) After that, roll the clay (grain stabilized crushed stone) 2 mixed with cement to a finished thickness of 50 to 10 cm and roll it for each layer so that the compaction degree is 90% or more. Press,
(3) Place tensile reinforcement 3 such as geotextile or wire mesh on the finished surface of each layer,
(4) By repeating the steps (2) and (3) above, stacking up to a predetermined height,
(5) A small abutment 6 for placing the bridge girder 7 is installed on the upper part of the stacked reinforcing embankment,
(6) The small abutment 6 and the vertical tension member 11 are connected by tightening with the fastening nut 12.
(7) Finally, the open face of the reinforced embankment is covered with cast-in-place concrete wall work 5 or the like. As described above, according to the present embodiment, the vertical tension material is applied to the reinforced embankment composed of the embankment material made of reticulated soil (cement stable treated soil) such as particle-size-adjusted crushed stone mixed with cement and the tensile reinforcement material such as geotextile. By fixing, rotation and sliding of the abutment can be prevented, and stability not only in the vertical direction but also in the horizontal direction can be ensured.

図4は本発明の第3実施例を示す補強土橋台を示す模式図である。なお、第1実施例と共通の部分には同じ符号を付している。   FIG. 4 is a schematic view showing a reinforced earth abutment according to a third embodiment of the present invention. In addition, the same code | symbol is attached | subjected to the part which is common in 1st Example.

この図において、21は小橋台6の前端面と壁面工5との間に配置される緩衝材である。   In this figure, reference numeral 21 denotes a cushioning material disposed between the front end surface of the small abutment 6 and the wall surface work 5.

第2実施例で述べた地震時における小橋台6の滑動を、補強盛土体の壁面工5で抑止する方法も考えられる。しかしながら、第1実施例の図1に示すように、地震時における小橋台6の滑動をセメント安定処理土2を介して壁面工5の上端で抑止する場合には、壁面工5に大きな力が作用することになる。その大きな力に耐えて小橋台6の滑動を抑止するためには、壁面工5の躯体断面を大きくしなければならず、経済的ではない。   A method of suppressing the sliding of the small abutment 6 at the time of the earthquake described in the second embodiment with the wall construction 5 of the reinforced embankment is also conceivable. However, as shown in FIG. 1 of the first embodiment, when the sliding of the small abutment 6 at the time of the earthquake is suppressed at the upper end of the wall surface work 5 through the cement stabilization soil 2, a large force is applied to the wall surface work 5. Will work. In order to withstand such a large force and suppress the sliding of the small abutment 6, the cross section of the wall of the wall surface work 5 must be enlarged, which is not economical.

そこで、図4に示すように、小橋台6と壁面工5の間に発泡スチロールや発泡ウレタンのような緩衝材21を配置することによって、地震による衝撃的な荷重を緩衝し、壁面工5に作用する力を軽減することで、従来通りの壁面工5で小橋台6の滑動を抑止することができる。   Therefore, as shown in FIG. 4, by placing a cushioning material 21 such as foamed polystyrene or foamed urethane between the small abutment 6 and the wall surface work 5, an impact load caused by an earthquake is buffered and acts on the wall work 5. By reducing the force to perform, sliding of the small abutment 6 can be suppressed by the conventional wall work 5.

なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づいて種々の変形が可能であり、これらを本発明の範囲から排除するものではない。   In addition, this invention is not limited to the said Example, A various deformation | transformation is possible based on the meaning of this invention, and these are not excluded from the scope of the present invention.

本発明の補強土橋台・橋脚の構築工法及びその構造物は、保守が簡単で、定着部が簡素化され、コストを低減することができるため、特に、長大桁を支持する橋台・橋脚の構築に適している。   The construction method and structure of the reinforced earth abutment / pier of the present invention and its structure are easy to maintain, simplify the anchoring part, and reduce costs. In particular, the construction of the abutment / pier that supports long girder is possible. Suitable for

本発明の第1実施例を示す補強土橋台を示す模式図である。It is a schematic diagram which shows the reinforced earth abutment which shows 1st Example of this invention. 三軸圧縮試験で本発明にかかる補強盛土体の強度を測定した例を示す図である。It is a figure which shows the example which measured the intensity | strength of the reinforced embankment concerning this invention by the triaxial compression test. 本発明の第2実施例を示す補強土橋台を示す模式図である。It is a schematic diagram which shows the reinforced earth abutment which shows 2nd Example of this invention. 本発明の第3実施例を示す補強土橋台を示す模式図である。It is a schematic diagram which shows the reinforced earth abutment which shows 3rd Example of this invention. 従来の補強土橋台の構築方法を示す模式図である。It is a schematic diagram which shows the construction method of the conventional reinforced earth abutment. 従来のPL/PS(プレローディド・プレストレス)補強土工法を示す模式図である。It is a schematic diagram which shows the conventional PL / PS (preloaded prestress) reinforced earth method.

符号の説明Explanation of symbols

1 地盤
2 セメント安定処理土(セメントを混合した粒度調整砕石などのレキ質土;セメント安定処理アプローチブロック)
3 ジオテキスタイル(引張り補強材)
4 盛土
5 壁面工
6 小橋台
7 橋桁
11 鉛直緊張材
12 鉛直緊張材の締着ナット
21 緩衝材
1 Ground 2 Cement stabilized soil (Leki soil such as particle size-adjusted crushed stone mixed with cement; Cement stabilized treatment approach block)
3 Geotextile (tensile reinforcement)
4 Embankment 5 Wall Work 6 Kohashidai 7 Bridge Girder 11 Vertical Tensile Material 12 Fastening Nut of Vertical Tensile Material 21 Buffer Material

Claims (6)

(a)セメント安定処理土を仕上がり厚さ50〜10cmに設定して、締固め度90%以上となるように1層毎に転圧し、
(b)仕上がり面に対して引張り補強材を配置し、
(c)前記(a)、(b)の工程を繰り返すことによって、所定の高さまで積み上げて補強盛土体を構成し、
(d)該積み上げられた補強盛土体の上部に、橋桁を載せるための小橋台を設置し、
(e)前記補強盛土体開放面に場所打ちコンクリート壁面工を設置することを特徴とする補強土橋台・橋脚の構築工法。
(A) Set the cement-stabilized soil to a finished thickness of 50 to 10 cm and roll it for each layer so that the compaction degree is 90% or more,
(B) placing a tensile reinforcement on the finished surface;
(C) By repeating the steps (a) and (b) above, a reinforced embankment is constructed by stacking up to a predetermined height,
(D) A small abutment for placing a bridge girder is installed on top of the stacked reinforcing embankment,
(E) A method for constructing a reinforced earth abutment and pier, wherein a cast-in-place concrete wall surface is installed on the open surface of the reinforced embankment.
請求項1記載の補強土橋台・橋脚の構築工法によって構築された、セメント安定処理土による補強盛土体、橋桁を設置するための小橋台を有する補強土橋台・橋脚構造物。   A reinforced earth abutment / pier pier structure having a reinforced embankment with cement-stabilized soil and a small abutment for installing a bridge girder constructed by the construction method of a reinforced earth abutment / pier pier according to claim 1. (a)地盤に盛土体を設置し、それらを反力として鉛直緊張材を鉛直方向に配置し、
(b)その後、セメント安定処理土を仕上がり厚さ50〜10cmに設定して締固め度90%以上となるように1層毎に転圧し、
(c)仕上がり面に対して引張り補強材を配置し、
(d)前記(b)、(c)の工程を繰り返すことによって、所定の高さまで積み上げて補強盛土体を構成し、
(e)該積み上げられた補強盛土体の上部に、橋桁を載せるための小橋台を設置し、
(f)前記小橋台と前記鉛直緊張材を締め付けて連結し、
(g)前記補強盛土体開放面に場所打ちコンクリート壁面工を設置することを特徴とする補強土橋台・橋脚の構築工法。
(A) The embankment body is installed on the ground, and the vertical tension members are arranged in the vertical direction using them as reaction force,
(B) Thereafter, the cement-stabilized soil is set to a finished thickness of 50 to 10 cm, and rolled for each layer so that the compaction degree is 90% or more,
(C) placing a tensile reinforcement on the finished surface;
(D) By repeating the steps (b) and (c), a reinforced embankment is constructed by stacking up to a predetermined height,
(E) A small abutment for placing a bridge girder is installed on top of the stacked reinforced embankment,
(F) Tighten and connect the abutment and the vertical tension material,
(G) A method for constructing a reinforced earth abutment and pier, wherein a cast-in-place concrete wall surface is installed on the open surface of the reinforced embankment.
請求項3記載の補強土橋台・橋脚の構築工法によって構築された、前記セメント安定処理土による補強盛土体、鉛直緊張材、橋桁を設置するための小橋台を有する補強土橋台・橋脚構造物。   A reinforced earth abutment / pier structure having a small abutment for installing a reinforced embankment, a vertical tension member, and a bridge girder constructed by the cement-stabilized soil, constructed by the construction method for a reinforced earth abutment / pier pier according to claim 3. 請求項1記載の補強土橋台・橋脚の構築工法に、更に前記小橋台と壁面工の間に緩衝材を配置することを特徴とする補強土橋台・橋脚の構築工法。   The construction method of the reinforced earth abutment / pier according to claim 1, further comprising a buffer material disposed between the small abutment and the wall surface. 請求項5記載の補強土橋台・橋脚の構築工法によって構築された、前記小橋台と壁面工の間に緩衝材を具備する補強土橋台・橋脚構造物。   A reinforced earth abutment / pier pier structure comprising a cushioning material between the small abutment and the wall surface constructed by the construction method of the reinforced earth abutment / pier according to claim 5.
JP2003347702A 2003-10-07 2003-10-07 Method of constructing reinforced soil abutment and pier, and structures of the same Pending JP2005113467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003347702A JP2005113467A (en) 2003-10-07 2003-10-07 Method of constructing reinforced soil abutment and pier, and structures of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003347702A JP2005113467A (en) 2003-10-07 2003-10-07 Method of constructing reinforced soil abutment and pier, and structures of the same

Publications (1)

Publication Number Publication Date
JP2005113467A true JP2005113467A (en) 2005-04-28

Family

ID=34540126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003347702A Pending JP2005113467A (en) 2003-10-07 2003-10-07 Method of constructing reinforced soil abutment and pier, and structures of the same

Country Status (1)

Country Link
JP (1) JP2005113467A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007321452A (en) * 2006-06-01 2007-12-13 Railway Technical Res Inst Construction method for bridge and bridge structure thereof
JP2011220108A (en) * 2011-07-06 2011-11-04 Railway Technical Research Institute Embankment construction method on soft ground and embankment structure thereof
JP2013253389A (en) * 2012-06-05 2013-12-19 National Agriculture & Food Research Organization Construction method of banking structure and banking structure constructed by the same
CN104358199A (en) * 2014-11-10 2015-02-18 哈尔滨工业大学 Road-bridge transition section structure of high-grade highway suitable for short construction period condition in cold region
JP2015055083A (en) * 2013-09-11 2015-03-23 公益財団法人鉄道総合技術研究所 Earthquake strengthening method for oblique angle bridge abutment by earth pressure reduction
JP2015055082A (en) * 2013-09-11 2015-03-23 公益財団法人鉄道総合技術研究所 Earthquake strengthening method for bridge abutment by earth pressure reduction
JP2016156188A (en) * 2015-02-24 2016-09-01 矢作建設工業株式会社 Earth pressure-resisting structure and construction method for the same
CN106192724A (en) * 2016-07-21 2016-12-07 桂林理工大学 A kind of attachment structure of the abutment Yu roadbed for processing problem of bumping at bridge-head
CN112281637A (en) * 2020-11-04 2021-01-29 武汉大学 Anti-seismic wall reinforced earth abutment and construction method thereof
CN113502744A (en) * 2021-06-15 2021-10-15 中交第二航务工程局有限公司 Ground anchor type abutment construction method
JP7452877B2 (en) 2021-12-24 2024-03-19 株式会社タケウチ建設 Linear structures and construction methods for linear structures

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007321452A (en) * 2006-06-01 2007-12-13 Railway Technical Res Inst Construction method for bridge and bridge structure thereof
JP2011220108A (en) * 2011-07-06 2011-11-04 Railway Technical Research Institute Embankment construction method on soft ground and embankment structure thereof
JP2013253389A (en) * 2012-06-05 2013-12-19 National Agriculture & Food Research Organization Construction method of banking structure and banking structure constructed by the same
JP2015055083A (en) * 2013-09-11 2015-03-23 公益財団法人鉄道総合技術研究所 Earthquake strengthening method for oblique angle bridge abutment by earth pressure reduction
JP2015055082A (en) * 2013-09-11 2015-03-23 公益財団法人鉄道総合技術研究所 Earthquake strengthening method for bridge abutment by earth pressure reduction
CN104358199A (en) * 2014-11-10 2015-02-18 哈尔滨工业大学 Road-bridge transition section structure of high-grade highway suitable for short construction period condition in cold region
JP2016156188A (en) * 2015-02-24 2016-09-01 矢作建設工業株式会社 Earth pressure-resisting structure and construction method for the same
CN106192724A (en) * 2016-07-21 2016-12-07 桂林理工大学 A kind of attachment structure of the abutment Yu roadbed for processing problem of bumping at bridge-head
CN106192724B (en) * 2016-07-21 2018-01-12 桂林理工大学 A kind of attachment structure for being used to handle the abutment and roadbed of problem of bumping at bridge-head
CN112281637A (en) * 2020-11-04 2021-01-29 武汉大学 Anti-seismic wall reinforced earth abutment and construction method thereof
CN112281637B (en) * 2020-11-04 2021-11-26 武汉大学 Anti-seismic wall reinforced earth abutment and construction method thereof
CN113502744A (en) * 2021-06-15 2021-10-15 中交第二航务工程局有限公司 Ground anchor type abutment construction method
CN113502744B (en) * 2021-06-15 2022-09-13 中交第二航务工程局有限公司 Ground anchor type abutment construction method
JP7452877B2 (en) 2021-12-24 2024-03-19 株式会社タケウチ建設 Linear structures and construction methods for linear structures

Similar Documents

Publication Publication Date Title
Lee et al. A synthesis of case histories on GRS bridge-supporting structures with flexible facing
Tatsuoka et al. A new type of integral bridge comprising geosynthetic-reinforced soil walls
US8173241B2 (en) Sandwich system
JP2005113467A (en) Method of constructing reinforced soil abutment and pier, and structures of the same
JP2006274713A (en) Tire stacked structure
JP2003020659A (en) Base isolation structure using soft ground
KR20110038050A (en) Elastic construction foundation method
JP4874739B2 (en) Construction method of embankment on soft ground and its embankment structure
JPH09177094A (en) Base isolating foundation structure
CN107630564B (en) Construction method for reinforced structure of concrete beam
Brandl Cyclic preloading of piles to minimize (differential) settlements of high-rise buildings
JP2004339894A (en) Aseismic reinforcement structure of pile foundation structure
Loli et al. Centrifuge testing of a bridge pier on a rocking isolated foundation supported on unconnected piles
JP2895401B2 (en) Construction method of reinforced earth body and its structure
JP3643571B2 (en) Pile foundation reinforcement structure
JP2011064000A (en) Prestressed concrete gate type rigid frame bridge
JPH09158206A (en) Base isolating structure for structure
JP2005307594A (en) Basic structure of construction
Uchimura et al. Vertical and horizontal loading tests on full-scale preloaded and prestressed geogrid-reinforced soil structures
Dhar et al. Seismic analysis of an integral bridge with retrofitted RC pile foundation in different foundation soils using simplified SSI
JP6324916B2 (en) Measures to improve long-term maintenance performance by reducing earthquake resistance and residual deformation of double-wall reinforced embankment method with large slenderness ratio
JP5813127B2 (en) Surface elements with integrated compressibility
Doulala-Rigby et al. 18-year continuous, monitored performance of an 1m-thick, stiff polymeric geogrid cellular mattress for a building foundation over a landfill site
JP2011032712A (en) Foundation structure
Wu et al. A Review of Case Histories on GRS Bridge-Supporting Structures with Flexible Facing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051124

A977 Report on retrieval

Effective date: 20071122

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080219