JP2005106562A - Positron emission type ct device - Google Patents

Positron emission type ct device Download PDF

Info

Publication number
JP2005106562A
JP2005106562A JP2003339046A JP2003339046A JP2005106562A JP 2005106562 A JP2005106562 A JP 2005106562A JP 2003339046 A JP2003339046 A JP 2003339046A JP 2003339046 A JP2003339046 A JP 2003339046A JP 2005106562 A JP2005106562 A JP 2005106562A
Authority
JP
Japan
Prior art keywords
radiation
ray shielding
bed
positron emission
shield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003339046A
Other languages
Japanese (ja)
Other versions
JP4082324B2 (en
Inventor
Yuichiro Ueno
雄一郎 上野
Shinichi Kojima
進一 小嶋
Norifumi Yanagida
憲史 柳田
Kensuke Amamiya
健介 雨宮
Hiroshi Kitaguchi
博司 北口
Kazutoshi Tsuchiya
一俊 土屋
Kazuma Yokoi
一磨 横井
Takaaki Ishizu
崇章 石津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003339046A priority Critical patent/JP4082324B2/en
Publication of JP2005106562A publication Critical patent/JP2005106562A/en
Application granted granted Critical
Publication of JP4082324B2 publication Critical patent/JP4082324B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Nuclear Medicine (AREA)
  • Measurement Of Radiation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a positron emission type CT device capable of shortening an examination time. <P>SOLUTION: This positron emission type CT device is provided with an imaging device 1, an examined subject holding device 2 and a signal processor 3. A large number of radiation detectors 11 are arranged annularly in the imaging device 1. γ-Ray shielding devices 25, 28 are arranged in both sides of the imaging device 1 to shield an incidence of a γ-ray from an outside of an effective visual field area 14 formed surrounded by the large number of radiation detectors 11 into the radiation detectors 11. The γ-ray shielding devices 25, 28 have γ-ray shielding tools 26, 29 capable of inserting an examined subject 5 in its inside, and lid members 27, 30. A counting rate of accidental events is restrained from being increased and the inspection time is shortened, even when a dosed radioactivity to an examined subject 5 is increased in a degree of integration, because the γ-ray shielding devices 25, 28 shield the incidence of the γ-ray from the outside of the effective visual field area 14 into the radiation detectors 11. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、陽電子放出型CT(ポジトロン・エミッション・コンピューテッド・トモグラフィ(Positron Emission Computed Tomography)装置(以下、PET装置という)に関するものである。   The present invention relates to a positron emission CT (Positron Emission Computed Tomography) apparatus (hereinafter referred to as a PET apparatus).

放射線を利用した検査技術は、被検体内部を非破壊で検査することができる。特に人体に対する放射線検査技術にはX線CT,PET(Positron Emission Tomography),
SPECT(Single Photon Emission Tomography)等がある。これらの技術はいずれも放射線の積分値(飛翔方向)の物理量を計測し、その積分値を逆投影することにより被検体内の各ボクセルの物理量を計算し画像化する技術である。これらの技術は膨大なデータを処理する必要があり、近年のコンピュータ技術の急速な発達に伴い、高速・高精細画像を提供できるようになってきた。
The inspection technique using radiation can inspect the inside of a subject nondestructively. X-ray CT, PET (Positron Emission Tomography),
There is SPECT (Single Photon Emission Tomography). All of these techniques measure the physical quantity of the integrated value (flight direction) of radiation and backproject the integrated value to calculate and image the physical quantity of each voxel in the subject. These technologies need to process enormous amounts of data, and with the rapid development of computer technology in recent years, it has become possible to provide high-speed, high-definition images.

PETは、陽電子放出核種(15O,13N,11C,18F等)、及び体内の特定の細胞に集まる性質を有する物質を含む放射性薬剤(以下、PET用薬剤)を被検診者に投与し、そのPET用薬剤が体内のどの部位で多く消費されているかを調べる方法である。放射性薬剤の一例として、フルオロデオキシグルコース(2−[F−18]fluoro−2−deoxy−D−glucose、18FDG)がある。18FDGは、糖代謝により腫瘍組織に高集積するため、腫瘍部位の特定に使用される。特定の個所に集積したPET用薬剤に含まれた陽電子放出核種から放出された陽電子が、付近の細胞の電子と結合して消滅し、511keVのエネルギーを有する一対のγ線を放射する。これらのγ線は、互いにほぼ正反対の方向
(180°±0.6°) に放射される。この一対のγ線を放射線検出器で検知すれば、どの2つの放射線検出器の間で陽電子が放出されたかがわかる。それらの多数のγ線対を検知することで、PET用薬剤を多く消費する場所がわかる。例えば、18FDGは前述のように糖代謝の激しい癌細胞に集まるため、PETにより癌病巣を発見することが可能である。なお、得られたデータは、前述のフィルタードバックプロジェクション方法により各ボクセルの放射線発生密度に変換され、γ線の発生位置(放射線核種が集積する位置、すなわち癌細胞の位置)を画像化することに貢献する。PETに用いられる15O,13N,
11C,18Fは2分から110分の短半減期の放射性同位元素である。
Administration PET is positron emission (15 O, 13 N, 11 C, 18 F , etc.), and the body of a particular radiopharmaceutical comprising a material having a gathering property to a cell (hereinafter, pharmaceutical PET) to the examinee In this method, the PET drug is consumed in many parts of the body. An example of a radiopharmaceutical is fluorodeoxyglucose (2- [F-18] fluoro-2-deoxy-D-glucose, 18FDG). Since 18FDG is highly accumulated in tumor tissue by sugar metabolism, it is used to identify the tumor site. A positron emitted from a positron emitting nuclide contained in a PET drug accumulated at a specific location is combined with an electron in a nearby cell and disappears to emit a pair of γ-rays having energy of 511 keV. These gamma rays are almost opposite to each other
Radiated at (180 ° ± 0.6 °). If this pair of γ-rays is detected by a radiation detector, it can be determined between which two radiation detectors the positron has been emitted. By detecting these many pairs of γ rays, it is possible to find a place where a lot of PET drug is consumed. For example, 18FDG collects in cancer cells with intense glucose metabolism as described above, and thus it is possible to detect cancer foci by PET. The obtained data is converted into the radiation generation density of each voxel by the filtered back projection method described above, and the generation position of the γ-ray (the position where the radionuclide accumulates, that is, the position of the cancer cell) is imaged. To contribute. 15 O, 13 N, used for PET
11 C, 18 F is a radioisotope with a short half-life of 2 to 110 minutes.

現在のPETでは全身の検査に数十分の時間を要する。PET装置では、検査時間が非常に重要な性能の1つである。検査時間を短縮することによって、被検診者の負担が低減するだけでなく、検査中の被検診者の移動を低減し画質が向上する。検査時間を短縮するためには、放射線検出器の感度を向上すればよく、そのために新種のシンチレータが検討されている。また、放射線検出器を備えたガントリ(検出器リング)の大型化(体軸長の増加)により実質的な感度を向上することが可能である。これは放射線検出器の被検診者に対する立体角を増加させて実効的な検出感度を向上するものである。   Current PET requires tens of minutes for whole body examination. In the PET apparatus, inspection time is one of the very important performances. By shortening the examination time, not only the burden on the examinee is reduced, but also the movement of the examinee during the examination is reduced and the image quality is improved. In order to shorten the inspection time, it is only necessary to improve the sensitivity of the radiation detector. For this reason, a new type of scintillator has been studied. Moreover, substantial sensitivity can be improved by increasing the size of the gantry (detector ring) including the radiation detector (increasing the body axis length). This increases the solid angle of the radiation detector with respect to the examinee to improve the effective detection sensitivity.

特開2002−71813号公報段落番号0030,図1JP 2002-71813 A paragraph number 0030, FIG. 特開2003−79614号公報JP 2003-79614 A

PETの検査時間短縮のために、ガントリ体軸長を大きくすることは有効であるが、ただ単にガントリの体軸長を増加させただけでは、ガントリの外から入射するγ線が増加し偶発同時計数や回路系のデータ損失が増大し装置の実効的な感度は飽和してしまう。このガントリ外からのγ線の入射を減らすには、放射線検出器の最外周にシールドコリメータを取り付けることが有効である。しかし、ガントリ中への被検体の挿入のためにガントリの開口径を大きく取る必要があり、シールドコリメータの大きさには限界がり、その効果にも限界がある。   Increasing the gantry axis length is effective for shortening the PET examination time, but simply increasing the gantry axis length increases the gamma rays incident from the outside of the gantry, resulting in coincidence. Counting and data loss of the circuit system increase, and the effective sensitivity of the device is saturated. In order to reduce the incidence of γ rays from the outside of the gantry, it is effective to attach a shield collimator to the outermost periphery of the radiation detector. However, it is necessary to increase the opening diameter of the gantry in order to insert the subject into the gantry, and the size of the shield collimator is limited, and the effect is also limited.

本発明の目的は、検査時間を短縮できる陽電子放出型CT装置を提供することにある。   An object of the present invention is to provide a positron emission CT apparatus capable of shortening the inspection time.

上記した課題を達成する本発明の特徴は、縦断面形状が、複数の放射線検出器に囲まれて形成されてベッドが挿入可能な空間の縦断面形状よりも小さく、ベッドの長手方向に伸びていてベッド及び被検体を挿入可能な放射線遮蔽装置を備え、放射線遮蔽装置は、その空間の外周面よりも内側でその空間の外に配置されていることにある。   A feature of the present invention that achieves the above-described problem is that the longitudinal cross-sectional shape is smaller than the vertical cross-sectional shape of a space formed by being surrounded by a plurality of radiation detectors and into which the bed can be inserted, and extends in the longitudinal direction of the bed. A radiation shielding apparatus capable of inserting a bed and a subject, and the radiation shielding apparatus is disposed outside the space inside the outer peripheral surface of the space.

ベッドの長手方向に伸びていてベッド及び被検体を挿入可能な放射線遮蔽装置が、複数の放射線検出器に囲まれて形成されてベッドが挿入可能な空間の外周面よりも内側でその空間の外に配置されているため、その空間の外からの放射線を放射線検出器に入射することを抑制できる。このため、被検体の投与放射能の集積度が増大しても偶発事象の計数率の増加が抑制され、ノイズ成分を考慮した実効的なカウントレート(NECR)が増大する。NECRの増大は検査時間の短縮をもたらす。   A radiation shielding device extending in the longitudinal direction of the bed and capable of inserting a bed and a subject is formed by being surrounded by a plurality of radiation detectors and is located outside the outer space of the space where the bed can be inserted. Therefore, it is possible to prevent radiation from outside the space from entering the radiation detector. For this reason, even if the integration degree of the administered radioactivity of the subject increases, an increase in the counting rate of incidental events is suppressed, and an effective count rate (NECR) considering a noise component increases. An increase in NECR leads to a reduction in examination time.

本発明によれば、偶発事象の検出レートを著しく低減し、陽電子放出型CT装置による検査時間を著しく短縮する。   According to the present invention, the detection rate of incidental events is significantly reduced, and the inspection time by the positron emission CT apparatus is remarkably shortened.

以下、本発明の実施例を説明する。   Examples of the present invention will be described below.

本発明の好適な一実施例であるPET装置を、図1及び図2に基づいて説明する。本実施例のPET装置は、撮像装置1,被検診者保持装置2,信号処理装置3を備えている。   A PET apparatus according to a preferred embodiment of the present invention will be described with reference to FIGS. The PET apparatus according to the present embodiment includes an imaging device 1, a patient holding device 2, and a signal processing device 3.

撮像装置(ガントリ)1は、ベッド22の長手方向と直交するように設置されており、放射線検出器11,環状保持部12を有する。放射線検出器11は、環状保持部12の内側に多数設置され、ベッド22を取り囲むように環状に数万個配列されている。放射線検出器11は、半導体放射線検出器であり、検出部である5mm立方体の半導体素子部をカドミウムテルル(CdTe)で構成している。その検出部はガリウムヒ素(GaAs)またはカドミウムテルル亜鉛(CZT)等で構成してもよい。環状保持部12は、検査室の床に設置された支持部材21の支持部42に設置されている。また、有効視野領域14は、環状に配置された放射線検出器11に取り囲まれ、ベッド22により支持された被検診者5が挿入可能な領域であり、本PET装置の検査可能な領域である。すなわち、有効視野領域14は、撮像装置1の、ベッド22の長手方向における両端面間に存在し、環状に配置された放射線検出器11で囲まれる領域である。   The imaging device (gantry) 1 is installed so as to be orthogonal to the longitudinal direction of the bed 22, and includes a radiation detector 11 and an annular holder 12. A large number of radiation detectors 11 are installed inside the annular holding portion 12, and tens of thousands are arranged in an annular shape so as to surround the bed 22. The radiation detector 11 is a semiconductor radiation detector, and a 5 mm cubic semiconductor element portion as a detection portion is made of cadmium tellurium (CdTe). The detection unit may be made of gallium arsenide (GaAs) or cadmium tellurium zinc (CZT). The annular holding part 12 is installed on the support part 42 of the support member 21 installed on the floor of the examination room. The effective visual field region 14 is a region that can be inserted by the examinee 5 surrounded by the annular radiation detector 11 and supported by the bed 22, and is a region that can be inspected by the PET apparatus. That is, the effective visual field region 14 is a region that exists between both end surfaces of the imaging device 1 in the longitudinal direction of the bed 22 and is surrounded by the radiation detectors 11 arranged in an annular shape.

被検診者保持装置2は、支持部材21の支持部41,ベッド22,2個のγ線遮蔽装置(放射線遮蔽装置)25,28及びγ線遮蔽装置25,28のそれぞれに設けられた蓋部材開閉装置24を有する。ベッド22は、支持部41の上端部に位置して長手方向に移動可能に支持部41に設置される。ベッド22は被検診者5を保持しその長手方向に移動できる。γ線遮蔽装置25はγ線遮蔽具(下部放射線遮蔽部材)26及びγ線遮蔽具26に開閉可能に取り付けられた蓋部材(上部放射線遮蔽部材)27を有する。γ線遮蔽装置
28もγ線遮蔽具(下部放射線遮蔽部材)29及びγ線遮蔽具29に開閉可能に取り付けられた蓋部材(上部放射線遮蔽部材)30を有する。γ線遮蔽具26,29は、底部及び底部につながり対向して配置される2つの側壁部を有する。これらの側壁部間には、被検診者5が入れる空間が形成される(図2)。蓋部材27,30は、図2に示すように半楕円形状をしており、該当する蓋部材開閉装置24により開閉される。γ線遮蔽具26,
29及び蓋部材27,30は放射線遮蔽材である鉛(またはタングステン)で作製されている。γ線遮蔽装置25,28は、有効視野領域14内へのγ線の入射を阻止する観点から、撮像装置1、特に有効視野領域14に近接しては位置する。
The subject holding device 2 includes a support member 41 of the support member 21, a bed 22, two gamma ray shielding devices (radiation shielding devices) 25 and 28, and lid members provided on the gamma ray shielding devices 25 and 28, respectively. An opening / closing device 24 is provided. The bed 22 is located on the upper end portion of the support portion 41 and is installed on the support portion 41 so as to be movable in the longitudinal direction. The bed 22 holds the examinee 5 and can move in the longitudinal direction thereof. The γ-ray shielding device 25 has a γ-ray shielding tool (lower radiation shielding member) 26 and a lid member (upper radiation shielding member) 27 attached to the γ-ray shielding tool 26 so as to be opened and closed. The γ-ray shielding device 28 also includes a γ-ray shielding tool (lower radiation shielding member) 29 and a lid member (upper radiation shielding member) 30 attached to the γ-ray shielding tool 29 so as to be openable and closable. The γ-ray shielding tools 26 and 29 have two bottom portions that are connected to and face each other at the bottom. Between these side wall portions, a space for the examinee 5 is formed (FIG. 2). The lid members 27 and 30 have a semi-elliptical shape as shown in FIG. 2 and are opened and closed by the corresponding lid member opening / closing device 24. gamma ray shield 26,
29 and the lid members 27 and 30 are made of lead (or tungsten) which is a radiation shielding material. The γ-ray shielding devices 25 and 28 are located in the vicinity of the imaging device 1, particularly the effective visual field region 14 from the viewpoint of preventing the incidence of γ rays into the effective visual field region 14.

γ線遮蔽装置25,28は、有効視野領域14の外側で、撮像装置1の前後に配置される。換言すれば、撮像装置1はγ線遮蔽装置25とγ線遮蔽装置28に挟まれて配置されている。γ線遮蔽具26は、ベッド22が保持される位置よりも低い位置で支持部41の上端部に保持される。γ線遮蔽具29は、支持部材21の支持部40の上端部に保持される。蓋部材27,30は、検査期間中では図2のように閉じられており、検査期間前後で被検診者5がγ線遮蔽具内に出入りするときには開いている。γ線遮蔽装置25,28の縦断面における大きさは有効視野領域14の縦断面に入る大きさである。γ線遮蔽装置
25は、図2に示すように、その縦断面が有効視野領域14と対向するように配置されている。γ線遮蔽装置28も同じように配置されている。
The γ-ray shielding devices 25 and 28 are disposed outside the effective visual field region 14 and before and after the imaging device 1. In other words, the imaging device 1 is disposed between the γ-ray shielding device 25 and the γ-ray shielding device 28. The γ-ray shielding tool 26 is held on the upper end portion of the support portion 41 at a position lower than the position where the bed 22 is held. The γ-ray shielding tool 29 is held at the upper end portion of the support portion 40 of the support member 21. The lid members 27 and 30 are closed as shown in FIG. 2 during the examination period, and are opened when the examinee 5 enters and exits the γ-ray shield before and after the examination period. The size of the gamma ray shielding devices 25 and 28 in the longitudinal section is a size that falls within the longitudinal section of the effective visual field region 14. As shown in FIG. 2, the γ-ray shielding device 25 is arranged so that its longitudinal section faces the effective visual field region 14. The gamma ray shielding device 28 is arranged in the same manner.

信号処理装置3は、信号増幅回路31,信号弁別回路32,同時計測回路33,画像情報作成装置(例えば、ワークステーション)34,記憶装置35及び表示装置36を備えている。信号増幅回路31及び信号弁別回路32は、放射線検出器11ごとに専用に設けられている。1つの信号増幅回路31は1つの放射線検出器11に接続される。信号弁別回路32は信号増幅器31に接続される。それぞれの信号弁別回路32は同時計測回路
33に接続される。
The signal processing device 3 includes a signal amplification circuit 31, a signal discrimination circuit 32, a simultaneous measurement circuit 33, an image information creation device (for example, a workstation) 34, a storage device 35, and a display device 36. The signal amplification circuit 31 and the signal discrimination circuit 32 are provided exclusively for each radiation detector 11. One signal amplification circuit 31 is connected to one radiation detector 11. The signal discrimination circuit 32 is connected to the signal amplifier 31. Each signal discrimination circuit 32 is connected to a simultaneous measurement circuit 33.

本実施例のPET装置を用いた検査を具体的に説明する前に、本実施例のγ線遮蔽装置の効果について説明する。撮像装置の前後のγ線遮蔽装置の設置は、発明者らによる以下に述べる検討で得られた結果に基づいてなされた。   Before specifically explaining the inspection using the PET apparatus of this embodiment, the effect of the γ-ray shielding apparatus of this embodiment will be described. The gamma ray shielding devices before and after the imaging device were installed based on the results obtained by the following studies by the inventors.

図7及び図8に本実施例のγ線遮蔽装置を使用した場合と使用しない場合におけるシミュレーション結果を示す。図7の横軸は投与放射能の集積度、その縦軸はNECR(NoiseEquivalent Count Rate)を示している。NECRは式(1)より算出されるノイズ成分を考慮した実効的なカウントレートである。NECRと測定時間は反比例の関係にある。   FIG. 7 and FIG. 8 show the simulation results when the γ-ray shielding device of this embodiment is used and when it is not used. The horizontal axis in FIG. 7 indicates the accumulation degree of administered radioactivity, and the vertical axis indicates NECR (Noise Equivalent Count Rate). NECR is an effective count rate in consideration of the noise component calculated from the equation (1). NECR and measurement time are inversely related.

Figure 2005106562
Figure 2005106562

ただし、C(t),C(s),C(r)はそれぞれ真,散乱,偶発事象における同時計数率である。図8の横軸は投与放射能の集積度、縦軸は偶発事象の計数率C(r)表している。図7より、投与放射能の集積度(投与放射能)を増大すると、NECRは飽和する。これは投与放射能の増大により検出されるγ線のレートは増加するが、図8に示すように偶発事象(C(r))の検出レートも急激に増加するためである。図8より、γ線遮蔽装置を取り付けることにより、偶発事象の計数率が大幅に減少していることが分かる。これは、γ線遮蔽装置が撮像装置の外の領域からのγ線の入射を阻止しているためである。従って、γ線遮蔽装置を取り付けることにより、図7に示すごとくNECRは大幅に増加する。例えば、投与放射能の集積度が0.2μCi/CC であるとき、NECRは、「γ線遮蔽装置無し」で27kcpsであるのに対して、「γ線遮蔽装置有り」で65kcpsとなる。後者の
NECRは前者のそれの約2.4 倍となる。これは、撮像時間が約2.4 分の1に短縮されることを意味する。「γ線遮蔽装置無し」の場合、では1領域の撮像時間が3分であったのが、γ線遮蔽体装置を備えることによってその撮影時間が1分強まで大幅に短縮できる。
However, C (t), C (s), and C (r) are coincidence counting rates for true, scattered, and incidental events, respectively. The horizontal axis of FIG. 8 represents the accumulation degree of the administered radioactivity, and the vertical axis represents the incident event count rate C (r). As shown in FIG. 7, the NECR is saturated when the accumulation degree of administration radioactivity (administration radioactivity) is increased. This is because the rate of γ-rays detected by the increase in administered radioactivity increases, but the detection rate of incidental events (C (r)) also increases rapidly as shown in FIG. It can be seen from FIG. 8 that the incident event count rate is greatly reduced by attaching the gamma ray shielding device. This is because the γ-ray shielding device prevents the incidence of γ-rays from a region outside the imaging device. Therefore, by attaching the γ-ray shielding device, the NECR is greatly increased as shown in FIG. For example, when the integrated dose radioactivity is 0.2 μCi / CC, the NECR is 27 kcps with “no γ-ray shielding device” and 65 kcps with “with γ-ray shielding device”. The latter NECR is about 2.4 times that of the former. This means that the imaging time is reduced to about 2.4 times. In the case of “without γ-ray shielding device”, the imaging time of one area was 3 minutes. However, by providing the γ-ray shielding device, the imaging time can be significantly reduced to just over 1 minute.

次に、本実施例のPET装置を用いた検査について、説明する。まず、注射などの方法により予め決定したPET用薬剤を被検診者5に投与する。PET用薬剤は、検査する患部に応じて選ばれる。その後、PET用薬剤が被検診者5の体内に拡散して患部(例えば癌の患部)に集まって撮像可能な状態になるまでの安静時間の間、被検診者5は待機する。その安静時間経過後に、被検診者5はベッド22に載る。この際、蓋部材27は蓋部材開閉装置24により開いた状態にしておく。被検診者5がベッド22に横たわった後、蓋部材27は蓋部材開閉装置24によって閉じられる。ベッド22はγ線遮蔽装置25内に位置している。なお、蓋部材30は閉じたままになっている。被検診者5は、ベッド22の移動によって撮像装置1の有効視野領域14内に挿入される。被検診者5の検査対象領域(患部を含む)が有効視野領域14内に位置したとき、ベッド22の移動は停止される。   Next, an inspection using the PET apparatus of this embodiment will be described. First, a PET drug predetermined by a method such as injection is administered to the examinee 5. The PET drug is selected according to the affected area to be examined. Thereafter, the examinee 5 waits for a rest period until the PET drug diffuses in the body of the examinee 5 and collects in the affected area (for example, an affected area of cancer) and becomes ready for imaging. After the rest time, the examinee 5 is placed on the bed 22. At this time, the lid member 27 is opened by the lid member opening / closing device 24. After the examinee 5 lies on the bed 22, the lid member 27 is closed by the lid member opening / closing device 24. The bed 22 is located in the γ-ray shielding device 25. The lid member 30 remains closed. The examinee 5 is inserted into the effective visual field region 14 of the imaging device 1 by the movement of the bed 22. When the examination target area (including the affected part) of the examinee 5 is located within the effective visual field area 14, the movement of the bed 22 is stopped.

PET検査は撮像装置2を用いて行われる。PET用薬剤が投与された被検診者5の検査対象領域が有効視野領域14内に挿入され、各放射線検出器11に電源(図示せず)からの電圧が印加された後、各放射線検出器11は被検診者5から放出されたγ線を検出する。すなわち、PET検査が開始される。PET検査終了後、被検診者5がベッド22の移動によって撮像装置1の有効視野領域14の外まで移動する。そして、蓋部材開閉装置24によって蓋部材27を開く。そして被検診者5はベッド22から降りる。   The PET inspection is performed using the imaging device 2. After the examination target region of the examinee 5 to which the PET drug is administered is inserted into the effective visual field region 14 and a voltage from a power source (not shown) is applied to each radiation detector 11, each radiation detector is applied. 11 detects the gamma rays emitted from the examinee 5. That is, the PET inspection is started. After completion of the PET examination, the examinee 5 moves out of the effective visual field area 14 of the imaging apparatus 1 by moving the bed 22. Then, the lid member 27 is opened by the lid member opening / closing device 24. Then, the examinee 5 gets off the bed 22.

PET検査時において放射線検出器11から出力される信号の処理について説明する。放射線検出器11は、PET用薬剤に起因して発生したγ線を検出して微弱なγ線検出信号を出力する。このγ線検出信号は該当する信号増幅回路31で増幅される。信号増幅回路31は、増幅して得られた、検出したγ線のエネルギーに相当する波高値を有するアナログ信号、及びγ線を検出したタイミング信号をそれぞれ出力する。図1では信号増幅回路31が撮像装置1から離れて設置されているように図示しているが、実際には撮像装置1内で放射線検出器11のそばに設置されている。放射線検出器11から出力されたγ線検出信号は微弱信号であり、ノイズ対策の観点から信号増幅回路31は放射線検出器11の近くに設置すべきである。信号弁別回路32は、信号増幅回路31から入力したアナログ信号を基に、アナログデジタルコンバータ(図示せず)でγ線エネルギー(波高値)を計測し、デジタルデータとして保持する。信号弁別回路32は、信号増幅回路31から入力したタイミング信号を基にγ線の検出時間を決定する。更に、信号弁別回路32は、γ線検出時間,γ線エネルギー、及びこの信号弁別回路32につながる放射線検出器11のセンサ番号を1つのパケットデータとして同時計測回路33に転送する。同時計測回路
33は撮像装置1内の全ての放射線検出器11につながるそれぞれの信号弁別回路32から出力されたγ線検出データである上記パケットデータを入力し同時計測を実施する。すなわち、同時計測回路33は、γ線検出時間が設定時間の時間窓内に入っている一対のパケットデータをPET用薬剤に起因して生成された一対のγ線に基づくものであると認識する同時計測を行い、同時と判定されたパケットデータ対からセンサ番号対を生成して画像情報作成装置34にデータ転送する。計測時には、画像情報作成装置34は同時計測回路33から出力されたセンサ番号対データを記憶装置35に保持する。計測終了後に、画像情報作成装置34は、記憶装置35に保持されたセンサ番号対データを基に画像再構成処理を行ってPET画像情報を作成する。画像情報作成装置34はPET画像情報を表示装置36に出力する。
Processing of signals output from the radiation detector 11 during the PET examination will be described. The radiation detector 11 detects γ rays generated due to the PET drug and outputs a weak γ ray detection signal. This γ-ray detection signal is amplified by the corresponding signal amplification circuit 31. The signal amplifying circuit 31 outputs an analog signal having a peak value corresponding to the detected γ-ray energy obtained by amplification and a timing signal for detecting the γ-ray. In FIG. 1, the signal amplifying circuit 31 is illustrated as being installed away from the imaging apparatus 1, but in reality, it is installed near the radiation detector 11 in the imaging apparatus 1. The γ-ray detection signal output from the radiation detector 11 is a weak signal, and the signal amplification circuit 31 should be installed near the radiation detector 11 from the viewpoint of noise countermeasures. The signal discriminating circuit 32 measures γ-ray energy (peak value) with an analog-digital converter (not shown) based on the analog signal input from the signal amplifier circuit 31 and holds it as digital data. The signal discrimination circuit 32 determines the detection time of γ rays based on the timing signal input from the signal amplification circuit 31. Further, the signal discrimination circuit 32 transfers the γ-ray detection time, γ-ray energy, and the sensor number of the radiation detector 11 connected to the signal discrimination circuit 32 to the simultaneous measurement circuit 33 as one packet data. The simultaneous measurement circuit 33 inputs the packet data that is the γ-ray detection data output from each signal discrimination circuit 32 connected to all the radiation detectors 11 in the imaging apparatus 1 and performs simultaneous measurement. That is, the simultaneous measurement circuit 33 recognizes that the pair of packet data whose γ-ray detection time is within the set time window is based on the pair of γ-rays generated due to the PET drug. Simultaneous measurement is performed, a sensor number pair is generated from the packet data pair determined to be simultaneous, and the data is transferred to the image information creation device 34. At the time of measurement, the image information creation device 34 holds the sensor number pair data output from the simultaneous measurement circuit 33 in the storage device 35. After the measurement is completed, the image information creation device 34 performs image reconstruction processing based on the sensor number pair data held in the storage device 35 to create PET image information. The image information creation device 34 outputs the PET image information to the display device 36.

γ線遮蔽装置25,28は、検査期間中において有効視野領域14外で発生するγ線が放射線検出器11に入射されるのを阻止する。すなわち、PET用薬剤は、被検診者5の患部に集積するが、血液に混じって全身を流動している。このため、わずかであるがγ線は患部以外の部分でも発生する。γ線遮蔽装置25,28は、有効視野領域14外で患部以外の部分で発生したγ線を遮蔽する。このため、このγ線が放射線検出器11に入射されることがなくなる。   The γ-ray shielding devices 25 and 28 prevent the γ-ray generated outside the effective visual field region 14 from being incident on the radiation detector 11 during the examination period. That is, the PET drug accumulates in the affected area of the examinee 5, but flows throughout the body in the blood. For this reason, a small amount of γ-rays is also generated in parts other than the affected part. The γ-ray shielding devices 25, 28 shield γ-rays generated outside the effective visual field region 14 and other than the affected area. For this reason, the γ rays are not incident on the radiation detector 11.

本実施例によれば、以下に示す効果を得ることが出来る。   According to the present embodiment, the following effects can be obtained.

(1)本実施例では、γ線遮蔽装置25,28を設置しているため、撮像装置1の有効視野領域14の外から放射線検出器11に入射されるγ線を阻止することができ、検査時間を大幅に短縮できる。   (1) In this embodiment, since the γ-ray shielding devices 25 and 28 are installed, γ-rays that enter the radiation detector 11 from outside the effective visual field region 14 of the imaging device 1 can be blocked. Inspection time can be greatly reduced.

(2)検査時間の大幅短縮を達成できるために、検査中の被検診者5の移動量が大幅に小さくなりPET画像の画質を大幅に改善することができる。   (2) Since the examination time can be significantly shortened, the movement amount of the examinee 5 during the examination is greatly reduced, and the image quality of the PET image can be greatly improved.

(3)ノイズ成分である偶発事象が大幅に減少するために、作成されたPET画像の画質が大幅に向上する。   (3) Since the incidental events that are noise components are greatly reduced, the image quality of the created PET image is greatly improved.

(4)撮像装置1の有効視野領域14の外からのγ線が阻止されるために、検出されるγ線のレートが大幅に低減され、回路によりデータ損失が大幅に低減される。このため、検査の定量性が向上する。   (4) Since γ rays from outside the effective visual field region 14 of the imaging device 1 are blocked, the rate of detected γ rays is greatly reduced, and the data loss is greatly reduced by the circuit. This improves the quantitativeness of the inspection.

(5)従来技術においては偶発事象の増加が激しいために撮像措置の大型化(検出器群の体軸長の増大)が困難であったが、本実施例は、偶発事象が大幅に低減されるため撮像装置の大型化が可能となり、更なる検査時間の短縮が可能となる。   (5) In the prior art, it was difficult to increase the size of the imaging measure (increase in the body axis length of the detector group) because the increase in incidental events was significant, but in this example, the incidental events were greatly reduced. Therefore, it is possible to increase the size of the image pickup apparatus and further reduce the inspection time.

(6)従来技術においてはガントリ外からのγ線の入射を阻止するために検出器の最外周にシールドコリメータを取り付けていた。本実施例は、γ線遮蔽装置25,28の設置によりシールドコリメータが不要となる。   (6) In the prior art, a shield collimator is attached to the outermost periphery of the detector in order to prevent the incidence of γ rays from outside the gantry. In the present embodiment, a shield collimator is not required due to the installation of the γ-ray shielding devices 25 and 28.

(7)γ線遮蔽装置を設けているため、撮像装置を小型化できる。具体的には、γ線遮蔽装置の設置により有効視野領域14の直径を小さくできるため、環状保持部材12の直径も小さくなり、設置される放射線検出器11の個数も低減できる。   (7) Since the γ-ray shielding device is provided, the imaging device can be downsized. Specifically, since the diameter of the effective visual field region 14 can be reduced by installing the γ-ray shielding device, the diameter of the annular holding member 12 is also reduced, and the number of radiation detectors 11 to be installed can be reduced.

(8)有効視野領域14の直径が小さくなるため、被検診者5側から見た放射線検出器11の立体角が増大し、PET装置全体での検出効率が増加する。このため、検査時間が更に短縮される。   (8) Since the diameter of the effective visual field region 14 is reduced, the solid angle of the radiation detector 11 viewed from the examinee 5 side is increased, and the detection efficiency of the entire PET apparatus is increased. For this reason, the inspection time is further shortened.

(9)陽電子消滅時に発生する一対のγ線の放出方向のなす角度は、180度に若干の誤差(±0.6°)を伴っており、従来技術ではこの誤差がPET画像の位置分解能を劣化させている。本実施例は、有効視野領域14の直径の減少により有効視野領域14の中心軸を挟んで対向する2つの放射線検出器11間の距離が短くなるため、その誤差が少なく、PET画像の位置分解能が向上する。   (9) The angle formed by the emission direction of a pair of γ-rays generated at the time of annihilation of positrons is accompanied by a slight error (± 0.6 °) at 180 degrees. It has deteriorated. In this embodiment, since the distance between the two radiation detectors 11 facing each other across the central axis of the effective visual field region 14 is shortened due to the decrease in the diameter of the effective visual field region 14, the error is small, and the position resolution of the PET image is reduced. Will improve.

本実施例においては、γ線遮蔽装置25,28を鉛で作製しているがそれに限定されない。例えば、γ線遮蔽具26,29及び蓋部材27,30を鉛ガラスにしても良い。この場合、鉛ガラスは透明であるため、被検体である被検診者5に対する圧迫感が軽減される。また、検査中における被検体の表情や意識をカメラにて検査実施者(医者,検査技師)が観察することが可能となり、被検体の様態変化に即時対応可能となる。   In this embodiment, the γ-ray shielding devices 25 and 28 are made of lead, but are not limited thereto. For example, the γ-ray shields 26 and 29 and the lid members 27 and 30 may be made of lead glass. In this case, since the lead glass is transparent, the feeling of pressure on the examinee 5 who is the subject is reduced. In addition, the examiner (doctor, inspection engineer) can observe the facial expression and consciousness of the subject during the examination with a camera, and can immediately respond to changes in the state of the subject.

本発明の他の実施例であるPET装置を、図3を用いて説明する。本実施例のPET装置は、撮像装置1A,被検診者保持装置2A、及び図示されていないが信号処理装置3を備えている。撮像装置1Aは、前述の撮像装置1のγ線遮蔽装置25側の端面、及びγ線遮蔽装置28側の端面にそれぞれシールドコリメータ13を取り付けた構成を有する。各シールドコリメータ13は、図2において、γ線遮蔽装置の外面と環状に配置された放射線検出器11の検出器群の内面との間を塞ぐように設けられている。有効視野領域14が真っ暗になって被検診者5に恐怖感を与えることを防ぐために、各シールドコリメータ
13は鉛ガラスで作製される。被検診者保持装置2Aは、γ線遮蔽装置25,28よりも長さが短いγ線遮蔽装置25A,28Aを備えている点で、被検診者保持装置2と構成が異なっているだけである。当然のことながら、γ線遮蔽装置25Aを構成するγ線遮蔽具26A及び蓋部材27A、及びγ線遮蔽装置28Aを構成するγ線遮蔽具29A及び蓋部材30Aの長さも、実施例1のそれらよりも短くなっている。本実施例は、有効視野領域14の外からγ線が放射線検出器11に入射するのを、一対のシールドコリメータ13、及びγ線遮蔽装置25A,28Aで防止している。
A PET apparatus according to another embodiment of the present invention will be described with reference to FIG. The PET apparatus of the present embodiment includes an imaging apparatus 1A, an examinee holding apparatus 2A, and a signal processing apparatus 3 (not shown). The imaging device 1A has a configuration in which the shield collimator 13 is attached to the end surface on the γ-ray shielding device 25 side and the end surface on the γ-ray shielding device 28 side of the imaging device 1 described above. In FIG. 2, each shield collimator 13 is provided so as to block between the outer surface of the γ-ray shielding device and the inner surface of the detector group of the radiation detector 11 arranged in an annular shape. Each shield collimator 13 is made of lead glass in order to prevent the effective visual field region 14 from becoming dark and giving fear to the examinee 5. The subject holding device 2A is different from the subject holding device 2 only in that the subject holding device 2A includes γ ray shielding devices 25A and 28A shorter in length than the γ ray shielding devices 25 and 28. . As a matter of course, the lengths of the γ-ray shielding device 26A and the lid member 27A constituting the γ-ray shielding device 25A, and the γ-ray shielding device 29A and the lid member 30A constituting the γ-ray shielding device 28A are also those of the first embodiment. Is shorter. In the present embodiment, the pair of shield collimators 13 and the γ-ray shielding devices 25A and 28A prevent γ-rays from entering the radiation detector 11 from outside the effective visual field region 14.

本実施例は、実施例1で生じる効果(1)〜(5)及び(7)〜(9)の効果を得ることができる。さらに本実施例は以下に示す効果も得ることができる。   In the present embodiment, the effects (1) to (5) and (7) to (9) produced in the first embodiment can be obtained. Furthermore, the present embodiment can also obtain the following effects.

(10)γ線遮蔽装置が小型化され、PET装置が小型,軽量化される。   (10) The γ-ray shielding device is reduced in size, and the PET device is reduced in size and weight.

(11)γ線遮蔽装置の小型,軽量化により、蓋部材開閉装置も小型化できる。   (11) The lid member opening and closing device can be reduced in size by reducing the size and weight of the γ-ray shielding device.

本発明の他の実施例であるPET装置を、図4,図5を用いて説明する。本実施例の
PET装置は、撮像装置1,被検診者保持装置2B、及び図示されていないが信号処理装置3を備えている。被検診者保持装置2Bは、γ線遮蔽装置28Bの構成がγ線遮蔽装置28と異なるだけで、他の部分は被検診者保持装置2の他の構成と同じである。γ線遮蔽装置28Bは、蓋部材30を設けていなく、γ線遮蔽具29を備えている。このため、γ線遮蔽装置28Bは上方が開放されている。
A PET apparatus according to another embodiment of the present invention will be described with reference to FIGS. The PET apparatus according to the present embodiment includes an imaging apparatus 1, an examinee holding apparatus 2B, and a signal processing apparatus 3 (not shown). The subject holding device 2B is the same as the other configurations of the subject holding device 2 except that the configuration of the γ-ray shielding device 28B is different from that of the γ-ray shielding device 28. The γ-ray shielding device 28 </ b> B does not include the lid member 30 and includes a γ-ray shielding tool 29. For this reason, the upper part of the γ-ray shielding device 28B is opened.

本実施例は、実施例1で生じる(1)〜(9)の効果を得ることができる。さらに、本実施例は、蓋部材30、及びγ線遮蔽装置28B用の蓋部材開閉装置24が不要になるため、被検診者保持装置の構造を単純化できる。   In the present embodiment, the effects (1) to (9) produced in the first embodiment can be obtained. Furthermore, since the present embodiment eliminates the need for the lid member 30 and the lid member opening / closing device 24 for the γ-ray shielding device 28B, the structure of the examinee holding device can be simplified.

本実施例は、γ線遮蔽装置28Bの上方が開放されている関係上、γ線遮蔽装置28Bの上端のレベルよりも上方に位置する、撮像装置1の放射線検出器11は、γ線遮蔽装置28B側において有効視野領域14の外からのγ線を検出する。しかしながら、γ線遮蔽装置28Bの上端のレベルよりも下方に位置する、撮像装置1の放射線検出器11は、γ線遮蔽装置28Bがあるため、有効視野領域14の外からのγ線を検出しない。このため、実施例1で生じる効果のうち(1)〜(5)の効果は、実施例1よりも低減されるが従来技術に比べれば大きなものとなる。   In the present embodiment, the radiation detector 11 of the imaging apparatus 1 located above the upper end level of the γ-ray shielding device 28B is a γ-ray shielding device because the upper side of the γ-ray shielding device 28B is open. On the 28B side, γ rays from outside the effective visual field region 14 are detected. However, the radiation detector 11 of the imaging device 1 located below the upper end level of the γ-ray shielding device 28B does not detect γ-rays from outside the effective visual field region 14 because of the presence of the γ-ray shielding device 28B. . For this reason, among the effects produced in the first embodiment, the effects (1) to (5) are reduced as compared with the first embodiment, but are larger than those in the prior art.

なお、本実施例の被検診者保持装置2Bを、図6に示す被検診者保持装置2Cにしてもよい。被検診者保持装置2Cは、γ線遮蔽装置28Bの考え方を被検診者保持装置2Bのγ線遮蔽装置25にも適用したものである。すなわち、被検診者保持装置2Cは、蓋部材27を設けず、γ線遮蔽具26を有するγ線遮蔽装置25Bを備えている。被検診者保持装置2Cの構成は被検診者保持装置2Bよりも更に単純化できる。図6の構成も、従来技術に比べて前述した効果(1)〜(9)を得ることができる。   Note that the examinee holding apparatus 2B of the present embodiment may be the examinee holding apparatus 2C shown in FIG. The examinee holding device 2C applies the idea of the γ-ray shielding device 28B to the γ-ray shielding device 25 of the examinee holding device 2B. That is, the examinee holding apparatus 2 </ b> C includes the γ-ray shielding device 25 </ b> B having the γ-ray shielding tool 26 without providing the lid member 27. The configuration of the examinee holding device 2C can be further simplified than that of the examinee holding device 2B. The configuration of FIG. 6 can also obtain the effects (1) to (9) described above compared to the prior art.

実施例1ないし3は、放射線検出器として半導体放射線検出器を使用しているが、シンチレータ及びホトマルを使用してもよい。実施例1ないし3のγ線遮蔽装置は、シート状のγ線遮蔽具を使用し、被検診者5の形状にフィットさせても良い。つまり、γ線遮蔽装置は、有効視野領域14の外からのγ線を遮蔽できればどのような構成であってもよい。   In Examples 1 to 3, a semiconductor radiation detector is used as the radiation detector, but a scintillator and a photomultiplier may be used. The γ-ray shielding devices of Examples 1 to 3 may be fitted to the shape of the examinee 5 using a sheet-like γ-ray shielding tool. That is, the γ-ray shielding device may have any configuration as long as it can shield γ-rays from outside the effective visual field region 14.

本発明の好適な一実施例である実施例1の陽電子放出型CT装置の縦断面図である。1 is a longitudinal sectional view of a positron emission CT apparatus according to embodiment 1, which is a preferred embodiment of the present invention. FIG. 図1のII−II断面図である。It is II-II sectional drawing of FIG. 本発明の他の実施例である実施例2の陽電子放出型CT装置の縦断面図である。It is a longitudinal cross-sectional view of the positron emission type CT apparatus of Example 2 which is another Example of this invention. 本実施例の他の実施例である実施例3の陽電子放出型CT装置の縦断面図である。It is a longitudinal cross-sectional view of the positron emission type CT apparatus of Example 3 which is another Example of a present Example. 図4のV−V断面図である。It is VV sectional drawing of FIG. 図4に示す被検診者保持装置の他の実施例の縦断面図である。It is a longitudinal cross-sectional view of the other Example of the examinee holding | maintenance apparatus shown in FIG. 投与放射能の集積度とNECRとの関係を示す特性図である。It is a characteristic view which shows the relationship between the integration degree of administration radioactivity, and NECR. 投与放射能の集積度と偶発事象の計数率との関係を示す特性図である。It is a characteristic view which shows the relationship between the integration degree of administration radioactivity, and the counting rate of a contingent event.

符号の説明Explanation of symbols

1,1A…撮像装置、2,2A,2B,2C…被検診者保持装置、3…信号処理装置、11…放射線検出器、12…環状保持部、13…シールドコリメータ、14…有効視野領域、22…ベッド、24…蓋部材開閉装置、25,25A,25B,28,28A,28B…γ線遮蔽装置、26,26A,29,29A…γ線遮蔽具、27,30…蓋部材、
31…信号増幅回路、32…信号弁別回路、33…同時計測回路、34…画像情報作成装置。
DESCRIPTION OF SYMBOLS 1,1A ... Imaging device, 2, 2A, 2B, 2C ... Examinee holding device, 3 ... Signal processing device, 11 ... Radiation detector, 12 ... Annular holding part, 13 ... Shield collimator, 14 ... Effective visual field region, 22 ... bed, 24 ... lid member opening / closing device, 25, 25A, 25B, 28, 28A, 28B ... gamma ray shielding device, 26, 26A, 29, 29A ... gamma ray shielding tool, 27, 30 ... lid member,
DESCRIPTION OF SYMBOLS 31 ... Signal amplification circuit, 32 ... Signal discrimination circuit, 33 ... Simultaneous measurement circuit, 34 ... Image information preparation apparatus.

Claims (7)

被検体を支持するベッドと、
前記ベッドの周囲を取り囲む複数の放射線検出器を有する撮像装置と、
縦断面形状が、前記複数の放射線検出器に囲まれて形成されて前記ベッドが挿入可能な空間の縦断面形状よりも小さく、前記ベッドの長手方向に伸びていて前記ベッド及び前記被検体を挿入可能な放射線遮蔽装置とを備え、
前記放射線遮蔽装置は、前記空間の外周面よりも内側で前記空間の外に配置されていることを特徴とする陽電子放出型CT装置。
A bed that supports the subject;
An imaging apparatus having a plurality of radiation detectors surrounding the bed;
A vertical cross-sectional shape is smaller than a vertical cross-sectional shape of a space formed by being surrounded by the plurality of radiation detectors and into which the bed can be inserted, and extends in the longitudinal direction of the bed to insert the bed and the subject. Possible radiation shielding device,
The positron emission CT apparatus, wherein the radiation shielding apparatus is disposed outside the space inside the outer peripheral surface of the space.
前記撮像装置は、2つの前記放射線遮蔽体装置の間に配置されている請求項1記載の陽電子放出型CT装置。   The positron emission CT apparatus according to claim 1, wherein the imaging apparatus is disposed between the two radiation shield apparatuses. 前記放射線遮蔽体装置は、前記ベッド及び前記被検体が挿入可能な下部放射線遮蔽部と、前記下部放射線遮蔽部材に開閉可能に取り付けられて蓋となる上部放射線遮蔽部材とを有し、
前記上部放射線遮蔽部材を開閉する開閉装置を設けた請求項1または請求項2記載の陽電子放出型CT装置。
The radiation shield apparatus includes a lower radiation shield part into which the bed and the subject can be inserted, and an upper radiation shield member attached to the lower radiation shield member so as to be opened and closed and serving as a lid.
The positron emission CT apparatus according to claim 1, further comprising an opening / closing device that opens and closes the upper radiation shielding member.
少なくとも一方の前記放射線遮蔽体装置は上部が開放されている請求項2記載の陽電子放出型CT装置。   The positron emission CT apparatus according to claim 2, wherein an upper portion of at least one of the radiation shield apparatuses is open. 前記撮像装置は外部から前記空間内への放射線の入射を遮ぎるシールドコリメータを前記ベッドの長手方向における端部に設け、前記シールドコリメータは前記放射線遮蔽装置の縦断面形状よりも外側に配置されている請求項1または請求項2記載の陽電子放出型
CT装置。
The imaging apparatus is provided with a shield collimator that shields radiation from entering the space from the outside at an end in the longitudinal direction of the bed, and the shield collimator is disposed outside the longitudinal cross-sectional shape of the radiation shielding apparatus. The positron emission type CT apparatus according to claim 1 or 2.
前記放射線遮蔽装置は鉛ガラスで作製されている請求項1ないし請求項5のいずれか1項に記載の陽電子放出型CT装置。   The positron emission CT apparatus according to claim 1, wherein the radiation shielding apparatus is made of lead glass. 前記放射線検出器が半導体放射線検出器である請求項1ないし請求項6のいずれか1項に記載の陽電子放出型CT装置。
The positron emission CT apparatus according to claim 1, wherein the radiation detector is a semiconductor radiation detector.
JP2003339046A 2003-09-30 2003-09-30 Positron emission CT system Expired - Fee Related JP4082324B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003339046A JP4082324B2 (en) 2003-09-30 2003-09-30 Positron emission CT system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003339046A JP4082324B2 (en) 2003-09-30 2003-09-30 Positron emission CT system

Publications (2)

Publication Number Publication Date
JP2005106562A true JP2005106562A (en) 2005-04-21
JP4082324B2 JP4082324B2 (en) 2008-04-30

Family

ID=34534341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003339046A Expired - Fee Related JP4082324B2 (en) 2003-09-30 2003-09-30 Positron emission CT system

Country Status (1)

Country Link
JP (1) JP4082324B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007218768A (en) * 2006-02-17 2007-08-30 Shimadzu Corp Positron emission tomography equipment
JP2007298493A (en) * 2006-04-06 2007-11-15 Nippon Electric Glass Co Ltd Radiation-shielding glass plate for medical use, and method for manufacturing the same
US11684322B2 (en) 2021-05-13 2023-06-27 Canon Medical Systems Corporation Positron emission tomography apparatus, method, and storage medium

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02206788A (en) * 1989-02-07 1990-08-16 Hamamatsu Photonics Kk Shielding device for positron ct device
JPH06169907A (en) * 1992-12-10 1994-06-21 Toshiba Corp X-ray diagnostic system
JPH08262141A (en) * 1995-03-27 1996-10-11 Shimadzu Corp Positron emission ct device
JP2003167058A (en) * 2001-12-03 2003-06-13 Hitachi Ltd Radiographic inspection device
JP2003222676A (en) * 2002-01-31 2003-08-08 Hitachi Ltd Radiation inspection apparatus
JP2003265460A (en) * 2002-03-15 2003-09-24 Toshiba Corp Subject observing apparatus of test room

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02206788A (en) * 1989-02-07 1990-08-16 Hamamatsu Photonics Kk Shielding device for positron ct device
JPH06169907A (en) * 1992-12-10 1994-06-21 Toshiba Corp X-ray diagnostic system
JPH08262141A (en) * 1995-03-27 1996-10-11 Shimadzu Corp Positron emission ct device
JP2003167058A (en) * 2001-12-03 2003-06-13 Hitachi Ltd Radiographic inspection device
JP2003222676A (en) * 2002-01-31 2003-08-08 Hitachi Ltd Radiation inspection apparatus
JP2003265460A (en) * 2002-03-15 2003-09-24 Toshiba Corp Subject observing apparatus of test room

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007218768A (en) * 2006-02-17 2007-08-30 Shimadzu Corp Positron emission tomography equipment
JP2007298493A (en) * 2006-04-06 2007-11-15 Nippon Electric Glass Co Ltd Radiation-shielding glass plate for medical use, and method for manufacturing the same
US11684322B2 (en) 2021-05-13 2023-06-27 Canon Medical Systems Corporation Positron emission tomography apparatus, method, and storage medium

Also Published As

Publication number Publication date
JP4082324B2 (en) 2008-04-30

Similar Documents

Publication Publication Date Title
JP4093013B2 (en) Radiation inspection equipment
KR100991640B1 (en) Nuclear medical diagnostic device, form tomography diagnostic device, data arithmetic processing method for nuclear medicine, and form tomogram image processing method
Knoll Single-photon emission computed tomography
US7652256B2 (en) Solid state based PET retrofit for a CT scanner
JP4656233B2 (en) Nuclear medicine diagnostic apparatus and diagnostic system used therefor
JP2008309683A (en) Nuclear medicine diagnostic device
JP5126049B2 (en) Nuclear medicine diagnosis apparatus, morphological tomography diagnosis apparatus, nuclear medicine data calculation processing method, and morphological tomography image calculation processing method
JP2009281816A (en) Tomographic apparatus
US20110147574A1 (en) Calibration source and methods for calibrating a nuclear medicine imaging system
JP2535762B2 (en) Simultaneous Scattering Counting Method with Gamma Absorber in Positron Tomography Equipment and Positron Tomography Equipment
Trojanova et al. Evaluation of Timepix3 based CdTe photon counting detector for fully spectroscopic small animal SPECT imaging
JP3851575B2 (en) PET inspection equipment
JP3979599B2 (en) Nuclear medicine imaging device
JP4082324B2 (en) Positron emission CT system
JP2010243395A (en) X ray-gamma ray imaging device
JP4984963B2 (en) Nuclear medicine diagnostic equipment
JP3778094B2 (en) Radiation inspection equipment
JP4737201B2 (en) Radiation inspection equipment
JP7437050B2 (en) Nuclear medicine imaging device
US8785869B2 (en) System and method for providing emission mammography
US10371832B1 (en) Theranostic imaging with CZT gamma cameras
JP4814808B2 (en) Nuclear medicine imaging device
JP2005098708A (en) Positron emission computed tomography equipment
JP2007101341A (en) Positron emission tomographic device, and positron emission tomography
US20060279724A1 (en) Micro-volumetric blood radioactivity counter

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees