JP2005105327A - Extruded material of aluminum alloy to be electro-magnetic-formed - Google Patents

Extruded material of aluminum alloy to be electro-magnetic-formed Download PDF

Info

Publication number
JP2005105327A
JP2005105327A JP2003338985A JP2003338985A JP2005105327A JP 2005105327 A JP2005105327 A JP 2005105327A JP 2003338985 A JP2003338985 A JP 2003338985A JP 2003338985 A JP2003338985 A JP 2003338985A JP 2005105327 A JP2005105327 A JP 2005105327A
Authority
JP
Japan
Prior art keywords
less
extruded material
aluminum alloy
flange
electromagnetic forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003338985A
Other languages
Japanese (ja)
Other versions
JP4311634B2 (en
Inventor
Seiichi Hashimoto
成一 橋本
Hiroyuki Yamashita
浩之 山下
Takashi Oka
貴志 岡
Shinji Yoshihara
伸二 吉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2003338985A priority Critical patent/JP4311634B2/en
Publication of JP2005105327A publication Critical patent/JP2005105327A/en
Application granted granted Critical
Publication of JP4311634B2 publication Critical patent/JP4311634B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an extruded material of an aluminum alloy superior in electro-magnetic formability, which is free from cracking when being electro-magnetic-formed at a tube-expanding rate even as high as 15% or more. <P>SOLUTION: The extruded material of the aluminum alloy includes 0.2-1.5% Si (mass%, hereafter the same), 0.3-1.5% Mg and 95% or more Al; and has crystal grains with an average aspect ratio of 5.0 or lower in the center of a plate thickness. The extruded material is preferably used for manufacturing a bumper stay through the step of forming a flange 26 in the edge of the hollow extruded material 25 by electro-magnetic forming. The tube expanding rate is expressed by δ=ä(l-l<SB>0</SB>)/l<SB>0</SB>}×100 (%), wherein l<SB>0</SB>represents an outer circumferential length in a not-yet-expanded part of the tube, and l represents an outer circumferential length of an expanded part of the tube (the outer circumferential length of the flange if the flange is formed). The alloy preferably limits each content of Ti, Cu, Cr and Zr to 0.1% or less, Mn to 0.15% or less, the above total content to 0.3% or less and Fe to 0.35% or less, and contains 98% or more Al. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、電磁成形性に優れ、自動車のバンパーステイのほか、自動車や鉄道車両又は建築部材のフレームあるいは接合部等の成形に好適な電磁成形用アルミニウム合金押出材に関する。   The present invention relates to an aluminum alloy extruded material for electromagnetic forming that is excellent in electromagnetic formability and suitable for forming a frame or a joint portion of an automobile, a railway vehicle, or a building member in addition to an automobile bumper stay.

例えば乗用車やトラック等の自動車車体の前端(フロント)及び後端(リア)に設置されるバンパー内部には、補強部材としてバンパーリインフォースが設けられている。バンパーリインフォースは一般に荷重方向に略垂直に向く前壁と後壁、及びそれらを連結する横壁を有する断面中空の部材であり、後方側から一対のバンパーステイにより支持され、各バンパーステイは後端がサイドメンバ(フロント又はリア)の先端に固定されている。   For example, bumper reinforcement is provided as a reinforcing member inside a bumper installed at the front end (front) and rear end (rear) of an automobile body such as a passenger car or a truck. The bumper reinforcement is a hollow member having a front wall and a rear wall that are generally perpendicular to the load direction, and a lateral wall that connects them, and is supported by a pair of bumper stays from the rear side. It is fixed to the tip of the side member (front or rear).

近年、バンパーリインフォースについて、軽量化のためにアルミニウム合金押出材が使用されるようになり、バンパーステイについても、同じくアルミニウム合金押出材が使用され始めている。アルミニウム合金押出材からなるバンパーステイには、大きく分けて縦圧壊型と横圧壊型があり、縦圧壊型のバンパーステイ1は、図1(a)に示すように、軸部2を構成する中空の押出材の前後端に板状の取付用フランジ3,4(バンパーリインフォース5及びサイドメンバ6の取付用)を溶接したもので、押出軸方向が車体前後方向を向き、横圧壊型バンパーステイ7は、図1(b)に示すように、縦壁8〜10の前後端に一体的に前後壁11,12(バンパーリインフォース5及びサイドメンバ6の取付用)が形成された押出材からなり、押出軸方向が車体上下方向を向いている。   In recent years, an aluminum alloy extruded material has been used for bumper reinforcement to reduce the weight, and an aluminum alloy extruded material has also started to be used for a bumper stay. Bumper stays made of an aluminum alloy extruded material are roughly classified into a vertical crushing type and a lateral crushing type, and the vertical crushing type bumper stay 1 is a hollow that forms a shaft portion 2 as shown in FIG. Plate-like mounting flanges 3 and 4 (for mounting the bumper reinforcement 5 and the side member 6) are welded to the front and rear ends of the extruded material. As shown in FIG.1 (b), it consists of the extrusion material in which the front-and-rear walls 11 and 12 (for attachment of the bumper reinforcement 5 and the side member 6) were integrally formed in the front-and-rear end of the vertical walls 8-10, The direction of the extrusion axis is in the vertical direction of the vehicle body.

横圧壊型のバンパーステイは、製造コストが安く、大量生産に適し、図1(b)に示すようにバンパーリインフォースの端部取付箇所が車幅方向に対し傾斜又は湾曲していても、容易に対応できる利点があるが、縦圧壊型のバンパーステイに比べて重量比エネルギー吸収量が小さく、優位な軽量化効果が得られないという問題が指摘されている。逆に、縦圧壊型のバンパーステイは、縦に蛇腹状に圧壊する際のエネルギー吸収量が大きく、優位な軽量化効果が得られるという利点があるが、中空の押出形材の前後端に板状の取付用フランジを一体的に形成することが難しく、図1(a)に示すように、一般的には、押出形材の端部にフランジ用の板材を溶接して取り付けている。   The lateral crush type bumper stay is low in manufacturing cost and suitable for mass production. As shown in Fig. 1 (b), it is easy even if the bumper reinforcement end mounting position is inclined or curved with respect to the vehicle width direction. Although there is an advantage that can be coped with, it has been pointed out that the amount of energy absorption by weight is smaller than that of the vertical crush-type bumper stay, and the advantageous lightening effect cannot be obtained. Conversely, the vertical crush-type bumper stay has the advantage that it has a large energy absorption amount when crushing vertically into a bellows shape, and an advantageous lightening effect can be obtained. It is difficult to integrally form a mounting flange, and as shown in FIG. 1A, generally, a flange plate is welded to the end of the extruded profile.

しかし、溶接によりフランジを取り付ける場合、(1)溶接歪みによりフランジ面が歪み、バンパーリインフォースやサイドメンバの取付面との密着性が低下する、(2)バンパーリインフォースやサイドメンバの取付面との密着性をよくするため、フランジの取付面側に盛り上がった溶接ビードを除去する必要がある、(3)バンパーステイの強度が溶接部の強度に支配され、思わぬ弱体化が生じる、という問題がある。一方、溶接を避けるため、下記特許文献1にみられるように、押出材の端部の周方向の一部を切除し、残りの部分を外側に折り曲げてフランジを形成することも考えられるが、この場合、押出材の全周にフランジを形成することができないため、フランジの剛性が低下してしまう。   However, when mounting the flange by welding, (1) the flange surface is distorted by welding distortion, and the adhesion to the bumper reinforcement or the side member mounting surface is reduced. (2) the bumper reinforcement or the side member mounting surface is in close contact In order to improve the performance, it is necessary to remove the weld bead that is raised on the mounting surface side of the flange. (3) There is a problem that the strength of the bumper stay is governed by the strength of the welded part and unexpected weakening occurs. . On the other hand, in order to avoid welding, as seen in Patent Document 1 below, it is considered that a part of the end of the extruded material in the circumferential direction is cut off and the remaining part is bent outward to form a flange. In this case, since the flange cannot be formed on the entire circumference of the extruded material, the rigidity of the flange is lowered.

この問題を解決するため、特願2002−357820号に添付された明細書及び図面では、電磁成形により中空の押出材の端部にフランジを一体的に形成することが提案されている。
なお、電磁成形とは、コイルに瞬間的に例えば10kA以上のレベルの大電流を流して強力な磁界を作り、その中に置いた被成形体(導体)に発生する渦電流と磁界の相互作用で成形する方法であり、例えば下記特許文献2〜9に記載されているように、それ自体、公知技術である。
In order to solve this problem, in the specification and drawings attached to Japanese Patent Application No. 2002-357820, it is proposed to integrally form a flange at the end of a hollow extruded material by electromagnetic forming.
Electromagnetic forming means that a strong current of, for example, a level of 10 kA or more is instantaneously passed through a coil to create a strong magnetic field, and the interaction between the eddy current and magnetic field generated in a molded object (conductor) placed in the coil. For example, as described in Patent Documents 2 to 9 below, it is a known technique.

特開2002−67840号公報JP 2002-67840 A 特開昭58−4601号公報Japanese Patent Laid-Open No. 58-4601 特開平6−312226号公報JP-A-6-31226 特開平7−116751号公報JP-A-7-116751 特開平9−166111号公報JP-A-9-166111 特開平10−314869号公報Japanese Patent Laid-Open No. 10-314869 特開平11−20434号公報Japanese Patent Laid-Open No. 11-20434 特開2000−264246号公報JP 2000-264246 A 特開2002−86228号公報JP 2002-86228 A

前記特願2002−357820号に添付された明細書及び図面に記載された方法は、図2に示すように、管状の押出材15の周囲を電磁成形用の金型16(複数個の分割金型から構成される)で囲繞するとともに、押出材15の端部を金型16の端面17,18(成形面)から突出させ、押出材15の内部に挿入した電磁成形用コイル19に電気エネルギーを投入し、これにより押出材15の端部周壁を外径方向(放射方向)に拡開して金型の前記成形面17,18に押し付けることにより、フランジ21,22(必要に応じて片方のみもあり得る)を有するバンパーステイ20を成形する、というものである。フランジ21の幅はWで示されている。
この方法によれば、前記金型の成形面を適宜の形状とすることで、軸方向に垂直な面を有するフランジだけでなく、軸方向に垂直な面に対して傾斜したフランジ、あるいは湾曲面からなるフランジなど、バンパーリインフォース5(図1参照)の取付面の形状に応じた形状のフランジを一度の電磁成形で成形することができる。
As shown in FIG. 2, the method described in the specification and drawings attached to the Japanese Patent Application No. 2002-357820 includes a mold 16 for electromagnetic molding (a plurality of divided molds) around a tubular extruded material 15. The end of the extruded material 15 protrudes from the end surfaces 17 and 18 (molded surfaces) of the mold 16 and is inserted into the electromagnetic forming coil 19 inserted into the extruded material 15. Thus, the end peripheral wall of the extruded material 15 is expanded in the outer diameter direction (radial direction) and pressed against the molding surfaces 17 and 18 of the molds, so that the flanges 21 and 22 (one side as required) The bumper stay 20 having the same structure). The width of the flange 21 is indicated by W.
According to this method, by forming the molding surface of the mold into an appropriate shape, not only a flange having a surface perpendicular to the axial direction, but also a flange inclined to the surface perpendicular to the axial direction, or a curved surface A flange having a shape corresponding to the shape of the mounting surface of the bumper reinforcement 5 (see FIG. 1), such as a flange made of, can be formed by one electromagnetic forming.

ところが、バンパーステイとして実用的なレベルの強度を有するアルミニウム合金について、押出材の端部を電磁成形により拡開してフランジを形成する場合、例えばボルト穴が形成できるほどの幅(W)のフランジを形成しようとすると、図3(a)に示すように、フランジに径方向に向く扇形の割れ23(裂け目)が発生したり、割れ発生までいかなくてもネッキング(局部的な薄肉化)が生じたりすることが分かった。また、いわゆる拡管の場合でも、拡管率が大きいと、図3(b)に示すように、押出軸方向に沿った割れ24(裂け目)が発生する。
このような電磁成形時の割れやネッキングの問題は、これまで特に顕在化していなかったが、これはパワーの大きい電源及び電磁成形用コイルを手に入れることが難しかったこともあり、結果的に電磁成形時の拡管率を大きくとれなかったことによるものと考えられる。
本発明は、この問題を解決するためになされたもので、大きい拡管率で電磁成形する場合でも、割れの発生のない電磁成形性に優れたアルミニウム合金押出材を得ることを目的とする。
However, when an aluminum alloy having a practical level of strength as a bumper stay is formed by expanding the end of the extruded material by electromagnetic forming to form a flange, for example, a flange having a width (W) that can form a bolt hole As shown in FIG. 3 (a), a fan-shaped crack 23 (fissure) directed in the radial direction occurs in the flange, or necking (local thinning) occurs even if the crack does not occur. It was found that it occurred. Even in the case of so-called tube expansion, if the tube expansion rate is large, as shown in FIG. 3B, cracks 24 (fissures) along the extrusion axis direction occur.
Such cracking and necking problems at the time of electromagnetic forming have not been particularly apparent until now, but this may be difficult to obtain a power source with high power and a coil for electromagnetic forming. This is thought to be due to the fact that the tube expansion rate during electromagnetic forming could not be increased.
The present invention has been made to solve this problem, and an object of the present invention is to obtain an aluminum alloy extruded material excellent in electromagnetic formability without occurrence of cracking even when electromagnetic forming is performed with a large tube expansion ratio.

本発明に係る電磁成形用アルミニウム合金押出材は、特に15%以上の拡管率の電磁成形に用いられるもので、Si:0.2〜1.5%(質量%、以下同じ)、Mg:0.3〜1.5%、及びAl:95%以上を含有するアルミニウム合金押出材からなり、板厚中心部の結晶粒の平均アスペクト比が5.0以下であることを特徴とする。
この電磁成形用アルミニウム合金は、端部に15%以上の拡管率で電磁成形された取付用フランジを有する部材、例えば自動車用バンパーステイの製造に適する。
The aluminum alloy extruded material for electromagnetic forming according to the present invention is particularly used for electromagnetic forming with a tube expansion ratio of 15% or more. Si: 0.2 to 1.5% (mass%, the same applies hereinafter), Mg: 0 It is made of an aluminum alloy extruded material containing 3 to 1.5% and Al: 95% or more, and the average aspect ratio of the crystal grains in the center portion of the plate thickness is 5.0 or less.
This aluminum alloy for electromagnetic forming is suitable for manufacturing a member having a mounting flange electromagnetically formed at an end portion with a tube expansion rate of 15% or more, for example, a bumper stay for automobiles.

本発明において、拡管率δは、電磁成形による拡管前(又は未拡管部)の中空材の外周長さをl、拡管後の外周長さをlとしたとき、下記(1)式で定義される。具体例を説明すれば、フランジ成形の場合、これも一種の拡管とみて、図4(a)に示すように、未拡管部25の外周長さをl、フランジ26の外周長さをlとし、いわゆる拡管の場合、図4(b)に示すように、未拡管部27の外周長さをl、拡管部28の外周長さ(最大径の箇所)をlとする。
δ={(l−l)/l}×100(%)・・・・(1)
In the present invention, the tube expansion rate δ is defined by the following equation (1), where l 0 is the outer peripheral length of the hollow material before tube expansion (or unexpanded portion) by electromagnetic forming, and l is the outer peripheral length after tube expansion. Is done. To explain a specific example, in the case of flange molding, this is also regarded as a kind of expanded pipe, and as shown in FIG. 4A, the outer peripheral length of the non-expanded pipe portion 25 is l 0 and the outer peripheral length of the flange 26 is l. In the case of so-called pipe expansion, as shown in FIG. 4B, the outer peripheral length of the non-expanded pipe portion 27 is l 0 , and the outer peripheral length (location of the maximum diameter) of the pipe expanded portion 28 is l.
δ = {(l−l 0 ) / l 0 } × 100 (%) (1)

本発明によれば、15%以上という大きい拡管率で電磁成形する場合でも、割れの発生のない電磁成形性に優れたアルミニウム合金押出材を得ることができる。これにより、そのアルミニウム合金押出材を利用して、電磁成形により広幅のフランジが形成された部材、例えばバンパーステイを製造することができる。   According to the present invention, an aluminum alloy extruded material excellent in electromagnetic formability without cracking can be obtained even when electromagnetic forming is performed with a large tube expansion rate of 15% or more. Thereby, the member in which the wide flange was formed by electromagnetic forming, for example, a bumper stay, can be manufactured using the aluminum alloy extrusion material.

本発明において15%以上の拡管率で電磁成形する用途に限定したのは、それより小さい拡管率であれば、電磁成形性に優れたアルミニウム合金押出材を新たに開発するまでもなく、実用的な強度を有しかつ割れの発生が防止できる素材が存在することと、例えば中空押出材の端部に取付用のフランジを成形して自動車用のバンパーステイとするような場合、実際上、15%以上、望ましくは20%以上の拡管率でフランジを成形できないと、ボルト穴の打ち抜きスペースの確保が難しく、電磁成形を利用する意味がないためである。   In the present invention, the use of electromagnetic forming at a tube expansion ratio of 15% or more is limited to a tube expansion ratio smaller than that, and it is practical to develop an aluminum alloy extruded material excellent in electromagnetic formability. When there is a material having a sufficient strength and capable of preventing the occurrence of cracks, and when, for example, a mounting flange is formed at the end of a hollow extruded material to form a bumper stay for an automobile, in practice, 15 If the flange cannot be formed with a tube expansion ratio of at least%, preferably at least 20%, it is difficult to secure a punching space for the bolt holes, and there is no point in using electromagnetic forming.

前記組成のアルミニウム合金中空押出材において、板厚中心部における結晶粒の平均アスペクト比(長軸と短軸の平均軸比)を5.0以下に規定したのは、これにより優れた電磁成形性が得られるからである。アスペクト比が5.0以下というのは、板厚中心部の結晶粒が等軸晶又は等軸晶に近い形態であることを意味する。拡管時のネッキングを防止する上で、このアスペクト比は3以下であることがより好ましい。押出材の板厚中心部でアスペクト比が5.0以下又は3.0以下であれば、それより表層部でも同じく5.0以下又は3.0以下が得られている。   In the aluminum alloy hollow extruded material having the above composition, the average aspect ratio of crystal grains (average axis ratio between the major axis and the minor axis) at the center of the plate thickness is regulated to 5.0 or less. This is because An aspect ratio of 5.0 or less means that the crystal grains at the center of the plate thickness are in the form of equiaxed crystals or close to equiaxed crystals. In order to prevent necking during tube expansion, the aspect ratio is more preferably 3 or less. If the aspect ratio is 5.0 or less or 3.0 or less at the center of the thickness of the extruded material, 5.0 or less or 3.0 or less is also obtained from the surface layer.

アルミニウム合金押出材によく見られるファイバー組織では、電磁成形性が低下し、割れが発生しやすい。ファイバー組織の場合、押出方向に平行な粒界がほとんどであり、電磁成形により瞬間的に投入される拡管の成形力は、その粒界を分断する(引き裂く)方向に作用するからである。また、ファイバー組織では一般に、押出方向に垂直な方向の伸びが小さいことも影響している。これに対し、等軸晶の場合、押出方向及び押出方向に垂直な方向で伸びは大きく変わらない。
一方、電磁成形後の表面部の肌荒れを抑えるためには、少なくとも表面部(外表面から500μmまでの部分)の再結晶粒の平均粒径が500μm以下であることが望ましい。また、等軸晶でこれ以上平均粒径が大きくなると、バンパーステイとして用いたとき、圧壊性能が低下する。この平均粒径は300μm以下、さらに100μm以下がより望ましい。
In a fiber structure often found in an aluminum alloy extruded material, electromagnetic formability is lowered and cracking is likely to occur. This is because in the case of a fiber structure, most of the grain boundaries are parallel to the extrusion direction, and the forming force of the expanded pipe that is instantaneously introduced by electromagnetic forming acts in the direction of breaking (tearing) the grain boundaries. In addition, the fiber structure generally has a small elongation in the direction perpendicular to the extrusion direction. On the other hand, in the case of equiaxed crystals, the elongation does not change significantly in the extrusion direction and in the direction perpendicular to the extrusion direction.
On the other hand, in order to suppress the rough surface of the surface portion after electromagnetic forming, it is desirable that the average grain size of recrystallized grains at least on the surface portion (portion from the outer surface to 500 μm) is 500 μm or less. Further, if the average particle size is larger than that of the equiaxed crystal, the crushing performance is lowered when used as a bumper stay. This average particle size is preferably 300 μm or less, more preferably 100 μm or less.

上記Al−Mg系アルミニウム合金は、Si、Mg以外に、添加元素としてあるいは不可避不純物として、例えばTi、Cu、Mn、Cr、Zr、V、Fe、Zn、その他の元素を含み得る。ただし、これらの元素の含有量の合計は、5%以下(Al:95%以上)に抑える必要がある。望ましくは、Ti:0.2%以下、Cu:0.8%以下、Mn:0.7%以下、Cr:0.2%以下、Zr:0.2%以下、V:0.2%以下、Fe:1.0%以下、Zn:1.0%以下、Mn、Cr、Zr及びVの合計で0.8%以下である。また、Al含有量は、望ましくは97.5%、さらに望ましくは98%以上である。これは、合金元素が増えることにより、粒界に析出する合金元素又は化合物が増えて粒界が脆くなり、電磁成形時に分断しやすくなるため、及び、材料の導電率が低下して、投入電磁力による発生電流がジュール熱(材料の発熱)として消費され、その結果、発生電磁力が低下し、拡管成形力が低下するためである。導電率は、46%IACS以上が望ましい。   In addition to Si and Mg, the Al—Mg-based aluminum alloy may contain, for example, Ti, Cu, Mn, Cr, Zr, V, Fe, Zn, and other elements as additive elements or inevitable impurities. However, the total content of these elements needs to be suppressed to 5% or less (Al: 95% or more). Desirably, Ti: 0.2% or less, Cu: 0.8% or less, Mn: 0.7% or less, Cr: 0.2% or less, Zr: 0.2% or less, V: 0.2% or less Fe: 1.0% or less, Zn: 1.0% or less, and the total of Mn, Cr, Zr and V is 0.8% or less. Further, the Al content is desirably 97.5%, and more desirably 98% or more. This is because the alloy elements or compounds that precipitate at the grain boundaries increase due to the increase in alloy elements, making the grain boundaries brittle and easy to break during electromagnetic forming. This is because the generated current due to the force is consumed as Joule heat (heat generation of the material), and as a result, the generated electromagnetic force is reduced and the tube forming force is reduced. The conductivity is desirably 46% IACS or more.

以下、本発明に係るアルミニウム合金中空押出材における主な成分について、その作用を説明する。
Si、Mg
Si及びMgは、合金に強度を付与する元素である。Si含有量が0.2%未満又はMg含有量が0.3%未満では、時効処理の効果が得られず、自動車のバンパーステイ等の構造部材として必要とされる強度(耐力値σ0.2≧130MPa)を得ることができず、同時に必要とされるエネルギー吸収量が得られない。逆に、Siが1.5%を越え又はMgが1.5%を越えると、成形性が低下して電磁成形時に割れが発生する。Si及びMgの望ましい範囲は、Si:0.2〜1.0%、Mg0.4〜0.9%である。より望ましい範囲は、Si:0.3〜0.6%、Mg0.5〜0.7%である。
Hereafter, the effect | action is demonstrated about the main component in the aluminum alloy hollow extrusion material which concerns on this invention.
Si, Mg
Si and Mg are elements that impart strength to the alloy. When the Si content is less than 0.2% or the Mg content is less than 0.3%, the effect of the aging treatment cannot be obtained, and the strength required for a structural member such as a bumper stay of an automobile (a proof stress value σ0.2) ≧ 130 MPa) cannot be obtained, and the required amount of energy absorption cannot be obtained at the same time. On the contrary, when Si exceeds 1.5% or Mg exceeds 1.5%, the formability deteriorates and cracks occur during electromagnetic forming. Desirable ranges of Si and Mg are Si: 0.2 to 1.0% and Mg 0.4 to 0.9%. More desirable ranges are Si: 0.3-0.6% and Mg 0.5-0.7%.

Ti
Tiは鋳造時における結晶粒を微細化する作用があり、電磁成形による拡管性が向上するため適宜添加される。望ましい添加量は、0.005%以上である。一方、0.2%を越えると前記効果が飽和し、さらに、粗大な金属間化合物が晶出して、かえって電磁成形による拡管性を阻害する。添加する場合のTiの添加量は0.005〜0.2%とし、より望ましくは0.005〜0.15%、さらに0.01〜0.1%、さらに望ましくは0.01〜0.05%とする。
Ti
Ti has the effect of refining crystal grains during casting, and is added as appropriate in order to improve tube expansion by electromagnetic forming. A desirable addition amount is 0.005% or more. On the other hand, if it exceeds 0.2%, the above-described effect is saturated, and a coarse intermetallic compound is crystallized. When Ti is added, the amount of Ti added is set to 0.005 to 0.2%, more preferably 0.005 to 0.15%, further 0.01 to 0.1%, and still more preferably 0.01 to 0.1%. 05%.

Cu
Cuはマトリックスを強化する作用があり、材料の延性を向上させるため適宜添加される。しかし、その添加量は0.8%以下、さらに0.5%以下、さらに0.3%以下が望ましい。
Mn、Cr、Zr、V
これらの元素は金属間化合物として晶出及び析出して結晶粒を微細化する作用があり、必要に応じて添加される。しかし、再結晶を抑制する作用があり、押出材に押出方向に延伸したファイバー組織が残留しやすくなるため、アスペクト比が5.0以下の等軸晶又は等軸晶に近い組織を得るという観点からは、これらの元素の添加量は少ない方がよい。前記範囲を越えて添加された場合、後述する製造条件等を工夫しても、延伸した組織が解消できないか他の弊害(再結晶粒の粗大化)が出てくる。望ましくは、Mn:0.2%以下、Cr:0.1%以下、Zr:0.1%以下、V:0.1%以下であり、さらに望ましくは、これらの元素にTi、Cuを加えた合計が0.3%以下である。
Cu
Cu has the effect of strengthening the matrix and is added as appropriate in order to improve the ductility of the material. However, the addition amount is preferably 0.8% or less, more preferably 0.5% or less, and further preferably 0.3% or less.
Mn, Cr, Zr, V
These elements have the effect of crystallizing and precipitating as intermetallic compounds to refine the crystal grains, and are added as necessary. However, there is an action of suppressing recrystallization, and since the fiber structure stretched in the extrusion direction tends to remain in the extruded material, the viewpoint of obtaining an equiaxed crystal or a structure close to equiaxed crystal having an aspect ratio of 5.0 or less Therefore, it is better that the amount of these elements added is small. If added beyond the above range, the stretched structure cannot be resolved or other adverse effects (coarse recrystallized grains) appear even if the manufacturing conditions described below are devised. Desirably, Mn: 0.2% or less, Cr: 0.1% or less, Zr: 0.1% or less, V: 0.1% or less, and more desirably, Ti and Cu are added to these elements. The total is 0.3% or less.

その他の元素
Feはアルミニウム地金に最も多く含まれる不純物であり、1.0%を超えて合金中に存在すると鋳造時に粗大な金属間化合物を晶出し、合金の機械的性質及び電磁成形による拡管性を損なう。従って、Feの含有量は1.0%以下に規制し、望ましくは0.35%以下、さらに望ましくは0.2%以下に規制する。また、アルミニウム合金を鋳造する際には地金、添加元素の中間合金、化合物等様々な経路より不純物が混入する。混入する元素は様々であるが、Fe以外の不純物のうちZnは1.0%以下、望ましくは0.3%以下、さらに望ましくは0.2%以下、その他の不純物は単体で0.05%以下、総量で0.15%以下とする。なお、不純物のうちBについてはTiの添加に伴い合金中にTi含有量の1/5程度の量で混入するが、より望ましい範囲は0.02%以下、さらに0.01%以下が望ましい。
Other elements Fe is the most abundant impurity in aluminum ingots. If it exceeds 1.0% in the alloy, coarse intermetallic compounds are crystallized during casting, and the mechanical properties of the alloy and expansion by electromagnetic forming Impairs sex. Therefore, the Fe content is regulated to 1.0% or less, desirably 0.35% or less, and more desirably 0.2% or less. Further, when casting an aluminum alloy, impurities are mixed from various routes such as a base metal, an intermediate alloy of an additive element, and a compound. Elements to be mixed vary, but among impurities other than Fe, Zn is 1.0% or less, preferably 0.3% or less, more preferably 0.2% or less, and other impurities are 0.05% by itself. Hereinafter, the total amount is 0.15% or less. Of the impurities, B is mixed in the alloy in an amount of about 1/5 of the Ti content with the addition of Ti, but a more desirable range is 0.02% or less, and further preferably 0.01% or less.

押出材の板厚中心部の組織をアスペクト比5.0以下とするには、組成面では、Mn等の遷移元素の添加量を抑えるのが有効である。また、製造条件面では、押出材が再結晶を起こしやすい条件を設定する。例えば、ビレットの均質化処理条件を高温長時間側とし、又は/及び押出温度を高め、これらの元素の金属間化合物粒を成長させピン止め作用を低下させると、再結晶が起こりやすくなる。また、押出比や押出速度を上げて押出中の押出材が高温になるようにしても、再結晶が起こりやすくなる。さらに、O材であれば、押し出したままの押出材を抽伸したのち、板厚中心部まで完全に再結晶が起こるように、高温長時間の焼きなましを行うことも考えられる。
一方、電磁成形性だけを考慮するのであれば、アスペクト比をコントロールすることで足りるが、電磁成形後の表面部の肌荒れを考慮すると、同時に表面部の再結晶粒の粗大化を防止する必要がある。そのためには、遷移元素の添加量が繊維状組織が形成されない程度に少ない場合、押出温度及び押出速度を余り高くしないで結晶粒の粗大化を抑え、遷移元素の添加量がそれより多い場合、均質化処理条件を高温長時間側とし、押出温度及び押出速度を比較的高くして、再結晶を促進させるようにする。
このように、アスペクト比が5.0以下となるように、かつ再結晶粒が余りに粗大化しないようにするには、組成面と製造条件面のバランスを取る必要がある。
In order to make the structure of the central part of the thickness of the extruded material an aspect ratio of 5.0 or less, it is effective in terms of composition to suppress the addition amount of transition elements such as Mn. In terms of manufacturing conditions, conditions are set such that the extruded material is likely to recrystallize. For example, recrystallization tends to occur when the homogenization condition of the billet is set to a high temperature and long time, or / and the extrusion temperature is increased to grow intermetallic compound grains of these elements to reduce the pinning action. Further, even if the extrusion ratio and the extrusion speed are increased so that the extruded material being extruded has a high temperature, recrystallization easily occurs. Furthermore, in the case of the O material, after extruding the extruded material as it is extruded, it may be possible to perform annealing at a high temperature for a long time so that recrystallization occurs completely to the center of the plate thickness.
On the other hand, if only the electromagnetic formability is considered, it is sufficient to control the aspect ratio. However, considering the rough surface of the surface after electromagnetic forming, it is necessary to prevent the recrystallized grains on the surface from becoming coarse at the same time. is there. For that purpose, when the addition amount of the transition element is so small that the fibrous structure is not formed, the coarsening of the crystal grains is suppressed without excessively increasing the extrusion temperature and the extrusion speed, and when the addition amount of the transition element is larger than that, The homogenization treatment conditions are set to the high temperature and long time side, the extrusion temperature and the extrusion speed are relatively high, and recrystallization is promoted.
Thus, in order to make the aspect ratio 5.0 or less and to prevent the recrystallized grains from becoming too coarse, it is necessary to balance the composition and manufacturing conditions.

本発明に係るアルミニウム合金押出材は、種々の押出方式で製造することができるが、直接押出より間接押出の方が、押出材表面に粗大な再結晶粒が形成されるのを防止する意味で望ましく、また、ポートホール方式よりマンドレル方式の方が、断面における組織の均一性を確保する(溶着部がない)意味で望ましい。押出材の質別はT1、T5,Oのいずれもあり得る。T1材は成形性はよいが導電率が比較的低く、T5材は成形性が比較的劣るが導電率がよく、O材は成形性及び導電率がよいが強度が低くコストも高いという特質がある。
なお、本発明に係る押出材は円形断面のものに限られず、例えば楕円、多角形等の異形断面のものを含む。また、円形断面のものを楕円、多角形等の異形に拡管する場合を含み、又はその逆もあり得る。
The aluminum alloy extruded material according to the present invention can be produced by various extrusion methods, but indirect extrusion rather than direct extrusion is intended to prevent the formation of coarse recrystallized grains on the surface of the extruded material. In addition, the mandrel method is more preferable than the porthole method in terms of ensuring the uniformity of the structure in the cross section (there is no welded portion). The quality of the extruded material can be any of T1, T5, and O. T1 material has good moldability but relatively low conductivity, T5 material has relatively poor moldability but good conductivity, and O material has good moldability and conductivity but low strength and high cost. is there.
In addition, the extrusion material which concerns on this invention is not restricted to the thing of a circular cross section, For example, the thing of an odd-shaped cross section, such as an ellipse and a polygon, is included. Moreover, the case where the thing of circular cross section is expanded to irregular shapes, such as an ellipse and a polygon, is included, or vice versa.

表1に示す化学成分のアルミニウム合金鋳塊を半連続鋳造法により溶製し、520℃×4hrの均質化処理を施した後、押出温度が520℃、押出速度が7m/minの条件で押出加工を行い、押出直後にファン空冷(冷却速度約100℃/min)で冷却し、外径が100mm、肉厚が2.5mmの円形断面の押出材を得た。
これを供試材とし、下記要領で各種試験を行った。その結果を表1及び表2に示す。
Aluminum alloy ingots having chemical components shown in Table 1 were melted by a semi-continuous casting method and subjected to a homogenization treatment of 520 ° C. × 4 hours, followed by extrusion at an extrusion temperature of 520 ° C. and an extrusion speed of 7 m / min. Processing was performed, and cooling with fan air cooling (cooling rate of about 100 ° C./min) was performed immediately after extrusion to obtain an extruded material having a circular cross section with an outer diameter of 100 mm and a wall thickness of 2.5 mm.
Using this as a test material, various tests were conducted as follows. The results are shown in Tables 1 and 2.

引張試験;供試材からJIS12号引張試験片を採取し、JISZ2241に準拠して引張試験を行った。
アスペクト比;各供試材から試験片を採取し、板面に垂直かつ押出方向に平行な断面を観察し、その板厚中心部に位置する結晶粒10個について長軸と短軸の長さを求め、その平均値をアスペクト比とした。
電磁成形試験;供試材を長さ150mmに切断して試験材とし、先に図2で説明したと同様に、周囲を電磁成形用の金型で囲繞するとともに、試験材の一方の端部を金型の端面(軸方向に対して垂直な平面とした)から突出させ、試験材の内部に電磁成形用コイルを挿入し、電気エネルギーを投入して、試験材の端部に軸方向に垂直なフランジを電磁成形し、フランジの状態(割れ、ネッキングの有無)を観察した。なお、いずれも拡管率が15%となるように、金型端面からの突出長さを設定した。
圧壊試験;供試材を長さ100mmに切断して試験材とし、図5に示すように、アムスラー試験機にて試験材の軸方向に一定速度で静的圧縮加重を加え、軸方向に40mm圧縮し、図6に示す荷重−変位量のグラフを求めた。各試験材はいずれも蛇腹状に変形した。前記グラフから平均の圧壊加重を計算し、20kN以上の平均圧壊荷重が得られたものを○、20kNに満たないものを×と評価した。
Tensile test: A JIS No. 12 tensile test piece was collected from the test material, and a tensile test was performed in accordance with JISZ2241.
Aspect ratio: Specimens were taken from each specimen, and a cross section perpendicular to the plate surface and parallel to the extrusion direction was observed. The lengths of the major axis and minor axis of 10 crystal grains located at the center of the plate thickness The average value was taken as the aspect ratio.
Electromagnetic forming test: The test material was cut to a length of 150 mm to obtain a test material, and as described above with reference to FIG. 2, the periphery was surrounded by a mold for electromagnetic forming and one end of the test material was used. Project from the end face of the mold (a plane perpendicular to the axial direction), insert a coil for electromagnetic forming inside the test material, input electric energy, and axially the end of the test material A vertical flange was electromagnetically formed and the state of the flange (presence of cracks and necking) was observed. In addition, the protrusion length from a metal mold | die end surface was set so that a pipe expansion rate might be set to 15% in all.
Crushing test: The test material was cut into a length of 100 mm to obtain a test material. As shown in FIG. 5, a static compression load was applied at a constant speed in the axial direction of the test material with an Amsler tester, and the axial direction was 40 mm. After compression, the load-displacement graph shown in FIG. 6 was obtained. Each test material was deformed into a bellows shape. An average crushing load was calculated from the graph, and a case where an average crushing load of 20 kN or more was obtained was evaluated as ◯, and a case where the average crushing load was less than 20 kN was evaluated as ×.

Figure 2005105327
Figure 2005105327

Figure 2005105327
Figure 2005105327

表2に示すように、合金の組成が本発明の規定範囲内で、アスペクト比が低いNo.1は、強度及び圧壊荷重が高く、電磁成形時に割れもネッキングも発生しなかった。Mn等の遷移元素を含んでアスペクト比がやや高めとなったNo.2は、割れの発生はなかったが、軽いネッキングが発生した。
一方、Si,Mg含有量が規定より少ないNo.3,5は、電磁成形時に割れやネッキングの発生がなかったが、強度及び圧壊荷重が低く、Si,Mg含有量が規定より多いNo.4,6は、電磁成形時に割れが発生し、アスペクト比が本発明の規定より高くなったNo.7と、ファイバー組織が形成されたNo.8は、電磁成形時に割れが発生した。
As shown in Table 2, the composition of the alloy is within the specified range of the present invention, and the aspect ratio is low. No. 1 had high strength and crushing load, and neither cracking nor necking occurred during electromagnetic forming. A No. with a slightly higher aspect ratio including transition elements such as Mn. In No. 2, no cracking occurred, but light necking occurred.
On the other hand, no. Nos. 3 and 5 had no cracking or necking during electromagnetic forming, but the strength and crushing load were low, and the Si and Mg contents were higher than specified. In Nos. 4 and 6, cracks occurred during electromagnetic forming and the aspect ratio was higher than that of the present invention. 7 and No. 7 in which the fiber structure was formed. No. 8 cracked during electromagnetic forming.

2種類のバンパーステイについて説明する平面図である。It is a top view explaining two types of bumper stays. 電磁成形方法を説明する平面図(a)及びそのI−I断面図(b)である。It is the top view (a) explaining the electromagnetic forming method, and its II sectional drawing (b). 電磁成形による拡管時に発生する割れを説明する図である。It is a figure explaining the crack which generate | occur | produces at the time of the pipe expansion by electromagnetic forming. 本発明の拡管率の定義を説明する図である。It is a figure explaining the definition of the pipe expansion rate of this invention. 実施例の圧壊試験について説明する図である。It is a figure explaining the crushing test of an Example. 実施例の平均圧壊荷重の求め方を説明する図である。It is a figure explaining how to obtain | require the average crushing load of an Example.

符号の説明Explanation of symbols

1,7 バンパーステイ
5 バンパーリインフォース
6 サイドメンバ
15 押出材
16 金型
17,18 端面(成形面)
19 電磁成形用コイル
21,22 フランジ
23,24 割れ(裂け目)
1,7 Bumper stay
5 Bumper reinforcement 6 Side member 15 Extruded material 16 Mold 17, 18 End face (molded face)
19 Electromagnetic forming coil 21, 22 Flange 23, 24 Crack (Rear)

Claims (3)

Si:0.2〜1.5%(質量%、以下同じ)、Mg:0.3〜1.5%、及びAl:95%以上を含有するアルミニウム合金押出材からなり、板厚中心部の結晶粒の平均アスペクト比が5.0以下であることを特徴とする15%以上の拡管率で電磁成形される電磁成形用アルミニウム合金押出材。 Si: 0.2 to 1.5% (mass%, the same shall apply hereinafter), Mg: 0.3 to 1.5%, and Al: 95% or more of an aluminum alloy extruded material, An aluminum alloy extruded material for electromagnetic forming that is electromagnetically formed at a tube expansion ratio of 15% or more, wherein an average aspect ratio of crystal grains is 5.0 or less. 請求項1に記載された電磁成形用アルミニウム合金押出材からなり、断面が中空で、端部に15%以上の拡管率で電磁成形された取付用フランジを有することを特徴とする部材。 A member comprising the extruded aluminum alloy material for electromagnetic forming according to claim 1 and having a mounting flange that is hollow in cross section and electromagnetically formed at an end portion with a tube expansion ratio of 15% or more. 前記部材が自動車用バンパーステイであることを特徴とする請求項2に記載された部材。 The member according to claim 2, wherein the member is an automobile bumper stay.
JP2003338985A 2003-09-30 2003-09-30 Aluminum alloy extrusion for electromagnetic forming Expired - Lifetime JP4311634B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003338985A JP4311634B2 (en) 2003-09-30 2003-09-30 Aluminum alloy extrusion for electromagnetic forming

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003338985A JP4311634B2 (en) 2003-09-30 2003-09-30 Aluminum alloy extrusion for electromagnetic forming

Publications (2)

Publication Number Publication Date
JP2005105327A true JP2005105327A (en) 2005-04-21
JP4311634B2 JP4311634B2 (en) 2009-08-12

Family

ID=34534292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003338985A Expired - Lifetime JP4311634B2 (en) 2003-09-30 2003-09-30 Aluminum alloy extrusion for electromagnetic forming

Country Status (1)

Country Link
JP (1) JP4311634B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007254833A (en) * 2006-03-24 2007-10-04 Kobe Steel Ltd Aluminum alloy extruded material for tube expanding
JP2010069927A (en) * 2008-09-16 2010-04-02 Kobe Steel Ltd Method for manufacturing bumper structure
JP2010077497A (en) * 2008-09-26 2010-04-08 Furukawa-Sky Aluminum Corp Method for producing seamless aluminum alloy tubular material
US9206496B2 (en) 2012-02-16 2015-12-08 Kobe Steel, Ltd. Aluminum alloy extruded material for electro-magnetic forming
US9551054B2 (en) 2013-01-25 2017-01-24 Kobe Steel, Ltd. 7xxx series aluminum alloy member excellent in stress corrosion cracking resistance and method for manufacturing the same
WO2022264959A1 (en) * 2021-06-14 2022-12-22 昭和電工株式会社 Aluminum alloy extrusion and method for manufacturing same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007254833A (en) * 2006-03-24 2007-10-04 Kobe Steel Ltd Aluminum alloy extruded material for tube expanding
JP2010069927A (en) * 2008-09-16 2010-04-02 Kobe Steel Ltd Method for manufacturing bumper structure
JP2010077497A (en) * 2008-09-26 2010-04-08 Furukawa-Sky Aluminum Corp Method for producing seamless aluminum alloy tubular material
US9206496B2 (en) 2012-02-16 2015-12-08 Kobe Steel, Ltd. Aluminum alloy extruded material for electro-magnetic forming
US9551054B2 (en) 2013-01-25 2017-01-24 Kobe Steel, Ltd. 7xxx series aluminum alloy member excellent in stress corrosion cracking resistance and method for manufacturing the same
WO2022264959A1 (en) * 2021-06-14 2022-12-22 昭和電工株式会社 Aluminum alloy extrusion and method for manufacturing same
JP7439994B2 (en) 2021-06-14 2024-02-28 株式会社レゾナック Aluminum alloy extrusion material and its manufacturing method

Also Published As

Publication number Publication date
JP4311634B2 (en) 2009-08-12

Similar Documents

Publication Publication Date Title
JP4942372B2 (en) Aluminum alloy extrusion for electromagnetic forming
JP4398428B2 (en) High strength aluminum alloy extruded material with excellent corrosion resistance and method for producing the same
JP2012097321A (en) High-strength aluminum alloy forged product excellent in stress corrosion cracking resistance and forging method for the same
WO2019171818A1 (en) Al-Mg-Si-BASED ALUMINUM ALLOY HOLLOW EXTRUDED MATERIAL AND METHOD FOR PRODUCING SAME
JP2007231408A (en) Aluminum alloy hollow extruded shape material for tube expansion forming and aluminum alloy hollow member
JP2011144396A (en) High strength aluminum alloy extruded material having excellent stress corrosion cracking resistance
JP2018090839A (en) Extrusion material aluminium alloy, extrusion material using the same and method for manufacturing extrusion material
JP4311634B2 (en) Aluminum alloy extrusion for electromagnetic forming
JP2928445B2 (en) High-strength aluminum alloy extruded material and method for producing the same
JP6329430B2 (en) High yield strength Al-Zn aluminum alloy extruded material with excellent bendability
JP2011001563A (en) Aluminum alloy extruded product exhibiting excellent impact cracking resistance
JP3757831B2 (en) Al-Mg-Si aluminum alloy extruded material with excellent impact energy absorption performance
JP4798877B2 (en) Al-Mg aluminum alloy hollow extruded material for bulge forming
JP5288671B2 (en) Al-Mg-Si-based aluminum alloy extruded material with excellent press workability
JP2012077320A (en) Magnesium alloy sheet material for bending and method for producing the same, and magnesium alloy pipe and method for producing the same
JP3077974B2 (en) Al-Mg-Si based aluminum alloy extruded material with excellent axial crushing properties
JP3850348B2 (en) Al-Mg aluminum alloy hollow extruded material for bulge forming
JPH0625783A (en) Aluminum alloy extruded material excellent in bendability and impact absorption and its manufacture
JP4993170B2 (en) Aluminum alloy extruded shape having excellent impact absorption characteristics and good hardenability, and method for producing the same
JP5823010B2 (en) High-strength aluminum alloy extruded material for automotive structural members with excellent stress corrosion cracking resistance
JP2002155333A (en) Al-Mg-Si BASED ALUMINUM ALLOY HOLLOW EXTRUSION MATERIAL HAVING EXCELLENT BULGING PROPERTY
JP2011195912A (en) 6,000 series aluminum alloy hollow extruded material having excellent high temperature expanded tube formability
JP2002173728A (en) Al-Mg BASED ALUMINUM ALLOY HOLLOW EXTRUSION MATERIAL FOR BULGING
JP4052641B2 (en) Aluminum alloy having excellent impact absorption characteristics and good hardenability and extrudability, and method for producing the same
JP2003226928A (en) Al-Mg ALUMINUM ALLOY HOLLOW EXTRUDED MATERIAL

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090508

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4311634

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140522

Year of fee payment: 5

EXPY Cancellation because of completion of term