JP2010069927A - Method for manufacturing bumper structure - Google Patents

Method for manufacturing bumper structure Download PDF

Info

Publication number
JP2010069927A
JP2010069927A JP2008236717A JP2008236717A JP2010069927A JP 2010069927 A JP2010069927 A JP 2010069927A JP 2008236717 A JP2008236717 A JP 2008236717A JP 2008236717 A JP2008236717 A JP 2008236717A JP 2010069927 A JP2010069927 A JP 2010069927A
Authority
JP
Japan
Prior art keywords
bumper reinforcement
stay
bumper
electromagnetic forming
aluminum alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008236717A
Other languages
Japanese (ja)
Other versions
JP5177411B2 (en
Inventor
Yoshihaya Imamura
美速 今村
Kazumasa Kaitoku
一正 海読
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2008236717A priority Critical patent/JP5177411B2/en
Publication of JP2010069927A publication Critical patent/JP2010069927A/en
Application granted granted Critical
Publication of JP5177411B2 publication Critical patent/JP5177411B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve various problems with aging treatment of a bumper structure after joining a bumper reinforcement to a stay raw material using electromagnetic formation to form the bumper structure, for example, low aging treatment efficiency (too many spaces generated when a plurality of stacks are made in a furnace) and low precision after the aging treatment. <P>SOLUTION: A pipe-like 6000 series aluminum alloy extrusion material is expanded in its diameter by electromagnetic formation with a quality type T1 and the stay raw material 24 having a mounting flange 11 fixed on a front end of a side member is formed on the rear end. After the stay raw material 24 is subjected to aging treatment for a quality type T5, the stay raw material 24 is fitted into holes 7, 8 formed in vertical walls 3, 4 at the front and rear of the bumper reinforcement 1 formed from a 7000 series aluminum alloy extrusion material of the quality type T5 from the rear side. A pipe portion positioned on the forward side from around the vertical wall 4 on the rear side is expanded in its diameter and both of them are joined to each other. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、アルミニウム合金からなるバンパーリインフォースの左右両端部に前後方向に貫通する穴を形成し、前記穴に筒状のステイ素材を嵌入して電磁成形により拡管し、前記穴の内周面に密着させて前記バンパリインフォースに接合し、バンパーリインフォースとステイからなるバンパー構造体を製造する方法に関する。   The present invention forms a hole penetrating in the front-rear direction at the left and right ends of a bumper reinforcement made of an aluminum alloy, and inserts a cylindrical stay material into the hole, expands the tube by electromagnetic forming, and forms an inner peripheral surface of the hole. The present invention relates to a method of manufacturing a bumper structure including a bumper reinforcement and a stay by being adhered to the bumper reinforcement.

特許文献1には、断面が中空のアルミニウム合金押出材からなるバンパーリインフォースの左右両端部の前後壁に前後方向に貫通する穴を形成し、前記穴に筒状のステイ素材を嵌入して電磁成形により拡管し、前記穴の内周面に密着させて前記バンパリインフォースに接合し、バンパーリインフォースとステイからなるバンパー構造体を製造することが記載されている。   In Patent Document 1, a hole penetrating in the front-rear direction is formed in the front and rear walls of the left and right ends of a bumper reinforcement made of an aluminum alloy extruded material having a hollow cross section, and a cylindrical stay material is inserted into the hole to perform electromagnetic forming. And a bumper reinforcement comprising a bumper reinforcement and a stay to manufacture a bumper structure, which is in close contact with the inner peripheral surface of the hole and bonded to the bumper reinforcement.

特許文献1において、例えば図5に示す方法では、ステイ素材として所定寸法に切断したアルミニウム合金押出材をそのまま用い、前記電磁成形により拡管してステイ素材をバンパーリインフォースに接合するとき同時に、ステイ素材の後端にサイドメンバの前端に固定される取付用フランジを成形している。また、例えば図6に示す方法では、所定寸法に切断したアルミニウム合金押出材を予め電磁成形により拡管して、後端にサイドメンバの前端に固定される取付用フランジを形成し、これをステイ素材としてバンパーリインフォースの前記穴に嵌入し、再び電磁成形により拡管してバンパーリインフォースに接合している。なお、本件明細書において、車両のフロント側、リア側に関わらず、衝突面側を前とし、その反対側を後とする。   In Patent Document 1, for example, in the method shown in FIG. 5, an aluminum alloy extruded material cut into a predetermined size is used as a stay material as it is, and when the stay material is joined to the bumper reinforcement by expanding the tube by the electromagnetic forming, A mounting flange fixed to the front end of the side member is formed at the rear end. For example, in the method shown in FIG. 6, an aluminum alloy extruded material cut to a predetermined dimension is expanded in advance by electromagnetic forming to form a mounting flange fixed to the front end of the side member at the rear end, and this is used as a stay material. Is inserted into the hole of the bumper reinforcement and is expanded again by electromagnetic forming to be joined to the bumper reinforcement. In the present specification, regardless of the front side and the rear side of the vehicle, the collision surface side is the front and the opposite side is the rear.

一方、特許文献2,3には、熱処理型アルミニウム合金押出材について、プレス焼き入れ後のT1処理材の状態で電磁成形による拡管を行い、拡管後に時効処理して質別T5とすることが記載されている。また、特許文献4には、T1材は電磁成形による成形性がよいが導電率が比較的低く、T5材は成形性が比較的劣るが導電率がよく、O材は成形性及び導電率がよいが強度が低くコストも高いことが記載されている。   On the other hand, Patent Documents 2 and 3 describe that heat-treated aluminum alloy extruded material is expanded by electromagnetic forming in the state of a T1 treated material after press quenching, and is subjected to aging treatment after tube expansion to obtain a grade T5. Has been. Patent Document 4 discloses that T1 material has good formability by electromagnetic forming but has relatively low conductivity, T5 material has relatively poor formability but good conductivity, and O material has formability and conductivity. Although it is good, the strength is low and the cost is high.

特開2004−237818号公報JP 2004-237818 A 特開2007−254833号公報JP 2007-254833 A 特開2002−160032号公報JP 2002-160032 A 特開2005−105327号公報JP 2005-105327 A

特許文献1に開示されたバンパー構造体の製造方法において、特許文献2〜4の開示を参照すれば、バンパーリインフォースとステイ素材の両方が熱処理型アルミニウム合金押出材からなる場合に、電磁成形による拡管が行われるステイ素材については、成形性に優れた質別T1状態で電磁成形してバンパーリインフォースと接合した後、得られたバンパー構造体を時効処理(T5)して強度を向上させることが一応考えられる。なお、この場合、バンパーリインフォースは電磁成形により実質的に変形しないが、接合後に時効処理を受けることを考慮して、電磁成形時はT1状態でなくてはならない。   In the bumper structure manufacturing method disclosed in Patent Document 1, referring to the disclosures of Patent Documents 2 to 4, when both the bumper reinforcement and the stay material are made of heat-treatable aluminum alloy extruded material, pipe expansion by electromagnetic forming is performed. For the stay material to be subjected to tempering, it is advisable to improve the strength by electromagnetic forming in the T1 state with excellent formability and joining with bumper reinforcement, then aging treatment (T5) of the obtained bumper structure Conceivable. In this case, the bumper reinforcement is not substantially deformed by electromagnetic forming, but it must be in the T1 state at the time of electromagnetic forming in consideration of receiving an aging treatment after joining.

しかし、バンパー構造体は形状が単純でないため、時効処理炉内へ装入する際のハンドリングが容易でなく、時効処理の効率が悪く(炉内に多数積み重ねたとき空間ばかりが多くなる)、輸送効率も悪いという問題がある。また、バンパー構造体は、衝突時のエネルギー吸収効率を低下させないため、バンパーリインフォースの前壁とステイの取付用フランジがフラットでかつ互いに平行であることが求められているが、時効処理により歪みが生じてその精度が低下し、時効処理後に矯正を行う場合は大がかりな装置が必要となる。さらに、バンパーリインフォースとステイ素材の材質が異なり、例えばバンパーリインフォースがJIS7000系アルミニウム合金、ステイがJIS6000系アルミニウム合金からなる場合、前者の時効処理条件は130℃×12時間程度、後者の時効処理条件が190℃×3時間程度が好適であるが、一緒に時効処理するため例えば160℃×6時間というような中途半端な時効処理条件を選択せざるを得ない、という問題もある。
なお、本件明細書において、電磁成形によりバンパーリインフォースに接合した後のステイ素材をステイという。
However, because the shape of the bumper structure is not simple, handling when charging into the aging furnace is not easy, and the efficiency of the aging treatment is poor (only a lot of space is accumulated when stacked in the furnace), and transportation There is a problem of poor efficiency. In addition, the bumper structure is required to have a flat front wall of the bumper reinforcement and a stay mounting flange that are parallel to each other in order not to reduce the energy absorption efficiency at the time of collision. When the correction is performed after the aging treatment, a large-scale device is required. Furthermore, when the bumper reinforcement and the stay material are different, for example, when the bumper reinforcement is made of JIS 7000 series aluminum alloy and the stay is made of JIS 6000 series aluminum alloy, the former aging treatment condition is about 130 ° C. × 12 hours, and the latter aging treatment condition is A temperature of about 190 ° C. × 3 hours is preferable, but there is also a problem that half-time aging treatment conditions such as 160 ° C. × 6 hours must be selected for aging treatment together.
In this specification, the stay material after joining to the bumper reinforcement by electromagnetic forming is referred to as stay.

本発明は、電磁成形を利用してバンパーリインフォースとステイ素材を接合し、バンパー構造体を製造する場合に、バンパー構造体の時効処理に伴う上記問題点を解消し、かつバンパーリインフォースとステイの材質が異なる場合に、両方にそれぞれ適切な時効処理を行えるようにすることを目的とする。   The present invention eliminates the above-mentioned problems associated with the aging treatment of the bumper structure when the bumper reinforcement and the stay material are joined using electromagnetic forming to manufacture the bumper structure, and the material of the bumper reinforcement and the stay The purpose is to enable appropriate aging treatments to be applied to both cases when they are different.

本発明に係るバンパー構造体の製造方法は、所定寸法に切断した管状の熱処理型アルミニウム合金押出材を質別T1で電磁成形により拡管して、後端にサイドメンバの前端に固定される取付用フランジを有するステイ素材を成形し、前記ステイ素材に時効処理を施して質別T5とし、時効処理後の前記ステイ素材を、断面が中空で前後の縦壁を有し質別T5とした熱処理型アルミニウム合金からなるバンパーリインフォースの左右両端部の前記前後の縦壁に形成された穴に後方側から嵌入し、前記バンパーリインフォースの後方の縦壁に形成された穴付近より前方側に位置する部分を電磁成形により拡管し、前記前後の縦壁に形成された穴の内周面に密着させて前記バンパリインフォースに接合する、というものである。   In the bumper structure manufacturing method according to the present invention, a tubular heat-treated aluminum alloy extruded material cut into a predetermined size is expanded by electromagnetic forming at a grade T1, and is fixed to the front end of the side member at the rear end. A heat treatment mold in which a stay material having a flange is molded, the stay material is subjected to aging treatment to obtain a quality T5, and the stay material after the aging treatment has a hollow section and has front and rear vertical walls and a texture T5. The bumper reinforcement made of aluminum alloy is inserted into the holes formed in the front and rear vertical walls of the left and right ends of the bumper reinforcement from the rear side, and the portion located on the front side from the vicinity of the hole formed in the vertical wall behind the bumper reinforcement The pipe is expanded by electromagnetic forming, and is bonded to the bumper reinforcement while being in close contact with the inner peripheral surface of the hole formed in the front and rear vertical walls.

また、本発明では、バンパーリインフォースとして断面がソリッド(中空でない断面)の熱処理型アルミニウム合金形材を用いることもできる。この場合、本発明に係るバンパー構造体の製造方法は、所定寸法に切断した管状の熱処理型アルミニウム合金押出材を質別T1で電磁成形により拡管して、後端にサイドメンバの前端に固定される取付用フランジを有するステイ素材を成形し、前記ステイ素材に時効処理を施して質別T5とし、時効処理後の前記ステイ素材を、断面がソリッドで1個の縦壁を有し質別T5とした熱処理型アルミニウム合金からなるバンパーリインフォースの前記縦壁に形成された穴に後方側から嵌入し、前記バンパーリインフォースの縦壁に形成された穴付近を含む前記ステイ素材の前端部を電磁成形により拡管し、前記縦壁に形成された穴の内周面に密着させて前記バンパリインフォースに接合する、となる。   In the present invention, a heat-treatable aluminum alloy profile having a solid cross section (non-hollow cross section) can also be used as the bumper reinforcement. In this case, the bumper structure manufacturing method according to the present invention expands a tubular heat-treated aluminum alloy extruded material cut to a predetermined size by electromagnetic forming at the grade T1, and is fixed to the front end of the side member at the rear end. A stay material having a mounting flange is molded, and the stay material is subjected to an aging treatment to obtain a quality T5. The stay material after the aging treatment is solid in cross section and has a single vertical wall, and the quality T5. The front end portion of the stay material including the vicinity of the hole formed in the vertical wall of the bumper reinforcement is inserted by electromagnetic forming into the hole formed in the vertical wall of the bumper reinforcement made of the heat treated aluminum alloy. The pipe is expanded and brought into close contact with the inner peripheral surface of the hole formed in the vertical wall and joined to the bumper reinforcement.

なお、本発明において熱処理型アルミニウム合金とは、時効処理により強度アップが可能なJIS2000系(Al−Cu−Mg系)、JIS6000系(Al−Mg−Si−(Cu)系)、及びJIS7000系(Al−Zn−Mg−(Cu)系)のアルミニウム合金をいう。また、T1,T5はJISH0001に規定された質別であり、T1は押出後冷却したままの状態、T5はさらに人工時効処理を施した状態を意味する。
また、バンパーリインフォースとして、例えば形材(長さ方向に実質的に同じ断面形状を有する部材を意味し、押出材のほか、板材を曲げ加工、ロール加工等によって成形した部材も含まれる)が好適に用いられるが、形材以外のアルミニウム合金材(長さ方向に断面形状が異なる成形品)を用いることもできる。
In the present invention, the heat-treatable aluminum alloy means JIS 2000 (Al—Cu—Mg), JIS 6000 (Al—Mg—Si— (Cu)), and JIS 7000 (which can be strengthened by aging treatment). Al-Zn-Mg- (Cu) -based) aluminum alloy. Further, T1 and T5 are categorized according to JISH0001, T1 means a state of being cooled after extrusion, and T5 means a state of being further subjected to artificial aging treatment.
In addition, as the bumper reinforcement, for example, a shape member (meaning a member having substantially the same cross-sectional shape in the length direction, including a member obtained by bending a plate material by bending, roll processing, etc. in addition to an extruded material) is preferable. However, it is also possible to use an aluminum alloy material (a molded product having a different cross-sectional shape in the length direction) other than the shape material.

上記製造方法を実施するため、例えば次のような具体的形態をとることができる。
(1)時効処理後の前記ステイ素材を電磁成形する前に、前記ステイ素材の電磁成形を行う部分を局部的に(長さ方向の一部について)溶体化加熱する。この場合、溶体化加熱後の前記ステイ素材を電磁成形により拡管して前記バンパーリインフォースに接合した後、必要に応じて、前記ステイ素材の溶体化加熱した箇所を局部的に再加熱して析出硬化させる。
(2)前記溶体化加熱及び再加熱を高周波誘導加熱により行う。
(3)前記バンパーリインフォースがJIS7000系アルミニウム合金からなり、前記ステイ素材がJIS6000系アルミニウム合金からなる。
(4)前記管状の熱処理型アルミニウム合金押出材を質別T1で電磁成形により拡管して前記ステイ素材を成形した後、プレス加工により前記取付用フランジを平面化する。
In order to carry out the above manufacturing method, for example, the following specific forms can be taken.
(1) Before electromagnetically forming the stay material after the aging treatment, the portion of the stay material to be subjected to electromagnetic forming is locally heated (for a part in the length direction). In this case, the stay material after solution heating is expanded by electromagnetic forming and joined to the bumper reinforcement, and if necessary, the solution material heated portion of the stay material is locally reheated to precipitate hardening. Let
(2) Solution heating and reheating are performed by high frequency induction heating.
(3) The bumper reinforcement is made of a JIS 7000 series aluminum alloy, and the stay material is made of a JIS 6000 series aluminum alloy.
(4) The tubular heat treatment type aluminum alloy extruded material is expanded by electromagnetic forming at the grade T1 to form the stay material, and then the mounting flange is flattened by pressing.

本発明では、質別T1の熱処理型アルミニウム合金押出材を電磁成形により拡管して、後端に取付用フランジを有するステイ素材を成形し、このステイ素材に時効処理を施して質別T5とし、一方、熱処理型アルミニウム合金からなるバンパーリインフォースについては質別T5としておき、質別T5のステイ素材を同じく質別T5のバンパーリインフォースに形成した穴に嵌入し、電磁成形によりステイ素材を拡管してバンパーリインフォースに接合する。
このように、本発明では、ステイ素材とバンパーリインフォースを接合前に時効処理(質別T5)することから、それぞれの部品はハンドリングが容易で、炉内に密に装入できて時効処理の効率がよく、輸送効率もよい。また、時効処理が個々の部品に対して行われるから、接合後のバンパー構造体に対して行う場合に比べて歪みが生じにくく、さらに、バンパーリインフォースとステイ素材の材質が異なる場合でも別々の条件で時効処理ができるので、それぞれの部品に最適の時効処理条件を選択することができる。
In the present invention, the heat treatment type aluminum alloy extruded material of quality T1 is expanded by electromagnetic forming, a stay material having a mounting flange at the rear end is formed, and the stay material is subjected to aging treatment to obtain quality T5. On the other hand, the bumper reinforcement made of heat-treatable aluminum alloy is classified as grade T5, the stay material of grade T5 is inserted into the hole formed in the bumper reinforcement of grade T5, and the bumper reinforcement is expanded by electromagnetic forming. Join to reinforcements.
As described above, in the present invention, the stay material and the bumper reinforcement are subjected to aging treatment (quality grade T5) before joining, so that each part is easy to handle and can be charged closely into the furnace so that the aging treatment efficiency is high. The transportation efficiency is also good. In addition, since aging treatment is performed on individual parts, distortion is less likely to occur than when applied to a bumper structure after joining, and even if the material of the bumper reinforcement and stay material are different, different conditions Since the aging treatment can be performed with, the optimum aging treatment conditions for each part can be selected.

なお、本発明では、比較的大きい拡管率(特許文献2参照)で電磁成形が行われる取付用フランジの成形が、成形性のよいT1状態で行われるので、成形された取付用フランジの周囲に割れが生じるのが防止される。また、接合のための電磁成形はT5状態で行われるが、このときのステイ素材の変形量(拡管率)は比較的小さく、それでも十分な接合強度を確保することは可能であり、拡管率を比較的大きくとれないT5状態でも、割れ等を生じることなく拡管することが可能である。   In the present invention, the mounting flange that is electromagnetically molded with a relatively large tube expansion ratio (see Patent Document 2) is formed in a T1 state with good moldability, so that the mounting flange is formed around the molded mounting flange. Cracking is prevented from occurring. Electromagnetic forming for joining is performed in the T5 state, but the deformation amount (expansion rate) of the stay material at this time is relatively small, and it is still possible to ensure sufficient joining strength. Even in the T5 state, which cannot be relatively large, it is possible to expand the tube without causing cracks or the like.

本発明において、前記(1)に示すように、時効処理後のステイ素材の一部(続いて電磁成形が行われる部分)を局部的に溶体化加熱すると、溶体化加熱された部分は軟化し成形性が向上する。溶体化加熱された部分はバンパーリインフォースとの接合に関与する部分を含み、この部分の成形性が向上することで、電磁成形による接合がより確実に行われる。ステイ素材をバンパーリインフォースに接合した後、前記溶体化加熱した部分を再加熱して析出硬化させると、軟化していた当該部分の強度が再び向上する。この溶体化加熱及び再加熱は前記(2)に示すように、高周波誘導加熱により容易に行うことができる。   In the present invention, as shown in (1) above, when a part of the stay material after aging treatment (the part where the electromagnetic forming is subsequently performed) is locally solution-heated, the solution-heated part is softened. Formability is improved. The solution-heated portion includes a portion that participates in bonding with the bumper reinforcement. By improving the formability of this portion, bonding by electromagnetic forming is more reliably performed. After joining the stay material to the bumper reinforcement, when the solution-heated portion is reheated and precipitation hardened, the strength of the softened portion is improved again. This solution heating and reheating can be easily performed by high frequency induction heating, as shown in (2) above.

このような溶体化加熱及び必要に応じて再加熱を行うことで、例えば中空断面のバンパーリインフォースを用いたバンパー構造体において、ステイのバンパリインフォースの後壁付近より前方側に位置する部分の強度を調整することもできる。衝突時、バンパーリインフォース(及びステイのバンパーリインフォースの中空断面内に位置する部分)が優先的に圧壊し、衝撃荷重が大きければ、さらにステイのバンパーリインフォースから後方に突出する部分が圧壊するというように、前方側から順に圧壊が進行することが望ましいが、ステイのバンパーリインフォースの中空断面内に位置する部分の強度が余り高いと、衝突時にバンパーリインフォースの圧壊が妨げられ、ステイのバンパーリインフォースから後方に突出する部分が先に圧壊し、バンパーリインフォースに潰れ残りが生じてエネルギー吸収効率が低下したり、ステイのバンパーリインフォースから後方に突出する部分に設置されるセンサー類の損傷も生じる可能性がある。逆にステイのバンパーリインフォースの中空断面内に位置する部分の強度が余り低いと、衝突時にバンパーリインフォースの圧壊が容易に生じてエネルギー吸収量が不足し、小さい衝突でもステイのンパーリインフォースから後方に突出する部分の圧壊に進む可能性がある。前記溶体化加熱及び必要に応じて再加熱を適宜行うことで、衝突時、衝撃荷重の大きさに応じて、バンパー構造体の前方側から順に圧壊が進行するように、バンパリインフォースの後壁付近より前方側に位置する部分の強度を調整することができる。以上の点は、ソリッド断面のバンパーリインフォースを用いたバンパー構造体でも同様である。   By performing such solution heating and reheating as necessary, for example, in a bumper structure using a bumper reinforcement having a hollow cross section, the strength of the portion located on the front side from the vicinity of the rear wall of the stay bumper reinforcement is increased. It can also be adjusted. In the event of a collision, the bumper reinforcement (and the part located in the hollow section of the stay's bumper reinforcement) will preferentially collapse, and if the impact load is large, the part protruding backward from the bumper reinforcement of the stay will also collapse. However, it is desirable for the crushing to proceed in order from the front side. The protruding portion may be crushed first, and the bumper reinforcement may be crushed, resulting in a decrease in energy absorption efficiency, or damage to the sensors installed on the portion protruding backward from the stay bumper reinforcement. Conversely, if the strength of the stay located in the hollow cross section of the bumper reinforcement of the stay is too low, the bumper reinforcement will easily collapse during a collision, resulting in insufficient energy absorption, and even a small collision will protrude backward from the stay's bumper reinforcement. There is a possibility of proceeding to the crushing part. In the vicinity of the rear wall of the bumper reinforcement so that the collapse proceeds in order from the front side of the bumper structure according to the magnitude of the impact load at the time of collision by appropriately performing the solution heating and reheating as necessary. It is possible to adjust the strength of the portion located further forward. The above points are the same for the bumper structure using the bumper reinforcement having a solid cross section.

本発明において、 ステイ素材を電磁成形により拡管して前記バンパーリインフォースに接合するとき、ステイ素材の長さ方向の一部のみを電磁成形するのは、ステイ素材の全長にわたり電磁成形する必要がないからである。バンパーリインフォースとして断面が中空のアルミニウム合金材を用いる場合、ステイ素材のうち少なくとも接合に関与する部分、すなわち少なくともバンパーリインフォースの後方の縦壁に形成された穴付近より前方側に位置する部分(前端まで)を電磁成形すれば、ステイ素材をバンパーリインフォースに接合でき、バンパーリインフォースとして断面がソリッドのアルミニウム合金材を用いる場合、同じくステイ素材のうち少なくとも接合に関与する部分、すなわち少なくともバンパーリインフォースの縦壁に形成された穴付近を含む前端部を電磁成形すれば、ステイ素材をバンパーリインフォースに接合できる。このようにステイ素材の長さ方向の一部のみを電磁成形することで、ステイ素材を全長にわたり電磁成形する場合に比べてバンパー構造体に生じる歪みを低減し、また取付用フランジに歪みが生じるのを防止することができる。さらに、電磁成形の投入エネルギーが少なくて済み、電磁成形用コイル及び電源の容量を小さくできる利点もある。管状のアルミニウム合金押出材を電磁成形により拡管して、後端にサイドメンバの前端に固定される取付用フランジを有するステイ素材を成形する際にも、前記押出材を全長にわたって電磁成形するのではなく、長さ方向の一部のみ(必要部分のみ)を電磁成形することで、同様に電磁成形の投入エネルギーを低減し、電磁成形用コイル及び電源の容量を小さくすることができる。   In the present invention, when the stay material is expanded by electromagnetic forming and joined to the bumper reinforcement, only part of the length of the stay material is electromagnetically formed because it is not necessary to electromagnetically form the entire length of the stay material. It is. When an aluminum alloy material with a hollow cross section is used as the bumper reinforcement, at least the part of the stay material that is involved in joining, that is, the part that is located on the front side from the vicinity of the hole formed in the vertical wall behind the bumper reinforcement (up to the front end) ) Can be joined to the bumper reinforcement. When a solid aluminum alloy material is used as the bumper reinforcement, at least the part of the stay material that is involved in the joining, that is, at least the vertical wall of the bumper reinforcement. If the front end portion including the vicinity of the formed hole is electromagnetically formed, the stay material can be joined to the bumper reinforcement. By electromagnetically forming only a part of the length of the stay material in this way, the distortion generated in the bumper structure is reduced compared to the case where the stay material is electromagnetically formed over the entire length, and the mounting flange is also distorted. Can be prevented. Further, there is an advantage that the energy required for electromagnetic forming is small and the capacity of the electromagnetic forming coil and the power source can be reduced. Even when a tubular aluminum alloy extruded material is expanded by electromagnetic forming and a stay material having a mounting flange fixed to the front end of the side member at the rear end is formed, the extrudate is not electromagnetically formed over the entire length. However, by electromagnetically forming only a part of the length direction (only the necessary part), similarly, the energy for electromagnetic forming can be reduced, and the capacity of the electromagnetic forming coil and the power source can be reduced.

本発明において、前記(3)に示すように、バンパーリインフォースがJIS7000系アルミニウム合金からなり、前記ステイ素材がJIS6000系アルミニウム合金からなるものとした場合、バンパーリインフォースはより高強度となって薄肉化が可能となり、衝突時の圧壊変形がより大きいステイは割れが生じにくくなる。これにより、バンパー構造体のエネルギー吸収量を安定して向上させ、かつ軽量化することができる。
本発明において、前記(4)に示すように、ステイ素材の取付用フランジを成形する際に、プレス加工を併用すると、電磁成形による拡管のみの場合に比べて取付用フランジを精度よく成形できるとともに、電磁成形による拡管で取付用フランジを軸方向に対し直角に広げる必要がなくなるため、電磁成形を低エネルギーで行うことができ、電磁成形用コイル及び電源の容量を小さくすることができる。
In the present invention, as shown in (3) above, when the bumper reinforcement is made of a JIS 7000 series aluminum alloy and the stay material is made of a JIS 6000 series aluminum alloy, the bumper reinforcement has higher strength and is thinner. It becomes possible, and a stay with a greater crushing deformation at the time of collision is less likely to crack. Thereby, the energy absorption amount of the bumper structure can be stably improved and the weight can be reduced.
In the present invention, as shown in the above (4), when the mounting flange for the stay material is formed, if the press work is used together, the mounting flange can be accurately formed as compared with the case of only the pipe expansion by electromagnetic forming. Since it is not necessary to expand the mounting flange at right angles to the axial direction by expanding the pipe by electromagnetic forming, electromagnetic forming can be performed with low energy, and the capacity of the electromagnetic forming coil and the power source can be reduced.

まず、図1〜図6を参照して、本発明に係るバンパー構造体の製造方法の例を具体的に説明する。
対象となるバンパー構造体は、図1〜3に示すように、中空矩形断面を有するバンパーリインフォース1と、これに接合されたステイ2からなる。バンパーリインフォース1は、T5処理された7000系アルミニウム合金押出材からなり、前方(衝突面側)の縦壁3、後方(車体側)の縦壁4、上壁5、下壁6からなる矩形断面で、車幅方向の中央部1aが車幅方向に平行で、両端部1bが後方側に曲げられて傾斜し、傾斜した端部の縦壁3及び縦壁4に円形の穴7,8が形成されている。
First, with reference to FIGS. 1-6, the example of the manufacturing method of the bumper structure which concerns on this invention is demonstrated concretely.
As shown in FIGS. 1 to 3, the target bumper structure includes a bumper reinforcement 1 having a hollow rectangular cross section and a stay 2 joined to the bumper reinforcement. The bumper reinforcement 1 is made of a T5 treated 7000 series aluminum alloy extruded material, and has a rectangular cross section consisting of a vertical wall 3 on the front side (impact surface side), a vertical wall 4 on the rear side (vehicle body side), an upper wall 5 and a lower wall 6. Thus, the central portion 1a in the vehicle width direction is parallel to the vehicle width direction, the both end portions 1b are bent and inclined rearward, and circular holes 7 and 8 are formed in the vertical wall 3 and the vertical wall 4 at the inclined ends. Is formed.

ステイ2は、T5処理された6000系アルミニウム合金押出材からなり、車体前後方向に向く軸部9が略円形断面を有し、軸部9の後端に図示しないサイドメンバの前端に固定される取付用フランジ11が車体前後方向に対して垂直に形成されている。軸部9の前方部分(接合に関与する部分)は、バンパーリインフォース1の中空断面内に嵌入し、縦壁3の穴7及び縦壁4の穴8の内周面に密着するとともに、前記穴7,8の前後で外径方向に張り出し、バンパーリインフォース1に強固に接合されている。
なお、図2,3において、12〜15は取付用フランジ11に形成されたボルト穴、16〜19はボルト締めのための作業穴である。
The stay 2 is made of a T5-treated extruded 6000 series aluminum alloy, and the shaft portion 9 facing in the longitudinal direction of the vehicle body has a substantially circular cross section, and is fixed to the front end of a side member (not shown) at the rear end of the shaft portion 9. A mounting flange 11 is formed perpendicular to the longitudinal direction of the vehicle body. The front portion of the shaft portion 9 (the portion involved in joining) is fitted into the hollow cross section of the bumper reinforcement 1 and is in close contact with the inner peripheral surface of the hole 7 of the vertical wall 3 and the hole 8 of the vertical wall 4. It protrudes in the outer diameter direction before and after 7 and 8 and is firmly joined to the bumper reinforcement 1.
2 and 3, reference numerals 12 to 15 are bolt holes formed in the mounting flange 11, and 16 to 19 are work holes for bolting.

このバンパー構造体の製造手順を説明すると、まず図4に示すように、質別T1に熱処理された円形断面の6000系アルミニウム合金押出材を切断し、前端がバンパーリインフォース1の端部の傾斜と同角度で傾斜し、後端が軸方向に垂直とされた所定寸法の第1ステイ素材21を作成し、これを金型(分割型)22の成形穴内に配置し、第1ステイ素材21の中空内部に電磁成形用コイル23を挿入し、電磁成形用コイル23に瞬間大電流を流し、電磁成形による拡管を行う。
この電磁成形は実質的に第1ステイ素材21の後方部分にのみ施され、第1ステイ素材21の当該部分は拡管し、金型22の成形穴の内側に位置していた部分が該成形穴の内周面に沿った形状に成形され、前記成形穴の外部に突出していた後端部分が拡開して金型22の端面(図4に示す金型22の下面)に沿った形状に成形される。図5に、この電磁成形により成形された第2ステイ素材24が示されている。
The manufacturing procedure of this bumper structure will be described. First, as shown in FIG. 4, a 6000 series aluminum alloy extruded material having a circular cross section that has been heat-treated to grade T1 is cut, and the front end is inclined to the end of the bumper reinforcement 1. A first stay material 21 having a predetermined dimension that is inclined at the same angle and whose rear end is perpendicular to the axial direction is created, and is placed in a molding hole of a mold (split mold) 22. The electromagnetic forming coil 23 is inserted into the hollow interior, an instantaneous large current is passed through the electromagnetic forming coil 23, and the tube is expanded by electromagnetic forming.
This electromagnetic forming is substantially performed only on the rear portion of the first stay material 21, the portion of the first stay material 21 is expanded, and the portion located inside the molding hole of the mold 22 is the molding hole. The rear end portion which was molded into the shape along the inner peripheral surface of the mold and protruded to the outside of the molding hole was expanded to a shape along the end surface of the mold 22 (the lower surface of the mold 22 shown in FIG. 4). Molded. FIG. 5 shows the second stay material 24 formed by this electromagnetic forming.

成形された第2ステイ素材24は、図5に示すように、前方側から、比較的小径の筒状部24aと、傾斜した短い切頭円錐状部24bと、比較的大径に張り出した筒状部24cと、後端の取付用フランジ11からなる。切頭円錐状部24b、筒状部24c及び取付用フランジ11が電磁成形により拡管成形された箇所であり、筒状部24aは実質的に拡管成形されていない。
なお、第2ステイ素材24の成形に際し、電磁成形で図5の実線で示す形状に一度に成形せず、まず仮想線で示す形状(取付用フランジ11の広がり角度θが浅い)に成形し、続いて金型を用いてプレス加工することにより、取付用フランジ11を垂直に広げて平面化(特にサイドメンバ前端に対する取付面となる後面を平面化)するという、2段階の工程で成形することもできる。
As shown in FIG. 5, the molded second stay material 24 includes a relatively small-diameter cylindrical portion 24a, an inclined short truncated conical portion 24b, and a relatively large-diameter cylinder from the front side. It consists of the shape part 24c and the flange 11 for attachment of a rear end. The truncated conical portion 24b, the cylindrical portion 24c, and the mounting flange 11 are portions where the pipes are expanded by electromagnetic forming, and the cylindrical portion 24a is not substantially expanded.
When forming the second stay material 24, the electromagnetic forming does not form the shape shown by the solid line in FIG. 5 at the same time, but first forms the shape shown by the phantom line (the mounting flange 11 has a shallow spread angle θ), Subsequently, by pressing using a mold, the mounting flange 11 is vertically expanded and flattened (particularly, the rear surface serving as the mounting surface with respect to the front end of the side member) is formed in a two-step process. You can also.

続いて第2ステイ素材24は時効処理を受けて質別T5とされる。時効処理条件は6000形アルミニウム合金の種類によって多少異なるが、ほぼ160〜220℃×2〜10時間の範囲内から高強度化できる条件を選択すればよい。この条件自体は周知である。
一方、バンパーリインフォース1も時効処理を受けて質別T5とされる。こちらの時効処理条件も7000系アルミニウム合金の種類によって多少異なるが、ほぼ100〜150℃×10〜15時間の範囲内から高強度化できる条件を選択すればよい。この条件自体は周知である。
Subsequently, the second stay material 24 is subjected to aging treatment and is classified as T5. The aging treatment conditions vary somewhat depending on the type of 6000 type aluminum alloy, but it is sufficient to select conditions that can increase the strength from the range of about 160 to 220 ° C. × 2 to 10 hours. This condition itself is well known.
On the other hand, bumper reinforcement 1 is also subjected to aging treatment and is classified as T5. The aging treatment conditions here vary somewhat depending on the type of the 7000 series aluminum alloy, but it is sufficient to select conditions that can increase the strength from the range of about 100 to 150 ° C. × 10 to 15 hours. This condition itself is well known.

質別T5とされたバンパーリインフォース1と第2ステイ素材24は、両者を接合するため、図6に示すように配置される。このときまでに、ステイ素材24の取付用フランジ11にボルト穴12〜15が形成され、バンパーリインフォース1の両端部の前後の縦壁3,4にステイ素材24が嵌入する穴7,8とその近傍に作業穴16〜19が形成される。
図6に示すように、第2ステイ素材24の筒状部24aがバンパーリインフォース1の穴7,8に後方側(縦壁4側)から嵌入され、筒状部24aの先端がバンパーリインフォース1の縦壁3の前面から前方に少し突出し、切頭円錐状部24bが縦壁4より若干後方側の位置に配置される。バンパーリインフォース1の中央部1aの縦壁3(特にその前面)と、第2ステイ素材24の取付用フランジ11(特にその後面)が互いに平行とされ、第2ステイ素材24の軸方向がバンパーリインフォース1の中央部1aの縦壁3(特にその前面)に垂直とされ、かつボルト穴12〜15が左右の所定位置にきている。
The bumper reinforcement 1 and the second stay material 24, which are classified as T5, are arranged as shown in FIG. By this time, bolt holes 12 to 15 are formed in the mounting flange 11 of the stay material 24, and the holes 7 and 8 into which the stay material 24 is fitted in the longitudinal walls 3 and 4 at both ends of the bumper reinforcement 1, and Work holes 16 to 19 are formed in the vicinity.
As shown in FIG. 6, the cylindrical portion 24 a of the second stay material 24 is fitted into the holes 7 and 8 of the bumper reinforcement 1 from the rear side (vertical wall 4 side), and the tip of the cylindrical portion 24 a is the bumper reinforcement 1. The front wall of the vertical wall 3 slightly protrudes forward, and the truncated conical portion 24 b is disposed at a position slightly rearward of the vertical wall 4. The vertical wall 3 (particularly the front surface) of the central portion 1a of the bumper reinforcement 1 and the mounting flange 11 (particularly the rear surface) of the second stay material 24 are parallel to each other, and the axial direction of the second stay material 24 is the bumper reinforcement. 1 is perpendicular to the vertical wall 3 (particularly the front surface) of the central portion 1a, and the bolt holes 12 to 15 are at predetermined positions on the left and right.

この配置状態で、ステイ素材24の中空内部に電磁成形用コイル25を挿入し、電磁成形用コイル25に瞬間大電流を流し、電磁成形による拡管を行う。
この電磁成形により、第2ステイ素材24の、バンパーリインフォース1の縦壁4付近より前方側に位置する部分(具体的には縦壁4の若干後方側の位置より前方部分であり、筒状部24aと切頭円錐状部24bが含まれる)が拡管し(図2参照)、バンパーリインフォース1の前後の縦壁3,4に形成された穴7,8の内周面に密着し、その他の部分では自由変形し(縦壁3より前方に突出した部分が外径方向に拡開し、縦壁3と縦壁4の間が外径方向に張り出し、縦壁4の後方側も外径方向に張り出す)、第2ステイ素材24はバンパリインフォース1に接合される。
In this arrangement state, the electromagnetic forming coil 25 is inserted into the hollow interior of the stay material 24, an instantaneous large current is passed through the electromagnetic forming coil 25, and tube expansion is performed by electromagnetic forming.
By this electromagnetic forming, the portion of the second stay material 24 located on the front side from the vicinity of the vertical wall 4 of the bumper reinforcement 1 (specifically, the front portion from the position slightly on the rear side of the vertical wall 4 and the cylindrical portion) 24a and frustoconical portion 24b) (see FIG. 2), and adheres closely to the inner peripheral surface of the holes 7 and 8 formed in the vertical walls 3 and 4 before and after the bumper reinforcement 1, The part is freely deformed (the part protruding forward from the vertical wall 3 expands in the outer radial direction, the space between the vertical wall 3 and the vertical wall 4 projects in the outer radial direction, and the rear side of the vertical wall 4 also extends in the outer radial direction. The second stay material 24 is bonded to the bumper reinforcement 1.

この2回目の電磁成形では、第2ステイ素材24は質別がT5で、強度が高く成形性が質別T1のときに比べて低いが、バンパーリインフォース1の穴7,8と第2ステイ素材24の筒状部24aの径差はごく小さく設定すればよく、穴7,8の前後での張り出しも大きくする必要はないので、高い拡管率が必要でなく、バンパーリインフォース1との接合は支障なく強固に行われる。   In this second electromagnetic forming, the second stay material 24 has a grade T5 and is stronger and has a lower formability than the grade T1, but the holes 7 and 8 of the bumper reinforcement 1 and the second stay material 24 The difference in diameter between the cylindrical portions 24a of the 24 can be set to be very small, and it is not necessary to increase the overhang before and after the holes 7 and 8, so that a high tube expansion rate is not required, and the connection with the bumper reinforcement 1 is hindered. It is done firmly.

一方、必要に応じて、ステイ素材24の2回目の電磁成形で拡管される部分、すなわちバンパリインフォース1の縦壁4付近より前方側に位置する部分を局部的に溶体化加熱し、当該部分を軟化させて成形性を向上させることもできる。この溶体化加熱には例えば高周波誘導加熱が便利であり、図5(b)の仮想線に示すように、質別T5としたステイ素材24の主として筒状部24aの周りに高周波誘導加熱コイル26を配置し、該コイルを水冷しつつ高周波電流を印加し、ステイ素材24の前記部分を誘導加熱する。加熱条件としては、例えば450〜550℃×5〜20秒の条件が挙げられる。なお、溶体化加熱する部分は、2回目の電磁成形で拡管される部分の軸方向の全長でなく、軸方向の一部であってもよい。   On the other hand, if necessary, the part expanded by the second electromagnetic forming of the stay material 24, that is, the part located on the front side from the vicinity of the vertical wall 4 of the bumper reinforcement 1 is locally solution-heated, and the part is heated. It can also be softened to improve moldability. For example, high-frequency induction heating is convenient for the solution heating, and as shown by the phantom line in FIG. 5B, the high-frequency induction heating coil 26 is mainly provided around the cylindrical portion 24a of the stay material 24 having the grade T5. The high-frequency current is applied while the coil is cooled with water, and the portion of the stay material 24 is induction-heated. As a heating condition, for example, a condition of 450 to 550 ° C. × 5 to 20 seconds can be mentioned. The part to be solution-heated may be a part in the axial direction, not the entire length in the axial direction of the part expanded by the second electromagnetic forming.

このような溶体化加熱を行った場合、ステイ素材24の2回目の電磁成形後(バンパーリインフォース1との接合後)、バンパー構造体のステイ2の溶体化加熱された部分を局部的に再加熱して析出硬化させ、ステイ2の強度アップ(又は強度の調整)を図ることもできる。この再加熱でも高周波誘導加熱が便利であり、図1の仮想線に示すように、主としてバンパーリインフォース1の断面内のステイ2の内部に高周波誘導加熱コイル27を配置し、該コイルを水冷しつつ高周波電流を印加し、ステイ2の前記部分を誘導加熱する。加熱条件としては、例えば160〜200℃×10〜30秒の条件が挙げられる。なお、再加熱する部分は、溶体化加熱された部分の軸方向全体でなく、軸方向の一部であってもよい。   When such solution heating is performed, after the second electromagnetic forming of the stay material 24 (after joining with the bumper reinforcement 1), the solution heated portion of the stay 2 of the bumper structure is locally reheated. The strength of the stay 2 can be increased (or the strength can be adjusted) by precipitation hardening. High-frequency induction heating is also convenient for this reheating, and as shown by the phantom line in FIG. 1, a high-frequency induction heating coil 27 is mainly disposed inside the stay 2 in the cross section of the bumper reinforcement 1, and the coil is cooled with water. A high frequency current is applied, and the portion of the stay 2 is induction heated. Examples of the heating conditions include 160 to 200 ° C. × 10 to 30 seconds. In addition, the part to reheat may be a part of axial direction instead of the whole axial direction of the part solution-heated.

次に、図7〜9を参照して、本発明に係るバンパー構造体の製造方法の他の例を説明する。
対象となるバンパー構造体は、図7に示すように、ソリッド断面を有するバンパーリインフォース31と、これに接合されたステイ32からなる。バンパーリインフォース31は、T5処理された7000系アルミニウム合金押出材からなり、図8に示すように、縦壁33、上壁34、下壁35からなる略コの字断面で、縦壁33が衝突面として前端近傍に位置している。バンパーリインフォース31も、図1に示すバンパーリインフォース1と同様に、車幅方向の中央部が車幅方向に平行で、両端部が後方側に曲げられて傾斜し、傾斜した端部の縦壁33に後方に突出する円形のバーリング穴36が形成されている。
Next, with reference to FIGS. 7-9, the other example of the manufacturing method of the bumper structure which concerns on this invention is demonstrated.
As shown in FIG. 7, the target bumper structure includes a bumper reinforcement 31 having a solid cross section and a stay 32 joined to the bumper reinforcement. The bumper reinforcement 31 is made of a T5 treated 7000 series aluminum alloy extruded material. As shown in FIG. 8, the bumper reinforcement 31 has a substantially U-shaped cross section including a vertical wall 33, an upper wall 34, and a lower wall 35. It is located near the front end as a surface. Similarly to the bumper reinforcement 1 shown in FIG. 1, the bumper reinforcement 31 also has a central portion in the vehicle width direction that is parallel to the vehicle width direction, and both end portions are bent rearward to be inclined, and the vertical wall 33 at the inclined end portion. A circular burring hole 36 protruding rearward is formed.

ステイ32は、T5処理された6000系アルミニウム合金押出材からなり、車体前後方向に向く軸部37が略円形断面を有し、軸部37の後端に図示しないサイドメンバの前端に固定される取付用フランジ38が車体前後方向に対して垂直に形成されている。軸部37の前端部(接合に関与する部分)は、バンパーリインフォース31の縦壁33に形成されたバーリング穴36の内周面に密着し、前端はバーリング穴36のカーブに沿って外径方向に拡開するとともに、バーリング穴36の後方で外径方向に張り出し、バンパーリインフォース31に強固に接合されている。   The stay 32 is made of a T5-treated extruded 6000 series aluminum alloy, and a shaft portion 37 facing in the longitudinal direction of the vehicle body has a substantially circular cross section, and is fixed to the front end of a side member (not shown) at the rear end of the shaft portion 37. A mounting flange 38 is formed perpendicular to the longitudinal direction of the vehicle body. The front end portion of the shaft portion 37 (portion involved in joining) is in close contact with the inner peripheral surface of the burring hole 36 formed in the vertical wall 33 of the bumper reinforcement 31, and the front end is in the outer diameter direction along the curve of the burring hole 36. In addition to expanding to the rear, it projects in the outer diameter direction behind the burring hole 36 and is firmly joined to the bumper reinforcement 31.

このバンパー構造体の製造手順を説明すると、図4を参照して説明したと同じ手順で、質別T1に熱処理された円形断面の6000系アルミニウム合金押出材を切断して第1ステイ素材を作成し、第1ステイ素材に対して電磁成形による拡管を行う。この電磁成形は、実質的に第1ステイ素材の後方部分(前端部を除く部分)にのみ施され、図9に示すように、前方側から、比較的小径の短い筒状部39a(実質的に拡管成形されていない)と、傾斜した短い切頭円錐状部39bと、比較的大径に張り出した筒状部39cと、後端の取付用フランジ38からなる第2ステイ素材39が成形される。なお、この第2ステイ素材39も、取付用フランジ38を電磁成形とプレス加工の2段階の工程で成形することができる。   Explaining the manufacturing procedure of this bumper structure, the same procedure as described with reference to FIG. 4 is used to cut the 6000 series aluminum alloy extruded material having a circular cross section that has been heat-treated to the grade T1 to produce the first stay material. Then, the first stay material is expanded by electromagnetic forming. This electromagnetic forming is performed substantially only on the rear portion (portion excluding the front end portion) of the first stay material, and as shown in FIG. 9, from the front side, a relatively small-diameter cylindrical portion 39a (substantially The second stay material 39 is formed of an inclined short truncated conical portion 39b, a tubular portion 39c projecting to a relatively large diameter, and a mounting flange 38 at the rear end. The The second stay material 39 can also be formed by two stages of electromagnetic forming and press working of the mounting flange 38.

続いて第2ステイ素材39は、先に示した条件で時効処理を受けて質別T5とされる。一方、バンパーリインフォース31も、先に示した条件で時効処理を受けて質別T5とされる。
質別T5とされたバンパーリインフォース31と第2ステイ素材39は、両者を接合するため、図9に示すように配置される。なお、このときまでに、先に説明した第2ステイ素材24と同様に、第2ステイ素材39の取付用フランジ38へボルト穴が形成され、バンパーリインフォース1と同様に、バンパーリインフォース31の両端部の縦壁33にステイ素材39の筒状部39aが嵌入するバーリング穴36と、その近傍に作業穴が形成される。
Subsequently, the second stay material 39 is subjected to aging treatment under the above-described conditions and is classified as T5. On the other hand, the bumper reinforcement 31 is also subjected to the aging process under the above-described conditions and is classified as quality T5.
The bumper reinforcement 31 and the second stay material 39, which are classified as T5, are arranged as shown in FIG. 9 in order to join them together. By this time, similarly to the second stay material 24 described above, bolt holes are formed in the mounting flange 38 of the second stay material 39, and both end portions of the bumper reinforcement 31 are formed as in the bumper reinforcement 1. A burring hole 36 into which the cylindrical portion 39a of the stay material 39 is fitted is formed in the vertical wall 33, and a work hole is formed in the vicinity thereof.

図9に示すように、第2ステイ素材39の筒状部39aがバンパーリインフォース31の穴36に後方側から嵌入され、筒状部39aの先端がバンパーリインフォース31の縦壁33の前面から前方に少し突出し、切頭円錐状部39bが縦壁33より若干後方側の位置に配置される。バンパーリインフォース31の車幅方向中央部(図1の1a参照)に位置する縦壁33(特にその前面)と、第2ステイ素材39の取付用フランジ38(特にその後面)が互いに平行とされ、第2ステイ素材39の軸方向がバンパーリインフォース31の車幅方向中央部(図1の1a参照)に位置する縦壁33(特にその前面)に垂直とされている。   As shown in FIG. 9, the cylindrical portion 39 a of the second stay material 39 is fitted into the hole 36 of the bumper reinforcement 31 from the rear side, and the tip of the cylindrical portion 39 a is forward from the front surface of the vertical wall 33 of the bumper reinforcement 31. It protrudes slightly, and the truncated conical portion 39 b is arranged at a position slightly rearward from the vertical wall 33. The vertical wall 33 (especially the front surface thereof) located in the vehicle width direction central portion (see 1a in FIG. 1) of the bumper reinforcement 31 and the mounting flange 38 (especially the rear surface) of the second stay material 39 are parallel to each other. The axial direction of the second stay material 39 is perpendicular to the vertical wall 33 (particularly the front surface thereof) located in the vehicle width direction center portion (see 1a in FIG. 1) of the bumper reinforcement 31.

この配置状態で、バーリング穴36付近を含む第2ステイ素材39の前端部(具体的にはバーリング穴36の若干後方側の位置より前方部分であり、筒状部39aと切頭円錐状部39bが含まれる)を電磁成形して拡管する。これにより、第2ステイ素材39は、図7に示すように、バーリング穴36の内周面に密着し、バーリング穴36のカーブに沿って外径方向に拡開して、前端がバーリング穴36から前方に若干突出し、かつバーリング穴36の後方で外径方向に張り出し、これによりバンパーリインフォース31に接合される。この2回目の電磁成形では、先に第2ステイ素材24に関して述べたと同様の理由で、高い拡管率は必要でない。   In this arrangement, the front end portion of the second stay material 39 including the vicinity of the burring hole 36 (specifically, the front portion from a position slightly behind the burring hole 36, and the cylindrical portion 39a and the truncated conical portion 39b). Is expanded by electromagnetic forming. As a result, as shown in FIG. 7, the second stay material 39 is in close contact with the inner peripheral surface of the burring hole 36, expands in the outer diameter direction along the curve of the burring hole 36, and the front end is the burring hole 36. Slightly protruding forward and projecting in the outer diameter direction behind the burring hole 36, and thereby joined to the bumper reinforcement 31. In the second electromagnetic forming, a high tube expansion rate is not necessary for the same reason as described above for the second stay material 24.

ステイ素材39においても、2回目の電磁成形で拡管される部分、すなわちステイ素材39の前端部を局部的に溶体化加熱して、成形性を向上させることもできる。また、溶体化加熱を行った場合、ステイ素材39の2回目の電磁成形後、溶体化加熱された部分を局部的に再加熱して析出硬化させ、ステイ32の強度アップ(又は強度の調整)を図ることができる。   Also in the stay material 39, the part that is expanded in the second electromagnetic forming, that is, the front end portion of the stay material 39 is locally solution-heated to improve the formability. Also, when solution heat is applied, after the second electromagnetic forming of the stay material 39, the solution heat-heated portion is locally reheated to cause precipitation hardening, and the strength of the stay 32 is increased (or strength adjustment). Can be achieved.

本発明に係るバンパー構造体の平面図である。It is a top view of the bumper structure concerning the present invention. そのバンパー構造体の要部(ステイ付近)の一部断面平面図である。It is a partial cross section top view of the principal part (stay vicinity) of the bumper structure. そのバンパー構造体の要部(ステイ付近)の正面図(前方から見た図)である。It is a front view (figure seen from the front) of the principal part (stay vicinity) of the bumper structure. そのバンパー構造体の製造方法のうち1回目の電磁成形を説明する図である。It is a figure explaining the first electromagnetic forming among the manufacturing methods of the bumper structure. そのバンパー構造体の製造方法のうち1回目の電磁成形により成形されたステイ素材の平面図(a)及び側面図(b)である。It is the top view (a) and side view (b) of the stay raw material shape | molded by the 1st electromagnetic forming among the manufacturing methods of the bumper structure. そのバンパー構造体の製造方法のうち2回目の電磁成形を説明する図である。It is a figure explaining the 2nd electromagnetic forming among the manufacturing methods of the bumper structure. 本発明に係る別のバンパー構造体の要部(ステイ付近)の一部断面平面図である。It is a partial cross section top view of the principal part (stay vicinity) of another bumper structure based on this invention. そのバンパー構造体に用いるバンパーリインフォースのバーリング穴での断面図である。It is sectional drawing in the burring hole of bumper reinforcement used for the bumper structure. そのバンパー構造体の製造方法のうち2回目の電磁成形を説明する図である。It is a figure explaining the 2nd electromagnetic forming among the manufacturing methods of the bumper structure.

符号の説明Explanation of symbols

1,31 バンパーリインフォース
2,32 ステイ
3 バンパーリインフォースの前方側の縦壁
4 バンパーリインフォースの後方側の縦壁
7,8 穴
11,38 取付用フランジ
21 第1ステイ素材
22 金型
23,25 電磁成形用コイル
24 第2ステイ素材
26,27 高周波誘導加熱コイル
33 バンパーリインフォースの縦壁
1,31 Bumper reinforcement 2,32 Stay 3 Vertical wall on the front side of the bumper reinforcement 4 Vertical wall on the rear side of the bumper reinforcement 7,8 holes 11,38 Mounting flange 21 First stay material 22 Mold 23,25 Electromagnetic forming Coil 24 Second stay material 26, 27 High frequency induction heating coil 33 Bumper reinforcement vertical wall

Claims (11)

所定寸法に切断した管状の熱処理型アルミニウム合金押出材を質別T1で電磁成形により拡管して、後端にサイドメンバの前端に固定される取付用フランジを有するステイ素材を成形し、前記ステイ素材に時効処理を施して質別T5とし、時効処理後の前記ステイ素材を、断面が中空で前後の縦壁を有し質別T5とした熱処理型アルミニウム合金からなるバンパーリインフォースの左右両端部の前記前後の縦壁に形成された穴に後方側から嵌入し、前記バンパーリインフォースの後方の縦壁に形成された穴付近より前方側に位置する部分を電磁成形により拡管し、前記前後の縦壁に形成された穴の内周面に密着させて前記バンパリインフォースに接合することを特徴とするバンパー構造体の製造方法。 The heat treatment type aluminum alloy extruded material cut into a predetermined size is expanded by electromagnetic forming at the grade T1, and a stay material having a mounting flange fixed to the front end of the side member at the rear end is formed. The aging treatment is made into a grade T5, and the stay material after the aging treatment is made of a heat-treatable aluminum alloy made of heat-treated aluminum alloy having a hollow cross section and front and rear vertical walls, and the right and left ends of the bumper reinforcement. Fit into the holes formed in the front and rear vertical walls from the rear side, expand the portion located on the front side from the vicinity of the hole formed in the rear vertical wall of the bumper reinforcement by electromagnetic forming, to the front and rear vertical walls A bumper structure manufacturing method, wherein the bumper reinforcement is bonded to an inner peripheral surface of a formed hole and bonded to the bumper reinforcement. 時効処理後の前記ステイ素材を電磁成形する前に、前記ステイ素材の電磁成形を行う部分を局部的に溶体化加熱することを特徴とする請求項1に記載されたバンパー構造体の製造方法。 The method for manufacturing a bumper structure according to claim 1, wherein a portion of the stay material to be subjected to electromagnetic forming is solution-heated locally before electromagnetic forming of the stay material after aging treatment. 前記ステイ素材の溶体化加熱する部分が、前記バンパリインフォースの前記穴に嵌入したときに前記後方の縦壁に形成された穴付近から前方側に位置する部分であることを特徴とする請求項2に記載されたバンパー構造体の製造方法。 The portion of the stay material to be solution-heated is a portion located on the front side from the vicinity of the hole formed in the rear vertical wall when fitted into the hole of the bumper reinforcement. The manufacturing method of the bumper structure described in 1 above. 所定寸法に切断した管状の熱処理型アルミニウム合金押出材を質別T1で電磁成形により拡管して、後端にサイドメンバの前端に固定される取付用フランジを有するステイ素材を成形し、前記ステイ素材に時効処理を施して質別T5とし、時効処理後の前記ステイ素材を、断面がソリッドで1個の縦壁を有し質別T5とした熱処理型アルミニウム合金からなるバンパーリインフォースの前記縦壁に形成された穴に後方側から嵌入し、前記バンパーリインフォースの縦壁に形成された穴付近を含む前記ステイ素材の前端部を電磁成形により拡管し、前記縦壁に形成された穴の内周面に密着させて前記バンパリインフォースに接合することを特徴とするバンパー構造体の製造方法。 The heat treatment type aluminum alloy extruded material cut into a predetermined dimension is expanded by electromagnetic forming at the grade T1, and a stay material having a mounting flange fixed to the front end of the side member at the rear end is formed. The stay material after the aging treatment is applied to the vertical wall of the bumper reinforcement made of heat-treatable aluminum alloy having a solid cross section and a single vertical wall and tempered T5. An inner peripheral surface of the hole formed in the vertical wall by fitting the front end portion of the stay material including the vicinity of the hole formed in the vertical wall of the bumper reinforcement by electromagnetic forming into the formed hole from the rear side. A bumper structure manufacturing method, wherein the bumper structure is bonded to the bumper reinforcement. 時効処理後の前記ステイ素材を電磁成形する前に、前記ステイ素材の電磁成形を行う部分を局部的に溶体化加熱することを特徴とする請求項4に記載されたバンパー構造体の製造方法。 5. The method for manufacturing a bumper structure according to claim 4, wherein, before electromagnetic forming of the stay material after aging treatment, a portion of the stay material to be subjected to electromagnetic forming is locally solution-heated. 溶体化加熱後の前記ステイ素材を電磁成形により拡管して前記バンパーリインフォースに接合した後、前記ステイ素材の溶体化加熱した部分を局部的に再加熱して析出硬化させることを特徴とする請求項2,3,5のいずれかに記載されたバンパー構造体の製造方法。 The stay material after solution heating is expanded by electromagnetic forming and joined to the bumper reinforcement, and then the solution heated portion of the stay material is locally reheated to cause precipitation hardening. The manufacturing method of the bumper structure described in any one of 2,3,5. 前記溶体化加熱を高周波誘導加熱により行うことを特徴とする請求項2,3,5のいずれかに記載されたバンパー構造体の製造方法。 6. The method for manufacturing a bumper structure according to claim 2, wherein the solution heating is performed by high frequency induction heating. 前記再加熱を高周波誘導加熱により行うことを特徴とする請求項6に記載されたバンパー構造体の製造方法。 The method for manufacturing a bumper structure according to claim 6, wherein the reheating is performed by high frequency induction heating. 前記バンパーリインフォースがアルミニウム合金押出材からなることを特徴とする請求項1〜8のいずれかに記載されたバンパー構造体の製造方法。 The method for producing a bumper structure according to any one of claims 1 to 8, wherein the bumper reinforcement is made of an aluminum alloy extruded material. 前記バンパーリインフォースがJIS7000系アルミニウム合金からなり、前記ステイ素材がJIS6000系アルミニウム合金からなることを特徴とする請求項1〜9のいずれかに記載されたバンパー構造体の製造方法。 The method for manufacturing a bumper structure according to any one of claims 1 to 9, wherein the bumper reinforcement is made of a JIS 7000 series aluminum alloy, and the stay material is made of a JIS 6000 series aluminum alloy. 前記管状の熱処理型アルミニウム合金押出材を質別T1で電磁成形により拡管して前記ステイ素材を成形した後、プレス加工により前記取付用フランジを平面化することを特徴とする請求項1〜10のいずれかに記載されたバンパー構造体の製造方法。 11. The tubular heat-treatable aluminum alloy extruded material is expanded by electromagnetic forming at a grade T1, and the stay material is formed, and then the mounting flange is flattened by pressing. A method for producing a bumper structure described in any one of the above.
JP2008236717A 2008-09-16 2008-09-16 Bumper structure manufacturing method Expired - Fee Related JP5177411B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008236717A JP5177411B2 (en) 2008-09-16 2008-09-16 Bumper structure manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008236717A JP5177411B2 (en) 2008-09-16 2008-09-16 Bumper structure manufacturing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012185356A Division JP5395233B2 (en) 2012-08-24 2012-08-24 Bumper structure manufacturing method

Publications (2)

Publication Number Publication Date
JP2010069927A true JP2010069927A (en) 2010-04-02
JP5177411B2 JP5177411B2 (en) 2013-04-03

Family

ID=42202125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008236717A Expired - Fee Related JP5177411B2 (en) 2008-09-16 2008-09-16 Bumper structure manufacturing method

Country Status (1)

Country Link
JP (1) JP5177411B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103255326A (en) * 2012-02-16 2013-08-21 株式会社神户制钢所 Aluminum alloy extruded material for electro-magnetic forming
JP2015520032A (en) * 2012-06-21 2015-07-16 ジョンソン・コントロールズ・ゲー・エム・ベー・ハー Method for joining two members
US9327664B2 (en) 2012-02-01 2016-05-03 Kobe Steel, Ltd. Energy absorbing member, method for producing same, and electromagnetic tube expansion method for rectangular cross-section member and polygon cross-section member
US9551054B2 (en) 2013-01-25 2017-01-24 Kobe Steel, Ltd. 7xxx series aluminum alloy member excellent in stress corrosion cracking resistance and method for manufacturing the same

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10314870A (en) * 1997-05-22 1998-12-02 Showa Alum Corp Manufacture of muffler of motorbike
JP2002160032A (en) * 2000-09-12 2002-06-04 Kobe Steel Ltd Structural member and its production method
JP2004130349A (en) * 2002-10-10 2004-04-30 Kobe Steel Ltd Method for forming aluminum alloy outer panel
JP2004189062A (en) * 2002-12-10 2004-07-08 Kobe Steel Ltd Bumper and stay
JP2004237818A (en) * 2003-02-04 2004-08-26 Kobe Steel Ltd Mounting structure between bumper reinforcement and stay
JP2004337966A (en) * 2003-05-19 2004-12-02 Kobe Steel Ltd Tubular member with flange and its manufacturing method
JP2005105327A (en) * 2003-09-30 2005-04-21 Kobe Steel Ltd Extruded material of aluminum alloy to be electro-magnetic-formed
JP2005297918A (en) * 2004-04-15 2005-10-27 Kobe Steel Ltd Shaft member with flange
JP2006265577A (en) * 2005-03-22 2006-10-05 Jfe Steel Kk Method for producing high strength, high toughness steel sheet
JP2006328469A (en) * 2005-05-25 2006-12-07 Mazda Motor Corp Method for heat treating cast iron member, and device therefor
JP2007254833A (en) * 2006-03-24 2007-10-04 Kobe Steel Ltd Aluminum alloy extruded material for tube expanding
JP2008037220A (en) * 2006-08-04 2008-02-21 Kobe Steel Ltd Mounting structure for attachable/detachable traction hook

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10314870A (en) * 1997-05-22 1998-12-02 Showa Alum Corp Manufacture of muffler of motorbike
JP2002160032A (en) * 2000-09-12 2002-06-04 Kobe Steel Ltd Structural member and its production method
JP2004130349A (en) * 2002-10-10 2004-04-30 Kobe Steel Ltd Method for forming aluminum alloy outer panel
JP2004189062A (en) * 2002-12-10 2004-07-08 Kobe Steel Ltd Bumper and stay
JP2004237818A (en) * 2003-02-04 2004-08-26 Kobe Steel Ltd Mounting structure between bumper reinforcement and stay
JP2004337966A (en) * 2003-05-19 2004-12-02 Kobe Steel Ltd Tubular member with flange and its manufacturing method
JP2005105327A (en) * 2003-09-30 2005-04-21 Kobe Steel Ltd Extruded material of aluminum alloy to be electro-magnetic-formed
JP2005297918A (en) * 2004-04-15 2005-10-27 Kobe Steel Ltd Shaft member with flange
JP2006265577A (en) * 2005-03-22 2006-10-05 Jfe Steel Kk Method for producing high strength, high toughness steel sheet
JP2006328469A (en) * 2005-05-25 2006-12-07 Mazda Motor Corp Method for heat treating cast iron member, and device therefor
JP2007254833A (en) * 2006-03-24 2007-10-04 Kobe Steel Ltd Aluminum alloy extruded material for tube expanding
JP2008037220A (en) * 2006-08-04 2008-02-21 Kobe Steel Ltd Mounting structure for attachable/detachable traction hook

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9327664B2 (en) 2012-02-01 2016-05-03 Kobe Steel, Ltd. Energy absorbing member, method for producing same, and electromagnetic tube expansion method for rectangular cross-section member and polygon cross-section member
CN103255326A (en) * 2012-02-16 2013-08-21 株式会社神户制钢所 Aluminum alloy extruded material for electro-magnetic forming
CN103255326B (en) * 2012-02-16 2015-07-29 株式会社神户制钢所 Electromagnetic forming aluminium alloy hollow squeeze wood
US9206496B2 (en) 2012-02-16 2015-12-08 Kobe Steel, Ltd. Aluminum alloy extruded material for electro-magnetic forming
JP2015520032A (en) * 2012-06-21 2015-07-16 ジョンソン・コントロールズ・ゲー・エム・ベー・ハー Method for joining two members
US9555461B2 (en) 2012-06-21 2017-01-31 Johnson Controls Gmbh Method for connecting two components
US9551054B2 (en) 2013-01-25 2017-01-24 Kobe Steel, Ltd. 7xxx series aluminum alloy member excellent in stress corrosion cracking resistance and method for manufacturing the same

Also Published As

Publication number Publication date
JP5177411B2 (en) 2013-04-03

Similar Documents

Publication Publication Date Title
CN102699107B (en) Cold roll forming method of thin-walled and high-strength square steel tube
US20150315666A1 (en) Induction annealing as a method for expanded hydroformed tube formability
JP5177411B2 (en) Bumper structure manufacturing method
US20110233961A1 (en) Multi-thickness tube for hydroformed members
CN102886456A (en) Method for producing a tubular structural component for a motor vehicle and structural component
JP2015037917A (en) Bumper reinforcement and manufacturing method thereof
JP6284899B2 (en) Bumper reinforcement
JP2007290582A (en) Manufacturing method for bumper reinforcing member
JP5237573B2 (en) Aluminum alloy sheet, sheet, and method for producing molded member
KR20120037472A (en) A method of shaping and hardening a sheet steel blank
JP5395233B2 (en) Bumper structure manufacturing method
JP5448048B2 (en) Molding method and molding apparatus
CN110576292B (en) Method for manufacturing automobile bumper
KR101116633B1 (en) Method for fabricating a member of vehicle
US9669877B2 (en) Vehicle body framework structure and method of manufacturing the same
JP2011121112A (en) Method of manufacturing special-shaped tube
JP2008189311A (en) Load receiving article for vehicle
CN112496072A (en) Titanium alloy U-shaped thin-wall section and preparation method thereof
KR101118953B1 (en) Method for fabricating a member of vehicle
JP6058516B2 (en) Differential thickness bracket and method of manufacturing the differential thickness bracket
JPH0732880A (en) Impact beam for automobile door and manufacture thereof
JP5293040B2 (en) Deck pipe forming method
JP2008246555A (en) Blank for press forming and press forming method
KR101040411B1 (en) Pipe for cowl cross bar and it&#39;s manufactuirng method
US9283602B2 (en) Process and apparatus for producing a hollow body, and hollow body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121225

R150 Certificate of patent or registration of utility model

Ref document number: 5177411

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees