JP2005102477A - Stator winding and its manufacturing method - Google Patents

Stator winding and its manufacturing method Download PDF

Info

Publication number
JP2005102477A
JP2005102477A JP2004168353A JP2004168353A JP2005102477A JP 2005102477 A JP2005102477 A JP 2005102477A JP 2004168353 A JP2004168353 A JP 2004168353A JP 2004168353 A JP2004168353 A JP 2004168353A JP 2005102477 A JP2005102477 A JP 2005102477A
Authority
JP
Japan
Prior art keywords
winding
stator
spiral coil
rectangular wire
salient pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004168353A
Other languages
Japanese (ja)
Other versions
JP4490177B2 (en
Inventor
Hirobumi Shin
博文 新
Takeo Fukuda
武雄 福田
Soichi Morii
壮一 森井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2004168353A priority Critical patent/JP4490177B2/en
Publication of JP2005102477A publication Critical patent/JP2005102477A/en
Application granted granted Critical
Publication of JP4490177B2 publication Critical patent/JP4490177B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Windings For Motors And Generators (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a stator winding and its manufacturing method capable of improving the occupying percentage of the stator winding. <P>SOLUTION: The stator winding 5 is provided with a plurality of eddy coil portions 5<SB>1</SB>, ..., 5<SB>n</SB>to be constituted. The eddy coil portions 5<SB>1</SB>, ..., 5<SB>n</SB>are formed by winding flat-type wires 5a in an eddy condition so as to form a plurality of layers in a thickness direction of teeth, and the plurality of eddy coils 5<SB>1</SB>, ..., 5<SB>n</SB>are laid so as to form a plurality of rows in a radial direction of the stator core using respective center axes as coaxis. In the adjacent eddy coils 5<SB>k</SB>, ..., 5<SB>(K+1)</SB>(1≤k≤n-1), inner periphery edges or outer periphery side edges of one or the other eddy coils 5<SB>k</SB>, 5<SB>(K+1)</SB>are connected with each other. The inner periphery side connection portion in which the inner periphery side edges are connected with each other for the eddy coils 5<SB>k</SB>, 5<SB>(K+1)</SB>, and the outer periphery side connection in which the outer periphery side edges are connected with each other are formed so as to be a row change portion so that the rows of the flat-type wires 5a may change. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、モータのステータに具備されるステータ巻線およびステータ巻線の製造方法に関する。   The present invention relates to a stator winding provided in a stator of a motor and a method for manufacturing the stator winding.

従来、例えば断面円形のいわゆる丸線をステータのティースに複数列かつ複数層に巻回してステータ巻線を形成する場合には、隣接する丸線の外周面同士の間に隙間が生じてしまい、占積率(つまり隣り合うティース間に形成されたスロットの断面に対してステータ巻線の断面が占める面積の割合)を向上させることができないという問題が生じる。このような問題に対して、例えば断面形状が略長方形のいわゆる平角線をティースに巻回することによってステータ巻線の占積率を相対的に向上させるステータが知られている(例えば、特許文献1または特許文献2参照)。
ここで、断面形状が略長方形の平角線は、例えば厚さが幅よりも小さくなるように形成され、平角線の幅方向がステータ巻線の列方向とされ、平角線の厚さ方向がステータ巻線の層方向に設定されている。すなわち、平角線をティースに巻回する際には、ティース周りの平角線の周回毎に、平角線の幅方向をティースが伸びる方向つまりステータの径方向に設定して複数の平角線を配列することによって複数列とし、平角線の厚さ方向をティースの太さ方向(例えば円柱状のティースでは径方向)に設定して複数の平角線を積層することによって複数層となるようにしている。
特開2000−197294号公報 特開2000−245092号公報
Conventionally, for example, when forming a stator winding by winding a so-called round wire having a circular cross section around a stator tooth in multiple rows and multiple layers, a gap is generated between the outer peripheral surfaces of adjacent round wires, There is a problem that the space factor (that is, the ratio of the area occupied by the cross section of the stator winding to the cross section of the slot formed between adjacent teeth) cannot be improved. In order to solve such a problem, for example, a stator is known in which a space factor of a stator winding is relatively improved by winding a so-called rectangular wire having a substantially rectangular cross section around a tooth (for example, Patent Documents). 1 or Patent Document 2).
Here, the rectangular wire having a substantially rectangular cross section is formed so that the thickness is smaller than the width, for example, the width direction of the flat wire is the row direction of the stator winding, and the thickness direction of the flat wire is the stator direction. It is set in the layer direction of the winding. That is, when winding a rectangular wire around a tooth, a plurality of rectangular wires are arranged by setting the width direction of the rectangular wire to the direction in which the teeth extend, that is, the radial direction of the stator, for each turn of the rectangular wire around the teeth. Thus, a plurality of rows are formed, and the thickness direction of the flat wire is set to the thickness direction of the teeth (for example, the radial direction in the case of a cylindrical tooth), and a plurality of flat wires are stacked to form a plurality of layers.
JP 2000-197294 A JP 2000-245092 A

ところで、上記従来技術に係るステータ巻線の製造方法において、平角線をティースに巻回する際には、複数層の各層毎に複数回の列替わりを繰り返すようになっている。つまり、先ず、ティース周りの平角線の周回毎に列替わりを繰り返して平角線を列方向(つまりステータの径方向)の一方側に向かい順次配列することによってステータ巻線の第1層を形成する(ステップST01)。そして、この第1層の列方向の一方の端部における周回では、平角線を層方向(つまりティースの太さ方向)に1層分だけ積層して第1層から第2層への層替わりを行い、さらに、この第2層において各周回毎に列替わりを繰り返して平角線を列方向の他方側に向かい順次配列する(ステップST02)。そして、この第2層の列方向の他方の端部における周回では、第2層から第3層への層替わりを行い(ステップST03)、以下、第3層以降においては、上述したステップST01〜ステップST03の工程を繰り返すようになっている。すなわち、例えば平角線を複数列Lかつ複数層C(ただし、L、Cは任意の自然数)に巻回してステータ巻線を形成する場合には、総計で(L−1)×C回の列替わりと、総計で(C−1)回の層替わりとを実行することになる。そして、周回する平角線に対して層替わりを行う際には、例えば平角線を適宜の位置で厚さ方向に屈曲させるようにして捩れ変形させたり、例えば平角線を渦巻状に周回させて徐々に層替わりさせることになり、また、列替わりを行う際には、例えば平角線を適宜の位置で幅方向に屈曲させるようにして捩れ変形させたり、例えば平角線を螺旋状に周回させて徐々に列替わりさせることになる。
しかしながら、上述したようなステータ巻線の製造方法によれば、例えば平角線は厚さに比べて幅が大きくなるように形成されていることから、この幅方向で実行される列替わりの実行回数が増大すると、例えば平角線の幅方向での屈曲や螺旋状の周回に伴って単位周回あたりの巻線長が過剰に増大し、抵抗値が過剰に増大してしまうという問題が生じる。また、平角線を幅方向に屈曲させる場合には、例えば厚さ方向に屈曲させる場合に比べて、屈曲に伴う屈曲部周辺での平角線の変形量がより大きくなり、この変形した平角線に対して、列方向や層方向に他の平角線を隣接させる際に、隣り合う平角線同士の間に空隙(いわゆる平角線の浮き)が生じてしまう場合があり、平角線の幅方向に沿った列替わりの実行回数が増大すると、平角線の変形量が過剰に累積されてしまい、占積率が低下してしまうという問題が生じる。しかも、ステータ巻線の列方向の端部等において、例えば周回する平角線の周方向における同等位置で層替わりと列替わりとが行われると、これらの位置周辺での平角線の変形量が過剰に累積され、占積率がより一層低下してしまうという問題が生じる。
本発明は上記事情に鑑みてなされたもので、ステータ巻線の占積率を向上させることが可能なステータ巻線及びステータ巻線の製造方法を提供することを目的とする。
By the way, in the stator winding manufacturing method according to the above-described prior art, when winding a rectangular wire around a tooth, a plurality of permutations are repeated for each of a plurality of layers. That is, first, the first layer of the stator winding is formed by repeating the replacement every time the rectangular wire circulates around the teeth and sequentially arranging the rectangular wires toward one side in the column direction (that is, the radial direction of the stator). (Step ST01). Then, in the circulation at one end in the column direction of the first layer, the rectangular wire is laminated by one layer in the layer direction (that is, the thickness direction of the teeth), and the layer is changed from the first layer to the second layer. Further, in the second layer, the rearrangement is repeated for each turn, and the rectangular wires are sequentially arranged toward the other side in the column direction (step ST02). Then, in the circulation at the other end in the column direction of the second layer, the layer is changed from the second layer to the third layer (step ST03). Hereinafter, in the third and subsequent layers, the above-described steps ST01 to ST01 are performed. The process of step ST03 is repeated. That is, for example, when a stator winding is formed by winding a rectangular wire in a plurality of rows L and a plurality of layers C (where L and C are arbitrary natural numbers), a total of (L-1) × C rows The change and the total (C-1) stratification will be executed. Then, when layering is performed on the rotating rectangular wire, for example, the rectangular wire is twisted and deformed by bending it in the thickness direction at an appropriate position, or the rectangular wire is wound around in a spiral shape, for example. In addition, when performing the rearrangement, for example, the rectangular wire is twisted and deformed by bending it in the width direction at an appropriate position, or, for example, the rectangular wire is gradually wound around in a spiral shape. Will be replaced.
However, according to the stator winding manufacturing method as described above, for example, since the flat wire is formed so as to have a width larger than the thickness, the number of times of replacement executed in the width direction is performed. When the length increases, for example, the winding length per unit turn increases excessively with the bending in the width direction of the rectangular wire or the spiral turn, causing a problem that the resistance value increases excessively. In addition, when the flat wire is bent in the width direction, for example, compared with the case where the flat wire is bent in the thickness direction, the amount of deformation of the flat wire around the bent portion accompanying bending is larger. On the other hand, when other rectangular wires are adjacent to each other in the column direction or the layer direction, a gap (so-called rectangular wire floating) may be generated between adjacent rectangular wires, and the width of the rectangular wire is aligned. When the number of executions of rearrangement increases, the amount of deformation of the rectangular wire is excessively accumulated, resulting in a problem that the space factor decreases. In addition, at the end in the row direction of the stator winding, for example, if layer change and row change are performed at the same position in the circumferential direction of the rotating rectangular wire, the amount of deformation of the rectangular wire around these positions is excessive. This causes a problem that the space factor is further reduced.
The present invention has been made in view of the above circumstances, and an object thereof is to provide a stator winding and a method for manufacturing the stator winding that can improve the space factor of the stator winding.

上記課題を解決して係る目的を達成するために、請求項1に記載の本発明のステータ巻線は、ステータの円周方向に所定間隔毎に配置された複数のティース毎に平角線が複数列かつ複数層に集中的に巻回されたステータ巻線であって、前記ステータの径方向に沿った前記複数列の各列毎に、前記平角線が前記複数層を成すように渦巻状に巻回された渦状コイル部(後述する実施の形態での渦状コイル部5,…,5)を備え、複数の前記渦状コイル部が前記複数列を成すように前記ステータの径方向に沿って配列されていることを特徴としている。 In order to solve the above problems and achieve the object, the stator winding according to the first aspect of the present invention has a plurality of rectangular wires for each of a plurality of teeth arranged at predetermined intervals in the circumferential direction of the stator. Stator windings wound in a concentrated manner in a plurality of layers and in a plurality of layers, and each of the plurality of rows along the radial direction of the stator is spirally formed so that the rectangular wire forms the plurality of layers. A wound spiral coil portion (vortex coil portions 5 1 ,..., 5 n in the embodiment described later) is provided, and a plurality of the spiral coil portions are arranged along the radial direction of the stator so as to form the plurality of rows. It is characterized by being arranged.

上記構成のステータ巻線によれば、例えば列方向で隣り合う渦状コイル部同士を接続する接続部のみにおいて平角線を隣り合う列に列替わりさせることができ、例えば平角線が複数列かつ複数層に巻回されたステータ巻線の各層において列替わり部が形成されてしまうことを防止することができる。これにより、平角線の列替わりの回数に応じて増大する平角線の変形の累積量や単位周回あたりの巻線長が過剰に増大してしまうことを防止して、ステータ巻線の占積率を向上させることができると共に、平角線の単位周回あたりの巻線抵抗の増大を抑制することができる。   According to the stator winding having the above-described configuration, for example, the rectangular wire can be replaced with the adjacent row only in the connecting portion that connects the spiral coil portions adjacent in the column direction. For example, the rectangular wire has a plurality of rows and a plurality of layers. It is possible to prevent the replacement portion from being formed in each layer of the stator winding wound around the wire. This prevents the cumulative amount of deformation of the rectangular wire that increases with the number of replacements of the rectangular wire and the winding length per unit turn from excessively increasing, and the stator winding space factor. And an increase in winding resistance per unit turn of the rectangular wire can be suppressed.

さらに、請求項2に記載の本発明のステータ巻線では、前記ステータの径方向で隣り合う前記渦状コイル部同士は、一方および他方の前記渦状コイル部の内周側端部同士、あるいは、一方および他方の前記渦状コイル部の外周側端部同士が接続されていることを特徴としている。   Furthermore, in the stator winding according to the second aspect of the present invention, the spiral coil portions adjacent to each other in the radial direction of the stator are the inner peripheral side ends of one and the other spiral coil portions, or one of the spiral coil portions. And the outer peripheral side edge parts of the other said spiral coil part are connected, It is characterized by the above-mentioned.

上記構成のステータ巻線によれば、例えばステータの径方向に沿った列方向の適宜の列の渦状コイルを列方向の両側から挟み込むようにして一方および他方の2つの渦状コイルが配置される場合には、適宜の列の渦状コイルと一方の渦状コイルとの内周側端部同士および適宜の列の渦状コイルと他方の渦状コイルとの外側端部同士、あるいは、適宜の列の渦状コイルと一方の渦状コイルとの外周側端部同士および適宜の列の渦状コイルと他方の渦状コイルとの内周側端部同士とが接続される。これにより、列方向で隣り合う渦状コイル部同士の接続部、つまり平角線が隣り合う列に列替わりする列替わり部の長さを短縮することができる。   According to the stator winding having the above-described configuration, for example, when one and the other two spiral coils are arranged so as to sandwich the spiral coils in an appropriate row in the row direction along the radial direction of the stator from both sides in the row direction. The inner circumferential ends of the appropriate spiral coil and one spiral coil, the outer ends of the appropriate spiral coil and the other spiral coil, or the appropriate spiral coil The outer peripheral end portions of one spiral coil and the inner peripheral end portions of the appropriate spiral coil and the other spiral coil are connected to each other. Thereby, the length of the connection part of the spiral coil parts adjacent in the column direction, that is, the replacement part where the flat wire is replaced by the adjacent line can be shortened.

さらに、請求項3に記載の本発明のステータ巻線では、複数相の前記ステータ巻線は、各相毎に互いに並列接続された複数の相巻線(例えば、後述する実施の形態での第1〜第3U相巻線U,U,Uと、第1〜第3V相巻線V,V,Vと、第1〜第3W相巻線W,W,W)を備え、各前記複数の相巻線は、複数のティース(例えば、後述する実施の形態での第1〜第9突極部T1,…,T9)毎に設けられた巻線部(例えば、後述する実施の形態での各巻線U(T1),U(T4),U(T7)、iを1≦i≦3)が直列接続されており、各前記巻線部は、複数の前記渦状コイル部が前記複数列を成すように前記ステータの径方向に沿って配列されていることを特徴としている。 Furthermore, in the stator winding according to the third aspect of the present invention, the stator winding of a plurality of phases includes a plurality of phase windings connected in parallel for each phase (for example, in the embodiment described later). 1st to 3rd U-phase windings U 1 , U 2 , U 3 , 1st to 3rd V-phase windings V 1 , V 2 , V 3 , 1st to 3rd W-phase windings W 1 , W 2 , W 3 3 ), and each of the plurality of phase windings is provided with a plurality of teeth (for example, first to ninth salient pole portions T1,..., T9 in embodiments described later) For example, windings U i (T1), U i (T4), U i (T7), and i are 1 ≦ i ≦ 3) are connected in series in the embodiments to be described later. The plurality of spiral coil portions are arranged along the radial direction of the stator so as to form the plurality of rows.

上記構成のステータ巻線によれば、各複数のティース毎に互いに並列関係にある複数の巻線部を設け、複数のティース間において各ティースに具備される適宜の巻線部同士を直列接続したことにより、複数のティース部における互いの通電電流の電流値が同等の値となり、例えば各ティース毎の平角線の総巻数が所定値に設定されている状態で各複数のティース毎に単一の平角線が集中巻きされた集中巻きコイルを同一相毎に並列接続する場合に比べて、各ティース毎の平角線の抵抗発熱に起因する温度上昇が複数のティース間において過剰にばらついてしまうことを防止することができる。
しかも、例えば各ティース毎の平角線の総巻数が所定値に設定されている状態で各複数のティース毎に単一の平角線が集中巻きされた集中巻きコイルを同一相毎に直列接続する場合に比べて、ステータ巻線の総抵抗値を低減させることができる。これにより、所望のトルクを発生させるために要する通電量を低減し、モータを効率よく作動させることができると共に、平角線の断面積を低減することができる。
According to the stator winding configured as described above, a plurality of winding portions in parallel relation are provided for each of the plurality of teeth, and appropriate winding portions provided in each tooth are connected in series between the plurality of teeth. As a result, the current values of the energization currents in the plurality of tooth portions become equal to each other, for example, in a state where the total number of turns of the rectangular wire for each tooth is set to a predetermined value, a single value for each of the plurality of teeth. Compared to the case where concentrated winding coils with concentrated rectangular wires are connected in parallel for each phase, the temperature rise due to resistance heating of the rectangular wires for each tooth will vary excessively between multiple teeth. Can be prevented.
Moreover, for example, in the case where the total number of turns of the rectangular wire for each tooth is set to a predetermined value, concentrated winding coils in which a single rectangular wire is concentratedly wound for each of a plurality of teeth are connected in series for each phase. As compared with the above, the total resistance value of the stator winding can be reduced. As a result, the amount of energization required to generate the desired torque can be reduced, the motor can be operated efficiently, and the cross-sectional area of the rectangular wire can be reduced.

さらに、請求項4に記載の本発明のステータ巻線では、各前記巻線部の前記平角線の巻数は、前記複数の相巻線の互いのインピーダンスが同等、かつ、各前記複数のティース毎に設けられた複数の前記巻線部の各インピーダンスを合成した合成インピーダンスに対して前記複数のティースの互いの前記合成インピーダンスが同等となるように設定され、各前記複数の相巻線毎に具備される前記複数の巻線部の各前記巻数は互いに異なる値に設定されていることを特徴としている。   Furthermore, in the stator winding of the present invention according to claim 4, the number of turns of the rectangular wire of each of the winding portions is equal to the impedance of the plurality of phase windings, and for each of the plurality of teeth. The combined impedance of the plurality of teeth is set to be equal to the combined impedance obtained by combining the impedances of the plurality of winding portions provided in each of the plurality of phase windings. The number of turns of each of the plurality of winding sections is set to a value different from each other.

上記構成のステータ巻線によれば、複数の相巻線の互いのインピーダンスが同等に設定されることで、同一相の複数の相巻線間を循環するような還流電流が発生してしまうことを防止することができ、複数のティースの互いの合成インピーダンスが同等となるように設定されることで、過剰なトルク変動が発生してしまうことを防止することができる。   According to the stator winding having the above-described configuration, when the impedances of the plurality of phase windings are set to be equal, a return current that circulates between the plurality of phase windings of the same phase is generated. It is possible to prevent occurrence of excessive torque fluctuation by setting the combined impedances of the plurality of teeth to be equal to each other.

また、請求項5に記載の本発明のステータ巻線の製造方法は、ステータの円周方向に所定間隔毎に配置された複数のティース毎に平角線を複数列かつ複数層に集中的に巻回するステータ巻線の製造方法であって、前記ステータの径方向に沿った前記複数列の各列毎に、前記平角線を前記複数層を成すように渦巻状に巻回して渦状コイル部(後述する実施の形態での渦状コイル部5,…,5)を形成し、複数の前記渦状コイル部を前記複数列を成すように前記ステータの径方向に沿って配列することを特徴としている。 According to a fifth aspect of the present invention, there is provided a stator winding manufacturing method in which rectangular wires are concentratedly wound in a plurality of rows and a plurality of layers for each of a plurality of teeth arranged at predetermined intervals in the circumferential direction of the stator. A method of manufacturing a stator winding to be rotated, wherein the rectangular wire is spirally wound so as to form the plurality of layers for each of the plurality of rows along the radial direction of the stator. spiral coil unit 5 1 in the embodiments to be described later, ..., 5 n) is formed, as characterized by sequence along a plurality of the spiral coil portion in a radial direction of the stator so as to form the plurality of rows Yes.

上記のステータ巻線の製造方法によれば、例えば列方向で隣り合う渦状コイル部同士が接続される接続部のみにおいて平角線を隣り合う列に列替わりさせることができ、例えば平角線を複数列かつ複数層に巻回する際にステータ巻線の各層において列替わりが必要となることを防止することができる。これにより、平角線の列替わりの回数に応じて増大する平角線の変形の累積量や単位周回あたりの巻線長が過剰に増大してしまうことを防止して、ステータ巻線の占積率を向上させることができると共に、平角線の単位周回あたりの巻線抵抗の増大を抑制することができる。   According to the above-described stator winding manufacturing method, for example, a rectangular wire can be replaced by an adjacent row only at a connection portion where adjacent spiral coil portions are connected in the column direction. In addition, it is possible to prevent the need for replacement in each layer of the stator winding when winding on a plurality of layers. This prevents the cumulative amount of deformation of the rectangular wire that increases with the number of replacements of the rectangular wire and the winding length per unit turn from excessively increasing, and the stator winding space factor. And an increase in winding resistance per unit turn of the rectangular wire can be suppressed.

さらに、請求項6に記載の本発明の制御装置は、前記複数列の適宜の列において単一の前記平角線を外巻きして第1の渦状コイル部(後述する実施の形態での第2および第4および第6の渦状コイル部5,5,5)を形成し、前記適宜の列に隣接する列において前記第1の渦状コイル部の最外層に連なる前記単一の前記平角線を前記第1の渦状コイル部と同回りに内巻きして第2の渦状コイル部(後述する実施の形態での第3および第5および第7の渦状コイル部5,5,5)を形成することによって、前記ステータの径方向で隣り合う前記渦状コイル部同士を形成する、あるいは、前記複数列の適宜の列において単一の前記平角線を内巻きして第1の渦状コイル部(後述する実施の形態での第1および第3および第5の渦状コイル部5,5,5)を形成し、前記適宜の列に隣接する列において前記第1の渦状コイル部の最内層に連なる前記単一の前記平角線を前記第1の渦状コイル部と同方向回りに外巻きして第2の渦状コイル部(後述する実施の形態での第2および第4および第6の渦状コイル部5,5,5)を形成することによって、前記ステータの径方向で隣り合う前記渦状コイル部同士を形成することを特徴としている。 Furthermore, the control device according to the sixth aspect of the present invention is configured so that a single rectangular wire is wound around a single rectangular wire in an appropriate row of the plurality of rows to form a first spiral coil section (second embodiment in an embodiment described later). And the fourth and sixth spiral coil portions 5 2 , 5 4 , 5 6 ), and the single flat angle connected to the outermost layer of the first spiral coil portion in a row adjacent to the appropriate row. A wire is wound in the same direction as the first spiral coil portion to form a second spiral coil portion (third, fifth and seventh spiral coil portions 5 3 , 5 5 , 5 in the embodiments described later). 7 ), the spiral coil portions adjacent in the radial direction of the stator are formed, or a single rectangular wire is internally wound in an appropriate row of the plurality of rows to form a first spiral shape. Coil portion (first, third and fifth in the embodiments described later) Spiral coil unit 5 1, 5 3, 5 5) to form said single said flat wire to said first spiral leading to the innermost layer of said first spiral coil portion in the column adjacent to the appropriate column Forming a second spiral coil part (second, fourth and sixth spiral coil parts 5 2 , 5 4 , 5 6 in the embodiments described later) by winding the coil part around the same direction as the coil part Thus, the spiral coil portions adjacent in the radial direction of the stator are formed.

上記のステータ巻線の製造方法によれば、単一の平角線に対して、例えば、順次、外巻きの工程と、最外層での列替わりの工程と、内巻きの工程とを実行する、あるいは、順次、内巻きの工程と、最内層での列替わりの工程と、外巻きの工程とを実行することによって、列方向で隣り合うと共に互いの外周側端部同士あるいは内周側端部同士で接続された単一の平角線からなる2つの第1および第2の渦状コイル部を形成することができる。
さらに、単一の平角線に対して、例えば、順次、外巻きの工程と、最外層での列替わりの工程と、内巻きの工程と、最内層での列替わりの工程とを実行する一連の工程を繰り返すことによって、複数層かつ複数列のステータ巻線を形成することができる。
これにより、平角線の列替わりの回数に応じて増大する平角線の変形の累積量や単位周回あたりの巻線長が過剰に増大してしまうことを防止して、ステータ巻線の占積率を向上させることができると共に、平角線の単位周回あたりの巻線抵抗の増大を抑制することができる。
しかも、単一の平角線によって隣り合う2つの第1および第2の渦状コイル部を形成することによって、例えば隣り合う2つの第1および第2の渦状コイル部を溶接等によって接続するという煩雑な手間が掛かることを防止することができる。
According to the above stator winding manufacturing method, for example, an outer winding process, a replacement process in the outermost layer, and an inner winding process are sequentially performed on a single rectangular wire. Alternatively, by sequentially performing the inner winding process, the rearrangement process in the innermost layer, and the outer winding process, they are adjacent to each other in the column direction, and the outer peripheral side ends or the inner peripheral side ends. Two first and second spiral coil portions made of a single rectangular wire connected to each other can be formed.
Further, for a single rectangular wire, for example, a sequence of sequentially executing an outer winding process, an outermost layer replacement process, an inner winding process, and an innermost layer replacement process. By repeating this process, a plurality of layers and a plurality of rows of stator windings can be formed.
This prevents the cumulative amount of deformation of the rectangular wire that increases with the number of replacements of the rectangular wire and the winding length per unit turn from excessively increasing, and the stator winding space factor. And an increase in winding resistance per unit turn of the rectangular wire can be suppressed.
Moreover, by forming the two first and second spiral coil portions adjacent to each other by a single rectangular wire, for example, the two adjacent first and second spiral coil portions are connected by welding or the like. It is possible to prevent time and effort.

さらに、請求項7に記載の本発明の制御装置は、前記複数列の適宜の列において第1の前記平角線を外巻きして第1の渦状コイル部(後述する実施の形態での第2および第4および第6の渦状コイル部5,5,5)を形成し、前記適宜の列に隣接する列において第2の前記平角線を前記第1の渦状コイル部と逆回りに外巻きして第2の渦状コイル部(後述する実施の形態での第3および第5および第7の渦状コイル部5,5,5)を形成し、前記第1の渦状コイル部および前記第2の渦状コイル部の外周側端部同士(後述する実施の形態での端部5a1Bと端部5a2A,端部5a2Bと端部5a3A,端部5a3Bと端部5a4A)を接続することによって、前記ステータの径方向で隣り合う前記渦状コイル部同士を形成する、あるいは、前記複数列の適宜の列において第1の前記平角線を内巻きして第1の渦状コイル部を形成し、前記適宜の列に隣接する列において第2の前記平角線を前記第1の渦状コイル部と逆回りに内巻きして第2の渦状コイル部を形成し、前記第1の渦状コイル部および前記第2の渦状コイル部の内周側端部同士を接続することによって、前記ステータの径方向で隣り合う前記渦状コイル部同士を形成することを特徴としている。 Furthermore, the control device of the present invention according to claim 7 is configured such that the first rectangular wire is externally wound in an appropriate row of the plurality of rows to form a first spiral coil portion (second embodiment in an embodiment described later). And fourth and sixth spiral coil portions 5 2 , 5 4 , 5 6 ), and the second rectangular wire is rotated in the direction opposite to the first spiral coil portion in a row adjacent to the appropriate row. A second spiral coil portion (third, fifth, and seventh spiral coil portions 5 3 , 5 5 , 5 7 in the embodiments described later) is formed by external winding, and the first spiral coil portion And the end portions on the outer peripheral side of the second spiral coil portion (end portion 5a 1B and end portion 5a 2A , end portion 5a 2B and end portion 5a 3A , end portion 5a 3B and end portion 5a in the embodiments described later) by connecting 4A), the spiral coil unit adjacent in the radial direction of the stator A first spiral coil portion is formed by winding the first rectangular wire in an appropriate row of the plurality of rows to form a first spiral coil portion, and a second flat angle in a row adjacent to the appropriate row A wire is wound inwardly in the direction opposite to the first spiral coil portion to form a second spiral coil portion, and inner end portions of the first spiral coil portion and the second spiral coil portion are connected to each other. By connecting, the spiral coil portions adjacent in the radial direction of the stator are formed.

上記のステータ巻線の製造方法によれば、例えば2つの平角線を互いに異なる周回方向で外巻きして第1および第2の渦状コイル部を形成して互いの外周側端部同士を溶接等により接続する、あるいは、2つの平角線を互いに異なる周回方向で内巻きして第1および第2の渦状コイル部を形成して互いの内周側端部同士を溶接等により接続することによって、列方向で隣り合うと共に互いの外周側端部同士あるいは内周側端部同士で接続された2つの第1および第2の渦状コイル部を形成することができる。
これにより、平角線の列替わりの回数に応じて増大する平角線の変形の累積量や単位周回あたりの巻線長が過剰に増大してしまうことを防止して、ステータ巻線の占積率を向上させることができると共に、平角線の単位周回あたりの巻線抵抗の増大を抑制することができる。
しかも、隣り合う2つの第1および第2の渦状コイル部を形成する際に、平角線の内巻き又は平角線の外巻きの何れか一方のみを実行するだけで済み、例えば内巻きと外巻きとを組み合わせて交互に実行する等の複雑な工程を必要とせずにステータ巻線の製造方法を簡略化することができる。
According to the above-described stator winding manufacturing method, for example, two rectangular wires are externally wound in different circumferential directions to form first and second spiral coil portions, and the outer peripheral side ends are welded to each other. Or by connecting two rectangular wires in the circumferential direction different from each other to form first and second spiral coil portions and connecting the inner peripheral side ends of each other by welding or the like, Two first and second spiral coil portions that are adjacent to each other in the column direction and are connected to each other between the outer peripheral side ends or the inner peripheral side ends can be formed.
This prevents the cumulative amount of deformation of the rectangular wire that increases with the number of replacements of the rectangular wire and the winding length per unit turn from excessively increasing, and the stator winding space factor. And an increase in winding resistance per unit turn of the rectangular wire can be suppressed.
In addition, when forming the two adjacent first and second spiral coil portions, it is only necessary to execute either one of the inner winding of the flat wire or the outer winding of the flat wire, for example, the inner winding and the outer winding. The manufacturing method of the stator winding can be simplified without requiring a complicated process such as alternately performing the above and the like.

請求項1に記載の本発明のステータ巻線によれば、平角線の列替わりの回数に応じて増大する平角線の変形の累積量や単位周回あたりの巻線長が過剰に増大してしまうことを防止して、ステータ巻線の占積率を向上させることができる。
さらに、請求項2に記載の本発明のステータ巻線によれば、列方向で隣り合う渦状コイル部同士の接続部、つまり平角線が隣り合う列に列替わりする列替わり部の長さを短縮することができ、平角線の単位周回あたりの巻線抵抗の増大を抑制することができる。
さらに、請求項3に記載の本発明のステータ巻線によれば、例えば各ティース毎の平角線の総巻数が所定値に設定されている状態で各複数のティース毎に単一の平角線が集中巻きされた集中巻きコイルを同一相毎に並列接続する場合に比べて、各ティース毎の平角線の抵抗発熱に起因する温度上昇が複数のティース間において過剰にばらついてしまうことを防止することができる。しかも、例えば各ティース毎の平角線の総巻数が所定値に設定されている状態で各複数のティース毎に単一の平角線が集中巻きされた集中巻きコイルを同一相毎に直列接続する場合に比べて、所望のトルクを発生させるために要する通電量を低減し、モータを効率よく作動させることができると共に、平角線の断面積を低減することができる。
さらに、請求項4に記載の本発明のステータ巻線によれば、同一相の複数の相巻線間を循環するような還流電流が発生してしまうことを防止することができると共に、過剰なトルク変動が発生してしまうことを防止することができる。
According to the stator winding of the present invention as set forth in claim 1, the accumulated amount of deformation of the rectangular wire and the winding length per unit turn increase excessively according to the number of replacements of the flat wire. This can be prevented and the space factor of the stator winding can be improved.
Furthermore, according to the stator winding of the present invention as set forth in claim 2, the length of the connecting portion between the spiral coil portions adjacent in the column direction, that is, the replacement portion where the rectangular wire is replaced in the adjacent row is shortened. Thus, an increase in winding resistance per unit turn of the flat wire can be suppressed.
Further, according to the stator winding of the present invention described in claim 3, for example, a single rectangular wire is provided for each of the plurality of teeth in a state where the total number of turns of the rectangular wire for each tooth is set to a predetermined value. Compared to the case where concentrated winding coils with concentrated winding are connected in parallel for each phase, the temperature rise caused by the resistance heating of the rectangular wire for each tooth is prevented from being excessively distributed between multiple teeth. Can do. Moreover, for example, in the case where the total number of turns of the rectangular wire for each tooth is set to a predetermined value, concentrated winding coils in which a single rectangular wire is concentratedly wound for each of a plurality of teeth are connected in series for each phase. As compared with the above, it is possible to reduce the energization amount required to generate the desired torque, to operate the motor efficiently, and to reduce the cross-sectional area of the rectangular wire.
Furthermore, according to the stator winding of the present invention as set forth in claim 4, it is possible to prevent the occurrence of a reflux current that circulates between a plurality of phase windings of the same phase, and an excessive amount. It is possible to prevent torque fluctuations from occurring.

さらに、請求項5に記載の本発明のステータ巻線の製造方法によれば、平角線の列替わりの回数に応じて増大する平角線の変形の累積量や単位周回あたりの巻線長が過剰に増大してしまうことを防止して、ステータ巻線の占積率を向上させることができると共に、平角線の単位周回あたりの巻線抵抗の増大を抑制することができる。
さらに、請求項6に記載の本発明のステータ巻線の製造方法によれば、平角線の列替わりの回数に応じて増大する平角線の変形の累積量や単位周回あたりの巻線長が過剰に増大してしまうことを防止して、ステータ巻線の占積率を向上させることができると共に、平角線の単位周回あたりの巻線抵抗の増大を抑制することができる。しかも、単一の平角線によって隣り合う2つの第1および第2の渦状コイル部を形成することによって、例えば隣り合う2つの第1および第2の渦状コイル部を溶接等によって接続するという煩雑な手間が掛かることを防止することができる。
さらに、請求項7に記載の本発明のステータ巻線の製造方法によれば、平角線の列替わりの回数に応じて増大する平角線の変形の累積量や単位周回あたりの巻線長が過剰に増大してしまうことを防止して、ステータ巻線の占積率を向上させることができると共に、平角線の単位周回あたりの巻線抵抗の増大を抑制することができる。しかも、隣り合う2つの第1および第2の渦状コイル部を形成する際に、平角線の内巻き又は平角線の外巻きの何れか一方のみを実行するだけで済み、例えば内巻きと外巻きとを組み合わせて交互に実行する等の複雑な工程を必要とせずにステータ巻線の製造方法を簡略化することができる。
Furthermore, according to the stator winding manufacturing method of the present invention as set forth in claim 5, the accumulated amount of deformation of the rectangular wire that increases with the number of replacements of the rectangular wire and the winding length per unit turn are excessive. The space factor of the stator winding can be improved, and an increase in winding resistance per unit turn of the rectangular wire can be suppressed.
Furthermore, according to the stator winding manufacturing method of the present invention as set forth in claim 6, the accumulated amount of deformation of the rectangular wire that increases with the number of times of replacement of the rectangular wire and the winding length per unit turn are excessive. The space factor of the stator winding can be improved, and an increase in winding resistance per unit turn of the rectangular wire can be suppressed. Moreover, by forming the two first and second spiral coil portions adjacent to each other by a single rectangular wire, for example, the two adjacent first and second spiral coil portions are connected by welding or the like. It is possible to prevent time and effort.
Furthermore, according to the stator winding manufacturing method of the present invention as set forth in claim 7, the accumulated amount of deformation of the rectangular wire that increases with the number of replacements of the rectangular wire and the winding length per unit turn are excessive. The space factor of the stator winding can be improved, and an increase in winding resistance per unit turn of the rectangular wire can be suppressed. In addition, when forming the two adjacent first and second spiral coil portions, it is only necessary to execute either one of the inner winding of the flat wire or the outer winding of the flat wire, for example, the inner winding and the outer winding. The manufacturing method of the stator winding can be simplified without requiring a complicated process such as alternately performing the above and the like.

以下、本発明の実施の形態に係るステータ巻線について添付図面を参照しながら説明する。   Hereinafter, a stator winding according to an embodiment of the present invention will be described with reference to the accompanying drawings.

以下、本発明の実施例1に係るステータ巻線について添付図面を参照しながら説明する。
この実施例1に係るステータ1は、例えば図1に示すように、ステータ1の周方向に配列された複数のステータ片2,…,2を備えて構成される略円環状のステータコア3と、絶縁ボビン4と、絶縁ボビン4に巻回された平角線5aからなるステータ巻線5とを備えて構成されている。
ステータ片2は、例えば略扇形板状のヨーク部6と、例えば略矩形板状のティース部7とを備えて構成され、ステータ1の周方向で隣り合うステータ片2,2のヨーク部6,6同士が連結されて円環状のヨーク1aが形成されている。
ヨーク部6は、ステータ1の周方向において一方の端面6Aから突出する係合凸部6aと、他方の端面6B上に設けられた係合凹部6bとを備え、隣り合うヨーク部6,6同士は、互いの端面2A,2Bが当接した際に、互いの係合凹部6bに係合凸部6aが係合することによって連結されるようになっている。
ティース部7は、例えばヨーク部6の周方向央部からステータコア3の径方向内方に向かい延出しており、ティース部7の内周側端部には周方向外方に延出する延出部8,8が設けられている。
なお、ステータ片2は、珪素鋼板等の方向性を有する電磁鋼板が積層されてなり、例えばヨーク部6は磁化容易方向がステータコア3の周方向に設定され、ティース7は磁化容易方向がステータコア3の径方向に設定されている。
Hereinafter, a stator winding according to Embodiment 1 of the present invention will be described with reference to the accompanying drawings.
A stator 1 according to the first embodiment includes, for example, a substantially annular stator core 3 configured by including a plurality of stator pieces 2,..., 2 arranged in the circumferential direction of the stator 1, as shown in FIG. An insulating bobbin 4 and a stator winding 5 composed of a flat wire 5 a wound around the insulating bobbin 4 are provided.
The stator piece 2 is configured to include, for example, a substantially fan-shaped yoke portion 6 and, for example, a substantially rectangular plate-shaped tooth portion 7, and the yoke portions 6 of the stator pieces 2, 2 adjacent in the circumferential direction of the stator 1. 6 is connected, and the annular yoke 1a is formed.
The yoke part 6 includes an engaging convex part 6a protruding from one end face 6A in the circumferential direction of the stator 1 and an engaging concave part 6b provided on the other end face 6B. When the end surfaces 2A and 2B are in contact with each other, the engaging projections 6a are engaged with the engaging recesses 6b.
The teeth portion 7 extends, for example, from the central portion in the circumferential direction of the yoke portion 6 toward the radially inner side of the stator core 3, and extends outward in the circumferential direction at the inner peripheral side end portion of the teeth portion 7. Portions 8 and 8 are provided.
The stator piece 2 is formed by laminating magnetic steel sheets having directivity, such as silicon steel sheets. For example, the yoke portion 6 has an easy magnetization direction set in the circumferential direction of the stator core 3, and the teeth 7 have an easy magnetization direction in the stator core 3. Is set in the radial direction.

絶縁ボビン4は、例えば、ティース部7の外面7Aを被覆する略矩形筒状のティース絶縁部4aと、ティース絶縁部4aの軸方向(つまりステータコア3の径方向)両端部から周方向外方に延出する絶縁延出部4b,4cとを備えて構成され、絶縁延出部4bはティース部7の外面7Aに対して滑らかに連なるヨーク部6の内周面6Cの表面上を被覆し、絶縁延出部4cはティース部7の外面7Aに対して滑らかに連なる延出部8の表面8Aの表面上を被覆するように配置されている。
そして、絶縁ボビン4のティース絶縁部4aには、例えば銅等の導電性線材からなる平角線5aが、ステータコア3の径方向(つまりティース部7が伸びる方向)に沿った複数列かつティース部7の太さ方向(つまり、ステータコア3の径方向に直交する方向)に沿った複数層に集中巻で巻回されることで、ステータ巻線5が形成されている。
なお、絶縁ボビン4の絶縁延出部4cには、例えば図2および図3に示すように、ティース絶縁部4aに巻装される平角線5aが装着されるガイド溝4dが設けられ、このガイド溝4dの底面はティース絶縁部4aの外周面と滑らかに連なるように形成され、ティース絶縁部4aの外周面上に巻装される平角線5aの一方の端部がガイド溝4dを介して外部へ案内されるようになっている。
The insulating bobbin 4 includes, for example, a substantially rectangular cylindrical tooth insulating portion 4a that covers the outer surface 7A of the tooth portion 7, and an axially outward direction of the tooth insulating portion 4a (that is, the radial direction of the stator core 3). Insulating extension portions 4b, 4c are provided, and the insulating extension portion 4b covers the surface of the inner peripheral surface 6C of the yoke portion 6 smoothly connected to the outer surface 7A of the tooth portion 7, The insulating extension 4c is arranged so as to cover the surface of the surface 8A of the extension 8 that is smoothly connected to the outer surface 7A of the tooth portion 7.
The teeth insulating portion 4a of the insulating bobbin 4 includes a plurality of rows of the rectangular wires 5a made of a conductive wire such as copper along the radial direction of the stator core 3 (that is, the direction in which the teeth portion 7 extends) and the teeth portions 7. The stator winding 5 is formed by being wound by concentrated winding on a plurality of layers along the thickness direction (that is, the direction orthogonal to the radial direction of the stator core 3).
The insulating extension 4c of the insulating bobbin 4 is provided with a guide groove 4d in which a flat wire 5a wound around the teeth insulating portion 4a is mounted, as shown in FIGS. 2 and 3, for example. The bottom surface of the groove 4d is formed so as to be smoothly connected to the outer peripheral surface of the tooth insulating portion 4a, and one end portion of the flat wire 5a wound on the outer peripheral surface of the tooth insulating portion 4a is connected to the outside via the guide groove 4d. To be guided to.

ステータ巻線5は複数の渦状コイル部5,…,5(nは任意の自然数であって、例えば図2および図3ではn=7)を備えて構成されている。
各渦状コイル部5,…,5は、後述するように、平角線5aがティース部7の太さ方向に複数層を成すように渦巻状に巻回されて形成され、複数の渦状コイル部5,…,5が互いの中心軸を同軸としてステータコア3の径方向に複数列を成すように配列されている。
そして、ステータコア3の径方向で隣り合う渦状コイル部5,5(k+1)同士(ただし、1≦k≦n−1)は、一方および他方の渦状コイル部部5,5(k+1)の内周側端部同士、あるいは、一方および他方の渦状コイル部5,5(k+1)の外周側端部同士が接続されている。つまり、隣り合う渦状コイル部5,5(k+1)の内周側端部同士が接続された内周側接続部と、外周側端部同士が接続された外周側接続部とが、平角線5aが列替わりする列替わり部となっている。そして、複数層のステータ巻線5の最内層に設けられた内周側列替わり部5cと、複数層のステータ巻線5の最外層に設けられた外周側列替わり部5bとは、列方向に沿って交互に設けられている。例えば、複数列の適宜の列の渦状コイル部5と、この渦状コイル部5を列方向の両側から挟み込む2つの渦状コイル部5(k−1),5(k+1)とに対して、適宜の渦状コイル部5と一方の渦状コイル部5(k−1)との内周側端部同士が接続されている場合には、適宜の渦状コイル部5と他方の渦状コイル部5(k+1)との外周側端部同士が接続され、適宜の渦状コイル部5と一方の渦状コイル部5(k−1)との外周側端部同士が接続されている場合には、適宜の渦状コイル部5と他方の渦状コイル部5(k+1)との内周側端部同士が接続されている。
なお、平角線5aは、例えば、厚さに比べて幅がより大きくなるように形成され、平角線5aの厚さ方向がステータ巻線5の層方向と同方向かつ平角線5aの幅方向がステータ巻線5の列方向と同方向となるように巻回されている。
そして、この実施例1においては、後述するように、ステータ巻線5は単一の平角線5aにより形成されている。つまり、列方向で隣り合う渦状コイル部5,5(k+1)(ただし、1≦k≦n−1)は単一の平角線5aにより形成されており、内周側接続部および外周側接続部は単一の平角線5aの適宜の部位とされている。
The stator winding 5 includes a plurality of spiral coil portions 5 1 ,..., 5 n (n is an arbitrary natural number, for example, n = 7 in FIGS. 2 and 3).
Each of the spiral coil portions 5 1 ,..., 5 n is formed by spirally winding a rectangular wire 5 a so as to form a plurality of layers in the thickness direction of the tooth portion 7, as will be described later. The portions 5 1 ,..., 5 n are arranged so as to form a plurality of rows in the radial direction of the stator core 3 with the center axes of the portions 5 1 ,.
The spiral coil portions 5 k and 5 (k + 1) adjacent to each other in the radial direction of the stator core 3 (where 1 ≦ k ≦ n−1) are included in one and the other spiral coil portions 5 k and 5 (k + 1) . The inner peripheral side ends or the outer peripheral side ends of one and the other spiral coil portions 5 k , 5 (k + 1) are connected to each other. That is, the inner peripheral side connection portion in which the inner peripheral side ends of the adjacent spiral coil portions 5 k and 5 (k + 1) are connected to each other and the outer peripheral side connection portion in which the outer peripheral side ends are connected to each other are rectangular wires. Reference numeral 5a denotes a column changing portion for changing columns. The inner peripheral side replacement portion 5c provided in the innermost layer of the multi-layer stator winding 5 and the outer peripheral side replacement portion 5b provided in the outermost layer of the multi-layer stator winding 5 are arranged in the column direction. Are provided alternately. For example, for a plurality of rows of vortex coil portions 5 k and two vortex coil portions 5 (k−1) and 5 (k + 1) sandwiching the vortex coil portions 5 k from both sides in the column direction, when the inner end portions of the appropriate spiral coil portion 5 k and one of the spiral coil unit 5 (k-1) is connected, a suitable spiral coil portion 5 k and the other spiral coil unit 5 When the outer peripheral side ends of (k + 1) are connected to each other, and the outer peripheral side ends of the appropriate spiral coil portion 5k and one spiral coil portion 5 (k-1) are connected to each other appropriately The inner peripheral side ends of the spiral coil portion 5 k and the other spiral coil portion 5 (k + 1) are connected to each other.
The flat wire 5a is formed, for example, to have a larger width than the thickness, and the thickness direction of the flat wire 5a is the same as the layer direction of the stator winding 5 and the width direction of the flat wire 5a is the same. The stator winding 5 is wound in the same direction as the row direction.
In the first embodiment, as will be described later, the stator winding 5 is formed of a single rectangular wire 5a. That is, the spiral coil portions 5 k , 5 (k + 1) (where 1 ≦ k ≦ n−1) adjacent in the column direction are formed by a single rectangular wire 5a, and the inner peripheral side connection portion and the outer peripheral side connection are formed. The part is an appropriate part of a single flat wire 5a.

実施例1に係るステータ巻線5は上記構成を備えており、次に、このステータ巻線5の製造方法、つまり平角線5aを絶縁ボビン4のティース絶縁部4aに巻回する方法について説明する。
なお、以下においては、ステータコア3の径方向外方から内方へ向かう方向を列方向とし、絶縁ボビン4のティース絶縁部4aの厚さ方向(つまり、ステータコア3の径方向に直交する方向)内方から外方へ向かう方向を層方向とした。
The stator winding 5 according to the first embodiment has the above-described configuration. Next, a method for manufacturing the stator winding 5, that is, a method for winding the flat wire 5a around the teeth insulating portion 4a of the insulating bobbin 4 will be described. .
In the following, the direction from the radially outer side to the inner side of the stator core 3 is the column direction, and the thickness direction of the teeth insulating portion 4a of the insulating bobbin 4 (that is, the direction orthogonal to the radial direction of the stator core 3) The direction from one side to the other was defined as the layer direction.

先ず、平角線5aの巻き始めとなる第1列1Lにおいては、例えば図4(a)〜(b)に示すように、ティース絶縁部4aの外周面4Aから層方向に所定距離だけ離間した位置を始点として、ティース絶縁部4a周りの所定周回方向(例えば、列方向に沿って見た場合の反時計回り)に平角線5aを渦巻状に内巻きし、複数回、例えば4回の第1〜第4周回1t,…,4tによって最外層となる第4層4Cから順次内層に向かい第3層3C,第2層2C,第1層1Cを積層して第1の渦状コイル部5を形成する。この第1の渦状コイル部5においては、4回の周回1t,…,4tによって3回の層替わりが実行される。
次に、例えば図4(c)に示すように、第1の渦状コイル部5の最内層となる第1層1Cから第5周回5tによって第1列1Lから第2列2Lへの列替わりを行い、この第2列2Lにおいて、例えば図4(d)〜(e)に示すように、第1列1Lと同じ周回方向(つまり、列方向に沿って見た場合の反時計回り)に平角線5aを渦巻状に外巻きし、複数回、例えば3回の第5〜第7周回5t,6t,7tによって最内層となる第1層1Cから順次外層に向かい第2層2C,第3層3Cを積層して第2の渦状コイル部5を形成する。この第2の渦状コイル部5においては、3回の周回5t,6t,7tによって1回の列替わりと2回の層替わりとが実行される。
次に、例えば図4(e)に示すように、第2の渦状コイル部5の最外層となる第3層3Cから第8周回8tによって第2列2Lから第3列2Lへの列替わりを行い、この第3列3Lにおいて、例えば図4(f)に示すように、第2列2Lと同じ周回方向(つまり、列方向に沿って見た場合の反時計回り)に平角線5aを渦巻状に内巻きし、複数回、例えば3回の第8〜第10周回8t,9t,10tによって最外層となる第3層3Cから順次内層に向かい第2層2C,第1層1Cを積層して第3の渦状コイル部5を形成する。この第3の渦状コイル部5においては、3回の周回8t,9t,10tによって1回の列替わりと2回の層替わりとが実行される。
First, in the first row 1L that is the start of winding of the flat wire 5a, for example, as shown in FIGS. 4 (a) to 4 (b), a position spaced apart from the outer peripheral surface 4A of the teeth insulating portion 4a by a predetermined distance in the layer direction. The rectangular wire 5a is spirally wound in a predetermined circumferential direction around the tooth insulating portion 4a (for example, counterclockwise when viewed along the row direction), and a plurality of times, for example, four times to fourth circumferential 1t, ..., a third layer 3C sequentially toward the inner layer from the fourth layer 4C as the outermost layer by 4t, the second layer 2C, a first spiral coil portion 5 1 by laminating the first layer 1C Form. In the first spiral coil unit 5 1, four laps 1t, ..., 3 times layers instead by 4t is executed.
Next, as shown in FIG. 4C, for example, the first layer 1C, which is the innermost layer of the first spiral coil portion 51, is changed from the first row 1L to the second row 2L by the fifth turn 5t. In this second row 2L, for example, as shown in FIGS. 4D to 4E, in the same circumferential direction as the first row 1L (that is, counterclockwise when viewed along the row direction). The rectangular wire 5a is wound around in a spiral shape, and the second layer 2C, the third layer 2C, the third layer 2C, the third layer sequentially from the first layer 1C, which is the innermost layer, to the outer layer by a plurality of times, for example, the third to fifth turns 5t, 6t, 7t forming a second spiral coil unit 5 2 by laminating a layer 3C. In the second spiral coil unit 5 2, three laps 5t, 6t, 1 single row instead of the a layer instead of two is performed by 7t.
Next, for example, as shown in FIG. 4 (e), the third layer 3C, which is the outermost layer of the second spiral coil portion 52, is changed from the second row 2L to the third row 2L by the eighth turn 8t. In this third row 3L, for example, as shown in FIG. 4 (f), the rectangular wire 5a is placed in the same circumferential direction as the second row 2L (that is, counterclockwise when viewed along the row direction). The inner layer is spirally wound, and the second layer 2C and the first layer 1C are sequentially stacked from the third layer 3C, which is the outermost layer, to the inner layer by a plurality of times, for example, the eighth to tenth rounds 8t, 9t, and 10t. and forming a third spiral coil portion 5 3. In the third spiral coil unit 5 3, three laps 8t, 9t, once columns instead of the a layer instead of twice by 10t is executed.

次に、例えば図4(f)〜(g)に示すように、第3の渦状コイル部5の最内層となる第1層1Cから第11周回11tによって第3列3Lから第4列4Lへの列替わりを行い、この第4列4Lにおいて、第3列3Lと同じ周回方向に平角線5aを渦巻状に外巻きし、複数回、例えば2回の第11および第12周回11t,12tによって最内層となる第1層1Cから外層に向かい第2層2Cを積層して第4の渦状コイル部5を形成する。
次に、例えば図4(g)〜(h)に示すように、第4の渦状コイル部5の最外層となる第2層2Cから第12周回12tによって第4列4Lから第5列5Lへの列替わりを行い、この第5列5Lにおいて、第4列4Lと同じ周回方向に平角線5aを渦巻状に内巻きし、複数回、例えば2回の第13および第14周回13t,14tによって最外層となる第2層2Cから内層に向かい第1層1Cを積層して第5の渦状コイル部5を形成する。
次に、例えば図4(h)〜(i)に示すように、第5の渦状コイル部5の最内層となる第1層1Cから第15周回15tによって第5列5Lから第6列6Lへの列替わりを行い、この第6列6Lにおいて、第5列5Lと同じ周回方向に平角線5aを渦巻状に外巻きし、複数回、例えば2回の第15および第16周回15t,16tによって最内層となる第1層1Cから外層に向かい第2層2Cを積層して第4の渦状コイル部5を形成する。
次に、例えば図4(i)に示すように、第6の渦状コイル部5の最外層となる第2層2Cから第17周回17tによって第6列6Lから第7列7Lへの列替わりを行い、この第7列7Lにおいて、第6列6Lと同じ周回方向に平角線5aを渦巻状に内巻きし、複数回、例えば2回の第17および第18周回17t,18tによって最外層となる第2層2Cから内層に向かい第1層1Cを積層して第7の渦状コイル部5を形成する。
Next, as shown in, for example, FIGS. 4F to 4G, the third row 3L to the fourth row 4L by the eleventh turn 11t from the first layer 1C serving as the innermost layer of the third spiral coil portion 53. In this fourth row 4L, the rectangular wire 5a is spirally wound in the same circumferential direction as in the third row 3L, and a plurality of times, for example, two eleventh and twelfth rounds 11t, 12t by forming a fourth spiral coil unit 5 4 by laminating a second layer 2C toward the outer layer from the first layer 1C as a innermost layer.
Next, as shown in FIGS. 4G to 4H, for example, the fourth row 4L to the fifth row 5L are driven by the 12th turn 12t from the second layer 2C which is the outermost layer of the fourth spiral coil portion 54. In this fifth row 5L, the rectangular wire 5a is spirally wound in the same circumferential direction as the fourth row 4L, and a plurality of times, for example, two thirteenth and fourteenth turns 13t, 14t by forming a spiral coil portion 5 5 5 by laminating a first layer 1C toward the inner layer from the second layer 2C serving as the outermost layer.
Next, as shown in FIG. 4 (h) ~ (i) , the fifth spiral coil unit 5 sixth column from the fifth column 5L from the first layer 1C as a innermost layer by the 15 circulation 15t of 5 6L In this sixth row 6L, the rectangular wire 5a is spirally wound in the same circumferential direction as the fifth row 5L in the sixth row 6L, and a plurality of times, for example, the fifteenth and sixteenth turns 15t, 16t by forming a fourth spiral coil unit 5 6 by laminating a second layer 2C toward the outer layer from the first layer 1C as a innermost layer.
Next, for example, as shown in FIG. 4 (i), the sixth row 6L is changed to the seventh row 7L by the 17th turn 17t from the second layer 2C which is the outermost layer of the sixth spiral coil portion 56. In the seventh row 7L, the rectangular wire 5a is spirally wound in the same circumferential direction as the sixth row 6L, and the outermost layer is formed by a plurality of times, for example, two times of the 17th and 18th rounds 17t and 18t. The first layer 1C is laminated from the second layer 2C to the inner layer to form a seventh spiral coil portion 57.

すなわち、この実施例1では、例えば単一の平角線5aを用いた4つの工程、つまり内巻きの工程と、最内層での列替わりの工程と、外巻きの工程と、最外層での列替わりの工程とを順次実行する一連の工程を繰り返すことによって、複数層かつ複数列のステータ巻線5を形成する。   That is, in the first embodiment, for example, four processes using a single rectangular wire 5a, that is, an inner winding process, a replacement process in the innermost layer, an outer winding process, and a row in the outermost layer are arranged. A plurality of layers and a plurality of rows of stator windings 5 are formed by repeating a series of steps of sequentially executing the replacement steps.

上述したように、実施例1によるステータ巻線5によれば、例えばステータコア3の径方向で隣り合う渦状コイル部5,5(k+1)同士が接続される内周側接続部または外周側接続部のみにおいて平角線5aが隣り合う列に列替わりするだけであり、例えば複数層のステータ巻線5の各層において列替わり部が形成されてしまうことを防止することができる。これにより、平角線5aの列替わりの回数に応じて増大する平角線5aの変形の累積量や単位周回あたりの巻線長が過剰に増大してしまうことを防止して、ステータ巻線5の占積率を向上させることができると共に、平角線5aの単位周回あたりの巻線抵抗の増大を抑制することができる。
また、例えば第1および第2の渦状コイル部5,5の最外層同士や、第3および第4の渦状コイル部5,5の最外層同士等のように、例えば隣り合うティース部7,7間に形成されたスロットの形状等に合わせて、隣り合う列同士で平角線5aの積層数が変更されてステータ巻線5の外周面上に段差が形成される場合には、隣り合う渦状コイル部5,5(k+1)同士が内周側接続部において接続されることにより、周回する平角線5aの周方向における同等位置で層替わりと列替わりとが実行されてしまうことを防止することができ、例えば平角線5aの変形量や隣接する平角線5a,5a間に生じる空隙が過剰に増大して占積率が低下してしまう等の不具合が生じることを防止することができる。
また、実施例1によるステータ巻線5の製造方法によれば、単一の平角線5aに対して、例えば、順次、外巻きの工程と、最外層での列替わりの工程と、内巻きの工程と、最内層での列替わりの工程とを実行する一連の工程を繰り返すことによって、複数層かつ複数列のステータ巻線5を形成することができる。
これにより、平角線5aの列替わりの回数に応じて増大する平角線5aの変形の累積量や単位周回あたりの巻線長が過剰に増大してしまうことを防止して、ステータ巻線5の占積率を向上させることができると共に、平角線5aの単位周回あたりの巻線抵抗の増大を抑制することができる。しかも、単一の平角線5aによって隣り合う渦状コイル部5,5(k+1)を形成することによって、例えば隣り合う渦状コイル部5,5(k+1)を溶接等によって接続するという煩雑な手間が掛かることを防止することができる。
As described above, according to the stator winding 5 according to the first embodiment, for example, the inner peripheral side connection portion or the outer peripheral side connection in which the spiral coil portions 5 k and 5 (k + 1) adjacent in the radial direction of the stator core 3 are connected to each other. The flat wire 5a is merely replaced by adjacent columns only in the portion, and for example, it is possible to prevent the replacement portion from being formed in each layer of the plurality of layers of the stator winding 5. Thereby, it is possible to prevent the cumulative amount of deformation of the rectangular wire 5a that increases in accordance with the number of replacements of the rectangular wire 5a and the winding length per unit turn from being excessively increased. The space factor can be improved and an increase in winding resistance per unit turn of the flat wire 5a can be suppressed.
Further, for example, the outermost layer among the first and second spiral coil unit 5 1, 5 2, as the outermost layer among the like of the third and fourth spiral coil unit 5 3, 5 4, for example, adjacent teeth When the number of stacked flat wires 5a is changed between adjacent rows in accordance with the shape of the slot formed between the portions 7, 7, etc., and a step is formed on the outer peripheral surface of the stator winding 5, When adjacent spiral coil portions 5 k , 5 (k + 1) are connected to each other at the inner peripheral side connection portion, layer change and rearrangement are executed at the same position in the circumferential direction of the rotating rectangular wire 5a. For example, the amount of deformation of the flat wire 5a or the gap generated between the adjacent flat wires 5a, 5a is excessively increased, thereby preventing the occurrence of problems such as a decrease in the space factor. Can do.
Further, according to the method for manufacturing the stator winding 5 according to the first embodiment, for example, the outer winding process, the replacement process in the outermost layer, and the inner winding are sequentially performed on the single rectangular wire 5a. By repeating a series of steps of executing the steps and the step of replacing the innermost layer, a plurality of layers and rows of stator windings 5 can be formed.
Thereby, it is possible to prevent the cumulative amount of deformation of the rectangular wire 5a that increases in accordance with the number of replacements of the rectangular wire 5a and the winding length per unit turn from being excessively increased. The space factor can be improved and an increase in winding resistance per unit turn of the flat wire 5a can be suppressed. In addition, by forming the adjacent spiral coil portions 5 k , 5 (k + 1) by a single flat wire 5a, for example, the troublesome labor of connecting the adjacent spiral coil portions 5 k , 5 (k + 1) by welding or the like. Can be prevented.

以下、本発明の実施例2に係るステータ巻線について添付図面を参照しながら説明する。
この実施例2において、ステータ巻線の構成について上述した実施例1と異なる主要な点は、ステータ巻線5が複数の平角線5a,…,5a(ただし、mは1≦m≦(n+1)/2の自然数)により構成され、これらの複数の平角線5a,…,5aが溶接部を介して互いに連結されている点であり、ステータ巻線の製造方法について、上述した実施例1と異なる主要な点は、複数の平角線5a,…,5a毎に絶縁ボビン4のティース絶縁部4aに巻回を実行した後に、列方向で隣り合う平角線5a,5a(j+1)(ただし、1≦j≦m−1)の互いの外周側端部同士を溶接して連結する点である。なお、以下において上述した実施例1と同一部分については説明を省略する。
この実施例2においては、後述するように、ステータ巻線5は複数の平角線5a,…,5aにより形成されている。そして、列方向で隣り合う渦状コイル部5,5(k+1)(ただし、1≦k≦n−1)のうち、内周側端部同士が接続された渦状コイル部5,5(k+1)は単一の平角線5aにより形成されており、この内周側接続部(つまり、図6に示す内周側列替わり部5c)は単一の平角線5aの適宜の部位とされている。一方、外周側端部同士が接続された渦状コイル部5,5(k+1)は互いに異なる平角線5a,5a(j+1)により形成されており、この外周側接続部(つまり、図5に示す外周側列替わり部5b)は異なる平角線5a,5a(j+1)の互いの端部同士が溶接により連結された溶接部とされている。
Hereinafter, a stator winding according to a second embodiment of the present invention will be described with reference to the accompanying drawings.
In this Example 2, different from the first embodiment the main points described above for construction of the stator winding, the stator windings 5 are several flat wire 5a 1, ..., 5a m (although, m is 1 ≦ m ≦ ( n + 1) / natural number of 2) is constituted by these plural rectangular wire 5a 1, ..., 5a m via the weld is a point are connected to each other, the method of manufacturing the stator winding, the above-described embodiments example 1 differs main point is, a plurality of flat wire 5a 1, ..., 5a every m after performing the winding to the tooth insulating portion 4a of the insulating bobbin 4, flat wire 5a j adjacent in the column direction, 5a ( j + 1) (where 1 ≦ j ≦ m−1). In the following, description of the same parts as those in the first embodiment will be omitted.
In this second embodiment, as described later, the stator windings 5 are a plurality of rectangular wire 5a 1, ..., it is formed by 5a m. The spiral coil portion 5 k adjacent in the column direction, 5 (k + 1) (however, 1 ≦ k ≦ n-1 ) among the spiral coil unit 5 k of each other inner edge portion is connected, 5 (k + 1 ) Is formed by a single flat wire 5a j , and this inner peripheral side connection portion (that is, the inner peripheral side replacement portion 5c shown in FIG. 6) is an appropriate portion of the single flat wire 5a j. ing. On the other hand, the spiral coil portions 5 k , 5 (k + 1) to which the outer peripheral side ends are connected are formed by different rectangular wires 5 a j , 5 a (j + 1) . The outer peripheral side replacement portion 5b) shown is a welded portion in which the ends of different rectangular wires 5a j and 5a (j + 1) are connected by welding.

実施例2に係るステータ巻線5は上記構成を備えており、次に、このステータ巻線5の製造方法、つまり複数の平角線5a,…,5aを絶縁ボビン4のティース絶縁部4aに巻回して溶接により連結する方法について説明する。
なお、以下においては、ステータコア3の径方向外方から内方へ向かう方向を列方向とし、絶縁ボビン4のティース絶縁部4aの厚さ方向(つまり、ステータコア3の径方向に直交する方向)内方から外方へ向かう方向を層方向とした。
The stator windings 5 of the second embodiment includes the above-described configuration, then, a method of manufacturing the stator winding 5, that is, multiple flat wire 5a 1, ..., a 5a m insulating bobbin 4 tooth insulating portion 4a A method for winding and connecting by welding will be described.
In the following, the direction from the radially outer side to the inner side of the stator core 3 is the column direction, and the thickness direction of the teeth insulating portion 4a of the insulating bobbin 4 (that is, the direction orthogonal to the radial direction of the stator core 3) The direction from one side to the other was defined as the layer direction.

先ず、第1の平角線5aの巻き始めとなる第1列1Lおよび第2列2Lにおいては、例えば図7(a)に示すように、第1の平角線5aをティース絶縁部4aの外周面4A上に配置した状態で、第1の平角線5aの一方の端部側部分が第1列1Lの始点となるように、かつ、第1の平角線5aの他方の端部側部分が第2列2Lの始点となるように列替わりさせる。
そして、例えば図7(b)〜(c)に示すように、第1列1Lにおいて、ティース絶縁部4a周りの所定周回方向(例えば、列方向に沿って見た場合の時計回り)に第1の平角線5aを渦巻状に外巻きし、複数回、例えば4回の第1〜第4周回1p,…,4pによって最内層となる第1層1Cから順次外層に向かい第2層2C,第3層3C,第4層4Cを積層して第1の渦状コイル部5を形成すると共に、第2列2Lにおいて、第1列1Lとは逆の周回方向(つまり、列方向に沿って見た場合の反時計回り)に第1の平角線5aを渦巻状に外巻きし、複数回、例えば3回の第1〜第4周回1q,2q,3qによって最内層となる第1層1Cから順次外層に向かい第2層2C,第3層3Cを積層して第2の渦状コイル部5を形成する。
次に、例えば図7(d)に示すように、第2の平角線5aをティース絶縁部4aの外周面4A上に配置した状態で、第2の平角線5aの一方の端部側部分が第3列3Lの始点となるように、かつ、第2の平角線5aの他方の端部側部分が第4列4Lの始点となるように列替わりさせる。
そして、例えば図7(e)〜(f)に示すように、第3列3Lにおいて、第1列1Lと同じ周回方向(つまり、列方向に沿って見た場合の時計回り)に第2の平角線5aを渦巻状に外巻きし、第2列2Lと同等の周回数、つまり3回の第1〜第3周回1p,2p,3pによって最内層となる第1層1Cから順次外層に向かい第2層2C,第3層3Cを積層して第3の渦状コイル部5を形成すると共に、第4列4Lにおいて、第3列3Lとは逆の周回方向(つまり、列方向に沿って見た場合の反時計回り)に第2の平角線5aを渦巻状に外巻きし、複数回、例えば2回の第1〜第2周回1q,2qによって最内層となる第1層1Cから外層に向かい第2層2Cを積層して第4の渦状コイル部5を形成する。
そして、例えば図7(f)に示すように、第2の渦状コイル部5の最外層となる第3層に配置される第1の平角線5aの他方の端部5a1Bと、第3の渦状コイル部5の最外層となる第3層3Cに配置される第2の平角線5aの一方の端部5a2Aとを溶接により接続する。このとき、例えば、第2の渦状コイル部5を形成する第1の平角線5aを、第2列2Lにおける第3周回3qによって第2列2Lから第3列3Lへと列替わりさせ、この第3列3Lにおいて、第1の平角線5aの他方の端部5a1Bと第2の平角線5aの一方の端部5a2Aとを溶接する。
First, in the first row 1L and the second row 2L, which are the start of winding of the first flat wire 5a 1 , for example, as shown in FIG. 7A, the first flat wire 5a 1 is connected to the teeth insulating portion 4a. while disposed on the outer peripheral surface 4A, so that one end portion of the first flat wire 5a 1 is the start point of the first column 1L, and the other end of the first flat wire 5a 1 The columns are rearranged so that the side portion is the starting point of the second column 2L.
Then, for example, as shown in FIGS. 7B to 7C, in the first row 1L, the first circumferential direction around the teeth insulating portion 4a (for example, clockwise when viewed along the row direction) The rectangular wire 5a 1 is wound in a spiral shape, and the second layer 2C is sequentially turned from the first layer 1C which is the innermost layer to the outer layer by a plurality of times, for example, four first to fourth turns 1p,. third layer 3C, to form a first spiral coil portion 5 1 by laminating a fourth layer 4C, in the second column 2L, the first column 1L opposite circumferential direction (i.e., along the column direction The first flat wire 5a 1 is wound in a spiral shape (counterclockwise when viewed), and the first layer becomes the innermost layer by a plurality of times, for example, three first to fourth turns 1q, 2q, 3q. second layer 2C toward the sequentially outer layer from 1C, to form a second spiral coil unit 5 2 by laminating a third layer 3C .
Next, as shown in FIG. 7 (d), in a state in which the second flat wire 5a 2 placed on the outer peripheral surface 4A of the tooth insulating portion 4a, one end side of the second flat wire 5a 2 as part becomes the starting point of the third row 3L, and the other end side portion of the second rectangular wire 5a 3 causes the column instead so that the starting point of the fourth column 4L.
For example, as shown in FIGS. 7E to 7F, in the third row 3L, the second rotation direction is the same as the first row 1L (that is, clockwise when viewed along the row direction). The rectangular wire 5a 2 is wound in a spiral shape, and the number of turns equal to that of the second row 2L, that is, the first to third turns 1p, 2p, and 3p, the first layer 1C that is the innermost layer is sequentially turned to the outer layer. facing second layer 2C, with by laminating a third layer 3C to form a third spiral coil unit 5 3, in the fourth column 4L, opposite circumferential direction to the third column 3L (i.e., along the column direction The first flat layer 1C that is the innermost layer by winding the second rectangular wire 5a2 in a spiral shape in a counterclockwise direction when viewed in a plurality of times, for example, two first to second turns 1q, 2q. A second layer 2C is laminated from the outer layer toward the outer layer to form a fourth spiral coil portion 54.
Then, for example, as shown in FIG. 7 (f), the other end 5a 1B of the first flat wire 5a 1 disposed in the third layer which is the outermost layer of the second spiral coil 52, 3 of a second flat one end 5a 2A of the rectangular wire 5a 2 arranged in the third layer 3C as the outermost layer of the spiral coil unit 5 3 are connected by welding. At this time, for example, the first rectangular wire 5a 1 forming the second spiral coil portion 52 is rearranged from the second row 2L to the third row 3L by the third turn 3q in the second row 2L. In the third row 3L, the other end 5a 1B of the first flat wire 5a 1 and the one end 5a 2A of the second flat wire 5a 2 are welded.

次に、例えば図7(g)に示すように、第3の平角線5aをティース絶縁部4aの外周面4A上に配置した状態で、第3の平角線5aの一方の端部側部分が第5列5Lの始点となるように、かつ、第3の平角線5aの他方の端部側部分が第6列6Lの始点となるように列替わりさせる。
そして、例えば図7(h)〜(i)に示すように、第5列5Lにおいて、第3列3Lと同じ周回方向(つまり、列方向に沿って見た場合の時計回り)に第3の平角線5aを渦巻状に外巻きし、第4列4Lと同等の周回数、つまり2回の第1〜第2周回1p,2pによって最内層となる第1層1Cから外層に向かい第2層2Cを積層して第5の渦状コイル部5を形成すると共に、第6列6Lにおいて、第5列5Lとは逆の周回方向(つまり、列方向に沿って見た場合の反時計回り)に第3の平角線5aを渦巻状に外巻きし、複数回、例えば2回の第1〜第2周回1q,2qによって最内層となる第1層1Cから外層に向かい第2層2Cを積層して第6の渦状コイル部5を形成する。
そして、例えば図7(i)に示すように、第4の渦状コイル部5の最外層となる第2層に配置される第2の平角線5aの他方の端部5a2Bと、第5の渦状コイル部5の最外層となる第2層2Cに配置される第3の平角線5aの一方の端部5a3Aとを溶接により接続する。このとき、例えば、第4の渦状コイル部5を形成する第2の平角線5aを、第4列4Lにおける第2周回2qによって第4列4Lから第5列5Lへと列替わりさせ、この第5列5Lにおいて、第2の平角線5aの他方の端部5a2Bと第3の平角線5aの一方の端部5a3Aとを溶接する。
Next, as shown in FIG. 7 (g), in a state in which a third of the rectangular wire 5a 3 disposed on the outer peripheral surface 4A of the tooth insulating portion 4a, one end side of the third rectangular wire 5a 3 The parts are rearranged so that the portion becomes the starting point of the fifth row 5L and the other end portion of the third flat wire 5a3 becomes the starting point of the sixth row 6L.
For example, as shown in FIGS. 7 (h) to (i), in the fifth column 5L, the third rotation direction is the same as the third column 3L (that is, clockwise when viewed along the column direction). the rectangular wire 5a 3 outer coiling spirally fourth column 4L equivalent cycle number, i.e. the first and second circumferential 1p twice, the second toward the outer from the first layer 1C as a innermost layer by 2p to form the spiral coil unit 5 5 of 5 stacked layers 2C, in the sixth column 6L, opposite circumferential direction to the fifth column 5L (i.e., counterclockwise when viewed along the column direction ) a third rectangular wire 5a 3 wound outside spirally several times, for example twice of the first and second circumferential 1q, second layer 2C directed from the first layer 1C as a innermost layer by 2q in the outer layer Are stacked to form a sixth spiral coil portion 56.
For example, as shown in FIG. 7 (i), the other end 5a 2B of the second flat wire 5a 2 arranged in the second layer which is the outermost layer of the fourth spiral coil portion 54, 5 of the one end portion 5a 3A of the third rectangular wire 5a 3 arranged in a second layer 2C to be the outermost layer of the spiral coil unit 5 5 are connected by welding. At this time, for example, the second rectangular wire 5a 2 forming the fourth spiral coil portion 54 is rearranged from the fourth row 4L to the fifth row 5L by the second turn 2q in the fourth row 4L. In the fifth row 5L, the other end 5a 2B of the second flat wire 5a 2 and the one end 5a 3A of the third flat wire 5a 3 are welded.

次に、例えば、第4の平角線5aをティース絶縁部4aの外周面4A上に配置した状態で、第4の平角線5aの一方の端部側部分が第7列7Lの始点となるように、かつ、第4の平角線5aの他方の端部側部分が絶縁ボビン4の絶縁延出部4cに設けられたガイド溝4dに装着されるようにして列替わりさせる。
そして、第7列7Lにおいて、第5列5Lと同じ周回方向(つまり、列方向に沿って見た場合の時計回り)に第4の平角線5aを渦巻状に外巻きし、第6列6Lと同等の周回数、つまり2回の第1〜第2周回1p,2pによって最内層となる第1層1Cから外層に向かい第2層2Cを積層して第6の渦状コイル部5を形成する。
そして、例えば図7(i)に示すように、第6の渦状コイル部5の最外層となる第2層に配置される第3の平角線5aの他方の端部5a3Bと、第6の渦状コイル部5の最外層となる第2層2Cに配置される第4の平角線5aの一方の端部5a4Aとを溶接により接続する。このとき、例えば、第6の渦状コイル部5を形成する第3の平角線5aを、第6列6Lにおける第2周回2qによって第6列6Lから第7列7Lへと列替わりさせ、この第7列7Lにおいて、第3の平角線5aの他方の端部5a3Bと第4の平角線5aの一方の端部5a4Aとを溶接する。
Then, for example, the start point of the fourth state in which the flat wire 5a 4 arranged on the outer peripheral surface 4A of the tooth insulating portion 4a, one end portion of the fourth flat wire 5a 4 is seventh column 7L In this manner, the other end side portion of the fourth rectangular wire 5a 4 is rearranged so as to be mounted in the guide groove 4d provided in the insulating extension 4c of the insulating bobbin 4.
Then, in the seventh column 7L, wound outside the same circumferential direction as the fifth column 5L (i.e., clockwise when viewed along the column direction) a fourth rectangular wire 5a 4 in a spiral shape, the sixth column 6L equivalent cycle number, i.e. the first and second circumferential 1p twice, the sixth spiral coil unit 5 6 by laminating a second layer 2C toward the outer layer from the first layer 1C as a innermost layer by 2p Form.
For example, as shown in FIG. 7 (i), the other end 5a 3B of the third flat wire 5a 3 arranged in the second layer which is the outermost layer of the sixth spiral coil portion 56, 6 and one end 5a 4A of the fourth flat wire 5a 4 arranged in a second layer 2C to be the outermost layer of the spiral coil unit 5 6 are connected by welding. At this time, for example, the third rectangular wire 5a 3 forming the sixth spiral coil portion 56 is rearranged from the sixth row 6L to the seventh row 7L by the second turn 2q in the sixth row 6L. In the seventh row 7L, the other end 5a 3B of the third flat wire 5a 3 and one end 5a 4A of the fourth flat wire 5a 4 are welded.

すなわち、この実施例2では、各複数の平角線5a,…,5a毎に、一方の端部側部分と他方の端部側部分とが互いに隣り合う列に属するように列替わりさせると共に一方の端部側部分と他方の端部側部分とを互いに異なる周回方向に外巻きする工程と、最外層において列方向で隣り合う異なる平角線5a,5a(j+1)の互いの端部同士を溶接により接続する工程とを実行することによって、複数層かつ複数列のステータ巻線5を形成する。 That is, in the second embodiment, the plurality of flat wire 5a 1, ..., each 5a m, with one end portion and the other end portion to the column instead to belong to rows adjacent to each other Steps of externally winding one end side portion and the other end side portion in different circumferential directions, and the ends of different rectangular wires 5a j , 5a (j + 1) adjacent in the column direction in the outermost layer Are connected by welding to form a plurality of layers and a plurality of rows of stator windings 5.

上述したように、実施例2によるステータ巻線5によれば、例えばステータコア3の径方向で隣り合う渦状コイル部5,5(k+1)同士が接続される内周側接続部または外周側接続部のみにおいて平角線5aが隣り合う列に列替わりするだけであり、例えば複数層のステータ巻線5の各層において列替わり部が形成されてしまうことを防止することができる。これにより、平角線5aの列替わりの回数に応じて増大する平角線5aの変形の累積量や単位周回あたりの巻線長が過剰に増大してしまうことを防止して、ステータ巻線5の占積率を向上させることができると共に、平角線5aの単位周回あたりの巻線抵抗の増大を抑制することができる。
また、例えば第1および第2の渦状コイル部5,5の最外層同士や、第3および第4の渦状コイル部5,5の最外層同士等のように、例えば隣り合うティース部7,7間に形成されたスロットの形状等に合わせて、隣り合う列同士で平角線5aの積層数が変更されてステータ巻線5の外周面上に段差が形成される場合には、隣り合う渦状コイル部5,5(k+1)同士を単一の平角線5a(例えば、第1の平角線5aや第2の平角線5a)により形成し、隣り合う渦状コイル部5,5(k+1)の外周側端部同士を接続する溶接部を省略することによって、周回する平角線5aの周方向における同等位置で層替わりと列替わりとが実行されてしまうことを防止することができ、例えば平角線5aの変形量が過剰に増大して占積率が低下してしまう等の不具合が生じることを防止することができる。
また、実施例2によるステータ巻線5の製造方法によれば、平角線5aの列替わりの回数に応じて増大する平角線5aの変形の累積量や単位周回あたりの巻線長が過剰に増大してしまうことを防止して、ステータ巻線5の占積率を向上させることができると共に、平角線5aの単位周回あたりの巻線抵抗の増大を抑制することができる。しかも、互いに異なる平角線5a,5a(j+1)によって隣り合う2つの渦状コイル部5,5(k+1)を形成する際に、各平角線5a,5a(j+1)の外巻きのみを実行するだけで済み、例えば内巻きと外巻きとを混在させて実行する等の複雑な工程を必要とせずにステータ巻線5の製造方法を簡略化することができる。
As described above, according to the stator winding 5 according to the second embodiment, for example, the inner peripheral side connection portion or the outer peripheral side connection in which the spiral coil portions 5 k and 5 (k + 1) adjacent in the radial direction of the stator core 3 are connected to each other. The flat wire 5a is merely replaced by adjacent columns only in the portion, and for example, it is possible to prevent the replacement portion from being formed in each layer of the plurality of layers of the stator winding 5. Thereby, it is possible to prevent the cumulative amount of deformation of the rectangular wire 5a that increases in accordance with the number of replacements of the rectangular wire 5a and the winding length per unit turn from being excessively increased. The space factor can be improved and an increase in winding resistance per unit turn of the flat wire 5a can be suppressed.
Further, for example, the outermost layer among the first and second spiral coil unit 5 1, 5 2, as the outermost layer among the like of the third and fourth spiral coil unit 5 3, 5 4, for example, adjacent teeth When the number of stacked flat wires 5a is changed between adjacent rows in accordance with the shape of the slot formed between the portions 7, 7, etc., and a step is formed on the outer peripheral surface of the stator winding 5, Adjacent spiral coils 5 k , 5 (k + 1) are formed by a single flat wire 5 a (for example, the first flat wire 5 a 1 or the second flat wire 5 a 2 ), and the adjacent spiral coils 5 k. , 5 (k + 1) By omitting the welded portion connecting the end portions on the outer peripheral side, it is possible to prevent the layer change and the rearrangement from being executed at the same position in the circumferential direction of the rotating rectangular wire 5a. For example, the amount of deformation of the flat wire 5a is excessive. Much space factor can be prevented that occurs problems such as lowered.
Further, according to the method of manufacturing the stator winding 5 according to the second embodiment, the cumulative amount of deformation of the rectangular wire 5a that increases with the number of replacements of the rectangular wire 5a and the winding length per unit turn increase excessively. Thus, the space factor of the stator winding 5 can be improved, and an increase in winding resistance per unit turn of the flat wire 5a can be suppressed. In addition, when two adjacent spiral coil portions 5 k , 5 (k + 1) are formed by mutually different rectangular wires 5 a j , 5 a (j + 1) , only the outer winding of each rectangular wire 5 a j , 5 a (j + 1) is executed. For example, the manufacturing method of the stator winding 5 can be simplified without requiring a complicated process such as executing a mixture of an inner winding and an outer winding.

なお、上述した実施例2によるステータ巻線5の製造方法においては、例えば第1の平角線5aの他方の端部5a1Bと第2の平角線5aの一方の端部5a2Aとを溶接する際に、第1の平角線5aの他方の端部5a1Bを第2列2Lから第3列3Lへと列替わりさせるとしたが、これに限定されず、例えば第2の平角線5aの一方の端部5a2Aを第3列3Lから第2列2Lへと列替わりさせてもよいし、例えば第1の平角線5aの他方の端部5a1Bと第2の平角線5aの一方の端部5a2Aとを列方向で互いに近接させてもよい。 In the method of manufacturing the stator winding 5 according to the second embodiment described above, for example, the other end 5a 1B of the first flat wire 5a 1 and one end 5a 2A of the second flat wire 5a 2 are connected. When welding, the other end 5a 1B of the first flat wire 5a 1 is replaced from the second row 2L to the third row 3L. However, the present invention is not limited to this. For example, the second flat wire one end 5a 2A of 5a 2 to the third column 3L may be column instead to the second column 2L, for example, the first flat other corner lines 5a 1 end 5a 1B and second flat wire and one end 5a 2A of 5a 2 may be close to each other in the column direction.

また、上述した実施例1,2ではステータ巻線5の全ての列を渦状コイル部5,…,5で構成したが、複数列の一部の列を渦状コイル部5,…,5で構成し、他の列を上記従来技術と同様にして、平角線5aの周回毎に列替わりを繰り返して平角線5aを列方向に順次配列させるように巻回して形成してもよい。また、ステータ巻線5の複数層の一部の層を渦状コイル部5(ただし、1≦k≦n−1)で構成し、他の層を上記従来技術と同様にして、平角線5aの周回毎に列替わりを繰り返して平角線5aを列方向に順次配列させた各層を層替わりにより積層させるように巻回して形成してもよい。 In the first and second embodiments described above, all the rows of the stator winding 5 are constituted by the spiral coil portions 5 1 ,..., 5 n , but some rows of the plurality of rows are the spiral coil portions 5 1 ,. 5n , and the other rows may be formed by repeating the replacement every round of the flat wire 5a and winding the flat wires 5a sequentially in the row direction in the same manner as the prior art. . Further, a part of the plurality of layers of the stator winding 5 is constituted by the spiral coil portion 5 k (where 1 ≦ k ≦ n−1), and the other layers are formed in the same manner as in the above-described prior art, and the rectangular wire 5a. It may be formed by repeating the permutation and winding each layer in which the rectangular wires 5a are sequentially arranged in the column direction so as to be stacked by the permutation.

以下、本発明の実施例3に係るステータ巻線について添付図面を参照しながら説明する。
この実施例3に係るステータ10は、例えばU相,V相,W相の3相のモータに具備され、例えば図8に示すように、円環状のヨーク11の内周部で周方向に沿って所定間隔をおいた位置から径方向内方に向かい突出する複数、例えば9個の第1〜第9突極部T1,…,T9と、各U,V,W相巻線12U,12V,12Wからなるステータ巻線13とを備えて構成されている。
例えば図9に示すように、U相巻線12Uは、互いに並列接続された複数、例えば3個の第1〜第3U相巻線U,U,Uを備え、V相巻線12Vは、互いに並列接続された複数、例えば3個の第1〜第3V相巻線V,V,Vを備え、W相巻線12Wは、互いに並列接続された複数、例えば3個の第1〜第3W相巻線W,W,Wを備えて構成されている。
Hereinafter, a stator winding according to a third embodiment of the present invention will be described with reference to the accompanying drawings.
The stator 10 according to the third embodiment is provided in, for example, a three-phase motor of U phase, V phase, and W phase, and for example, as shown in FIG. A plurality of, for example, nine first to ninth salient pole portions T1,..., T9 projecting radially inward from the predetermined intervals, and the U, V, and W phase windings 12U, 12V, And a stator winding 13 made of 12 W.
For example, as shown in FIG. 9, the U-phase winding 12U includes a plurality of, for example, three first to third U-phase windings U 1 , U 2 , U 3 connected in parallel to each other, and a V-phase winding 12V Includes a plurality of, for example, three first to third V-phase windings V 1 , V 2 , V 3 connected in parallel to each other, and the W-phase winding 12W includes a plurality of, for example, three, connected in parallel to each other The first to third W-phase windings W 1 , W 2 and W 3 are provided.

そして、第1U相巻線Uは各突極部T1,T4,T7に巻回される各巻線U(T1),U(T4),U(T7)が直列に接続されて構成され、第2U相巻線Uは各突極部T1,T4,T7に巻回される各巻線U(T1),U(T4),U(T7)が直列に接続されて構成され、第3U相巻線Uは各突極部T1,T4,T7に巻回される各巻線U(T1),U(T4),U(T7)が直列に接続されて構成されている。
また、第1V相巻線Vは各突極部T2,T5,T8に巻回される各巻線V(T2),V(T5),V(T8)が直列に接続されて構成され、第2V相巻線Vは各突極部T2,T5,T8に巻回される各巻線V(T2),V(T5),V(T8)が直列に接続されて構成され、第3V相巻線Vは各突極部T2,T5,T8に巻回される各巻線V(T2),V(T5),V(T8)が直列に接続されて構成されている。
また、第1W相巻線Wは各突極部T3,T6,T9に巻回される各巻線W(T3),W(T6),W(T9)が直列に接続されて構成され、第2W相巻線Wは各突極部T3,T6,T9に巻回される各巻線W(T3),W(T6),W(T9)が直列に接続されて構成され、第3W相巻線Wは各突極部T3,T6,T9に巻回される各巻線W(T3),W(T6),W(T9)が直列に接続されて構成されている。
Then, the 1U-phase winding U 1 each salient pole portion T1, T4, T7 wound windings U 1 that is wound (T1), U 1 (T4 ), U 1 (T7) is connected to the series arrangement is, the 2U-phase winding U 2 each salient pole portion T1, T4, T7 wound windings U 2 which is wound (T1), U 2 (T4 ), U 2 (T7) is connected to the series arrangement is, the 3U phase winding U 3 each winding U 3 to wound each salient pole portion T1, T4, T7 wound (T1), U 3 (T4 ), U 3 (T7) is connected to the series arrangement Has been.
Further, the 1V phase winding V 1 was each salient pole portion T2, T5, T8 wound winding V 1 to be rotated (T2), V 1 (T5 ), V 1 (T8) is connected to the series arrangement is, the 2V phase winding V 2 are each salient pole portion T2, T5, T8 wound windings V 2 to be rotated (T2), V 2 (T5 ), V 2 (T8) is connected to the series arrangement is, the 3V phase winding V 3 are each salient pole portion T2, T5, T8 wound windings V 3 to be rotated (T2), V 3 (T5 ), V 3 (T8) is connected to the series arrangement Has been.
Further, the 1W phase winding W 1 each salient pole portion T3, T6, T9 wound windings W 1 that is wound (T3), W 1 (T6 ), W 1 (T9) is connected to the series arrangement is, the 2W phase winding W 2 each salient pole portion T3, T6, T9 wound windings W 2 that is rotated (T3), W 2 (T6 ), W 2 (T9) is connected to the series arrangement is, the 3W phase winding W 3 being each winding W 3 that is rotated each salient pole portion T3, T6, T9 wound (T3), W 3 (T6 ), W 3 (T9) is connected to the series arrangement Has been.

そして、各突極部T1,…,T9毎の総巻数は同等となるように設定されている。
例えばU相巻線12Uでは、iを1≦i≦3の任意の自然数とし、各巻線U(T1),U(T4),U(T7)の巻数をN{U(T1)},N{U(T4)},N{U(T7)}とした場合、下記数式(1)に示すように、第1突極部T1と第4突極部T4と第7突極部T7とにおける各総巻数が同等となるように設定されている。
同様にして、例えばV相巻線12Vでは、jを1≦j≦3の任意の自然数とし、各巻線V(T2),V(T5),V(T8)の巻数をN{V(T2)},N{V(T5)},N{V(T8)}とした場合、下記数式(2)に示すように、第2突極部T2と第5突極部T5と第8突極部T8との各総巻数が同等となるように設定されている。
同様にして、例えばW相巻線12Wでは、kを1≦k≦3の任意の自然数とし、各巻線W(T3),W(T6),W(T9)の巻数をN{W(T3)},N{W(T6)},N{W(T9)}とした場合、下記数式(3)に示すように、第3突極部T3と第6突極部T6と第9突極部T9との各総巻数が同等となるように設定されている。
The total number of turns for each salient pole portion T1,..., T9 is set to be equal.
For example, in the U-phase winding 12U, i is an arbitrary natural number of 1 ≦ i ≦ 3, and the number of turns of each winding U i (T1), U i (T4), U i (T7) is N {U i (T1). }, N {U i (T4)}, N {U i (T7)}, the first salient pole portion T1, the fourth salient pole portion T4, and the seventh salient portion as shown in the following formula (1). The total number of turns in the pole portion T7 is set to be equal.
Similarly, for example, in the V-phase winding 12V, j is an arbitrary natural number of 1 ≦ j ≦ 3, and the number of turns of each winding V j (T2), V j (T5), V j (T8) is N {V j (T2)}, N { Vj (T5)}, N { Vj (T8)}, the second salient pole portion T2 and the fifth salient pole portion T5 as shown in the following formula (2). And the eighth salient pole portion T8 are set to have the same total number of turns.
Similarly, in the W-phase winding 12W, for example, k is an arbitrary natural number of 1 ≦ k ≦ 3, and the number of turns of each winding W k (T3), W k (T6), W k (T9) is N {W k (T3)}, N {W k (T6)}, N {W k (T9)}, the third salient pole portion T3 and the sixth salient pole portion T6 as shown in the following formula (3). And the ninth salient pole portion T9 are set to have the same total number of turns.

Figure 2005102477
Figure 2005102477

Figure 2005102477
Figure 2005102477

Figure 2005102477
Figure 2005102477

さらに、互いに並列接続された3つの第1〜第3U相巻線U,U,Uの各インピーダンスが同等となるように、また、互いに並列接続された3つの第1〜第3V相巻線V,V,Vの各インピーダンスが同等となるように、また、互いに並列接続された3つの第1〜第3W相巻線W,W,Wの各インピーダンスが同等となるようにして、各突極部T1,…,T9での各第1〜第3U相巻線U,U,Uおよび各第1〜第3V相巻線V,V,Vおよび各第1〜第3W相巻線W,W,Wの巻数が所定の巻数に設定されている。
例えばU相巻線12Uでは、下記数式(4)に示すように、第1〜第3U相巻線U,U,Uの各総巻数が同等となるように設定され、例えばV相巻線12Vでは、下記数式(5)に示すように、第1〜第3V相巻線V,V,Vの各総巻数が同等となるように設定され、例えばW相巻線12Wでは、下記数式(6)に示すように、第1〜第3W相巻線W,W,Wの各総巻数が同等となるように設定されている。
Further, the three first to third V-phases connected in parallel with each other so that the impedances of the three first to third U-phase windings U 1 , U 2 , U 3 connected in parallel are equal to each other. The impedances of the three first to third W-phase windings W 1 , W 2 , and W 3 connected in parallel to each other are equal so that the impedances of the windings V 1 , V 2 , and V 3 are equivalent. The first to third U-phase windings U 1 , U 2 , U 3 and the first to third V-phase windings V 1 , V 2 , and the like at the salient pole portions T1,. The number of turns of V 3 and each of the first to third W-phase windings W 1 , W 2 , W 3 is set to a predetermined number.
For example, in the U-phase winding 12U, as shown in the following formula (4), the total number of turns of the first to third U-phase windings U 1 , U 2 , U 3 is set to be equal to each other. In the winding 12V, as shown in the following formula (5), the total number of turns of the first to third V-phase windings V 1 , V 2 , V 3 is set to be equal, for example, the W-phase winding 12W Then, as shown in the following mathematical formula (6), the total number of turns of the first to third W-phase windings W 1 , W 2 , W 3 is set to be equal.

Figure 2005102477
Figure 2005102477

Figure 2005102477
Figure 2005102477

Figure 2005102477
Figure 2005102477

以上により、各U,V,W相巻線12U,12V,12Wにおいて、並列結線される各第1〜第3U相巻線U,U,Uおよび各第1〜第3V相巻線V,V,Vおよび各第1〜第3W相巻線W,W,Wの各突極部T1,…,T9での巻数を同数に限定する必要はなく、各突極部T1,…,T9毎の総巻数を並列結線の分割数(例えば図9に示すステータ10においては、「3」)の倍数以外の値に設定することが可能となる。
例えばU相巻線12Uにおいて、第1突極部T1と第4突極部T4と第7突極部T7との各総巻数を42に設定し、各突極部T1,T4,T7での第1〜第3U相巻線U,U,Uの各巻数N{U(T1)},N{U(T4)},N{U(T7)}を互いに異なる値に設定した場合には、各巻数N{U(T1)},N{U(T4)},N{U(T7)}を、例えば下記数式(7)に示すように設定することができる。
また、第1突極部T1と第4突極部T4と第7突極部T7との各総巻数を、並列結線の分割数(例えば、3)の倍数以外の値である50に設定した場合には、各巻数N{U(T1)},N{U(T4)},N{U(T7)}を、例えば下記数式(8)に示すように設定することができる。
As described above, in each of the U, V, and W phase windings 12U, 12V, and 12W, the first to third U phase windings U 1 , U 2 , U 3 and the first to third V phase windings connected in parallel. V 1, V 2, V 3 and the first to 3W phase winding W 1, W 2, W each salient pole portion T1 of 3, ..., need not be limited to the same number of turns at T9, the butt The total number of turns for each of the pole portions T1,..., T9 can be set to a value other than a multiple of the number of divisions of the parallel connection (for example, “3” in the stator 10 shown in FIG. 9).
For example, in the U-phase winding 12U, the total number of turns of the first salient pole portion T1, the fourth salient pole portion T4, and the seventh salient pole portion T7 is set to 42, and each salient pole portion T1, T4, T7 The number of turns N {U i (T1)}, N {U i (T4)}, and N {U i (T7)} of the first to third U-phase windings U 1 , U 2 , U 3 are set to different values. When set, the number of turns N {U i (T1)}, N {U i (T4)}, N {U i (T7)} can be set as shown in the following formula (7), for example. it can.
Further, the total number of turns of the first salient pole portion T1, the fourth salient pole portion T4, and the seventh salient pole portion T7 is set to 50, which is a value other than a multiple of the number of divisions of the parallel connection (for example, 3). In this case, the number of turns N {U i (T1)}, N {U i (T4)}, and N {U i (T7)} can be set, for example, as shown in the following formula (8).

Figure 2005102477
Figure 2005102477

Figure 2005102477
Figure 2005102477

そして、例えば図10に示すように、各突極部T1,…,T9において、第1〜第3U相巻線U,U,Uおよび第1〜第3V相巻線V,V,Vおよび第1〜第3W相巻線W,W,Wは、各巻数に応じて列方向の所定位置に巻回されるようになっており、例えば上記数式(8)に示すように、各突極部T1,…,T9毎の総巻数である50を、20巻数,17巻数,13巻数に3分割した場合、各突極部T1,…,T9の基端部(つまり、径方向においてヨーク11との接続部近傍)には、20巻数の巻線が巻回され、央部には17巻数の巻線が巻回され、先端部(つまり、径方向内方の端部)には13巻数の巻線が巻回されるようになっている。
これにより、例えば図11に示すU相巻線12Uにおいて、第1突極部T1には、基端部に第1U相巻線Uが20巻数にて巻回され、央部に第2U相巻線Uが17巻数にて巻回され、先端部に第3U相巻線Uが13巻数にて巻回されている。そして、第4突極部T4には、基端部に第2U相巻線Uが20巻数にて巻回され、央部に第3U相巻線Uが17巻数にて巻回され、先端部に第1U相巻線Uが13巻数にて巻回されている。そして、第7突極部T7には、基端部に第3U相巻線Uが20巻数にて巻回され、央部に第1U相巻線Uが17巻数にて巻回され、先端部に第2U相巻線Uが13巻数にて巻回されている。
For example, as shown in FIG. 10, in each salient pole portion T1,..., T9, the first to third U-phase windings U 1 , U 2 , U 3 and the first to third V-phase windings V 1 , V 3 2 , V 3 and the first to third W-phase windings W 1 , W 2 , W 3 are wound at predetermined positions in the column direction according to the number of turns, for example, the above formula (8) As shown in FIG. 5, when 50, which is the total number of turns for each salient pole part T1,..., T9, is divided into three parts of 20 turns, 17 turns, and 13 turns, the base end part of each salient pole part T1,. (That is, in the vicinity of the connection portion with the yoke 11 in the radial direction), 20 windings are wound, and 17 windings are wound in the central portion, and the tip (that is, radially inward) 13 ends of the number of windings are wound around the end.
Thus, in the U-phase winding 12U shown in FIG. 11, for example, the first salient pole portion T1, the 1U-phase winding U 1 is wound by 20 turns at the proximal end portion, the 2U phase central portion winding U 2 is wound at 17 turns, the 3U phase winding U 3 is wound by 13 turns to the tip. Then, in the fourth salient pole portion T4, the 2U-phase winding U 2 is wound at 20 turns on the proximal end portion, a 3U phase winding U 3 is wound by 17 turns to the central unit, the 1U phase winding U 1 is wound by 13 turns to the tip. Then, in the seventh salient pole portion T7, the 3U phase winding U 3 is wound by 20 turns at the proximal end portion, the 1U-phase winding U 1 is wound by 17 turns to the central unit, The 2nd U-phase coil | winding U2 is wound by 13 turns at the front-end | tip part.

各突極部T1,…,T9において、各第1〜第3U相巻線U,U,Uおよび各第1〜第3V相巻線V,V,Vおよび各第1〜第3W相巻線W,W,Wは、各単一の平角線5aにより構成され、複数の渦状コイル部5,…,5(nは任意の自然数であって、例えば上記数式(7)および図11ではn=4)を備えて構成されている。各渦状コイル部5,…,5は、平角線5aが各突極部T1,…,T9の太さ方向に複数層を成すように渦巻状に巻回されて形成され、複数の渦状コイル部5,…,5が互いの中心軸を同軸として各突極部T1,…,T9の径方向に複数列を成すように配列されている。
そして、各突極部T1,…,T9の径方向で隣り合う渦状コイル部5,5(m+1)同士(ただし、1≦m≦n−1)は、一方および他方の渦状コイル部5,5(m+1)の内周側端部同士、あるいは、一方および他方の渦状コイル部5,5(m+1)の外周側端部同士が接続され、これらの内周側接続部および外周側接続部は単一の平角線5aの適宜の部位とされている。
そして、各第1〜第3U相巻線U,U,Uおよび各第1〜第3V相巻線V,V,Vおよび各第1〜第3W相巻線W,W,Wにおいて、各単一の平角線5aの両端部は最外層に配置されて外周側端部となるように構成されている。
In each salient pole portion T1,..., T9, the first to third U-phase windings U 1 , U 2 , U 3 and the first to third V-phase windings V 1 , V 2 , V 3 and the first To the third W-phase windings W 1 , W 2 , W 3 are each constituted by a single rectangular wire 5a, and a plurality of spiral coil portions 5 1 ,..., 5 n (n is an arbitrary natural number, for example, The above equation (7) and n = 4 in FIG. 11 are provided. Each of the spiral coil portions 5 1 ,..., 5 n is formed by being spirally wound so that the flat wire 5a forms a plurality of layers in the thickness direction of each salient pole portion T1,. The coil portions 5 1 ,..., 5 n are arranged so as to form a plurality of rows in the radial direction of the salient pole portions T 1,.
Then, the spiral coil portions 5 m , 5 (m + 1) adjacent to each other in the radial direction of the salient pole portions T1,..., T9 (where 1 ≦ m ≦ n−1) are one and the other spiral coil portions 5 m. , 5 (m + 1) inner peripheral side ends or one and the other spiral coil portions 5 m , 5 (m + 1) outer peripheral side end portions are connected to each other, and these inner peripheral side connecting portion and outer peripheral side connection are connected to each other. The part is an appropriate part of a single flat wire 5a.
The first to third U-phase windings U 1 , U 2 , U 3, the first to third V-phase windings V 1 , V 2 , V 3 and the first to third W-phase windings W 1 , In W 2 and W 3 , both end portions of each single flat wire 5 a are arranged in the outermost layer and are configured to be outer end portions.

この実施例3に係るステータ10において、各突極部T1,…,T9間における同一相の平角線5a,5a同士は、ステータ10の軸方向に沿った両端部の外周部および内周部に配設された接続用の平角線5aを介して接続されている。
例えば図11から図13に示すように、ステータ10の軸方向に沿った両端部うち、一方を表側の端部とし、他方を裏側の端部とした場合に、U相巻線12Uに対して、第1U相巻線Uに対する接続用の平角線5aはステータ10の表側の端部の外周部に配設され、第2U相巻線Uに対する接続用の平角線5aはステータ10の裏側の端部の外周部に配設され、第3U相巻線Uに対する接続用の平角線5aはステータ10の表側の端部の内周部に配設されている。
これらの各突極部T1,…,T9間での接続用の平角線5aは、例えば、互いに直列接続される同一相の各平角線5a,5aが巻回された突極部同士に対し、一方の突極部に巻回された平角線5aが、いわば他方の突極部まで引き回されたものであって、一方の突極部に巻回された後に他方の突極部に到るまで配設された平角線5aの端部と、他方の突極部に巻回された平角線5aの端部とは、例えば溶接等により接続されている。
In the stator 10 according to the third embodiment, the rectangular wires 5a, 5a having the same phase between the salient pole portions T1,..., T9 are located on the outer peripheral portion and the inner peripheral portion at both ends along the axial direction of the stator 10. They are connected via a connecting rectangular wire 5a.
For example, as shown in FIGS. 11 to 13, when one of the both end portions along the axial direction of the stator 10 is the front end portion and the other is the back end portion, the U-phase winding 12U The rectangular wire 5a for connection to the first U-phase winding U1 is disposed on the outer peripheral portion of the front end portion of the stator 10, and the rectangular wire 5a for connection to the second U-phase winding U2 is the back side of the stator 10. The rectangular wire 5a for connection to the third U-phase winding U3 is disposed on the inner peripheral portion of the front end portion of the stator 10.
The flat wire 5a for connection between each of these salient pole portions T1,..., T9 is, for example, the salient pole portions around which the same phase rectangular wires 5a, 5a connected in series are wound. The flat wire 5a wound around one salient pole part is, so to speak, drawn to the other salient pole part, and reaches the other salient pole part after being wound around one salient pole part. The end of the flat wire 5a disposed up to and the end of the flat wire 5a wound around the other salient pole are connected by, for example, welding.

例えば図12および図13に示すU相巻線12Uにおいて、通電装置(図示略)に接続されて第1U相巻線Uに第1U相電流IU1を通電させる通電用の平角線5aU1(E)は、ステータ10の表側の外周部10aに配設され、この通電用の平角線5aU1(E)の端部が第1突極部T1の基端部に到達するように配置されている。そして、第1突極部T1において、基端部に巻回された第1U相巻線U(T1)をなす単一の平角線5aU1(T1)の一方の端部が、基端部近傍の接合部21aにおいて、通電用の平角線5aU1(E)の端部に接合されている。さらに、この平角線5aU1(T1)は、他方の端部が第4突極部T4の基端部に到達するようにして、ステータ10の表側の外周部10aに配設されている。
また、通電装置(図示略)に接続されて第2U相巻線Uに第2U相電流IU2を通電させる通電用の平角線5aU2(E)は、ステータ10の裏側の外周部10bに配設され、この通電用の平角線5aU2(E)の端部が第1突極部T1の基端部に到達するように配置されている。そして、第1突極部T1において、央部に巻回された第2U相巻線U(T1)をなす単一の平角線5aU2(T1)の一方の端部が、基端部近傍の接合部21bにおいて、通電用の平角線5aU2(E)の端部に接合されている。さらに、この平角線5aU2(T1)は、他方の端部が第4突極部T4の基端部に到達するようにして、ステータ10の裏側の外周部10bに配設されている。
また、通電装置(図示略)に接続されて第3U相巻線Uに第3U相電流IU3を通電させる通電用の平角線5aU3(E)は、ステータ10の表側の内周部10cに配設され、この通電用の平角線5aU3(E)の端部が第1突極部T1の先端部に到達するように配置されている。そして、第1突極部T1において、先端部に巻回された第3U相巻線U(T1)をなす単一の平角線5aU3(T1)の一方の端部が、先端部近傍の接合部21cにおいて、通電用の平角線5aU3(E)の端部に接合されている。さらに、この平角線5aU3(T1)は、他方の端部が第4突極部T4の先端部に到達するようにして、ステータ10の表側の内周部10cに配設されている。
For example, FIG. 12 and the U-phase winding 12U shown in FIG. 13, current applying apparatus flat wire 5a for current energizing the first 1U phase current I U1 to the 1U-phase winding U 1 is connected to a (not shown) U1 ( E) is arranged on the outer peripheral portion 10a on the front side of the stator 10, and is arranged so that the end of this conducting rectangular wire 5a U1 (E) reaches the base end of the first salient pole portion T1. Yes. In the first salient pole portion T1, one end portion of the single flat wire 5a U1 (T1) forming the first U-phase winding U 1 (T1) wound around the base end portion is the base end portion. In the nearby joining part 21a, it is joined to the end part of the conducting rectangular wire 5a U1 (E) . Further, the flat wire 5a U1 (T1) is disposed on the outer peripheral portion 10a on the front side of the stator 10 so that the other end portion reaches the base end portion of the fourth salient pole portion T4.
Further, the energization device flat wire 5a for current energizing the first 2U phase current I U2 to the 2U phase winding U 2 is connected to a (not shown) U2 (E) is an outer peripheral portion 10b of the rear side of the stator 10 It is arrange | positioned and it arrange | positions so that the edge part of this rectangular wire 5a U2 (E) for electricity supply may reach | attain the base end part of 1st salient pole part T1. In the first salient pole portion T1, one end portion of the single rectangular wire 5a U2 (T1) forming the second U-phase winding U 2 (T1) wound around the central portion is in the vicinity of the base end portion. Is joined to the end of the conducting rectangular wire 5a U2 (E) . Further, the flat wire 5a U2 (T1) is disposed on the outer peripheral portion 10b on the back side of the stator 10 so that the other end portion reaches the base end portion of the fourth salient pole portion T4.
Further, a rectangular wire 5a U3 (E) for energization that is connected to an energization device (not shown) and energizes the third U-phase winding U3 with the third U-phase current IU3 is an inner peripheral portion 10c on the front side of the stator 10. The end portion of the rectangular wire 5a U3 (E) for energization is disposed so as to reach the tip end portion of the first salient pole portion T1. In the first salient pole portion T1, one end portion of the single rectangular wire 5a U3 (T1) forming the third U-phase winding U 3 (T1) wound around the tip portion is in the vicinity of the tip portion. In the joining part 21c, it joins to the edge part of the rectangular wire 5a U3 (E) for electricity supply. Further, the flat wire 5a U3 (T1) is disposed on the inner peripheral portion 10c on the front side of the stator 10 so that the other end portion reaches the tip end portion of the fourth salient pole portion T4.

そして、第4突極部T4において、先端部に巻回された第1U相巻線U(T4)をなす単一の平角線5aU1(T4)の一方の端部が、基端部近傍の接合部24aにおいて、第1突極部T1から伸びる平角線5aU1(T1)の端部に接合されている。さらに、この平角線5aU1(T4)は、他方の端部が第7突極部T7の基端部に到達するようにして、ステータ10の表側の外周部10aに配設されている。
また、第4突極部T4において、基端部に巻回された第2U相巻線U(T4)をなす単一の平角線5aU2(T4)の一方の端部が、基端部近傍の接合部24bにおいて、第1突極部T1から伸びる平角線5aU2(T1)の端部に接合されている。さらに、この平角線5aU2(T4)は、他方の端部が第7突極部T7の基端部に到達するようにして、ステータ10の裏側の外周部10bに配設されている。
また、第4突極部T4において、央部に巻回された第3U相巻線U(T4)をなす単一の平角線5aU3(T4)の一方の端部が、先端部近傍の接合部24cにおいて、第1突極部T1から伸びる平角線5aU3(T1)の端部に接合されている。さらに、この平角線5aU3(T4)は、他方の端部が第7突極部T7の先端部に到達するようにして、ステータ10の表側の内周部10cに配設されている。
In the fourth salient pole portion T4, one end portion of the single rectangular wire 5a U1 (T4) forming the first U-phase winding U 1 (T4) wound around the distal end portion is in the vicinity of the proximal end portion. Are joined to the ends of the flat wire 5a U1 (T1) extending from the first salient pole portion T1. Further, the flat wire 5a U1 (T4) is disposed on the outer peripheral portion 10a on the front side of the stator 10 so that the other end portion reaches the base end portion of the seventh salient pole portion T7.
Further, in the fourth salient pole portion T4, one end portion of the single flat wire 5a U2 (T4) forming the second U-phase winding U 2 (T4) wound around the base end portion is the base end portion. In the adjacent joint 24b, the joint is joined to the end of the flat wire 5a U2 (T1) extending from the first salient pole T1. Further, the flat wire 5a U2 (T4) is disposed on the outer peripheral portion 10b on the back side of the stator 10 so that the other end portion reaches the base end portion of the seventh salient pole portion T7.
In addition, in the fourth salient pole portion T4, one end portion of the single rectangular wire 5a U3 (T4) forming the third U-phase winding U 3 (T4) wound in the central portion is near the tip portion. The joint 24c is joined to the end of the flat wire 5a U3 (T1) extending from the first salient pole T1. Further, the flat wire 5a U3 (T4) is arranged on the inner peripheral portion 10c on the front side of the stator 10 so that the other end portion reaches the tip end portion of the seventh salient pole portion T7.

そして、第7突極部T7において、例えば図14に示すように、央部に巻回された第1U相巻線U(T7)をなす単一の平角線5aU1(T7)の一方の端部が、基端部近傍の接合部27aにおいて、第4突極部T4から伸びる平角線5aU1(T4)の端部に接合されている。さらに、この平角線5aU1(T7)は、他方の端部が中点に接続されるようにして、ステータ10の表側の外周部10aに配設されている。
また、第7突極部T7において、先端部に巻回された第2U相巻線U(T7)をなす単一の平角線5aU2(T7)の一方の端部が、基端部近傍の接合部27bにおいて、第4突極部T4から伸びる平角線5aU2(T4)の端部に接合されている。さらに、この平角線5aU2(T7)は、他方の端部が中点に接続されるようにして、ステータ10の裏側の外周部10bに配設されている。
また、第7突極部T7において、基端部に巻回された第3U相巻線U(T7)をなす単一の平角線5aU3(T7)の一方の端部が、先端部近傍の接合部27cにおいて、第4突極部T4から伸びる平角線5aU3(T4)の端部に接合されている。さらに、この平角線5aU3(T7)は、他方の端部が中点に接続されるようにして、ステータ10の表側の内周部10cに配設されている。
In the seventh salient pole portion T7, for example, as shown in FIG. 14, one of the single rectangular wires 5a U1 (T7) forming the first U-phase winding U 1 (T7) wound around the central portion. The end portion is joined to the end portion of the flat wire 5a U1 (T4) extending from the fourth salient pole portion T4 at the joint portion 27a in the vicinity of the base end portion. Further, the rectangular wire 5a U1 (T7) is disposed on the outer peripheral portion 10a on the front side of the stator 10 so that the other end portion is connected to the midpoint.
In addition, in the seventh salient pole portion T7, one end portion of the single rectangular wire 5a U2 (T7) forming the second U-phase winding U 2 (T7) wound around the distal end portion is in the vicinity of the proximal end portion. Are joined to the ends of the flat wire 5a U2 (T4) extending from the fourth salient pole part T4. Further, the flat wire 5a U2 (T7) is disposed on the outer peripheral portion 10b on the back side of the stator 10 so that the other end is connected to the midpoint.
In addition, in the seventh salient pole portion T7, one end portion of the single rectangular wire 5a U3 (T7) forming the third U-phase winding U 3 (T7) wound around the base end portion is in the vicinity of the distal end portion. Are joined to the ends of the flat wire 5a U3 (T4) extending from the fourth salient pole portion T4. Further, the rectangular wire 5a U3 (T7) is disposed on the inner peripheral portion 10c on the front side of the stator 10 so that the other end is connected to the midpoint.

上述したように、実施例3によるステータ巻線13によれば、各第1〜第9突極部T1,…,T9毎に互いに並列関係にある各巻線(例えば、各巻線U(T1)、1≦i≦3等)を設け、第1〜第9突極部T1,…,T9間において各第1〜第9突極部T1,…,T9に具備される適宜の巻線同士(例えば、巻線U(T1),U(T4),U(T7)同士等)を直列接続したことにより、複数の第1〜第9突極部T1,…,T9における互いの通電電流の電流値が同等の値となり、例えば各第1〜第9突極部T1,…,T9毎の平角線5aの総巻数が所定値に設定されている状態で、例えば図21に示すように各突極部T1,…,T9毎に独立した集中巻きの集中巻きコイルを同一相毎に並列接続する場合に比べて、各第1〜第9突極部T1,…,T9毎の平角線5aの抵抗発熱に起因する温度上昇が第1〜第9突極部T1,…,T9間において過剰にばらついてしまうことを防止することができる。
しかも、例えば各第1〜第9突極部T1,…,T9毎の平角線5aの総巻数が所定値に設定されている状態で、各突極部T1,…,T9毎に単一の平角線5aが集中巻きされた集中巻きコイルを同一相毎に直列接続する場合に比べて、ステータ巻線13の総抵抗値を低減させることができる。これにより、所望のトルクを発生させるために要する通電量を低減し、モータを効率よく作動させることができると共に、平角線5aの断面積を低減することができる。
また、複数の相巻線U,U,U、V,V,V、W,W,Wの互いのインピーダンスが同等となるように設定されることで、同一相の複数の相巻線U,U,U、V,V,V、W,W,W間を循環するような還流電流が発生してしまうことを防止することができ、各突極部T1,…,T9毎の総巻数が同等となるように、つまり各突極部T1,…,T9毎に設けられた巻線(例えば、各巻線U(T1)、1≦i≦3等)の各インピーダンスを合成した合成インピーダンスに対して、突極部T1,…,T9の互いの合成インピーダンスが同等となるように設定されることで、過剰なトルク変動が発生してしまうことを防止することができる。
As described above, according to the stator winding 13 according to the third embodiment, each winding (for example, each winding U i (T1)) in parallel with each other for each of the first to ninth salient pole portions T1,. 1 ≦ i ≦ 3, etc.), and appropriate windings provided in the first to ninth salient pole portions T1,..., T9 between the first to ninth salient pole portions T1,. For example, the windings U i (T1), U i (T4), U i (T7), etc.) are connected in series so that the plurality of first to ninth salient pole portions T1,. As shown in FIG. 21, for example, the current values of the currents are equal to each other, and the total number of turns of the rectangular wire 5a for each of the first to ninth salient pole portions T1,. Compared to a case where concentrated winding coils of independent winding are provided for each salient pole portion T1,. It is possible to prevent the temperature rise caused by the resistance heating of the flat wire 5a for each of the ninth salient pole portions T1,..., T9 from excessively varying between the first to ninth salient pole portions T1,. .
Moreover, for example, in a state where the total number of turns of the flat wire 5a for each of the first to ninth salient pole portions T1,..., T9 is set to a predetermined value, a single value is provided for each salient pole portion T1,. The total resistance value of the stator winding 13 can be reduced as compared with the case where the concentrated winding coils around which the rectangular wires 5a are concentrated are connected in series for each same phase. Thereby, the energization amount required for generating a desired torque can be reduced, the motor can be operated efficiently, and the cross-sectional area of the flat wire 5a can be reduced.
In addition, the plurality of phase windings U 1 , U 2 , U 3 , V 1 , V 2 , V 3 , W 1 , W 2 , W 3 are set to have the same impedance so that they are the same. Prevents a return current from circulating between the phase windings U 1 , U 2 , U 3 , V 1 , V 2 , V 3 , W 1 , W 2 , W 3 of the phase. it can, each salient pole portion T1, ..., such that the total number of turns of each T9 is equal, i.e. each salient pole portion T1, ..., windings provided for each T9 (for example, each winding U i (T1 ) Excessive torque fluctuation by setting the combined impedance of salient pole portions T1,..., T9 to be equal to the combined impedance obtained by combining the impedances of 1 ≦ i ≦ 3) Can be prevented from occurring.

なお、この実施例3では、各U,V,W相巻線12U,12V,12Wを、互いに並列接続された3つの第1〜第3U相巻線U,U,Uと、第1〜第3V相巻線V,V,Vと、第1〜第3W相巻線W,W,Wとを備えて構成したが、これに限定されず、例えば図15に示す実施例3の第1変形例のように、各U,V,W相巻線12U,12V,12Wを、互いに並列接続された2つの第1,第2U相巻線U,Uと、第1,第2V相巻線V,Vと、第1,第2W相巻線W,Wとを備えて構成してもよいし、例えば並列接続された4個以上の任意の自然数m個の第1〜第mU相巻線U,…,Uと、第1〜第mV相巻線V,…,Vと、第1〜第mW相巻線W,…,Wとを備えて構成してもよい。
また、この実施例3では、ステータ10は9個の第1〜第9突極部T1,…,T9を備えるとしたが、これに限定されず、例えば図16〜図18に示す実施例3の第2〜第4変形例のように、例えばステータ10を12個の第1〜第12突極部T1,…,T12を備えて構成してもよいし、例えば図19および図20に示す実施例3の第5変形例のように、例えばステータ10を18個の第1〜第18突極部T1,…,T18を備えて構成してもよいし、その他の任意の自然数m個の第1〜第m突極部T1,…,Tmを備えて構成してもよい。
さらに、この実施例3では、例えば図11に示すように、各第1〜第3U相巻線U,U,U毎、および、各第1〜第3V相巻線V,V,V毎、および、各第1〜第3W相巻線W,W,W毎に同等数nの渦状コイル部5,…,5(nは任意の自然数であって、例えばn=4)を備えるとしたが、これに限定されず、各第1〜第3U相巻線U,U,U毎、および、各第1〜第3V相巻線V,V,V毎、および、各第1〜第3W相巻線W,W,W毎に異なる数の渦状コイル部を備えてもよい。例えば、各第1〜第3U相巻線U,U,Uに対しては、第1U相巻線Uを複数pの渦状コイル部5,…,5を(pは任意の自然数)を備えて構成し、第2U相巻線Uを複数qの渦状コイル部5,…,5を(qは任意の自然数)を備えて構成し、第3U相巻線Uを複数rの渦状コイル部5,…,5を(rは任意の自然数)を備えて構成する。
In the third embodiment, each U, V, W phase winding 12U, 12V, 12W is connected to three first to third U phase windings U 1 , U 2 , U 3 connected in parallel with each other, The first to third V-phase windings V 1 , V 2 , and V 3 and the first to third W-phase windings W 1 , W 2 , and W 3 are configured, but not limited thereto, for example, FIG. as in the first modification of the third embodiment shown, each U, V, W-phase winding 12U, 12V, and 12W, 2 two first connected in parallel with each other, the 2U-phase winding U 1, U 2 And the first and second V-phase windings V 1 and V 2 and the first and second W-phase windings W 1 and W 2 , or for example, four or more connected in parallel Arbitrary natural number m of first to m-th U-phase windings U 1 ,..., U m , first to m- th V-phase windings V 1 to V m , and first to m- th W-phase windings W 1. , ..., and a W m It may form.
In the third embodiment, the stator 10 includes nine first to ninth salient pole portions T1,..., T9. However, the present invention is not limited to this, and for example, the third embodiment shown in FIGS. For example, the stator 10 may include twelve first to twelfth salient pole portions T1,..., T12, as shown in FIGS. As in the fifth modification of the third embodiment, for example, the stator 10 may include 18 first to 18th salient pole portions T1,..., T18, or any other natural number m. You may comprise including the 1st-m-th salient pole part T1, ..., Tm.
Further, in the third embodiment, for example, as shown in FIG. 11, each of the first to third U-phase windings U 1 , U 2 , U 3 and each of the first to third V-phase windings V 1 , V 3 2 , V 3 , and for each of the first to third W-phase windings W 1 , W 2 , W 3 , an equivalent number n of spiral coil portions 5 1 ,..., 5 n (n is an arbitrary natural number) , For example, n = 4), but is not limited thereto. For each of the first to third U-phase windings U 1 , U 2 , U 3 and each of the first to third V-phase windings V 1 , V 2 , V 3 , and the first to third W-phase windings W 1 , W 2 , W 3 may have different numbers of spiral coils. For example, each relative to the first to 3U phase winding U 1, U 2, U 3, spiral coil unit 5 1 of the first 1U phase winding U 1 more p, ..., a 5 p (p is an arbitrary , 5 q (q is an arbitrary natural number), and the second U-phase winding U 2 is configured with a plurality of q spiral coil portions 5 1 ,. 3 is composed of a plurality of r spiral coil portions 5 1 ,..., 5 r (where r is an arbitrary natural number).

ここで、例えば図16に示す第2変形例においては、各U,V,W相巻線12U,12V,12Wを、互いに並列接続された2つの第1,第2U相巻線U,Uと、第1,第2V相巻線V,Vと、第1,第2W相巻線W,Wとを備えて構成し、各第1,第2U相巻線U,Uを、各第1突極部T1と第4突極部T4と第7突極部T7と第10突極部T10とに所定巻数にて巻回し、各第1,第2V相巻線V,Vを、各第2突極部T2と第5突極部T5と第8突極部T8と第11突極部T11とに所定巻数にて巻回し、各第1,第2W相巻線W,Wを、各第3突極部T3と第6突極部T6と第9突極部T9と第12突極部T12とに所定巻数にて巻回し、いわば4直列2並列の結線状態となるように構成している。
また、例えば図17に示す第3変形例においては、各U,V,W相巻線12U,12V,12Wを、互いに並列接続された4つの第1〜第4U相巻線U,…,Uと、第1〜第4V相巻線V,…,Vと、第1〜第4W相巻線W,…,Wとを備えて構成し、第1〜第4U相巻線U,…,Uを、各第1突極部T1と第4突極部T4と第7突極部T7と第10突極部T10とに所定巻数にて巻回し、各第1〜第4V相巻線V,…,Vを、各第2突極部T2と第5突極部T5と第8突極部T8と第11突極部T11とに所定巻数にて巻回し、各第1〜第4W相巻線W,…,Wを、各第3突極部T3と第6突極部T6と第9突極部T9と第12突極部T12とに所定巻数にて巻回し、いわば4直列4並列の結線状態となるように構成している。
また、例えば図18に示す第4変形例においては、各U,V,W相巻線12U,12V,12Wを、各2つの巻線が並列接続された第1,2U相巻線U,Uと、第3,4U相巻線U,Uと、第1,2V相巻線V,Vと、第3,4V相巻線V,Vと、第1,2W相巻線W,Wと、第3,4W相巻線W,Wとを、さらに、同一相毎に並列接続して構成し、第1,第2U相巻線U,Uを各第1突極部T1と第7突極部T7とに所定巻数にて巻回し、第3,第4U相巻線U,Uを各第4突極部T4と第10突極部T10とに所定巻数にて巻回し、第1,第2V相巻線V,Vを各第2突極部T2と第8突極部T8とに所定巻数にて巻回し、第3,第4V相巻線V,Vを各第5突極部T5と第11突極部T11とに所定巻数にて巻回し、第1,第2W相巻線W,Wを各第3突極部T3と第9突極部T9とに所定巻数にて巻回し、第3,第4W相巻線W,Wを各第6突極部T6と第12突極部T12とに所定巻数にて巻回して構成している。
Here, for example, in the second modification shown in FIG. 16, the U, V, W-phase winding 12U, 12V, and 12W, 2 two first connected in parallel with each other, the 2U-phase winding U 1, U 2 , first and second V-phase windings V 1 and V 2, and first and second W-phase windings W 1 and W 2, and each first and second U-phase winding U 1 , U 2 is wound around each of the first salient pole portion T1, the fourth salient pole portion T4, the seventh salient pole portion T7, and the tenth salient pole portion T10 with a predetermined number of turns, and each of the first and second V-phase windings V 1 and V 2 are wound around each of the second salient pole portion T2, the fifth salient pole portion T5, the eighth salient pole portion T8, and the eleventh salient pole portion T11 with a predetermined number of turns. The phase windings W 1 and W 2 are wound around the third salient pole portion T3, the sixth salient pole portion T6, the ninth salient pole portion T9, and the twelfth salient pole portion T12 with a predetermined number of turns, so to speak, 4 series. Configure to be connected in parallel That.
For example, in the third modification shown in FIG. 17, each of the U, V, and W phase windings 12U, 12V, and 12W is connected to four first to fourth U phase windings U 1 ,. and U 4, first to 4V phase winding V 1, ..., and V 4, first to 4W phase winding W 1, ..., constituted by a W 4, first to 4U phase winding The wires U 1 ,..., U 4 are wound around the first salient pole portion T1, the fourth salient pole portion T4, the seventh salient pole portion T7, and the tenth salient pole portion T10 with a predetermined number of turns. ˜V4 windings V 1 ,..., V 4 are wound around each second salient pole portion T2, fifth salient pole portion T5, eighth salient pole portion T8, and eleventh salient pole portion T11 with a predetermined number of turns. Turn, each first to 4W phase winding W 1, ..., a W 4, in each third salient pole portion T3 and sixth salient pole portion T6 and ninth salient pole portion T9 and the 12 salient pole T12 Winding with a predetermined number of turns, so to speak, 4 series 4 parallel connection state It is configured to be.
For example, in the fourth modified example shown in FIG. 18, each U, V, W phase winding 12U, 12V, 12W is connected to each of the first, second U phase windings U 1 , two windings connected in parallel. U 2 , third and fourth U-phase windings U 3 and U 4 , first and second V-phase windings V 1 and V 2 , third and fourth V-phase windings V 3 and V 4, and first and second W The phase windings W 1 and W 2 and the third and fourth W-phase windings W 3 and W 4 are further connected in parallel for each same phase, and the first and second U-phase windings U 1 and U 2 is wound around each of the first salient pole portions T1 and the seventh salient pole portions T7 with a predetermined number of turns, and the third and fourth U-phase windings U 3 and U 4 are respectively wound on the fourth salient pole portions T4 and the tenth salient pole. The first and second V-phase windings V 1 and V 2 are wound around the second salient pole portion T2 and the eighth salient pole portion T8 at a predetermined number of turns, respectively. 3, the 4V phase winding V 3, V 4 each fifth salient pole portion T5 Wound at a predetermined number of turns and the 11 salient pole portion T11, first, winding at the 2W phase winding W 1, W 2 and each third salient pole portion T3 predetermined number of turns in the ninth salient pole T9 The third and fourth W-phase windings W 3 and W 4 are wound around the sixth salient pole portion T6 and the twelfth salient pole portion T12 with a predetermined number of turns.

また、例えば図19および図20に示す第5変形例においては、各U,V,W相巻線12U,12V,12Wを、各3つの巻線が並列接続された第1,2,3U相巻線U,U,Uと、第4,5,6U相巻線U,U,Uと、第1,2,3V相巻線V,V,Vと、第4,5,6V相巻線V,V,Vと、第1,2,3W相巻線W,W,Wと、第4,5,6W相巻線W,W,Wとを、さらに、同一相毎に並列接続して構成している。そして、第1,2,3U相巻線U,U,Uを各第1突極部T1と第7突極部T7と第13突極部T13とに所定巻数にて巻回し、第4,5,6U相巻線U,U,Uを各第4突極部T4と第10突極部T10と第16突極部T16とに所定巻数にて巻回し、第1,2,3V相巻線V,V,Vを各第2突極部T2と第8突極部T8と第14突極部T14とに所定巻数にて巻回し、第4,5,6V相巻線V,V,Vを各第5突極部T5と第11突極部T11と第17突極部T17とに所定巻数にて巻回し、第1,2,3W相巻線W,W,Wを各第3突極部T3と第9突極部T9と第15突極部T15とに所定巻数にて巻回し、第4,5,6W相巻線W,W,Wを各第6突極部T6と第12突極部T12と第18突極部T18とに所定巻数にて巻回している。
そして、例えば図20に示すように、各第1〜第6U相巻線U,…,Uと第1〜第6V相巻線V,…,Vと第1〜第6W相巻線W,…,Wとの一方の端部は、ターミナル部14の同一相の各接続端子部15U,15V,15Wを介して、通電装置(図示略)に接続され、他方の端部は中点16に接続されている。
For example, in the fifth modified example shown in FIGS. 19 and 20, each U, V, W phase winding 12U, 12V, 12W is connected to each of the first, second, 3U phases in which three windings are connected in parallel. Windings U 1 , U 2 , U 3 , fourth , fifth , and sixth U-phase windings U 4 , U 5 , U 6 , first , second , and third V-phase windings V 1 , V 2 , V 3 , Fourth , fifth , and sixth V-phase windings V 4 , V 5 , and V 6 , first , second , and third W-phase windings W 1 , W 2 , and W 3, and fourth , fifth , and sixth W-phase windings W 4 , W 5 and W 6 are further connected in parallel for each same phase. Then, the first , second , and third U-phase windings U 1 , U 2 , and U 3 are wound around the first salient pole portion T1, the seventh salient pole portion T7, and the thirteenth salient pole portion T13 with a predetermined number of turns, The fourth , fifth , and sixth U-phase windings U 4 , U 5 , and U 6 are wound around the fourth salient pole portion T4, the tenth salient pole portion T10, and the sixteenth salient pole portion T16 with a predetermined number of turns. , 2 and 3 V-phase windings V 1 , V 2 and V 3 are wound around the second salient pole part T 2, the eighth salient pole part T 8 and the 14th salient pole part T 14 with a predetermined number of turns. , 6 V-phase windings V 4 , V 5 , V 6 are wound around the fifth salient pole portion T5, the eleventh salient pole portion T11, and the seventeenth salient pole portion T17 with a predetermined number of turns, respectively. The phase windings W 1 , W 2 , and W 3 are wound around the third salient pole portion T3, the ninth salient pole portion T9, and the fifteenth salient pole portion T15 with a predetermined number of turns, and the fourth, fifth, and sixth W phase windings. line W 4, W 5, W 6 and between the sixth salient pole portion T6 first And wound at a predetermined number of turns to a salient pole portion T12 and the 18 salient pole portion T18.
For example, as shown in FIG. 20, the first to 6U phase winding U 1, ..., a 6V phase winding V 1 first to the U 6, ..., V 6 and first to 6W phase winding One end of each of the wires W 1 ,..., W 6 is connected to a current-carrying device (not shown) via the connection terminals 15U, 15V, 15W of the same phase of the terminal portion 14, and the other end. Is connected to the midpoint 16.

本発明の実施の形態に係るステータの側断面図である。It is a sectional side view of the stator which concerns on embodiment of this invention. 実施例1に係るステータ巻線の最外層を示す側面図である。3 is a side view showing an outermost layer of the stator winding according to Embodiment 1. FIG. 実施例1に係るステータ巻線の最内層を示すと共に、ステータ巻線の要部を破断して示す図である。FIG. 3 is a diagram illustrating an innermost layer of the stator winding according to the first embodiment and a main part of the stator winding broken away. 図4(a)〜(i)は絶縁ボビンのティース絶縁部に平角線を巻回して図2に示すステータ巻線を形成する各工程を示す図であって、各工程におけるステータ巻線の最外層を示すと共に、ステータ巻線の要部を破断して示す図である。4 (a) to 4 (i) are diagrams showing the respective steps of forming the stator winding shown in FIG. 2 by winding a rectangular wire around the teeth insulating portion of the insulating bobbin. It is a figure which fractures | ruptures and shows the principal part of a stator coil | winding while showing an outer layer. 実施例2に係るステータ巻線の最外層を示す側面図である。6 is a side view showing an outermost layer of a stator winding according to Embodiment 2. FIG. 実施例2に係るステータ巻線の最内層を示すと共に、ステータ巻線の要部を破断して示す図である。It is a figure which fractures | ruptures and shows the principal part of a stator winding while showing the innermost layer of the stator winding concerning Example 2. FIG. 図7(a)〜(i)は絶縁ボビンのティース絶縁部に平角線を巻回して図5に示すステータ巻線を形成する各工程を示す図であって、各工程におけるステータ巻線の最外層を示すと共に、ステータ巻線の要部を破断して示す図である。FIGS. 7A to 7I are views showing the respective steps of forming the stator winding shown in FIG. 5 by winding a rectangular wire around the teeth insulating portion of the insulating bobbin. It is a figure which fractures | ruptures and shows the principal part of a stator coil | winding while showing an outer layer. 実施例3に係るステータを模式的に示す図である。6 is a diagram schematically showing a stator according to Embodiment 3. FIG. 実施例3に係るステータ巻線の結線状態を示す図である。It is a figure which shows the connection state of the stator coil | winding which concerns on Example 3. FIG. 実施例3に係るステータ巻線の各突極部での巻装状態を示す図である。It is a figure which shows the winding state in each salient pole part of the stator coil | winding which concerns on Example 3. FIG. 実施例3に係るステータ巻線の各突極部でのU相巻線に対して最内層を示すと共に、ステータ巻線の要部を破断して示す図である。It is a figure which fractures | ruptures and shows the principal part of a stator winding while showing an innermost layer with respect to the U-phase winding in each salient pole part of the stator winding concerning Example 3. FIG. 実施例3に係るステータ巻線の最外層を、軸方向に沿って一方から他方に向かい見た側面図である。It is the side view which looked at the outermost layer of the stator winding concerning Example 3 from one side to the other along the axial direction. 実施例3に係るステータ巻線の最外層を、軸方向に沿って他方から一方に向かい見た側面図である。It is the side view which looked at the outermost layer of the stator winding concerning Example 3 from one side to the other along the axial direction. 図12に示すステータ巻線の突極部での接合部を拡大して示す図である。It is a figure which expands and shows the junction part in the salient pole part of the stator winding | winding shown in FIG. 実施例3の第1変形例に係るステータ巻線の結線状態を示す図である。FIG. 10 is a diagram showing a connection state of a stator winding according to a first modification of Example 3. 実施例3の第2変形例に係るステータ巻線の結線状態を示す図である。FIG. 10 is a diagram illustrating a connection state of stator windings according to a second modification of the third embodiment. 実施例3の第3変形例に係るステータ巻線の結線状態を示す図である。FIG. 10 is a diagram illustrating a connection state of stator windings according to a third modification of the third embodiment. 実施例3の第4変形例に係るステータ巻線の結線状態を示す図である。FIG. 10 is a diagram illustrating a connection state of stator windings according to a fourth modification of the third embodiment. 実施例3の第5変形例に係るステータ巻線の結線状態を示す図である。FIG. 10 is a diagram illustrating a connection state of stator windings according to a fifth modification of the third embodiment. 実施例3の第5変形例に係るステータの側面図である。FIG. 10 is a side view of a stator according to a fifth modification example of Embodiment 3. 従来技術の一例に係るステータ巻線の結線状態を示す図である。It is a figure which shows the connection state of the stator winding concerning an example of a prior art.

符号の説明Explanation of symbols

1 ステータ
4 絶縁ボビン
5,13 ステータ巻線
,…,5 渦状コイル部

1 stator 4 insulating bobbin 5 and 13 stator windings 5 1, ..., 5 n spiral coil unit

Claims (7)

ステータの円周方向に所定間隔毎に配置された複数のティース毎に平角線が複数列かつ複数層に集中的に巻回されたステータ巻線であって、
前記ステータの径方向に沿った前記複数列の各列毎に、前記平角線が前記複数層を成すように渦巻状に巻回された渦状コイル部を備え、
複数の前記渦状コイル部が前記複数列を成すように前記ステータの径方向に沿って配列されていることを特徴とするステータ巻線。
A stator winding in which rectangular wires are intensively wound in a plurality of rows and a plurality of layers for each of a plurality of teeth arranged at predetermined intervals in the circumferential direction of the stator,
For each of the plurality of rows along the radial direction of the stator, a spiral coil portion wound in a spiral shape so that the flat wire forms the plurality of layers,
A stator winding, wherein the plurality of spiral coil portions are arranged along the radial direction of the stator so as to form the plurality of rows.
前記ステータの径方向で隣り合う前記渦状コイル部同士は、一方および他方の前記渦状コイル部の内周側端部同士、あるいは、一方および他方の前記渦状コイル部の外周側端部同士が接続されていることを特徴とする請求項1に記載のステータ巻線。 The spiral coil portions adjacent to each other in the radial direction of the stator are connected to the inner peripheral side ends of one and the other spiral coil portions, or the outer peripheral side ends of the one and the other spiral coil portions. The stator winding according to claim 1, wherein: 複数相の前記ステータ巻線は、各相毎に互いに並列接続された複数の相巻線を備え、
各前記複数の相巻線は、複数のティース毎に設けられた巻線部が直列接続されており、
各前記巻線部は、複数の前記渦状コイル部が前記複数列を成すように前記ステータの径方向に沿って配列されていることを特徴とする請求項1に記載のステータ巻線。
The stator winding of a plurality of phases comprises a plurality of phase windings connected in parallel to each other for each phase,
In each of the plurality of phase windings, winding portions provided for each of a plurality of teeth are connected in series,
2. The stator winding according to claim 1, wherein each of the winding portions is arranged along a radial direction of the stator such that a plurality of the spiral coil portions form the plurality of rows.
各前記巻線部の前記平角線の巻数は、
前記複数の相巻線の互いのインピーダンスが同等、かつ、各前記複数のティース毎に設けられた複数の前記巻線部の各インピーダンスを合成した合成インピーダンスに対して前記複数のティースの互いの前記合成インピーダンスが同等となるように設定され、
各前記複数の相巻線毎に具備される前記複数の巻線部の各前記巻数は互いに異なる値に設定されていることを特徴とする請求項3に記載のステータ巻線。
The number of turns of the rectangular wire of each winding part is:
The mutual impedances of the plurality of teeth are equal to each other and the combined impedances obtained by synthesizing the impedances of the plurality of winding portions provided for each of the plurality of teeth are equal to each other. The combined impedance is set to be equal,
The stator winding according to claim 3, wherein the number of turns of the plurality of winding portions provided for each of the plurality of phase windings is set to a value different from each other.
ステータの円周方向に所定間隔毎に配置された複数のティース毎に平角線を複数列かつ複数層に集中的に巻回するステータ巻線の製造方法であって、
前記ステータの径方向に沿った前記複数列の各列毎に、前記平角線を前記複数層を成すように渦巻状に巻回して渦状コイル部を形成し、
複数の前記渦状コイル部を前記複数列を成すように前記ステータの径方向に沿って配列することを特徴とするステータ巻線の製造方法。
A stator winding manufacturing method for intensively winding a plurality of rectangular wires in a plurality of rows and a plurality of layers for each of a plurality of teeth arranged at predetermined intervals in the circumferential direction of the stator,
For each of the plurality of rows along the radial direction of the stator, a spiral coil portion is formed by winding the rectangular wire spirally so as to form the plurality of layers,
A method of manufacturing a stator winding, wherein the plurality of spiral coil portions are arranged along the radial direction of the stator so as to form the plurality of rows.
前記複数列の適宜の列において単一の前記平角線を外巻きして第1の渦状コイル部を形成し、前記適宜の列に隣接する列において前記第1の渦状コイル部の最外層に連なる前記単一の前記平角線を前記第1の渦状コイル部と同回りに内巻きして第2の渦状コイル部を形成することによって、前記ステータの径方向で隣り合う前記渦状コイル部同士を形成する、
あるいは、
前記複数列の適宜の列において単一の前記平角線を内巻きして第1の渦状コイル部を形成し、前記適宜の列に隣接する列において前記第1の渦状コイル部の最内層に連なる前記単一の前記平角線を前記第1の渦状コイル部と同方向回りに外巻きして第2の渦状コイル部を形成することによって、前記ステータの径方向で隣り合う前記渦状コイル部同士を形成する
ことを特徴とする請求項5に記載のステータ巻線の製造方法。
A single spiral wire is wound around the plurality of appropriate rows to form a first spiral coil portion, and is connected to the outermost layer of the first spiral coil portion in a row adjacent to the appropriate row. Forming the single rectangular wire inwardly around the first spiral coil portion to form a second spiral coil portion, thereby forming the spiral coil portions adjacent in the radial direction of the stator. To
Or
A single spiral wire is formed by winding a single rectangular wire in an appropriate row of the plurality of rows, and is connected to the innermost layer of the first spiral coil portion in a row adjacent to the appropriate row. By winding the single rectangular wire around the same direction as the first spiral coil part to form a second spiral coil part, the spiral coil parts adjacent in the radial direction of the stator are The stator winding manufacturing method according to claim 5, wherein the stator winding is formed.
前記複数列の適宜の列において第1の前記平角線を外巻きして第1の渦状コイル部を形成し、前記適宜の列に隣接する列において第2の前記平角線を前記第1の渦状コイル部と逆回りに外巻きして第2の渦状コイル部を形成し、
前記第1の渦状コイル部および前記第2の渦状コイル部の外周側端部同士を接続することによって、前記ステータの径方向で隣り合う前記渦状コイル部同士を形成する、
あるいは、
前記複数列の適宜の列において第1の前記平角線を内巻きして第1の渦状コイル部を形成し、前記適宜の列に隣接する列において第2の前記平角線を前記第1の渦状コイル部と逆回りに内巻きして第2の渦状コイル部を形成し、
前記第1の渦状コイル部および前記第2の渦状コイル部の内周側端部同士を接続することによって、前記ステータの径方向で隣り合う前記渦状コイル部同士を形成する
ことを特徴とする請求項5に記載のステータ巻線の製造方法。

A first spiral coil portion is formed by winding the first rectangular wire in an appropriate row of the plurality of rows, and a second rectangular wire is connected to the first spiral shape in a row adjacent to the appropriate row. The second spiral coil part is formed by external winding in the reverse direction of the coil part,
By connecting the outer peripheral side ends of the first spiral coil portion and the second spiral coil portion, the spiral coil portions adjacent in the radial direction of the stator are formed.
Or
A first spiral coil portion is formed by winding the first rectangular wire in an appropriate row of the plurality of rows, and a second rectangular wire is connected to the first spiral shape in a row adjacent to the appropriate row. A second spiral coil portion is formed by winding inwardly in the direction opposite to the coil portion,
The vortex coil portions adjacent in the radial direction of the stator are formed by connecting inner peripheral side ends of the first vortex coil portion and the second vortex coil portion. Item 6. A method for manufacturing a stator winding according to Item 5.

JP2004168353A 2003-08-26 2004-06-07 Stator winding and method for manufacturing stator winding Active JP4490177B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004168353A JP4490177B2 (en) 2003-08-26 2004-06-07 Stator winding and method for manufacturing stator winding

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003301389 2003-08-26
JP2004168353A JP4490177B2 (en) 2003-08-26 2004-06-07 Stator winding and method for manufacturing stator winding

Publications (2)

Publication Number Publication Date
JP2005102477A true JP2005102477A (en) 2005-04-14
JP4490177B2 JP4490177B2 (en) 2010-06-23

Family

ID=34467163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004168353A Active JP4490177B2 (en) 2003-08-26 2004-06-07 Stator winding and method for manufacturing stator winding

Country Status (1)

Country Link
JP (1) JP4490177B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007295799A (en) * 2007-08-10 2007-11-08 Tatsuaki Uratani Stator and rotor of motor
JP2009240010A (en) * 2008-03-26 2009-10-15 Aisin Seiki Co Ltd Electric rotational motor
KR100925916B1 (en) 2007-12-12 2009-11-09 현대자동차주식회사 Brushless motor
US20120086298A1 (en) * 2009-06-29 2012-04-12 Toyota Jidosha Kabushiki Kaisha Multilayered wound coil, stator, and manufacuting method therefor
JP2014017918A (en) * 2012-07-06 2014-01-30 Toyota Motor Corp Stator winding
JP2014204512A (en) * 2013-04-02 2014-10-27 株式会社日本自動車部品総合研究所 Stator coil, and stator and rotary electric machine having the same
JP2014220948A (en) * 2013-05-09 2014-11-20 トヨタ自動車株式会社 Stator for rotary electric machine, and rotary electric machine
WO2019003678A1 (en) * 2017-06-27 2019-01-03 株式会社ミツバ Motor
JP7325696B1 (en) 2022-12-14 2023-08-14 三菱電機株式会社 armature and motor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09205748A (en) * 1996-01-25 1997-08-05 Shibaura Eng Works Co Ltd On-vehicle motor
JPH10174331A (en) * 1996-12-11 1998-06-26 Nissan Motor Co Ltd Structure and formation of winding of motor
JP2001037201A (en) * 1999-07-21 2001-02-09 Nikon Corp Motor device, stage equipment and exposure device
JP2001197696A (en) * 2000-01-14 2001-07-19 Mitsubishi Electric Corp Rotary electric machine and manufacturing method therefor
JP2002291186A (en) * 2001-03-23 2002-10-04 Nissan Motor Co Ltd Structure and method for winding flat wire
JP2005185041A (en) * 2003-12-22 2005-07-07 Toyo Electric Mfg Co Ltd Structure of permanent magnet type generator for distributed power supply

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09205748A (en) * 1996-01-25 1997-08-05 Shibaura Eng Works Co Ltd On-vehicle motor
JPH10174331A (en) * 1996-12-11 1998-06-26 Nissan Motor Co Ltd Structure and formation of winding of motor
JP2001037201A (en) * 1999-07-21 2001-02-09 Nikon Corp Motor device, stage equipment and exposure device
JP2001197696A (en) * 2000-01-14 2001-07-19 Mitsubishi Electric Corp Rotary electric machine and manufacturing method therefor
JP2002291186A (en) * 2001-03-23 2002-10-04 Nissan Motor Co Ltd Structure and method for winding flat wire
JP2005185041A (en) * 2003-12-22 2005-07-07 Toyo Electric Mfg Co Ltd Structure of permanent magnet type generator for distributed power supply

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007295799A (en) * 2007-08-10 2007-11-08 Tatsuaki Uratani Stator and rotor of motor
JP4662376B2 (en) * 2007-08-10 2011-03-30 達昭 浦谷 Motor or generator stator and rotor
KR100925916B1 (en) 2007-12-12 2009-11-09 현대자동차주식회사 Brushless motor
JP2009240010A (en) * 2008-03-26 2009-10-15 Aisin Seiki Co Ltd Electric rotational motor
US20120086298A1 (en) * 2009-06-29 2012-04-12 Toyota Jidosha Kabushiki Kaisha Multilayered wound coil, stator, and manufacuting method therefor
US9287743B2 (en) * 2009-06-29 2016-03-15 Toyota Jidosha Kabushiki Kaisha Multilayered wound coil, stator, and manufacturing method therefor
JP2014017918A (en) * 2012-07-06 2014-01-30 Toyota Motor Corp Stator winding
JP2014204512A (en) * 2013-04-02 2014-10-27 株式会社日本自動車部品総合研究所 Stator coil, and stator and rotary electric machine having the same
JP2014220948A (en) * 2013-05-09 2014-11-20 トヨタ自動車株式会社 Stator for rotary electric machine, and rotary electric machine
WO2019003678A1 (en) * 2017-06-27 2019-01-03 株式会社ミツバ Motor
JP7325696B1 (en) 2022-12-14 2023-08-14 三菱電機株式会社 armature and motor

Also Published As

Publication number Publication date
JP4490177B2 (en) 2010-06-23

Similar Documents

Publication Publication Date Title
JP4186872B2 (en) Four-layer segment sequential joining stator coil and manufacturing method thereof
JP5418686B2 (en) Stator and stator manufacturing method
JP6126147B2 (en) 3-phase AC motor
JP4839840B2 (en) Rotating electric machine
JP4919059B2 (en) Stator for rotating electrical machine and method for manufacturing the same
KR20060041712A (en) Erectric motor and method for producing the same
TW490914B (en) Electric motor having an armature with a coil winding pattern and method for winding an armature of an electric motor
JP6389501B2 (en) Coil for rotating machine and rotating machine
JP2010011715A (en) Coil wire for coil assembly for rotating electrical machine
JP4490177B2 (en) Stator winding and method for manufacturing stator winding
JP2009033832A (en) Stator for motor
JP2005312278A (en) Concentrated winding stator coil of rotary electric machine
JP2016152751A (en) Stator for rotary electric machine
JP2005312277A (en) Concentrated winding stator coil of rotary electric machine
JP4541977B2 (en) Armature and brushless motor
JP5394058B2 (en) Electric motor armature and electric motor
JP2009033831A (en) Stator for motor
JP2006067756A (en) Stator for rotary electric machine, and manufacturing method for stator for the rotary electric machine
JP5434227B2 (en) Stator and stator manufacturing method
JP5453913B2 (en) Rotating electric machine
JP2013070522A (en) Armature for rotary electric machine and manufacturing method thereof
JP2901888B2 (en) Stator winding assembly method
JP5329196B2 (en) Stator and winding method thereof
KR101965743B1 (en) Stator for rotary electric machine
JP2009148084A (en) Armature

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100323

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100401

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4490177

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 4