JP2005101114A - 動的更新参照を介した光学干渉を用いた金属薄膜状態の境界のインシチューな検出 - Google Patents

動的更新参照を介した光学干渉を用いた金属薄膜状態の境界のインシチューな検出 Download PDF

Info

Publication number
JP2005101114A
JP2005101114A JP2003330684A JP2003330684A JP2005101114A JP 2005101114 A JP2005101114 A JP 2005101114A JP 2003330684 A JP2003330684 A JP 2003330684A JP 2003330684 A JP2003330684 A JP 2003330684A JP 2005101114 A JP2005101114 A JP 2005101114A
Authority
JP
Japan
Prior art keywords
data sample
spectrum data
reflectance spectrum
reflection
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003330684A
Other languages
English (en)
Inventor
Amaachua Sunder
サンダー・アマーチュア
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lam Research Corp
Original Assignee
Lam Research Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lam Research Corp filed Critical Lam Research Corp
Priority to JP2003330684A priority Critical patent/JP2005101114A/ja
Publication of JP2005101114A publication Critical patent/JP2005101114A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】化学機械研磨(CMP)処理中に終点を検出すること。
【解決手段】 反射スペクトルデータサンプルは、ウェハ表面の照射部分から反射される光の複数のスペクトルに対応して受信される。反射スペクトルデータサンプルは、CMP処理段階より前に取得される第1の反射スペクトルデータサンプルを含む正規化参照を用いて正規化される。さらに、正規化参照は、CMP処理の前の段階において取得される第2の反射スペクトルデータサンプルを用いて、処理中に更新される。第2の反射スペクトルデータサンプルは、第1の反射スペクトルデータサンプルより後に取得される。終点は、反射スペクトルデータに起こる光学干渉に基づき確定される。
【選択図】 図4

Description

本発明は概して、化学機械研磨処理における終点検出に関し、より具体的には、広域反射スペクトルの光学干渉、および、継続的に更新される参照を用いる終点検出に関する。
半導体装置の製造において、集積回路素子の形状は一般に、多層構造である。基板層には、拡散領域を有するトランジスタ素子が形成される。続く層には、金属配線がパターニングされ、所望の機能装置を定義するためにトランジスタ素子に電気的に接続される。周知のように、パターニングされた導電層は、二酸化ケイ素のような誘電材料によって、他の導電層から絶縁されている。金属層とそれらに付随する絶縁層の形成層数が多くなるほど、絶縁材料を平滑化する必要性が増す。平滑化しない場合、表面のトポグラフィのばらつきが一層多くなるため、金属層の積層は、実質的により困難となる。その他の実装例では、まず、絶縁物質に金属配線がパターニングされ、続いて余分な金属部分を除去するために、金属化学機械研磨(CMP)工程が行われる。
従来技術において、CMPシステムは通例、ベルト方式、オービタル方式、またはブラシ方式のステーションを実装しており、ステーション内では、ベルト、パッド、またはブラシによって、ウェハの片面もしくは両面が、スクラブ、バフ研磨、または研磨される。CMP工程を円滑に実行し、効果を高めるためにスラリが用いられる。スラリは一般に、ベルト、パッド、ブラシなどの動的処理面に最も多く導入され、バフ研磨、研磨、あるいはその他のCMP処理による前処理を施される半導体ウェハの表面と同様、前処理面全域にも散布される。一般に、スラリの散布は、処理面の動きと、半導体ウェハの動きと、半導体ウェハおよび処理面の間に生じる摩擦との組み合わせにより実現される。
図1Aは、ダマシン、デュアルダマシンの金属配線工程において一般的な加工処理を受けた絶縁層102の断面図を示す。絶縁層102は、絶縁層102のエッチングパターン面上の全域に堆積する拡散障壁層104を有する。拡散障壁層は、周知のように、窒化チタン(TiN)、タンタル(Ta)、窒化タンタル(TaN)、あるいは窒化タンタル(TaN)とタンタル(Ta)とを組み合わせたものが一般的である。拡散障壁層104がいったん所望の厚さまで堆積すると、銅層106は、絶縁層102にエッチングされた溝を埋めるように、拡散障壁層上全域に形成される。余分な拡散障壁層や金属部分も必然的に、この領域上に堆積される。化学機械平坦化(CMP)工程は、これらの余分な堆積物を除去し、所望の金属配線や対応ビア(図示されず)を規定するために行われる。
上述のとおり、CMP工程は、絶縁層102からその上を覆う金属物質を取り除くための工程である。例えば図1Bに示されるように、銅層106および拡散防壁層104の余分な堆積部分が除去されている。CMP工程分野では一般的であるように、CMP工程は、絶縁層102に堆積した余分な金属と拡散防壁層104のすべてが除かれるまで継続されなければならない。しかしながら、絶縁層102上から拡散防壁層104のすべてが除去されたことを確実に知るためには、CMP処理の間、処理状況とウェハの表面状態とをモニタリングする方法が必要となる。これを一般に、「終点検出」という。銅の終点検出を実施する理由は、銅は、時間制限方式を用いてうまく研磨することができないからである。CMP処理における除去速度は、銅層の時間制限式研磨について十分に安定していないため、時間制限式研磨は銅に対してうまく機能しない。CMP処理における銅の除去速度の変化は大きい。したがって、終点に達したと判断するためには、モニタリングが必要となる。マルチステップのCMP工程では、(1)確実に銅(Cu)を拡散障壁層上から取り除くため、(2)確実に拡散障壁層を絶縁層から取り除くため、複数の終点を確定する必要がある。このように、終点検出技術は、所望の余分な堆積物のすべてを確実に除去するために用いられる技術である。
金属のCMP処理における終点検出のために、多くの方法が提案されてきた。従来技術の方法は、一般に、研磨の物理的状態を直接的および間接的に検出する方法として分類され得る。直接的な方法は、研磨中のウェハの状態を調べるために、明示的な外部信号源、あるいは化学薬品を用いる方法である。他方、間接的な方法は、研磨処理中に自然に発生する物理的、もしくは化学的変化に起因してツール内にて内部的に生成される信号をモニタリングする方法である。
間接的な終点検出方法は、研磨パッド/ウェハ面の温度、研磨工具の振動、パッドおよび研磨ヘッド間の摩擦力、スラリの電気化学ポテンシャル、およびアコースティック・エミッションをモニタリングすることを含む。温度法とは、研磨スラリが研磨されている金属膜と選択的に反応する際の熱処理反応を利用する方法である。米国特許5,643,050は、このような方法の一例である。米国特許5,643,050および米国特許5,308,438は、異なる金属層が研磨される際におけるモータ電流変化がモニタリングされる摩擦を基礎とする方法を開示する。
欧州出願公開、EP0739687において開示された別の終点検出方法は、研磨処理情報をもたらす研削処理により発生するアコースティック・エミッションを検波する方法である。アコースティック・エミッションのモニタリングは、通常、金属の終点検出に用いられる。その方法は、研磨中に行われる研削動作をモニタリングする方法である。物質除去の深さが界面からある程度確定できる距離に到達することにより、出力検出信号を発生させる際に生成される音波を検知するために、マイクロフォンは、ウェハから所定の距離を隔てて配置される。これらの方法はすべて、研磨状態の全域測度を提供する方法で、処理パラメータの設定、および消耗品の選択に強く依存する。しかしながら、摩擦検知以外の方法はいずれも、業界において商業的成功を収めていない。
直接的な終点検出方法とは、音波の速度、光の反射および干渉、インピーダンス/コンダクタンス、および、特定の化学薬品の導入による電気化学ポテンシャル変化を利用してウェハの表面をモニタリングする方法である。米国特許5,399,234および米国特許5,271,274は、音波を利用して金属の終点を検出する方法を開示する。これらの特許は、金属の終点を検出するためにウェハ/スラリを介して伝搬される音波速度をモニタリングする方法を説明する。ある金属層から別の層への変わり目が存在すると音波の速度が変化するため、この特性を終点検出に用いてきた。さらに、米国特許6,186,865は、研磨パッドの下に配置される流体軸受けからの流体圧力をモニタリングするセンサを用いた終点検出方法を開示する。センサを用いて、ある金属層から次の層への研磨の遷移時における剪断力の変化に対応した研磨中の液体圧力変化を検出する。残念ながら、この方法は処理の変化に弱い。さらに、検出される終点は全域的な終点であるため、ウェハ表面の特定のポイントにおける局所的な終点検出は不可能である。さらに、米国特許6,186,865の方法は、空気軸受けを必要とする線形研磨器に限定されている。
ウェハ表面からの光反射を用いて終点を検出するために、多くの提案がなされてきた。それらの提案は、以下2つのカテゴリーに分類され得る。すなわち、レーザー源を用いて単一波長における反射光信号をモニタリングすること、あるいは、電磁スペクトルの全可視範囲にわたる広帯域光源を使用すること、である。米国特許5,433,651に開示される方法は単一波長を用いる終点検出方法であって、レーザー源からの光信号がウェハの表面にあてられ、反射信号が終点検出のためにモニタリングされる。ある金属から他の層へと研磨が遷移する際の反射率の変化を用いながらその変わり目を検出する。
広帯域方法は、電磁スペクトルの複数の波長における情報の使用に依存する方法である。米国特許6,106,662は、分光計を用いて、光学スペクトルの可視範囲の反射光の強度スペクトルを取得することを開示している。ある金属から別の層へと研磨が遷移する際の反射率の変化に対する優れた感度を提供するスペクトルにおいて、波長から2つの帯域が選択される。続いて、選択された2つの帯域の平均強度比率を算出することにより検出信号が定義される。検出信号の大きな変化は、ある金属から別の層への遷移を表す。
最近の終点検出技術に共通の問題は、金属線同士の不意の短絡を防ぐ目的ですべての導電物質(例えば金属物質、あるいは拡散防壁層104)を確実に絶縁層102上から除去するため、一定の過剰エッチング処理が要求されることである。不適切な終点検出、あるいは過剰エッチングが及ぼす悪影響の一つは、絶縁層102内に残すことが望ましい金属層上にディッシング108が発生することである。基本的にディッシング作用とは、所望以上の金属物質を除去し、皿状の窪みを金属線上に残すことである。ディッシングは、金属配線に悪影響を及ぼすものと考えられ、ディッシングの数が多すぎると、集積回路は意図された目的を果たさなくなる。
以上の点より、終点検出の精度を向上させる終点検出システムおよび方法が必要となる。さらに、そのシステムおよび方法により、正確な膜厚および層厚の判断が可能になるであろう。
本発明は概して、CMP処理中に、光学干渉を用いて金属層が金属薄膜状態に達したときなど終点に達した時点を判断する光学終点検出システムを提供することにより、これらの要求を満たす。周辺光のノイズに対処するために、本発明の実施例は、継続的に更新される動的正規化参照を利用する。一実施形態では、化学機械研磨(CMP)処理中に終点を検出する方法が開示されている。反射スペクトルデータサンプルは、ウェハ表面の照射部分から反射された光の複数スペクトルに対応して受信される。反射スペクトルデータサンプルは、CMP処理段階より前に取得された反射スペクトルデータサンプルを含む正規化参照を用いて正規化される。さらに、正規化参照は、CMP処理の前の段階において取得される第2の反射スペクトルデータサンプルを用いて処理中に更新される。第2の反射スペクトルデータサンプルは、第1の反射スペクトルデータサンプルより後に取得される。このように、終点は、反射スペクトルデータに生じる光学干渉に基づいて判断される。
一実施形態において、化学機械研磨(CMP)処理中に終点を検出するために、メディアンベクトルフィルタ基礎方法が開示されている。上述のように、反射スペクトルデータサンプルは、ウェハ表面の照射部分から反射された光の複数スペクトルに対応して受信される。第1の反射スペクトルデータサンプル中央値は、CMP処理段階より前に取得された第1の複数の反射スペクトルデータサンプルより選択される。現反射スペクトルデータサンプルは、反射スペクトルデータサンプル中央値を含む正規化参照を用いて正規化される。さらに、CMP処理段階より前に取得された第2の複数の反射スペクトルデータサンプルから選択された第2の反射スペクトルデータサンプル中央値を用いて、前記正規化参照は更新される。上述のように、終点は、反射スペクトルデータに生じる光学干渉に基づいて判断される。
本発明における別の実施形態では、化学機械研磨処理中に終点を検出する別の方法が開示されている。ウェハ表面の一部分は、広帯域の光により照射され、現反射スペクトルデータサンプルは、ウェハ表面の照射部分から反射された光の複数のスペクトルに対応して受信される。現反射スペクトルデータサンプルは、CMP処理の前の段階において取得された第1の反射スペクトルデータサンプルを含む正規化参照を用いて正規化され、終点は、反射スペクトルデータに生じる光学干渉に基づいて判断される。さらに、CMP処理の前の段階において、第1の反射スペクトルデータサンプルより後に取得される第2の反射スペクトルデータサンプルを用いて正規化参照は更新される。一態様において、第1の反射スペクトルデータは、現反射スペクトルデータサンプルと第1の反射スペクトルデータサンプルとの間における反射データサンプル量を表す数となり得る所定の追従参照遅れの間隔で、現反射スペクトルデータサンプルと対応している。さらに新しい現反射スペクトルデータサンプルが、ウェハの表面の照射部分から反射された光の複数のスペクトルに対応して、その後の時点において取得され得る。この場合、第2反射スペクトルデータサンプルは、追従参照遅れで新しい現反射スペクトルデータサンプルに対応し得る。
本発明の実施例の動的正規化参照は、光路中の外部周辺光の変動する特性に対処することにより、終点検出の失敗を効果的に減少させる。さらに、本発明の実施形態は、従来の終点検出のような単なる表面反射の変化ではなく光学干渉を用いる。したがって、本発明の実施形態は、終点検出の感度と信頼性を有効に向上させる。終点検出に加えて、本発明の実施例は、金属の余分な堆積部分の除去後、ウェハの絶縁層の層厚を判断するために有効に用いられ得る。従来においては、ウェハの層厚を測定するために分離型の測定ツールが必要とされていた。本発明の実施例は、ウェハを移動させて別の機械により測定することなく、ウェハの層厚測定が可能である。本発明のその他の態様および利点は、本発明の原理を例示した添付図面と関連付ながら行う以下の詳細な説明から明らかになる。
本発明は、光学的な終点検出を目的として開示される。本発明は、CMP処理の間、光学干渉の測定を支援する動的に更新される参照(基準)を利用して金属層が金属薄膜状態に達した時点を特定する光学終点検出システムを提供する。特に、動的な更新参照は、周辺光による検出処理への影響を削減するために使用される。その結果、上層の金属層が金属薄膜状態まで低減されると、ウェハの異なる層から反射された光の位相差に起因して発生する反射スペクトルデータ中に生じる光学干渉に基いて、終点は決定される。本発明の完全な理解を促すために、以下の記述において詳細を説明する。しかしながら、当業者には明らかなように、本発明は、これらの項目の一部または全てを特定しなくても実施され得る。そのほか、本発明が不必要に不明瞭となるのを避けるため、周知の工程動作の説明は省略した。
図2Aは、本発明の一実施例において、パッド250がローラ251の周りを回転するよう構成されているCMPシステムである。プラテン254は、キャリア252を使用してウェハが当てられる面を供給するパッド250の下に配置される。図2Bに示すように、終点検出は光学検出器260を用いて行われ、光はプラテン254とパッド250とを通り研磨されているウェハ200の表面上に当てられる。光学終点検出を実現するため、パッドスロット250aは、パッド250に組み込まれる。いくつかの実施例において、パッド250は、パッド250の異なる場所に意図的に配置された多くのパッドスロット250aを備え得る。一般的に、パッドスロット250aは、研磨工程に対する衝撃を最小限にするのに十分なほど小規模である。パッドスロット250aに加え、プラテンスロット254aがプラテン254に定義されている。プラテンスロット254aは、研磨中に広帯域光ビームがプラテン254とパッド250とを通り、ウェハ200の所望の表層上に送られ得るよう構成されている。
光学検出器260の使用により、特定の膜について、ウェハの表面からどの程度除去されているかを確定することができる。この検出技術は、光学検出器260によって受信される干渉縞を検査することにより膜厚を測定する技術である。さらに、ウェハ200から正確に層を除去できるように、プラテン254は、意図的に一定の背圧をパッド250に適用する。
図3は、本発明の一実施例において、CMP処理中に広帯域光源により照射されるウェハ300の一部を示す図である。ウェハ300は、シリコン基板302、基板302上に堆積する酸化物層304、および酸化物層304の上に形成される銅層306を含む。銅層306は、ダマシンCMP処理中に形成される過剰に堆積した銅を表す。通常、銅層306は、銅の配線のための溝を形成するために初期段階においてエッチングされる酸化物層304の上に堆積する。過剰に堆積した銅は、続いて、酸化物層304の露光のために研磨除去されるため、溝の内部には銅線のみが残る。デゥアル・ダマシンも同様の方法で実施され、金属プラグおよび配線の同時形成を可能にする。
本発明の実施例は、研磨中、光学干渉を利用して銅306が除去された時点を判断する。初期においては、図の301aに示すとおり、銅層306の層厚はおよそ10,000Åと比較的厚いため不透明である。この時点において、ウェハ300の表面を照射する光308は、ほとんど、あるいは完全に干渉なく反射される。次に、銅が研磨されるにつれて、銅層306は、層厚がおよそ300から400Åという薄い金属になる。これは、金属薄膜状態として知られている。図の301bに示すように、この時点において銅層306は透過性を備えるようになり、光は銅層306を通り抜けて下層を照射し得る。
光312がウェハの様々な層の中を通過し始めると、光学干渉が生じる。ウェハの各層は、光がある層から別の層へと通る際に、その層が光312の速度に与える影響を定義する特性である反射指数を有す。したがって光312の速度は、光312がある材料から別の材料へと通過する際に変化する。
各層の界面において、光312は反射され光学検出器に跳ね返ってくる。速度が材料の内部で変化したため、位相変化が起こる。したがって、銅層306の表面から反射された光314と、酸化物層304の表面から反射された光316との間に、位相差が存在する。同様に、酸化物層304の表面から反射された光316と、基板302の表面から反射された光318との間にも位相差が存在する。様々な反射光線314、316、および318が相互に作用を及ぼすときに、光学干渉は生じる。
このように、銅層306の層厚が厚い場合には、光308は銅層306を通り抜けることができず、干渉が生じないため、位相変化は発生しない。しかしながら、銅層306の層厚が極めて薄くなって透過性を備えると、ウェハ300の種々の層から反射される光の間に位相変化が起こるため、干渉が生じる。このポイントにて、研磨処理は停止されなければならない。
図4は、本発明の一実施形態において、化学機械研磨処理中に終点を検出する方法400を示すフローチャートである。工程402では、広帯域反射データが取得され、正規化参照(正規化基準)は動的に更新される。広帯域反射データは、広帯域光源を用いてウェハ表面の一部を照射することにより取得される。反射スペクトルデータは次に、ウェハ表面の照射部分から反射された光のスペクトルに応じて受信される。
図5は、本発明の一実施例において、CMP処理の様々なポイントにおけるウェハからの広帯域反射スペクトルを示すスペクトルグラフ500である。グラフ500は、強度と1/λの関係を表し、λは自由空間における光の波長である。λの関数としての強度プロットは、光学干渉が生じると非周期的信号を供給する。1/λの関数としてプロットされる強度は、光学干渉が生じると周期的信号を提供するため、本発明の実施例は、1/λの関数として強度プロットする。カーブ502は、ウェハの銅層が厚く、不透明な場合の反射スペクトルを示す。上述のとおり、銅層が厚い場合は、光は銅層を通り抜けることができず、位相変化が起こらないため、干渉は生じない。すなわち、カーブ502が示すように、振動はみられない。銅層の層厚が薄くなるにつれて振動が反射スペクトルに現れはじめ、銅が透過性を備える期間の様々なポイントにおける反射スペクトルを表すカーブ504aおよびカーブ504bに示すとおりとなる。
さらに具体的には、グラフ500は、銅層の層厚が侵入深さに近づくと周期的なフリンジ、つまり振動が、1/λ、つまり1/nm(nmは10-9メートルである)軸方向の反射スペクトルに現れる様子を示す。図5の各カーブは、λの範囲が300から700mmの場合の反射スペクトルR(1/λ)の例である。反射波の電磁場のマグニチュードと基板上の単一の絶縁層への入射波とのおおよその比例関係は、以下の数式(1)により得られる。
(1)R(1/λ)=r01+r12-i2Πβ
ここで、r01およびr12は、フレネルの係数である。βは、以下の数式(2)より求められる位相角である。
(2)β=2n1d/λ
ここで、dは、絶縁層の厚みであり、n1は絶縁層の反射指数である。
工程中、外部要因により、反射データに小さな変動が起こる。その変動が終点検出処理に及ぼす影響を減少させるため、反射データは、動的に更新される参照を用いて正規化される。より具体的には、反射データ信号には、ウェハ、光学部品、および、研磨処理中に対して用いられるスラリのような光路中のその他任意の触媒からの反射が含まれる。しかしながら、本発明の実施例は、金属薄膜状態に近づくと生成される光学干渉に起因する反射データの変化を解析することにより、終点検出を行う。したがって、本発明の実施例は、光学部品、および、光路中のその他任意の触媒から反射される周辺光による影響を低減するため、反射データを正規化する。現反射データサンプルとそれ以前の反射データサンプルとの比率を作成することにより、本発明の実施例は、周辺光による影響を低減する。特に、このような比率により、光学部品、および、光路中のその他任意の触媒から反射される周辺光のほとんどが効果的に抑えられる。但し、光学部品、および、光路におけるその他任意の触媒から反射される周辺光が及ぼす影響は、時間の経過とともに変化する。
図6は、層厚が厚い銅層の反射強度の変化をCMP処理の初期段階における値について示すグラフ600であり、この変化は、時間の経過とともに変化する光路の特性に起因して生じる。具体的には、グラフ600は、例えば波長602a、602bおよび602cなど、様々な波長の反射データ強度の割合を示す。図示のとおり、変化の割合は時間の経過とともに変化する。さらに、変化の割合は、波長ごとに異なる波長依存がある。例えば、波長602a、602bおよび602cの変化は互いに異なる。したがって、研磨処理中に、例えば光学繊維束とウェハとの間に注入される薄い液状触媒およびスラリに起因して、光路の透過性、および反射特性は変化する。
このような分泌液およびスラリの構成の動的な変化によって、研磨処理の初期段階に収集される参照スペクトルは、研磨処理後の時点における正規化に適さない可能性がある。この課題に対処するため、本発明の実施例は、どの時点においても反射光の周囲条件の状態を正確に反映する動的な基準を取得する。
図7は、本発明の一実施形態において、広帯域反射データを取得して正規化参照を更新する方法402を示すフローチャートである。初期工程700では、前処理工程が行われる。前処理工程には、例えば、第1の反射データサンプルなど初期正規化参照を取得する工程、および当業者には明らかであろうその他の前処理工程が含まれる。以下に詳述するように、初期正規化参照は通常、研磨処理において、処理遅延に達するまで使用される。
工程702では、次の広帯域反射データが取得される。上述のとおり、ウェハの表面の一部は、ウェハの表面の照射部分から反射された光のスペクトルに対応する反射スペクトルデータを取得するために、広帯域光源を用いて照射される。続いて以下でさらに詳述するように、この反射データは、終点検出のために、光学干渉に基づいて後から解析される。
続いて、工程704では、終点検出処理における現ショットが前処理遅れ未満であるか否かが判断される。本発明の実施例は、例えば、反射データサンプルは毎秒取得され得るなど、継続的に反射データを収集する。各反射データサンプルは、「ショット」と呼ばれることが多い。追従参照遅れは、正規化参照が現在の「ショット」と対応するまでの「ショット」数を表す所定の数である。前処理遅れは、第1の反射データサンプルを正規化参照として用いるまでの「ショット」の数で、追従参照遅れと同等である。
図8Aは、本発明の一実施形態における反射データサンプルを格納する二次元配列800を示す図である。二次元配列800は、複数の配列エントリー802aから802dを含み、各配列エントリー802aから802dは、所定時におけるウェハのショットを表す反射データの配列を構成している。図8Aの例において、配列エントリー802aは第1のショットを表し、配列エントリー802bは、前処理遅れと同等のショットである。さらに、配列エントリー802dは現ショットであり、配列エントリー802cは、追従参照遅れで現ショット802dに追従するショットである。上述のとおり、追従参照遅れは、現ショットと正規化のために用いられるショットとの間におけるショット数で、前処理遅れは、第1の反射データサンプルを正規化参照として用いるショット数である。
図7に戻って説明すると、終点検出処理における現ショットが前処理遅れ未満の場合には、方法700は工程706へと続く。それ以外の場合には、方法700は、工程708へと続く。工程706では、正規化参照は、第1の反射データサンプルであるショット0における反射データサンプルとなる。図8Aを参照すると、第1の反射データサンプルは、配列エントリー802aにより表される。このように、現ショットが前処理遅れ以上となるポイントに研磨処理が達するまで、配列エントリー802aを正規化参照として用いられる。
図7に戻って説明すると、工程708では、終点検出処理における現ショットが前処理遅れ以上になると、正規化参照が更新される。具体的には、現ショット数における配列エントリー−前処理遅れ+1が正規化参照として用いられる。図8Aに示すように、正規化のために用いられるショットは、追従参照遅れ量の間隔で、現ショットと対応している。前述のとおり、追従参照遅れに達する前は、最初の配列エントリー802aが正規化参照のために利用される。現ショット数が前処理遅れ以上になると、正規化参照は更新される。一実施例において、正規化参照は、追従参照遅れと同量分の間隔で現ショット数に対応する次の配列エントリーに更新される。以下でさらに詳述するように、求められた正規化参照は、次に、反射データを工程404における軌跡参照スペクトルに正規化するために利用される。
例えば、図8Aにおいて、追従参照遅れは10と定義され得る。この場合、最初の配列エントリー802aは、ショット10まで正規化参照として使用される。現ショット数が前処理遅れ以上、例えばショット10のとき、正規化参照は、ショット1に対応するその次の配列エントリーを用いて、正規化参照として更新される。ショット11の間に、この場合はショット2に対応する次の配列エントリーに正規化参照は再更新される。このように、正規化参照数は、光路の透過特性の変化をより忠実に反映するために動的に更新される。
本発明の実施例は、ベクトルメディアンフィルタを利用して、例えば調整不良のベルトによってショット中に発生する範囲からはずれた不良ショットの影響を減少させることができる。図8Bは、本発明の一実施形態における反射データサンプルを格納する二次元配列800を示し、ベクトルメディアンフィルタ804は正規化参照を作成するために使用されている。上記のとおり、二次元配列800は、複数の配列エントリー802aから802dを含み、各配列エントリー802aから802dは、特定時におけるウェハのショットを表す反射データの配列を構成する。配列エントリー802aから802cは、ウェハ表面の連続したショットを表し、配列エントリー802dは、ウェハ表面の現ショットを表す。
上記のように、追従参照遅れで現配列エントリー802dに追従する配列エントリー802bは、正規化参照を確定するために利用される。但し図8Bに示される実施例では、他に二つの配列エントリーもまた、正規化参照を確定するために用いられる。具体的には、3つの連続した配列エントリー802aから802cがベクトルメディアンフィルタ804に供給される。一実施例において、追従参照遅れで現配列エントリー802dに追従する配列エントリー802bの前の配列エントリー802a、および次の配列エントリー802cは、ベクトルメディアンフィルタ804に供給される。
ベクトルメディアンフィルタ804は、1平方ピクセルあたりの値を合計することにより、各配列エントリー802aから802cのマグニチュード、つまり、段階的な距離指標を決定する。続いて3つの配列エントリー802aから802cの段階的な距離は昇順にソートされ、中央の配列エントリーが正規化参照として選択される。以下でさらに詳述するように、求められる正規化参照は、次に、反射データを工程404における追従参照スペクトルに正規化するために利用される。このようにして、ベクトルメディアンフィルタ804は、3つの配列エントリーの中央値を確定して正規化参照に使用し、それによって、範囲から外れた値が正規化処理に影響を及ぼすことを抑制する。
図4に戻って説明すると、反射データは、工程404において正規化される。反射データの正規化は、サンプルをデータ中におけるサンプルのばらつきに変える。上述のとおり、研磨ベルトの終点ウィンドウが終点検出センサ上を移動するとき、ウェハの表面は広帯域光により照射され、ウェハ表面から反射された光は反射データとして記録される。外部要因が原因となってデータに小さな変動が起こり得るため、その変動が終点検出処理に及ぼす影響を減少させるために反射データは正規化される。
上述のとおり、反射データ信号は、ウェハ、光学部品、および、研磨処理中に用いられるスラリのような光路中のその他の任意の触媒からの反射を含む。すなわち、M=C+Nである。ここで、Mは合計測定信号であり、Cはウェハから反射される光からの信号に対応し、Nは正規化信号である。以下の数式(3)に示すとおり、正規化では、各波長における測定信号を、基準スペクトルを通じて得られる正規化信号で割り、一定の偏向を除くため、そこから1を引く。
(3)R=(M/N)−1=((C+N)/N)−1=C/N
工程406において、正規化参照データが多項式を用いて反トレンド化される。銅層がまだ不透明なときに、下層のウェハ層からの光学干渉以外の要因により発生し得る振動を減少させるため、反トレンドは反射カーブを拡大する。このため多項式は、反射データに一致するよう調整され、その後、減算される。この手法では、反射データカーブは、実質的に平らになり始めるため、異なるウェハ層の光学干渉によって発生する振動を、より簡単に検出することが可能となる。
工程408において、移動メディアンフィルタが1/λ軸に適用される。通常、反射データカーブには高周波ノイズ量が含まれる。高周波ノイズは、終点検出処理に悪影響を及ぼし得る。したがって、高周波ノイズを減らすために、カーブにフィルタが適用される。
次に工程410において、微分変換が反射データに適用される。通常、一定の偏向、つまりDCが、ウェハ表面から収集される反射データに含まれている。反射されるスペクトルの一定の偏向は大きくなり得るため、フーリエ変換は起点において大きなピークに支配され得る。すなわち、第一の関心であるスペクトルの高周波領域におけるピークを支配し、不明確にし得る。反射データに微分変換を適用することにより、一定の偏向は減じられ、あるいは除かれ得る。グラフ上では、反射データカーブは、一定の偏向を除くことにより、ゼロ中心となり得る。
次に工程412において、スペクトル窓関数が反射データに適用される。スペクトル窓関数は、カーブの端での切断不連続面(truncation discontinuities)をスムーズにする。スペクトル窓関数は、通常、反射スペクトルが非整数の周波数、すなわち振動を含む場合に生じる反射スペクトルの端部における不連続が原因で発生するフーリエ・スペクトルのスペクトルの漏れを減少させるのに役立つ。
次に工程414において、ゼロパッドが反射データに適用される。反射スペクトルデータのゼロパッドは、フーリエ変換をより高解像度のグリッドへと拡張するのに役立つ。この手続きは本質的に、さらに細かいグリッドにフーリエ変換を補間する。すなわちこの手続きによって、方法400において後から実施されるように、ピーク検出の精度を向上させることができる。一実施例において、ゼロパッドは、反射スペクトルの離散ピクセルの数をより大きなグリッドへと拡張することにより実施される。実際に取得されたデータによりカバーされない拡張されたグリッド中のピクセルは、いずれもゼロ値で埋められ得る。
工程416では、反射データにフーリエ変換が適用される。フーリエ変換は、信号をマルチ・コンポーネントに分離する。つまりフーリエ変換は、反射スペクトル中の振動パターンの発生検出を向上するために用いられることができる。
図9は、本発明の一実施例において、下層の絶縁層の層厚が6000から10000Åの範囲にある場合の反射データのフーリエ変換を示すグラフ900である。フーリエ変換グラフ900は、ウェハ表面上の銅層の層厚が侵入深さに比べて極めて厚い不透明な銅反射カーブ902と、銅層の層厚が侵入深さと比べると極めて薄い薄化金属カーブ904とを含む。上記の計算式(1)、(2)において、厚みdおよび波数1/λは、位相式を介して相関がある。つまり、R(1/λ)のフーリエ変換は、dの空間に写像される。
(4)RF(d)=F{R(1/λ)}←→R(1/λ)
図9のフーリエ変換グラフ900は、CMP処理中の様々な時点におけるRF(d)を示す。銅層の層厚が侵入深さに比べて極めて厚い時点におけるフーリエ変換グラフ900から分かるとおり、カーブ902、つまり、厚みが6000から10000Åである誘電体の範囲内におけるフーリエ変換グラフ900のマグニチュードは極めて小さい。研磨が侵入深さに達すると、薄金属カーブ904に示されるように、誘電体の厚みの範囲内に大きなピークが現れはじめる。フーリエ変換グラフ900からわかるように、薄金属カーブ904のピークは、本例では銅層の下の絶縁層の厚みである8000Å付近に現れる。
ウェハ構造がより複雑なその他の実施例では、フーリエ変換の一次ピークは、階層化構造の幾何学配置を描く。例えば、厚みd1とd2とを有する二層構造では、一次ピークは、d1およびd1+d2に現れる。本発明の実施例は、CMP処理の間、この特性を用いて、金属層が金属薄膜状態に達する最初のインスタンスを検出して知らせる。侵入深さは、銅の場合はおよそ500Åで、タングステンの場合はおよそ800Åである。
図4に戻って参照すると、ピークの特定数は、所定の厚み限界の範囲内のフーリエ変換スペクトル中にみられる。下層の絶縁層厚が認識されているときは、ウィンドウは誘電体の厚みの範囲内に対応するグラフ領域に絞られ得る。図10は、様々な時点の特定の厚み限界における反射データのフーリエ変換を示すフーリエウィンドウ1000である。図10の例では、銅層の下の絶縁層厚は6000から10000Åの範囲である。したがって、フーリエウィンドウ1000は、最低厚さ限界(LTB)6000Åから最高厚さ限界(HTB)10000Åに設定された厚み範囲内の反射データカーブのフーリエ変換を示す。したがって、図4に戻って参照すると、工程418の間、LTBからHTBの間に定義される厚さ限界範囲において、所定のピーク数が検出される。
次に工程420において、工程418で検出されるピークのマグニチュードが合計される。工程418で検出されるピークのマグニチュードの合計は、終点検出(EPD)信号と呼ばれる。図11は、ショット数として示される工程418中に検出されるEPD信号を、時間関数として示すグラフ1100である。ショット数は、終点検出処理を連続的に繰り返す間に取得される一連の反射データである。グラフ1100からわかるように、EPD信号1102は、CMP処理の初期段階、つまり本例のショット1からショット84までの間は低いままである。その後、銅がショット90付近の金属薄膜状態に近づくにつれて銅層が薄く透過性を帯びると光学干渉を受けて反射スペクトルデータ中に振動が生じるため、ピークマグニチュードカーブ1102は鋭く上昇する。
図4に戻って参照すると、工程422において、EDP信号が所定の閾値を越えるか否かに関して判断される。閾値は通常、金属薄膜状態に達した時点を測定できるように選択される。図11に示すように、金属層が侵入深さに比べて厚いとき、閾値1104は相対的にEPD信号に対して高めになるように選択される。さらに、閾値1104は、好ましくは追従参照遅れを考慮して選択されるとよい。
図12は、工程418中に検出されるEPD信号を時間関数として示すグラフ1200である。上述のように、EPD信号1202は、CMP処理の初期段階、すなわち本例においては、ショット1からショット84までの間は低いままである。その後、銅が金属薄膜状態に近づくにつれて、EPD信号1202は閾値1104をとび越えて鋭く上昇する。適切な正規化を実現するために、本発明の実施例は通常、EPD信号1202が閾値1104を越える前で、EPD信号1202の直前のカーブを越えるのに必要とされる時間よりも大きい軌跡参照遅れを利用する。こうすることにより動的に更新される手続きは、金属薄膜状態に達する前に取得される反射データのみを確実に含む。
図4に戻ると、工程418にて検出されるEPD信号が所定の閾値より低い場合には、工程402における次の広帯域反射データを取得するために方法400は継続する。それ以外の場合には、方法400は、工程424で完了される。
CMP処理は、工程424の時点で終点に達するため、ここで完了となる。本発明の実施例の動的な正規化参照は、図13に示されるように、光路中の外部周辺光の変動する特性に対処することにより、有効に終点検出失敗を減少させる。図13は、静的な正規化参照と動的な正規化参照とを用いて、工程418中に検出されるEPD信号を示すグラフ1300である。具体的には、EPD信号1302は、最初の反射データショットを含む静的正規化参照を使用した結果生じる信号である。図7、8Aおよび8Bに関連して説明したように、EPD信号1304は、継続的に更新される追従参照を含む動的正規化参照を使用した結果生じる信号である。光路中の外部周辺光の変動する特性により、終点検出処理の後の段階においては、静的正規化参照の適正度が減少する。その結果、研磨処理が実際の終点1308に到達する前のポイント1306において、EPD信号1302は閾値1104を越えてしまい、グラフの上、高めにドリフトすることがある。その結果、静的正規化参照を用いると、誤った終点が検出され得る。一方、本発明の実施例の動的正規化参照は、正規化参照の継続的な更新を通じて光路中の外部周辺光の変動する特性に対処することにより、終点検出の失敗を減少させる。
本発明のその他の実施例において、EPD信号に適用される統計的仮説検証は、金属薄膜状態に達した時点を判断するために用いられ得る。本発明の実施例は、従来の終点検出のような単なる表面反射の変化に代わって光学干渉を用いるため、終点検出の感度および信頼性を有効に向上させる。終点検出に加えて、本発明の実施例はさらに、ウェハの層厚判断にも有効に使用され得る。従来において、ウェハの層厚を測定するために分離した測定ツールが必要とされていた。本発明の実施例は、ウェハを移動させて別の機械により測定することなく、ウェハの層厚測定を可能とする。
理解を深めるために従来技術をある程度詳しく説明したが、添付の特許請求の範囲内で特定の変更と修正を行ってもよいことは明らかである。したがって、本実施形態は、例示的なものであって、制限的なものではないとみなされ、本発明は、本明細書に示した詳細に限定されず、添付の特許請求の範囲および等価物の範囲内で修正可能である。
ダマシン、およびデュアルダマシンの金属配線工程において一般的な加工処理を受けた絶縁層の断面図を示す。 CMP処理により除去された銅層および拡散障壁層の余分な部分を示す図である。 本発明の一実施例において、パッドがローラの周りを回転するよう構成されているCMPシステムを示す図である。 本発明の一実施例における終点検出システムを示す図である。 本発明の一実施例において、CMP処理中に広帯域の光により照射されるウェハ300の一部分を示す図である。 本発明の一実施形態において、化学機械研磨処理中に終点を検出する方法を示すフローチャートである。 本発明の一実施例において、CMP処理の様々なポイントにおけるウェハからの広帯域反射スペクトルを示すスペクトルグラフ500である。 光路の変動する特性に起因する銅層の反射データが時間の経過とともに変化する様子を示すグラフである。 本発明の一実施形態において、広帯域反射データを取得して正規化基準を更新する方法を示すフローチャートである。 本発明の一実施形態における反射データサンプルを格納する二次元配列を示す図である。 本発明の一実施形態における反射データサンプル格納のための二次元配列を示し、正規化参照を作成するためにベクトルメディアンフィルタを使用している図である。 本発明の一実施例において、下層の誘電層が6000から10000Åの範囲の厚みを有する場合における反射データのフーリエ変換を示すグラフである。 本発明の一実施例において、様々な時点の特定の層厚範囲内における反射データカーブのフーリエ変換を示すフーリエウィンドウである。 工程中に検出されるEPD信号を時間関数として示すグラフである。 工程中に検出されるEPD信号を追従参照遅れの観点から時間関数として示すグラフである。 静的正規化参照を用いて検出されるEPD信号と、動的正規化参照を用いて検出されるEPD信号とを比較するグラフである。

Claims (20)

  1. 化学機械研磨(CMP)処理中に終点を検出する方法であって、
    ウェハ表面の照射部分から反射された光の複数スペクトルに対応する現反射スペクトルデータサンプルを受信する工程と、
    前記CMP処理の前の段階において取得された第1の反射スペクトルデータサンプルを含む正規化参照を用いて前記現反射スペクトルデータサンプルを正規化する工程と、
    前記CMP処理の前の段階において、前記第1の反射スペクトルデータサンプルより後に取得される第2の反射スペクトルデータサンプルを用いて前記正規化参照を更新する工程と
    を備える方法。
  2. 請求項1に記載の方法は、さらに、前記反射スペクトルデータ中に生じる光学干渉に基づいて終点を判断する工程を備える方法。
  3. 請求項1に記載の方法であって、前記第1の反射スペクトルデータサンプルは、所定の追従参照遅れで前記現スペクトルデータサンプルに追従する方法。
  4. 請求項3に記載の方法であって、前記追従参照遅れは、前記現反射スペクトルデータサンプルと前記第1の反射スペクトルデータサンプルとの間の参照データサンプル量を表す数である方法。
  5. 請求項3に記載の方法は、さらに、前記ウェハ表面の前記照射部分から反射された光の複数スペクトルに対応する新しい現反射スペクトルデータサンプルを後の時点において受信する工程を備える方法。
  6. 請求項5に記載の方法であって、前記第2の反射スペクトルデータサンプルは、前記追従参照遅れで前記新しい現反射スペクトルデータサンプルに追従する方法。
  7. 請求項2に記載の方法であって、前記光学干渉は異なるウェハ層から反射された光の位相差に起因して生じる方法。
  8. 請求項7に記載の方法であって、前記光学干渉は、最上層の金属層が金属薄膜状態まで低減されると生じる方法。
  9. 請求項8に記載の方法はさらに、前記反射スペクトルデータに基づく波数のプロットに振動が発生する時点を特定する工程を備える方法。
  10. 請求項9に記載の方法であって、前記終点は、前記波数のプロット中の前記振動が発生するときに現れる方法。
  11. 化学機械研磨(CMP)処理中に終点を検出する方法であって、
    ウェハ表面の照射部分から反射された光の複数スペクトルに対応する現反射スペクトルデータサンプルを受信する工程と、
    前記CMP処理の前の段階において取得された第1の複数の反射スペクトルデータサンプルから第1の反射スペクトルデータサンプル中央値を選択する工程と、
    前記反射スペクトルデータサンプル中央値を含む正規化参照を用いて、前記現反射スペクトルデータサンプルを正規化する工程と、
    前記CMP処理段階より前に取得された第2の複数の反射スペクトルデータサンプルから選択された第2の反射スペクトルデータサンプル中央値を用いて、前記正規化参照を更新する工程と
    を備える方法。
  12. 請求項11に記載の方法はさらに、前記反射スペクトルデータに生じる光学干渉に基づいて終点を判断する工程を備える方法。
  13. 請求項11に記載の方法であって、前記第1の複数の反射スペクトルデータサンプルは、前記CMP処理の前の段階において取得された3つの連続する反射スペクトルデータサンプルを含む方法。
  14. 請求項13に記載の方法であって、前記第1の複数の反射スペクトルデータサンプルの一つは、所定の追従参照遅れで前記現スペクトルデータサンプルに追従する方法。
  15. 請求項14に記載の方法であって、前記追従参照遅れは、前記現反射スペクトルデータサンプルと前記第1の複数の反射スペクトルデータサンプルの一つとの間における参照データサンプル量を表す数字である方法。
  16. 化学機械研磨処理中に終点を検出する方法であって、
    広帯域の光を用いてウェハの表面部分を照射する工程と、
    前記ウェハの前記表面の前記照射部分から反射される光の複数スペクトルに対応する現反射スペクトルデータサンプルを受信する工程と、
    前記CMP処理の前の段階において取得された第1の反射スペクトルデータサンプルを含む正規化参照を用いて、前記現反射スペクトルデータサンプルを正規化する工程と、
    前記反射スペクトルデータに生じる光学干渉に基づいて終点を判断する工程と、
    前記CMP処理の前の段階において、前記第1の反射スペクトルデータサンプルより後に取得される第2の反射スペクトルデータサンプルを用いて前記正規化参照を更新する工程と
    を備える方法。
  17. 請求項16に記載の方法であって、前記第1の反射スペクトルデータサンプルは、所定の追従参照遅れで前記現スペクトルデータサンプルに追従する方法。
  18. 請求項17に記載の方法であって、前記追従参照遅れは、前記現反射スペクトルデータサンプルと前記第1の反射スペクトルデータサンプルとの間における参照データサンプル量を表す数字である方法。
  19. 請求項18に記載の方法はさらに、前記ウェハ表面の前記照射部分から反射される光の複数スペクトルに対応する新しい現反射スペクトルデータサンプルを後の時点において受信する工程を備える方法。
  20. 請求項19に記載の方法であって、前記第2の反射スペクトルデータサンプルは、前記追従参照遅れで前記新しい現反射スペクトルデータサンプルに追従する方法。
JP2003330684A 2003-09-22 2003-09-22 動的更新参照を介した光学干渉を用いた金属薄膜状態の境界のインシチューな検出 Pending JP2005101114A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003330684A JP2005101114A (ja) 2003-09-22 2003-09-22 動的更新参照を介した光学干渉を用いた金属薄膜状態の境界のインシチューな検出

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003330684A JP2005101114A (ja) 2003-09-22 2003-09-22 動的更新参照を介した光学干渉を用いた金属薄膜状態の境界のインシチューな検出

Publications (1)

Publication Number Publication Date
JP2005101114A true JP2005101114A (ja) 2005-04-14

Family

ID=34459551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003330684A Pending JP2005101114A (ja) 2003-09-22 2003-09-22 動的更新参照を介した光学干渉を用いた金属薄膜状態の境界のインシチューな検出

Country Status (1)

Country Link
JP (1) JP2005101114A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007059597A (ja) * 2005-08-24 2007-03-08 Fuji Electric Holdings Co Ltd 膜厚評価方法、研磨終点検出方法及びデバイス製造装置
JP2008166449A (ja) * 2006-12-27 2008-07-17 Tokyo Seimitsu Co Ltd 共振現象を応用した終点検出方法、終点検出装置及びそれを搭載した化学機械研磨装置及び化学機械研磨装置で作成した半導体デバイス
JP2012256912A (ja) * 2005-08-22 2012-12-27 Applied Materials Inc 化学機械的研磨のスペクトルに基づく監視のための装置および方法
US8874250B2 (en) 2005-08-22 2014-10-28 Applied Materials, Inc. Spectrographic monitoring of a substrate during processing using index values
KR20140127763A (ko) * 2013-04-25 2014-11-04 가부시키가이샤 에바라 세이사꾸쇼 연마 방법 및 연마 장치
US9117751B2 (en) 2005-08-22 2015-08-25 Applied Materials, Inc. Endpointing detection for chemical mechanical polishing based on spectrometry

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015079984A (ja) * 2005-08-22 2015-04-23 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 化学機械的研磨のスペクトルに基づく監視のための装置および方法
US10276460B2 (en) 2005-08-22 2019-04-30 Applied Materials, Inc. Endpointing detection for chemical mechanical polishing based on spectrometry
JP2012256912A (ja) * 2005-08-22 2012-12-27 Applied Materials Inc 化学機械的研磨のスペクトルに基づく監視のための装置および方法
US8874250B2 (en) 2005-08-22 2014-10-28 Applied Materials, Inc. Spectrographic monitoring of a substrate during processing using index values
US9117751B2 (en) 2005-08-22 2015-08-25 Applied Materials, Inc. Endpointing detection for chemical mechanical polishing based on spectrometry
US11715672B2 (en) 2005-08-22 2023-08-01 Applied Materials, Inc. Endpoint detection for chemical mechanical polishing based on spectrometry
US9583405B2 (en) 2005-08-22 2017-02-28 Applied Materials, Inc. Endpointing detection for chemical mechanical polishing based on spectrometry
US11183435B2 (en) 2005-08-22 2021-11-23 Applied Materials, Inc. Endpointing detection for chemical mechanical polishing based on spectrometry
JP2007059597A (ja) * 2005-08-24 2007-03-08 Fuji Electric Holdings Co Ltd 膜厚評価方法、研磨終点検出方法及びデバイス製造装置
JP2008166449A (ja) * 2006-12-27 2008-07-17 Tokyo Seimitsu Co Ltd 共振現象を応用した終点検出方法、終点検出装置及びそれを搭載した化学機械研磨装置及び化学機械研磨装置で作成した半導体デバイス
KR20140127763A (ko) * 2013-04-25 2014-11-04 가부시키가이샤 에바라 세이사꾸쇼 연마 방법 및 연마 장치
JP2017108171A (ja) * 2013-04-25 2017-06-15 株式会社荏原製作所 研磨方法
KR102036387B1 (ko) 2013-04-25 2019-10-24 가부시키가이샤 에바라 세이사꾸쇼 연마 방법 및 연마 장치
US9604337B2 (en) 2013-04-25 2017-03-28 Ebara Corporation Polishing method
JP2014216457A (ja) * 2013-04-25 2014-11-17 株式会社荏原製作所 研磨方法および研磨装置

Similar Documents

Publication Publication Date Title
CN100367468C (zh) 用于指示膜层变化的宽频带光学终点检测系统与方法
US6361646B1 (en) Method and apparatus for endpoint detection for chemical mechanical polishing
US6664557B1 (en) In-situ detection of thin-metal interface using optical interference
TW491753B (en) In-situ method and apparatus for end point detection in chemical mechanical polishing
US8388408B2 (en) Method of making diagram for use in selection of wavelength of light for polishing endpoint detection, method for selecting wavelength of light for polishing endpoint detection, and polishing endpoint detection method
TWI478259B (zh) 用於終點偵測之二維光譜特徵追蹤
JP6404172B2 (ja) 膜厚測定方法、膜厚測定装置、研磨方法、および研磨装置
US6812478B2 (en) In-situ detection of thin-metal interface using optical interference via a dynamically updated reference
KR101037490B1 (ko) 멀티-스텝 시퀀스에서의 금속 잔류물 검출 및 매핑용시스템 및 방법
TW201143977A (en) Method for monitoring a polishing process, polishing method, apparatus for monitoring a polishing process, and a polishing apparatus
JP2001287159A (ja) 表面状態測定方法及び測定装置及び研磨装置及び半導体デバイス製造方法
US7768659B2 (en) Determining copper concentration in spectra
US6747283B1 (en) In-situ detection of thin-metal interface using high resolution spectral analysis of optical interference
JP2005101114A (ja) 動的更新参照を介した光学干渉を用いた金属薄膜状態の境界のインシチューな検出
US6669539B1 (en) System for in-situ monitoring of removal rate/thickness of top layer during planarization
US20220176513A1 (en) Polishing method, polishing monitoring method and polishing monitoring apparatus for workpiece
JP4857659B2 (ja) 膜厚評価方法、研磨終点検出方法及びデバイス製造装置
KR20050029629A (ko) 동적으로 갱신된 기준을 매개로 광간섭을 이용하는얇은-금속 경계의 현장검출방법
US6896588B2 (en) Chemical mechanical polishing optical endpoint detection
TWI227333B (en) In-situ detection of thin-metal interface using optical interference via a dynamically updated reference