JP2005100819A - Cell for fuel cell, cell stack and fuel cell - Google Patents

Cell for fuel cell, cell stack and fuel cell Download PDF

Info

Publication number
JP2005100819A
JP2005100819A JP2003333477A JP2003333477A JP2005100819A JP 2005100819 A JP2005100819 A JP 2005100819A JP 2003333477 A JP2003333477 A JP 2003333477A JP 2003333477 A JP2003333477 A JP 2003333477A JP 2005100819 A JP2005100819 A JP 2005100819A
Authority
JP
Japan
Prior art keywords
fuel
electrode
fuel cell
cell
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003333477A
Other languages
Japanese (ja)
Other versions
JP4484481B2 (en
Inventor
Shoji Yamashita
祥二 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003333477A priority Critical patent/JP4484481B2/en
Publication of JP2005100819A publication Critical patent/JP2005100819A/en
Application granted granted Critical
Publication of JP4484481B2 publication Critical patent/JP4484481B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cell for a fuel cell, a cell stack and a fuel cell for suppressing the generation of deformation and a clack during manufacturing, high in intensity and excellent in the property of effective use of gas. <P>SOLUTION: The cell for the fuel cell composed of a three-dimensional net structured body is sequentially provided with fuel side electrodes 35, 52 and 64, solid electrolytes 37, 53 and 65 and oxygen side electrodes 39, 55 and 66 on surfaces of conductive electrode support substrates 34, 51 and 63 through which gas can pass in an axial length direction. It is preferable that the number of gas holes at peripheral part B of the substrates 34, 51, 63 is larger than that at a central part A. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、燃料電池セル及びセルスタック並びに燃料電池に関するものである。   The present invention relates to a fuel cell, a cell stack, and a fuel cell.

次世代エネルギーとして、近年、燃料電池セルのスタックを収納容器内に収容した燃料電池が種々提案されている。   In recent years, various fuel cells in which a stack of fuel cells is accommodated in a storage container have been proposed as next-generation energy.

図6は従来の扁平状の固体電解質形燃料電池セルのセルスタックを示すもので、このセルスタックは、複数の燃料電池セル23(23a、23b)を集合させ、一方の燃料電池セル23aと他方の燃料電池セル23bとの間に金属フェルトなどからなる集電部材25を介在させ、一方の燃料電池セル23aの内側電極(酸素側電極)27と他方の燃料電池セル23bの外側電極(燃料側電極)28とを電気的に接続して構成されていた。   FIG. 6 shows a cell stack of a conventional flat solid electrolyte fuel cell. This cell stack collects a plurality of fuel cells 23 (23a, 23b), one fuel cell 23a and the other. A current collecting member 25 made of a metal felt or the like is interposed between the fuel cell 23b and an inner electrode (oxygen side electrode) 27 of one fuel cell 23a and an outer electrode (fuel side) of the other fuel cell 23b. Electrode) 28 was electrically connected.

燃料電池セル23(23a、23b)は、扁平状の内側電極27の外周面に、固体電解質29、外側電極28を順次設けて構成されており、固体電解質29、外側電極28から露出した内側電極27には、外側電極28に接続しないようにインターコネクタ30が設けられている。内側電極27内には複数のガス通過孔32が形成されている。   The fuel cell 23 (23 a, 23 b) is configured by sequentially providing a solid electrolyte 29 and an outer electrode 28 on the outer peripheral surface of the flat inner electrode 27, and the inner electrode exposed from the solid electrolyte 29 and the outer electrode 28. 27 is provided with an interconnector 30 so as not to be connected to the outer electrode 28. A plurality of gas passage holes 32 are formed in the inner electrode 27.

一方の燃料電池セル23aと他方の燃料電池セル23bとの電気的接続は、一方の燃料電池セル23aの内側電極27を、該内側電極27に設けられたインターコネクタ30、集電部材25を介して、他方の燃料電池セル23bの外側電極28に接続することにより行われていた(例えば特許文献1参照)。
特開平1−169878号公報
The electrical connection between one fuel battery cell 23a and the other fuel battery cell 23b is achieved by connecting the inner electrode 27 of one fuel battery cell 23a via the interconnector 30 and the current collecting member 25 provided on the inner electrode 27. This is done by connecting to the outer electrode 28 of the other fuel cell 23b (see, for example, Patent Document 1).
JP-A-1-169878

しかしながら、上記した図6の燃料電池セルでは、内部にガス通過孔32が形成されており、押出成形で内側電極27を形成し、外側電極28、インターコネクタ30をセラミックスで形成する必要があり、焼成工程を経て作製する必要があるため、製造中に変形やクラックが発生し易く、また得られた燃料電池セル23の強度が低いという問題があった。   However, in the fuel cell of FIG. 6 described above, the gas passage hole 32 is formed inside, and it is necessary to form the inner electrode 27 by extrusion molding, and to form the outer electrode 28 and the interconnector 30 with ceramics. Since it is necessary to produce through a baking process, there existed a problem that a deformation | transformation and a crack are easy to generate | occur | produce during manufacture, and the intensity | strength of the obtained fuel battery cell 23 was low.

特に、図6の扁平状の固体電解質形燃料電池セル23では、支持体である内側電極27が薄いため、製造工程中に変形やクラックが発生し易く、また得られた燃料電池セル23の強度も低いという問題があった。   In particular, in the flat solid electrolyte fuel cell 23 of FIG. 6, the inner electrode 27 as a support is thin, so that deformation and cracks are likely to occur during the manufacturing process, and the strength of the obtained fuel cell 23 There was also a problem that it was low.

また、内側電極27にはガス通過孔32が形成されているため、ガスは固体電解質29表面への供給よりもガス通過孔32を通過し易く、ガスを有効に利用していないという問題があった。   Further, since the gas passage hole 32 is formed in the inner electrode 27, there is a problem that the gas is more likely to pass through the gas passage hole 32 than the supply to the surface of the solid electrolyte 29 and the gas is not effectively used. It was.

さらに、支持体である内側電極27の厚みを厚くすることにより、燃料電池セル23の変形やクラックを抑制することができるが、燃料電池セル23が大型化し、燃料電池が大型化するという問題があった。また、内側電極27の厚みが厚いため、固体電解質29へのガス供給量がさらに減少するという問題があった。   Furthermore, by increasing the thickness of the inner electrode 27 that is a support, deformation and cracking of the fuel cell 23 can be suppressed, but there is a problem that the fuel cell 23 becomes larger and the fuel cell becomes larger. there were. In addition, since the inner electrode 27 is thick, there is a problem that the amount of gas supplied to the solid electrolyte 29 is further reduced.

また、内側電極27が燃料電池セルの支持体であったため、内側電極27に支持体としての特性がさらに要求され、支持体としての要求特性を満足するために電極としての特性を犠牲にせざるを得なかった。   Further, since the inner electrode 27 is a support for the fuel cell, the inner electrode 27 is further required to have characteristics as a support, and the characteristics as an electrode may be sacrificed in order to satisfy the required characteristics as a support. I didn't get it.

本発明は、製造中における変形やクラックの発生を抑制できるとともに、強度が大きく、ガスを有効利用できる特性の良好な燃料電池セル及びセルスタック並びに燃料電池を提供することを目的とする。   An object of the present invention is to provide a fuel cell, a cell stack, and a fuel cell that can suppress the occurrence of deformation and cracks during production, have high strength, and have good characteristics that allow effective use of gas.

本発明の燃料電池セルは、3次元網目構造体からなり、軸長方向にガス通過可能な導電性の電極支持基板の表面に、内側電極、固体電解質、外側電極を順次設けてなることを特徴とする。このような燃料電池セルでは、導電性の電極支持基板が3次元網目構造体であり、従来のように円柱状の空間(ガス通過孔)が形成されておらず、連続気孔が形成されているため、導電性の電極支持基板の強度が大きく、製造工程中における変形やクラックの発生を抑制でき、得られた燃料電池セルも強度が大きい。   The fuel cell of the present invention comprises a three-dimensional network structure, and is characterized in that an inner electrode, a solid electrolyte, and an outer electrode are sequentially provided on the surface of a conductive electrode supporting substrate through which gas can pass in the axial length direction. And In such a fuel cell, the conductive electrode support substrate is a three-dimensional network structure, and a cylindrical space (gas passage hole) is not formed as in the prior art, and continuous pores are formed. Therefore, the strength of the conductive electrode support substrate is high, deformation and cracks can be suppressed during the manufacturing process, and the obtained fuel cell has high strength.

また、本発明の燃料電池セルでは、従来のようにガスが主としてガス通過孔を流れるのではなく、導電性の電極支持基板を形成する3次元網目構造体の連続気孔中を流れるため、固体電解質表面への供給量を増加でき、燃料となるガスを有効利用できる。   Further, in the fuel cell of the present invention, the gas does not mainly flow through the gas passage holes as in the prior art, but flows through the continuous pores of the three-dimensional network structure forming the conductive electrode support substrate. The amount of supply to the surface can be increased, and the gas used as fuel can be used effectively.

さらに、内側電極とは別個に電極支持基板を設け、この電極支持基板を3次元網目構造体としたので、支持体として要求される特性は電極支持基板に、電極として要求される特性は内側電極で得ることができ、最適特性の電極支持基板と内側電極を得ることができ、燃料電池セルとしての特性を大きく向上できる。   Furthermore, since the electrode support substrate is provided separately from the inner electrode, and this electrode support substrate is a three-dimensional network structure, the characteristics required as the support are the electrode support substrate, and the characteristics required as the electrode are the inner electrode. The electrode support substrate and the inner electrode with optimum characteristics can be obtained, and the characteristics as a fuel cell can be greatly improved.

また、本発明の燃料電池セルは、電極支持基板の外周部は中心部よりも気孔量が多いことを特徴とする。このような燃料電池セルでは、電極支持基板の中心部よりも外周部をガスが通過し易いため、固体電解質表面へのガス供給量を増加でき、燃料となるガスを有効利用できる。   Moreover, the fuel cell of the present invention is characterized in that the outer peripheral portion of the electrode support substrate has a larger amount of pores than the central portion. In such a fuel cell, the gas easily passes through the outer peripheral portion rather than the central portion of the electrode support substrate. Therefore, the amount of gas supplied to the surface of the solid electrolyte can be increased, and the gas serving as the fuel can be used effectively.

さらに、本発明の燃料電池セルは扁平状であることが望ましい。このような扁平状の燃料電池セルでは厚みが薄く、製造工程中における変形やクラックが発生し易く、得られた燃料電池セルの強度も低くなり易いため、強度を高くするように電極支持基板を形成することにより、本発明を好適に用いることができる。   Furthermore, the fuel cell of the present invention is preferably flat. In such a flat fuel cell, the thickness is thin, deformation and cracks are likely to occur during the manufacturing process, and the strength of the obtained fuel cell tends to be low. By forming it, this invention can be used conveniently.

また、このような扁平状の燃料電池セルでは、セルを大型化(幅を広く)して燃料電池セル1本当たりの発電量を増加できるが、このようにセルを大型化したとしても、所定量発電するために必要なスタック容積を従来よりも小さくでき、これにより燃料電池をコンパクト化できるとともに、必要とされる被加熱部容積を減少でき、起動時や定常運転時にセル加熱用として用いるエネルギーを最小限とでき、起動を早くできるとともに、発電効率を向上できる。   In addition, in such a flat fuel cell, the power generation amount per fuel cell can be increased by increasing the size of the cell (widening the width). Energy required for cell heating during start-up and steady operation can be reduced by reducing the stack volume required for quantitative power generation compared to the conventional method, thereby reducing the size of the fuel cell. Can be minimized, the start-up can be made faster, and the power generation efficiency can be improved.

さらに、本発明の燃料電池セルは、電極支持基板の外面に、内側電極を取り巻くように管状の内側電極を設け、該内側電極の外面に、該内側電極を取り巻くように環状の固体電解質を設け、該固体電解質の外面に、該固体電解質を取り巻くように環状の外側電極を設けて構成される場合や、固体電解質及び外側電極が形成されていない電極支持基板の表面に、インターコネクタが形成されている場合に用いられる。   Furthermore, in the fuel cell of the present invention, a tubular inner electrode is provided on the outer surface of the electrode support substrate so as to surround the inner electrode, and an annular solid electrolyte is provided on the outer surface of the inner electrode so as to surround the inner electrode. In the case where the outer surface of the solid electrolyte is provided with an annular outer electrode so as to surround the solid electrolyte, an interconnector is formed on the surface of the electrode support substrate on which the solid electrolyte and the outer electrode are not formed. Used when

内側電極の外周面に環状の固体電解質、外側電極を順次形成し、インターコネクタを形成しない形状とすることにより、製造が容易であり、また、セル全周を発電部とすることができ、セル全周を有効に用いて発電させ、燃料電池セル1本当たりの発電量が増加し、その結果、所定発電量当たりに必要となるセル数を減少させることができる。また、セル本数が減少することに伴い、セル間の接続の総数が減少することになり故障発生の原因となりうる接続部の総数を減らすことができるため信頼性が向上する。   By forming an annular solid electrolyte and an outer electrode in order on the outer peripheral surface of the inner electrode and forming a shape that does not form an interconnector, manufacturing is easy, and the entire periphery of the cell can be used as a power generation unit. It is possible to generate power by effectively using the entire circumference, and the power generation amount per fuel cell increases, and as a result, the number of cells required per predetermined power generation amount can be reduced. In addition, as the number of cells decreases, the total number of connections between cells decreases, and the total number of connections that can cause a failure can be reduced, improving reliability.

本発明のセルスタックは、上記燃料電池セルを複数集合してなるものである。このようなセルスタックでは、燃料電池セルが、上記したように、製造中における変形やクラックの発生を抑制できるとともに、強度が大きく、燃料ガスを有効利用できるため、セルスタックの破損を抑制でき、発電効率を向上できる。   The cell stack of the present invention is formed by aggregating a plurality of the fuel cells. In such a cell stack, as described above, the fuel battery cell can suppress the occurrence of deformation and cracks during production, and has high strength and can effectively use fuel gas, so that damage to the cell stack can be suppressed, Power generation efficiency can be improved.

また、本発明の燃料電池は、上記燃料電池セルを収納容器内に複数収納してなるものである。このような燃料電池では、長期間信頼性を向上できるとともに、発電効率を向上できる。   Further, the fuel cell of the present invention comprises a plurality of the above fuel cell units stored in a storage container. Such a fuel cell can improve long-term reliability and power generation efficiency.

本発明の燃料電池セルでは、支持体である導電性の電極支持基板が3次元網目構造体であり、従来のように円柱状の空間(ガス通過孔)が形成されておらず、均一な連続気孔が形成されているため、導電性の電極支持基板の強度が大きく、製造工程中における変形やクラックの発生を抑制でき、得られた燃料電池セルも強度が大きい。   In the fuel battery cell of the present invention, the conductive electrode support substrate as a support is a three-dimensional network structure, and a cylindrical space (gas passage hole) is not formed as in the prior art, so that it is uniformly continuous. Since the pores are formed, the strength of the conductive electrode support substrate is high, deformation and cracks can be suppressed during the manufacturing process, and the obtained fuel cell has high strength.

また、従来のようにガスが主としてガス通過孔を流れるのではなく、導電性の電極支持基板を形成する3次元網目構造体の連続気孔中を流れるため、固体電解質表面への供給量を増加でき、燃料となるガスを有効利用できる。   In addition, since the gas does not mainly flow through the gas passage holes as in the prior art, but flows through the continuous pores of the three-dimensional network structure forming the conductive electrode support substrate, the supply amount to the surface of the solid electrolyte can be increased. The gas that becomes the fuel can be used effectively.

さらに、内側電極とは別個に電極支持基板を設け、この電極支持基板を3次元網目構造体としたので、支持基板として要求される特性は電極支持基板に、電極として要求される特性は内側電極で得ることができ、最適特性の電極支持基板と内側電極を得ることができ、燃料電池セルとしての特性を大きく向上できる。   Furthermore, since the electrode support substrate is provided separately from the inner electrode, and this electrode support substrate is a three-dimensional network structure, the characteristics required as the support substrate are the characteristics required for the electrode support substrate, and the characteristics required as the electrode are the inner electrode. The electrode support substrate and the inner electrode with optimum characteristics can be obtained, and the characteristics as a fuel cell can be greatly improved.

図1は本発明の燃料電池セルを示すもので、(a)は横断面図、(b)は斜視図である。本発明の燃料電池セル33はインターコネクタレス形状で扁平状とされており、扁平状で多孔質な金属を主成分とする導電性の電極支持基板34の外周面全面に燃料側電極(内側電極)35を形成し、この燃料側電極35の外周面全面に、緻密質な固体電解質37を形成し、この固体電解質37の外周面全面に多孔質な導電性セラミックスからなる酸素側電極(外側電極)39を順次積層して構成されている。   FIG. 1 shows a fuel cell of the present invention, where (a) is a cross-sectional view and (b) is a perspective view. The fuel battery cell 33 of the present invention is flat with an interconnector-less shape, and a fuel side electrode (inner electrode) is formed on the entire outer peripheral surface of a conductive electrode support substrate 34 mainly composed of a flat and porous metal. ) 35, a dense solid electrolyte 37 is formed on the entire outer peripheral surface of the fuel-side electrode 35, and an oxygen-side electrode (outer electrode) made of porous conductive ceramics is formed on the entire outer peripheral surface of the solid electrolyte 37. ) 39 are sequentially stacked.

即ち、燃料電池セル33は、扁平状の導電性の電極支持基板34を取り巻くように環状の燃料側電極35を設け、この燃料側電極35の外面に、燃料側電極35を取り巻くように環状の固体電解質37を設け、この固体電解質37の外面に、固体電解質37を取り巻くように環状の酸素側電極39を設けて構成されている。   That is, the fuel battery cell 33 is provided with an annular fuel-side electrode 35 so as to surround the flat conductive electrode support substrate 34, and an annular surface so as to surround the fuel-side electrode 35 on the outer surface of the fuel-side electrode 35. A solid electrolyte 37 is provided, and an annular oxygen-side electrode 39 is provided on the outer surface of the solid electrolyte 37 so as to surround the solid electrolyte 37.

導電性の電極支持基板34は3次元網目構造からなり、その軸長方向に連続気孔が形成され、燃料ガスが軸長方向に通過可能とされている。燃料ガスの流通量は、連続気孔量や気孔の大きさによって制御できる。   The conductive electrode support substrate 34 has a three-dimensional network structure, and continuous pores are formed in the axial length direction so that fuel gas can pass in the axial length direction. The flow rate of the fuel gas can be controlled by the amount of continuous pores and the size of the pores.

導電性の電極支持基板34は、例えばNiからなり、3次元網目構造を有している。このような金属からなる3次元網目構造は、例えば、3次元網目構造を有する樹脂にNiを主成分とするペーストを含浸させ、加熱処理して樹脂を飛散させることにより得ることができるが、このような金属を主成分とする導電性の3次元網目構造体は、既に市販されているものも使用できる。   The conductive electrode support substrate 34 is made of, for example, Ni and has a three-dimensional network structure. A three-dimensional network structure made of such a metal can be obtained by, for example, impregnating a resin having a three-dimensional network structure with a paste containing Ni as a main component and heat-treating the resin to disperse the resin. As the conductive three-dimensional network structure having such a metal as a main component, those already on the market can be used.

尚、燃料電池を作製する場合は、セルを支持固定する必要があるが、この支持固定される部分については、酸素側電極39を形成しなくても良い。   In the case of producing a fuel cell, it is necessary to support and fix the cell. However, the oxygen side electrode 39 does not have to be formed for the portion to be supported and fixed.

導電性の電極支持基板34は、ほぼ平行に対向するように設けられた一対の平坦部34aと、幅方向両端に設けられ、一対の平坦部34aの端部同士を滑らかに連結する弧状部34bとから構成されており、これらの弧状部34bは外方へ向けて突出する円弧状とされている。   The conductive electrode support substrate 34 has a pair of flat portions 34a provided so as to face each other substantially in parallel, and an arcuate portion 34b provided at both ends in the width direction and smoothly connecting the ends of the pair of flat portions 34a. These arc-shaped portions 34b are formed in an arc shape projecting outward.

燃料電池セル33は、導電性の支持基板34の形状に応じて、外形形状が、ほぼ平行に形成された一対の平坦部33aと、これらの平坦部33aの両端にそれぞれ形成され、一対の平坦部33aの端部同士を連結する弧状部33bとから構成されている。   The fuel battery cell 33 has a pair of flat portions 33a whose outer shapes are formed substantially in parallel according to the shape of the conductive support substrate 34, and both ends of the flat portions 33a. It is comprised from the arc-shaped part 33b which connects the edge parts of the part 33a.

図2は本発明の他の燃料電池セル49を示すもので、この燃料電池セル49では、導電性の電極支持基板51の外周面全面に燃料側電極52が形成され、この燃料側電極52の外周面全面に固体電解質53が形成され、この固体電解質53の軸長方向における一部の外周面に、環状の酸素側電極55が形成されている以外は、図1と同様の構造を有している。従って、燃料電池セル49の一方側端から導電性の電極支持基板51、燃料側電極52、固体電解質53が突出している。尚、符号49aは燃料電池セル49の平坦部、49bは燃料電池セル49の弧状部を示している。   FIG. 2 shows another fuel cell 49 of the present invention. In this fuel cell 49, a fuel side electrode 52 is formed on the entire outer peripheral surface of a conductive electrode support substrate 51. The solid electrolyte 53 is formed on the entire outer peripheral surface, and has the same structure as that of FIG. 1 except that the annular oxygen side electrode 55 is formed on a part of the outer peripheral surface in the axial length direction of the solid electrolyte 53. ing. Accordingly, the conductive electrode support substrate 51, the fuel side electrode 52, and the solid electrolyte 53 protrude from one end of the fuel battery cell 49. Reference numeral 49 a indicates a flat portion of the fuel cell 49, and 49 b indicates an arc-shaped portion of the fuel cell 49.

電極支持基板34、51は、Y、Lu、Yb、Tm、Er、Ho、Dy、Gd、Sm及びPrから選ばれた1種以上からなる、固体電解質材料として用いる材料(例えばYSZ)よりも低熱膨張係数の希土類元素酸化物と、Ni及び/又はNiOとを主成分とすることが望ましい。このような組成とすることにより、固体電解質の熱膨張係数に近づけることができる。   The electrode support substrates 34 and 51 have a heat lower than that of a material used as a solid electrolyte material (for example, YSZ) made of one or more selected from Y, Lu, Yb, Tm, Er, Ho, Dy, Gd, Sm, and Pr. It is desirable that the rare earth element oxide having an expansion coefficient and Ni and / or NiO are the main components. By setting it as such a composition, it can approximate the thermal expansion coefficient of a solid electrolyte.

燃料側電極35、52は、Ni、Co、Ti、Ruのうちいずれか一種の金属又は金属酸化物、もしくはこれらの合金又は合金酸化物を主成分とするものであり、これら以外に、外面の固体電解質37、53への接合強度を向上し、固体電解質37、53の熱膨張係数に近似させるため、固体電解質材料、例えば希土類元素を含有するZrOやランタンガレート系材料からなることが望ましい。金属又は金属酸化物としては、コストの観点からNi又はNiOが望ましい。尚、燃料側電極35、52を金属酸化物で形成した場合には、還元雰囲気で還元して発電することになる。 The fuel-side electrodes 35 and 52 are mainly composed of any one of Ni, Co, Ti and Ru, or a metal oxide or alloy or alloy oxide thereof. In order to improve the bonding strength to the solid electrolytes 37 and 53 and approximate the thermal expansion coefficient of the solid electrolytes 37 and 53, it is desirable to be made of a solid electrolyte material such as ZrO 2 containing a rare earth element or a lanthanum gallate material. As the metal or metal oxide, Ni or NiO is desirable from the viewpoint of cost. In addition, when the fuel side electrodes 35 and 52 are formed of a metal oxide, power is generated by reduction in a reducing atmosphere.

上記した図1及び図2の燃料電池セル33、49の短径R1と長径R2の比率R2/R1は2以上であることが望ましい。これにより、所定量発電するために必要なセル本数を減少できる。特に、R2/R1は4以上、さらには8以上であることが望ましい。   The ratio R2 / R1 between the short diameter R1 and the long diameter R2 of the fuel cells 33 and 49 shown in FIGS. 1 and 2 is preferably 2 or more. Thereby, the number of cells required to generate a predetermined amount of power can be reduced. In particular, R2 / R1 is preferably 4 or more, and more preferably 8 or more.

尚、燃料電池セル33、49は、上記したように、一対の平坦部33a、49aと、これらの平坦部33a、49aの両端を滑らかに連結する弧状部33b、49bとからなる扁平な楕円状に形成されているため、一対の平坦部33a、49a間の距離を短径R1とし、この短径R1に直交する方向の長さで最大距離を長径R2とすると、燃料電池セルの短径R1は10mm以下であることが望ましい。これにより、燃料電池セルの容積を小さくでき、体積当たりの出力密度を向上できる。特に、8mm以下、さらには6mm以下が望ましい。   As described above, the fuel cells 33 and 49 have a flat oval shape including a pair of flat portions 33a and 49a and arc-shaped portions 33b and 49b that smoothly connect both ends of the flat portions 33a and 49a. Therefore, if the distance between the pair of flat portions 33a and 49a is the short diameter R1, and the maximum distance is the length in the direction orthogonal to the short diameter R1, the short diameter R1 of the fuel cell is assumed. Is preferably 10 mm or less. Thereby, the volume of a fuel cell can be made small and the output density per volume can be improved. In particular, it is preferably 8 mm or less, more preferably 6 mm or less.

この燃料側電極35、52の外面に設けられた固体電解質37、53は、3〜15モル%のY、希土類元素を含有した部分安定化あるいは安定化ZrOやランタンガレート系材料からなる緻密質なセラミックスが用いられている。燃料側電極35、52と固体電解質37、53との間には、接合強度を向上するため緻密層からなる接合層を介在させても良い。この固体電解質37、53の厚みは、ガス透過を防止するという点から10〜100μmであることが望ましい。 The solid electrolytes 37 and 53 provided on the outer surfaces of the fuel side electrodes 35 and 52 are dense materials composed of partially stabilized or stabilized ZrO 2 or lanthanum gallate material containing 3 to 15 mol% Y and rare earth elements. Ceramics are used. Between the fuel side electrodes 35 and 52 and the solid electrolytes 37 and 53, a bonding layer made of a dense layer may be interposed in order to improve the bonding strength. The thickness of the solid electrolytes 37 and 53 is preferably 10 to 100 μm from the viewpoint of preventing gas permeation.

酸素側電極39、55は、LaMnO系材料、LaFeO系材料、LaCoO系材料の少なくとも一種の多孔質の導電性セラミックスから構成されている。酸素側電極39、55は、600〜1000℃程度の比較的低温での電気伝導性が高いという点からLaFeO系材料が望ましい。酸素側電極39、55の厚みは、集電性という点から30〜100μmであることが望ましい。 The oxygen side electrodes 39 and 55 are made of at least one porous conductive ceramic of LaMnO 3 -based material, LaFeO 3 -based material, and LaCoO 3 -based material. The oxygen-side electrodes 39 and 55 are preferably made of LaFeO 3 based material in terms of high electrical conductivity at a relatively low temperature of about 600 to 1000 ° C. The thickness of the oxygen side electrodes 39 and 55 is preferably 30 to 100 μm from the viewpoint of current collection.

図3は、本発明の他の燃料電池セル62を示すもので、この燃料電池セル62は断面が扁平状で、全体的に見て楕円柱状とされている。この燃料電池セル62は、断面が扁平状で、全体的に見て楕円柱状の金属を主成分とする3次元網目構造をした導電性の電極支持基板63の外面に燃料側電極(内側電極)64、緻密質な固体電解質65、多孔質な導電性セラミックスからなる酸素側電極(外側電極)66を順次積層し、酸素側電極66と反対側の導電性電極支持基板63の外面にインターコネクタ67を形成して構成されている。   FIG. 3 shows another fuel battery cell 62 of the present invention. The fuel battery cell 62 has a flat cross section and an elliptical cylinder shape as a whole. The fuel cell 62 has a flat cross section and a fuel-side electrode (inner electrode) on the outer surface of a conductive electrode support substrate 63 having a three-dimensional network structure mainly composed of an elliptical columnar metal as a whole. 64, a dense solid electrolyte 65, and an oxygen side electrode (outer electrode) 66 made of porous conductive ceramics are sequentially laminated, and an interconnector 67 is formed on the outer surface of the conductive electrode support substrate 63 opposite to the oxygen side electrode 66. Is formed.

即ち、燃料電池セル62は、断面形状が、幅方向両端に設けられた弧状部と、これらの弧状部を連結する一対の平坦部とから構成されており、一対の平坦部は平坦であり、ほぼ平行に形成されている。これらの一対の平坦部は、導電性の電極支持基板63の平坦部にインターコネクタ67、又は燃料側電極64、固体電解質65、酸素側電極66を形成して構成されている。   That is, the fuel cell 62 has a cross-sectional shape composed of arc-shaped portions provided at both ends in the width direction and a pair of flat portions connecting these arc-shaped portions, and the pair of flat portions is flat, They are formed almost in parallel. The pair of flat portions is configured by forming an interconnector 67 or a fuel side electrode 64, a solid electrolyte 65, and an oxygen side electrode 66 on the flat portion of the conductive electrode support substrate 63.

以上のような燃料電池セルの製造方法について説明する。先ず、所定の気孔径を有するNiOを主成分とする3次元網目構造体を準備し、これを発電時あるいは還元処理を行いNiに変換して導電性の電極支持基板とする。この3次元網目構造体からなる導電性の電極支持基板は、例えば、スポンジ状の樹脂体を作製し、この樹脂体に、NiO粉末とY粉末と、溶媒とを混合したペーストを含浸塗布し、加熱処理してNiOを主成分とする3次元網目構造体からなる導電性の電極支持基板を作製する。 The manufacturing method of the fuel cell as described above will be described. First, a three-dimensional network structure mainly composed of NiO having a predetermined pore diameter is prepared, and this is converted into Ni during power generation or reduction treatment to obtain a conductive electrode support substrate. The conductive electrode support substrate made of this three-dimensional network structure is prepared, for example, by preparing a sponge-like resin body, and impregnating the resin body with a paste in which NiO powder, Y 2 O 3 powder, and a solvent are mixed. A conductive electrode supporting substrate made of a three-dimensional network structure mainly composed of NiO is applied by applying and heat-treating.

内側電極である燃料側電極は希土類が固溶しているZrOと、Ni及び/またはNiOとから形成される。この希土類元素が固溶しているZrO(安定化ジルコニア)としては以下に述べる固体電解質の形成に使用されているものと同様のものを用いるのがよい。 The fuel side electrode, which is an inner electrode, is formed of ZrO 2 in which a rare earth is dissolved and Ni and / or NiO. As the ZrO 2 (stabilized zirconia) in which the rare earth element is dissolved, it is preferable to use the same as those used for forming the solid electrolyte described below.

燃料側電極中の安定化ジルコニア含量は35乃至65体積%の範囲にあるのが好ましく、また、Ni或いはNiO含量は、65乃至35体積%であるのがよい。さらに、この燃料側電極の開気孔率は15%以上、特に20乃至40%の範囲にあるのがよく、その厚みは、1〜30μmであることが望ましい。例えば、燃料側電極層の厚みがあまり薄いと、集電性能が低下するおそれがあり、またあまり厚いと、固体電解質層と燃料側電極層との間で熱膨張差による剥離等を生ずるおそれがある。   The stabilized zirconia content in the fuel side electrode is preferably in the range of 35 to 65% by volume, and the Ni or NiO content is preferably in the range of 65 to 35% by volume. Further, the open porosity of the fuel side electrode is preferably 15% or more, particularly in the range of 20 to 40%, and the thickness is preferably 1 to 30 μm. For example, if the thickness of the fuel side electrode layer is too thin, the current collecting performance may be deteriorated. If the thickness is too thick, peeling due to a difference in thermal expansion may occur between the solid electrolyte layer and the fuel side electrode layer. is there.

また、この燃料側電極層は酸素側電極層に対面する位置にのみ存在していてもよいが、固体電解質層と電極支持基板との接合強度を高めるために、固体電解質の下面全体にわたって燃料側電極層が形成されていることが好ましく、例えば図3に示すように、インターコネクタ67の両サイドにまで延びていることが好ましい。   The fuel side electrode layer may be present only at the position facing the oxygen side electrode layer. However, in order to increase the bonding strength between the solid electrolyte layer and the electrode support substrate, the fuel side electrode layer is formed over the entire lower surface of the solid electrolyte. An electrode layer is preferably formed. For example, as shown in FIG. 3, it is preferable that the electrode layer extends to both sides of the interconnector 67.

この燃料側電極層は、電極支持基板の全周にわたって形成することも可能である。発電に寄与する部分は固体電解質を燃料側電極及び酸素側電極で挟持した部分である。従って、インターコネクタ67と電極支持基板63との間の層は、電極としての機能を有することなく、例えば接合強度を向上するような組成とすることもできる。   The fuel side electrode layer can also be formed over the entire circumference of the electrode support substrate. The portion that contributes to power generation is a portion in which the solid electrolyte is sandwiched between the fuel side electrode and the oxygen side electrode. Therefore, the layer between the interconnector 67 and the electrode support substrate 63 may have a composition that improves the bonding strength, for example, without having a function as an electrode.

次に、図3に示す燃料電池セル62の場合、例えば、YSZ粉末と、有機バインダーと、溶媒とを混合した、固体電解質材料を用いてシート状成形体を作製し、このシート状成形体を、導電性の電極支持基板上に、燃料側電極形成のためのペーストを用いて、その両端間が所定間隔をおいて離間するように巻き付け、乾燥する。   Next, in the case of the fuel battery cell 62 shown in FIG. 3, for example, a sheet-like molded body is prepared using a solid electrolyte material in which YSZ powder, an organic binder, and a solvent are mixed. Then, the paste for forming the fuel side electrode is wound on the conductive electrode support substrate so that both ends thereof are spaced apart from each other by a predetermined distance, and dried.

この後、例えば、LaCrO系材料と、有機バインダーと、溶媒とを混合した、インターコネクタ材料を用いてシート状成形体を作製し、このシート状成形体を、露出した導電性の電極支持基板の外面に積層し、導電性の電極支持基板に燃料側電極ペーストによって固体電解質のシート状成形体、インターコネクタのシート状成形体が積層された積層成形体を作製する。 Thereafter, for example, a sheet-like molded body is prepared using an interconnector material in which a LaCrO 3 -based material, an organic binder, and a solvent are mixed, and this sheet-shaped molded body is exposed to an exposed conductive electrode support substrate. A laminated molded body in which a solid electrolyte sheet-shaped molded body and an interconnector sheet-shaped molded body are stacked on a conductive electrode support substrate with a fuel-side electrode paste is prepared.

次に、この積層成形体を脱バインダ処理し、酸素含有雰囲気中で1300〜1600℃で同時焼成し、この積層体を、例えば、LaFeO系材料と、溶媒を含有するペースト中に浸漬し、固体電解質の表面に酸素側電極成形体をディッピングにより形成し、1000〜1300℃で焼き付けることにより、本発明の図3に示す燃料電池セルを作製できる。 Next, the laminated molded body is treated to remove the binder, and co-fired at 1300 to 1600 ° C. in an oxygen-containing atmosphere. The laminated body is immersed in, for example, a paste containing a LaFeO 3 -based material and a solvent, A fuel cell shown in FIG. 3 of the present invention can be produced by forming an oxygen-side electrode molded body on the surface of the solid electrolyte by dipping and baking at 1000 to 1300 ° C.

このような燃料電池セル62を用いたセルスタックを図4に示す。このセルスタックは、図4に示すように、燃料電池セル62を複数集電部材71を介して接続してセル列を作製し、これらを3列に整列し、隣設した2列の最外部の燃料電池セル62の電極同士が導電部材73で接続され、これにより3列に整列した複数の燃料電池セル62が電気的に直列に接続している。   A cell stack using such fuel cell 62 is shown in FIG. In this cell stack, as shown in FIG. 4, fuel cell cells 62 are connected via a plurality of current collecting members 71 to produce cell rows, which are arranged in three rows and adjacent to the two outermost rows. The electrodes of the fuel cells 62 are connected by a conductive member 73, whereby a plurality of fuel cells 62 arranged in three rows are electrically connected in series.

本発明の燃料電池は、上記したセルスタックが収納容器内に収容されて構成されている。即ち、収納容器には、セルスタックに酸素含有ガス(空気)を導入する供給管、燃料ガスを導入する供給管が配置されており、酸素含有ガスを燃料電池セルの酸素側電極に沿って流すとともに、燃料ガスを燃料側電極に流し、例えば600〜1000℃程度に加熱することにより燃料電池セルが発電を開始する。   The fuel cell of the present invention is configured by accommodating the cell stack described above in a storage container. That is, the storage container is provided with a supply pipe for introducing oxygen-containing gas (air) into the cell stack and a supply pipe for introducing fuel gas, and the oxygen-containing gas flows along the oxygen-side electrode of the fuel cell. At the same time, the fuel cell flows through the fuel side electrode and is heated to, for example, about 600 to 1000 ° C., so that the fuel cell starts to generate power.

尚、図1に示す燃料電池セルの場合には、固体電解質材料からなるシート状成形体を、導電性の電極支持基板上に、燃料側電極用のペーストを用いてその両端間が離間しないように巻き付け、乾燥した後、焼成し、この積層体を、例えば、LaFeO系材料と、溶媒を含有するペースト中に浸漬し、固体電解質の表面に酸素側電極成形体をディッピングにより形成し、焼き付けることにより、本発明の図1に示す燃料電池セルを作製できる。 In the case of the fuel cell shown in FIG. 1, a sheet-like molded body made of a solid electrolyte material is not separated from both ends of the conductive electrode support substrate using a fuel electrode paste. The laminate is wound, dried and fired, and the laminate is immersed in a paste containing, for example, a LaFeO 3 system material and a solvent, and an oxygen-side electrode molded body is formed on the surface of the solid electrolyte by dipping and baking. Thus, the fuel battery cell shown in FIG. 1 of the present invention can be manufactured.

以上のように構成された燃料電池セルは、従来のようにガスが主としてガス通過孔を流れるのではなく、導電性の電極支持基板34、51、63を形成する3次元網目構造体の連続気孔中を流れるため、固体電解質37、53、65表面への供給量を増加でき、燃料ガスを有効利用できる。   In the fuel cell configured as described above, the gas does not mainly flow through the gas passage holes as in the conventional case, but the continuous pores of the three-dimensional network structure that forms the conductive electrode support substrates 34, 51, 63. Since it flows inside, the supply amount to the surface of the solid electrolytes 37, 53, 65 can be increased, and the fuel gas can be used effectively.

また、図1、図2に示す燃料電池セルでは、扁平状の導電性の電極支持基板34、51の外面に導電性の電極支持基板34、51を取り囲むように環状の燃料側電極35、52を設け、この燃料側電極35、52を取り巻くように環状の固体電解質37、53を設け、この固体電解質37、53の外面に、固体電解質37、53を取り巻くように環状の酸素側電極39、55を設け、燃料側電極35、52の外周面に環状の固体電解質37、53、酸素側電極39、55を形成し、インターコネクタを形成しない形状としたので、製造が容易であり、また、セル全周を発電部とすることができ、セル全周を有効に用いて発電させ、燃料電池セル1体当たりの発電量が増加し、その結果、所定量の発電量を得るために必要となるセル数を減少させることができる。   In the fuel cell shown in FIGS. 1 and 2, the annular fuel-side electrodes 35, 52 are formed so as to surround the conductive electrode support substrates 34, 51 on the outer surfaces of the flat conductive electrode support substrates 34, 51. An annular solid electrolyte 37, 53 is provided so as to surround the fuel side electrodes 35, 52, and an annular oxygen side electrode 39, so as to surround the solid electrolytes 37, 53 is provided on the outer surface of the solid electrolyte 37, 53. 55, and the annular solid electrolytes 37 and 53 and the oxygen side electrodes 39 and 55 are formed on the outer peripheral surfaces of the fuel side electrodes 35 and 52, and the shape is formed so as not to form an interconnector. The entire cell circumference can be used as a power generation unit, and the entire cell circumference can be effectively used to generate power, increasing the amount of power generation per fuel cell, and as a result, required to obtain a predetermined amount of power generation. Decrease the number of cells Rukoto can.

また、セル本数が減少することに伴い、セル間の接続の総数が減少することになり、故障発生の原因となりうる接続部数を減らすことができるため実装信頼性を向上できる。   Further, as the number of cells decreases, the total number of connections between cells decreases, and the number of connections that can cause a failure can be reduced, so that the mounting reliability can be improved.

さらに、扁平状の導電性の電極支持基板34、51、63上に燃料側電極35、52、64を形成し、さらに固体電解質37、53、65、酸素側電極39、55、66を形成し、扁平状のセルを形成することにより、所定量発電するために必要なスタック容積を従来よりも小さくでき、必要とされる被加熱部容積を減少でき、起動時や定常運転時にセル加熱用として必要なエネルギーを小さくできる。   Further, the fuel side electrodes 35, 52, 64 are formed on the flat conductive electrode support substrates 34, 51, 63, and the solid electrolytes 37, 53, 65, and the oxygen side electrodes 39, 55, 66 are formed. By forming a flat cell, the stack volume required to generate a predetermined amount of electricity can be made smaller than before, the required heated volume can be reduced, and for cell heating during startup and steady operation The required energy can be reduced.

また、燃料電池セルが、電極支持基板34、51、63上に、燃料側電極35、52、64、固体電解質、酸素側電極を設けて構成し、燃料側電極35、52、64を支持体としていないので、導電性を有する電極支持基板34、51、63、燃料側電極35、52、64として最適な特性を有するような組成等にそれぞれ制御することができ、最適な電極支持基板34、51、63、燃料側電極35、52、64とすることができる。   Further, the fuel battery cell is configured by providing the fuel side electrodes 35, 52, 64, the solid electrolyte, and the oxygen side electrode on the electrode support substrates 34, 51, 63, and the fuel side electrodes 35, 52, 64 are supported by the support body. Therefore, the electrode support substrates 34, 51, 63 having conductivity and the composition having the optimum characteristics as the fuel side electrodes 35, 52, 64 can be controlled, respectively. 51, 63 and fuel side electrodes 35, 52, 64.

即ち、燃料側電極自体を支持体とする場合には、電極としての特性と支持体としての特性を兼ね備える必要があり、電極に必要な組成、例えばNi+YSZで燃料電池セルの中で最も占める体積が大きい支持体を構成すると、例えばYSZからなる固体電解質との熱膨張係数差が大きいため、作製時や運転時において固体電解質の剥離やクラックが発生する虞があったが、本発明では、燃料側電極35、52、64とは別個に電極支持基板34、51、63を有するため、セル中で最も体積の大きい電極支持基板34、51、63を、支持体として要求される特性に組成等を調整、例えば、Ni+Yから構成することにより、導電性を有するとともに、熱膨張係数を固体電解質37、53、65に近づけることができ、固体電解質37、53、65の剥離等を防止できる。 That is, when the fuel-side electrode itself is used as the support, it is necessary to combine the characteristics as the electrode and the support as the support, and the composition required for the electrode, for example, Ni + YSZ, occupies the most volume in the fuel cell. When a large support is configured, the difference in thermal expansion coefficient from, for example, a solid electrolyte made of YSZ is large, and thus there is a risk of peeling or cracking of the solid electrolyte during production or operation. Since the electrode support substrates 34, 51, and 63 are provided separately from the electrodes 35, 52, and 64, the composition of the electrode support substrates 34, 51, and 63 having the largest volume in the cell is set to the characteristics required as a support. adjusting, for example, by forming a Ni + Y 2 O 3, which has a conductivity, the thermal expansion coefficient can be brought close to the solid electrolyte 37,53,65, solid electrolyte 3 It can prevent peeling or the like of 53,65.

また、図5に示すように、電極支持基板63の外周部Bを中心部Aよりも気孔量を多くすることにより、言い換えれば、外周部Bを中心部Aよりも気孔率を大きくすることにより、さらに言い換えれば中心部Aを外周部Bよりも緻密とすることにより、電極支持基板63の中心部Aよりも外周部Bを燃料ガスが通過し易くなり、固体電解質65表面への供給量を増加でき、燃料ガスを有効利用できる。このような電極支持基板63は、例えば、中心部と外周部で気孔量が異なる3次元網目構造を有する樹脂を用い、これにNiを主成分とするペーストを含浸させ、加熱処理して樹脂を飛散させることにより得ることができる。   Further, as shown in FIG. 5, by increasing the porosity of the outer peripheral portion B of the electrode support substrate 63 more than the central portion A, in other words, by increasing the porosity of the outer peripheral portion B than the central portion A. In other words, by making the central portion A denser than the outer peripheral portion B, it becomes easier for the fuel gas to pass through the outer peripheral portion B than the central portion A of the electrode support substrate 63, and the supply amount to the surface of the solid electrolyte 65 is reduced. The fuel gas can be effectively used. Such an electrode support substrate 63 uses, for example, a resin having a three-dimensional network structure in which the amount of pores is different between the central portion and the outer peripheral portion. It can be obtained by scattering.

尚、本発明は上記形態に限定されるものではなく、発明の要旨を変更しない範囲で種々の変更が可能である。例えば、酸素側電極を内側電極としても良い。   In addition, this invention is not limited to the said form, A various change is possible in the range which does not change the summary of invention. For example, the oxygen side electrode may be used as the inner electrode.

本発明のインターコネクタレス型の燃料電池セルを示すもので、(a)は横断面図、(b)は斜視図である。The interconnector-less type fuel battery cell of the present invention is shown, in which (a) is a cross-sectional view and (b) is a perspective view. 導電性の電極支持基板、燃料側電極、固体電解質が突出している本発明のインターコネクタレス型の燃料電池セルを示す斜視図である。1 is a perspective view showing an interconnector-less fuel cell of the present invention in which a conductive electrode support substrate, a fuel side electrode, and a solid electrolyte protrude. インターコネクタを有する本発明の燃料電池セルを示す断面図である。It is sectional drawing which shows the fuel battery cell of this invention which has an interconnector. 図3に示す燃料電池セルを用いて作製した本発明のセルスタックを示す横断面図である。It is a cross-sectional view which shows the cell stack of this invention produced using the fuel battery cell shown in FIG. 電極支持基板の中心部よりも外周部の方が気孔量が多い場合の本発明の燃料電池セルを示す横断面図である。It is a cross-sectional view showing the fuel cell of the present invention when the outer peripheral portion has a larger amount of pores than the center portion of the electrode support substrate. インターコネクタが形成された扁平状の燃料電池セルを複数直列に接続した従来のセルスタックを示す横断面図である。It is a cross-sectional view showing a conventional cell stack in which a plurality of flat fuel cells having interconnectors formed therein are connected in series.

符号の説明Explanation of symbols

33、49、62・・・燃料電池セル
34、51、63・・・導電性の電極支持基板
35、52、64・・・燃料側電極(内側電極)
37、53、65・・・固体電解質
39、55、66・・・酸素側電極(外側電極)
67・・・・・・・・・インターコネクタ
A・・・中心部
B・・・外周部
33, 49, 62 ... Fuel cell 34, 51, 63 ... Conductive electrode support substrate 35, 52, 64 ... Fuel side electrode (inner electrode)
37, 53, 65 ... solid electrolyte 39, 55, 66 ... oxygen side electrode (outer electrode)
67 .... Interconnector A ... Center B ... Outer periphery

Claims (7)

3次元網目構造体からなり、軸長方向にガス通過可能な導電性の電極支持基板の表面に、内側電極、固体電解質、外側電極を順次設けてなることを特徴とする燃料電池セル。 A fuel cell comprising a three-dimensional network structure, and an inner electrode, a solid electrolyte, and an outer electrode are sequentially provided on the surface of a conductive electrode supporting substrate through which gas can pass in the axial direction. 電極支持基板の外周部は中心部よりも気孔量が多いことを特徴とする請求項1記載の燃料電池セル。 The fuel cell according to claim 1, wherein the outer peripheral portion of the electrode support substrate has a larger amount of pores than the central portion. 扁平状であることを特徴とする請求項1又は2記載の燃料電池セル。 3. The fuel cell according to claim 1, wherein the fuel cell has a flat shape. 電極支持基板の外面に、内側電極を取り巻くように管状の内側電極を設け、該内側電極の外面に、該内側電極を取り巻くように環状の固体電解質を設け、該固体電解質の外面に、該固体電解質を取り巻くように環状の外側電極を設けてなることを特徴とする請求項1乃至3のうちいずれかに記載の燃料電池セル。 A tubular inner electrode is provided on the outer surface of the electrode support substrate so as to surround the inner electrode, an annular solid electrolyte is provided on the outer surface of the inner electrode so as to surround the inner electrode, and the solid electrolyte is provided on the outer surface of the solid electrolyte. The fuel battery cell according to any one of claims 1 to 3, wherein an annular outer electrode is provided so as to surround the electrolyte. 固体電解質及び外側電極が形成されていない電極支持基板の表面に、インターコネクタが形成されていることを特徴とする請求項1乃至3のうちいずれかに記載の燃料電池セル。 The fuel cell according to any one of claims 1 to 3, wherein an interconnector is formed on a surface of the electrode support substrate on which the solid electrolyte and the outer electrode are not formed. 請求項1乃至5のうちいずれかに記載の燃料電池セルを複数集合してなることを特徴とするセルスタック。 A cell stack comprising a plurality of fuel battery cells according to any one of claims 1 to 5. 請求項1乃至5のうちいずれかに記載の燃料電池セルを収納容器内に複数収納してなることを特徴とする燃料電池。 A fuel cell comprising a plurality of the fuel cells according to claim 1 in a storage container.
JP2003333477A 2003-09-25 2003-09-25 Fuel cell, cell stack and fuel cell Expired - Fee Related JP4484481B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003333477A JP4484481B2 (en) 2003-09-25 2003-09-25 Fuel cell, cell stack and fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003333477A JP4484481B2 (en) 2003-09-25 2003-09-25 Fuel cell, cell stack and fuel cell

Publications (2)

Publication Number Publication Date
JP2005100819A true JP2005100819A (en) 2005-04-14
JP4484481B2 JP4484481B2 (en) 2010-06-16

Family

ID=34461477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003333477A Expired - Fee Related JP4484481B2 (en) 2003-09-25 2003-09-25 Fuel cell, cell stack and fuel cell

Country Status (1)

Country Link
JP (1) JP4484481B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007157724A (en) * 2005-12-08 2007-06-21 Hoko Koka Daigakko Solid oxide fuel cell module, fuel cell using this, and its manufacture method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007157724A (en) * 2005-12-08 2007-06-21 Hoko Koka Daigakko Solid oxide fuel cell module, fuel cell using this, and its manufacture method
US7947386B2 (en) 2005-12-08 2011-05-24 Postech Foundation Solid oxide fuel cell module, fuel cell system using the same and manufacturing method thereof

Also Published As

Publication number Publication date
JP4484481B2 (en) 2010-06-16

Similar Documents

Publication Publication Date Title
JP2013101924A (en) Stack structure for fuel cell
JP4146738B2 (en) Fuel cell, cell stack and fuel cell
JP4741815B2 (en) Cell stack and fuel cell
JP2010080151A (en) Cell stack and fuel battery module as well as fuel cell device equipped with the same
JP5192702B2 (en) Horizontally-striped fuel cell, cell stack, and fuel cell
JP2001196069A (en) Fuel cell
JP5192723B2 (en) Horizontally-striped fuel cell and fuel cell
JP5247051B2 (en) Fuel cell and fuel cell stack, and fuel cell
JP2004179071A (en) Cell for fuel cell, and fuel cell
JP4009179B2 (en) Fuel cell and fuel cell
JP2010231918A (en) Fuel battery cell, fuel battery cell stack device, fuel cell module, and fuel cell device
KR20100098526A (en) Tubular electrochemical cell
JP2007095384A (en) Fuel battery cell and fuel battery
JP4057822B2 (en) Fuel cell, cell stack and fuel cell
JP2004172062A (en) Fuel cell system and multilayer cell for the same
JP2004259604A (en) Cell for fuel cell and fuel cell
JP2004063226A (en) Fuel battery cell, its manufacturing method, and fuel battery
JP3934970B2 (en) Fuel cell, cell stack and fuel cell
JP3898551B2 (en) Fuel cell, cell stack and fuel cell
JP4484481B2 (en) Fuel cell, cell stack and fuel cell
JP5036163B2 (en) Fuel cell, cell stack and fuel cell
JP4173029B2 (en) Current collector
JP4925574B2 (en) Fuel cell and fuel cell
JP2006127973A (en) Fuel battery cell
JP2009087539A (en) Fuel battery cell and fuel battery cell stack, as well as fuel battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100223

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100323

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees