JP2005099049A - Chemical analysis apparatus - Google Patents

Chemical analysis apparatus Download PDF

Info

Publication number
JP2005099049A
JP2005099049A JP2004368033A JP2004368033A JP2005099049A JP 2005099049 A JP2005099049 A JP 2005099049A JP 2004368033 A JP2004368033 A JP 2004368033A JP 2004368033 A JP2004368033 A JP 2004368033A JP 2005099049 A JP2005099049 A JP 2005099049A
Authority
JP
Japan
Prior art keywords
sound source
liquid
reaction vessel
sound
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004368033A
Other languages
Japanese (ja)
Other versions
JP4045452B2 (en
Inventor
So Kato
加藤  宗
Akira Miyake
亮 三宅
Takao Terayama
孝男 寺山
Hiroshi Mimaki
弘 三巻
Hiroyasu Uchida
裕康 内田
Tomonori Mimura
智憲 三村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2004368033A priority Critical patent/JP4045452B2/en
Publication of JP2005099049A publication Critical patent/JP2005099049A/en
Application granted granted Critical
Publication of JP4045452B2 publication Critical patent/JP4045452B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently stir a liquid to be measured, in a reaction vessel of a chemical analysis apparatus. <P>SOLUTION: The chemical analysis apparatus comprises the reaction vessel, having an opening section and into which the liquid to be measured is injected, and a stirring means, having a sound source which has the liquid to be measured irradiated with sound waves from the outside of the reaction vessel to stir it. The sound source is constituted of a plurality of sound source elements 223 arranged into an array. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、化学分析装置に係り、特に反応容器内の試薬とサンプルの混合のための攪拌技術に関する。   The present invention relates to a chemical analyzer, and more particularly to a stirring technique for mixing a reagent and a sample in a reaction vessel.

特許文献1に記載されている化学分析装置では、分析対象となるサンプル、試薬を反応容器に供給するための自動サンプル分注機構、自動試薬分注機構、反応容器内のサンプル・試薬を攪拌して均一な溶液にするための自動攪拌機構、反応中あるいは反応が終了したサンプルの物性を計測するための計測器、計測が終了したサンプルを吸引・排出し、反応容器を洗浄するための自動洗浄機構、これらの動作をコントロールする制御機構などから構成されている。特に上記自動攪拌機構では、サンプルと試薬を攪拌するためにヘラあるいはスクリューを反応容器の液面下まで自動的に下降させ、ヘラあるいはスクリューの根元に接続されているモータを駆動し、ヘラあるいはスクリューを回転することによってサンプルと試薬の混合溶液を攪拌する方式を用いている。   The chemical analyzer described in Patent Document 1 stirs the sample to be analyzed, the automatic sample dispensing mechanism for supplying the reagent to the reaction container, the automatic reagent dispensing mechanism, and the sample / reagent in the reaction container. Automatic stirring mechanism to make a homogeneous solution, measuring instrument to measure the physical properties of the sample during or after the reaction, automatic washing to suck and discharge the sample after the measurement and wash the reaction vessel It consists of a mechanism and a control mechanism that controls these operations. In particular, in the automatic stirring mechanism, the spatula or screw is automatically lowered to below the liquid level in the reaction vessel in order to stir the sample and the reagent, and a motor connected to the base of the spatula or screw is driven. Is used to stir the mixed solution of sample and reagent.

また、特許文献2の化学分析装置には、ヘラやスクリューを用いずに、超音波の照射によって生じる被測定液自体の音響流を用いてサンプルと試薬を非接触で攪拌し混合する方法が記載されている。   Moreover, the chemical analyzer of Patent Document 2 describes a method in which a sample and a reagent are agitated and mixed in a non-contact manner using an acoustic flow of a liquid to be measured generated by irradiation of ultrasonic waves without using a spatula or a screw. Has been.

米国特許第4,451,433号明細書US Pat. No. 4,451,433 特開平8−146007号公報JP-A-8-146007

特許文献1に記載の第一の従来技術ではターンテーブルの円周上に収納した各反応容器内の液体をヘラやスクリュー等を用いてバッチ的に攪拌しているため、攪拌後の液がヘラやスクリューに付着して次の試料検査に持ち越されてしまう(キャリーオーバー)。その結果、次のサンプルや試薬が汚染されてしまい検査における正確な分析に悪影響が及ぼされるという問題がある。   In the first conventional technique described in Patent Document 1, since the liquid in each reaction vessel accommodated on the circumference of the turntable is batch-stirred using a spatula, a screw, or the like, the liquid after stirring is a spatula. Or sticks to the screw and is carried over to the next sample inspection (carry over). As a result, the next sample or reagent is contaminated, and there is a problem that an accurate analysis in the inspection is adversely affected.

また、分析項目の多様化に伴い一度に多項目にわたって検査を行う為、一項目の検査に割り当てられるサンプル量が少なくなってしまうことや、高価な試薬が検査に使われるようになってきていることから、微量のサンプル及び試薬で検査ができる化学分析装置、つまり検査に必要な被測定液量の微量化が望まれてきている。しかし、微量体積の被測定液では、上述のヘラへの付着が今度は攪拌の前後における体積変化の影響を大きくするという問題がある。   In addition, with the diversification of analysis items, testing is performed on many items at once, so the amount of sample allocated to testing for one item decreases, and expensive reagents are being used for testing. Therefore, there has been a demand for a chemical analyzer that can be inspected with a small amount of sample and reagent, that is, to reduce the amount of liquid to be measured required for the inspection. However, with a very small volume of the liquid to be measured, there is a problem that adhesion to the spatula described above increases the influence of volume change before and after stirring.

また、近年このような化学分析装置が設置される医療施設には、この他にも様々な機器が導入されつつあり、装置全体のより一層の小型化が望まれている。ところで、装置全体の大きさを支配する主な構成要素は反応容器およびサンプル・試薬ボトルを格納するそれぞれのターンテーブルの寸法である。処理速度を維持しつつ装置全体を小型化するための方策の一つとして反応容器の寸法を小さくし、それらが円周上に格納されるターンテーブルの寸法(直径)をその収納数を維持したまま小さくする事が考えられる。しかし、反応容器を小型化すると、現行方式のヘラ攪拌ではその位置決め精度の限界よりヘラを反応容器内にスムーズに入れることが困難になったり、また、ヘラ自体が反応容器の中に入らなくなってしまうといった問題等が生じる。   In recent years, various other devices are being introduced into medical facilities where such chemical analyzers are installed, and further downsizing of the entire apparatus is desired. By the way, the main components governing the overall size of the apparatus are the dimensions of the respective turntables for storing the reaction containers and the sample / reagent bottles. As one of the measures to reduce the size of the entire apparatus while maintaining the processing speed, the dimensions of the reaction vessel were reduced, and the dimensions (diameter) of the turntable in which they were stored on the circumference were maintained. It is possible to make it smaller. However, when the reaction vessel is downsized, it becomes difficult to smoothly put the spatula into the reaction vessel due to the limitation of positioning accuracy with the current method of stirring the spatula, and the spatula itself does not enter the reaction vessel. Problems arise.

特許文献2に記載の超音波による非接触での攪拌方法では、各検査試料間のコンタミネーションの問題は解決されている。また、この攪拌方法ではヘラやスクリューを用いずに、被測定液に対し完全に非接触で攪拌するため、液の付着も発生せず上述した液量減少の問題点は解決される。この攪拌方法では反応容器の外部から音波を照射し、反応容器内の被測定液に適当な音場強度分布を与えて音響流動を誘起させる事が基本的な原理である。   In the non-contact stirring method using ultrasonic waves described in Patent Document 2, the problem of contamination between test samples is solved. Further, in this stirring method, the solution to be measured is stirred in a completely non-contact manner without using a spatula or a screw, so that no liquid adheres and the above-mentioned problem of the decrease in the liquid amount is solved. The basic principle of this agitation method is to irradiate sound waves from the outside of the reaction vessel and to give an appropriate sound field intensity distribution to the liquid to be measured in the reaction vessel to induce acoustic flow.

ところで、被測定液をより微量化していくと反応容器そのものも小型化していくことになり、反応容器の表面積も小さくなっていくため、音響流動の発生に必要な音響エネルギーを被測定液に与えることが困難となってくる。また、音響流動によって攪拌に有効な循環流れを被測定液中に発生させるためには、被測定液内部に音場の先鋭的な強度の分布を形成させる必要があるが、容器がより小型化すると容器内の音場の相対的な強度差が小さくなるといった等の問題から短時間での効率のよい攪拌が困難となる。   By the way, if the liquid to be measured is made smaller, the reaction container itself is also miniaturized, and the surface area of the reaction container is also reduced. Therefore, the acoustic energy necessary for generating the acoustic flow is given to the liquid to be measured. It becomes difficult. In addition, in order to generate a circulating flow effective for agitation in the measured liquid by acoustic flow, it is necessary to form a sharp intensity distribution of the sound field inside the measured liquid. Then, efficient stirring in a short time becomes difficult due to problems such as a relative difference in intensity of the sound field in the container being reduced.

本発明は、化学分析装置の反応容器内の被測定液を効率よく攪拌可能にすることを課題とする。   An object of the present invention is to enable efficient stirring of a liquid to be measured in a reaction vessel of a chemical analyzer.

本発明は、上記課題を解決するため、開口部を有し被測定液が注入される反応容器と、該反応容器の外部から前記被測定液に音波を照射して攪拌する音源を有する攪拌手段とを備えた化学分析装置において、前記音源は、アレイ状に配列された複数の音源要素を有して形成されてなることを特徴とする。   In order to solve the above-mentioned problems, the present invention provides a reaction vessel having an opening and into which a liquid to be measured is injected, and a stirring means having a sound source that irradiates the liquid to be measured from the outside of the reaction vessel and stirs it. The sound source is formed by having a plurality of sound source elements arranged in an array.

このように構成することにより、アレイ状に配列された複数の音源要素を独立に駆動することができるから、音波の照射方向を任意に調整することができる。つまり、複数の音源要素のそれぞれに独立に電圧を印加し、その印加電圧の位相をずらして音源の音波照射方向を変化させる音源駆動手段を設けることにより実現できる。   With such a configuration, a plurality of sound source elements arranged in an array can be driven independently, so that the direction of sound wave irradiation can be arbitrarily adjusted. That is, it can be realized by providing a sound source driving means for independently applying a voltage to each of the plurality of sound source elements and shifting the sound wave irradiation direction of the sound source by shifting the phase of the applied voltage.

例えば、音源駆動手段は、音源から被測定液に照射される音波照射範囲の中心線が、反応容器内の被測定液の液面に対して斜めに液相側から気相側に抜けるように電圧の位相をずらすことが好ましい。これによれば、音波照射範囲の中心線付近の強い音波によって、気液界面付近に斜めに強い音圧が作用し、その斜めに作用する音圧によって図2(b)に示す旋回流れが生じ、少ない音響エネルギで効果的に被測定液を攪拌することができる。   For example, the sound source driving means is arranged so that the center line of the sound wave irradiation range irradiated from the sound source to the liquid to be measured is inclined from the liquid phase side to the gas phase side with respect to the liquid surface of the liquid to be measured in the reaction vessel. It is preferable to shift the phase of the voltage. According to this, strong sound pressure acts obliquely near the gas-liquid interface due to strong sound waves near the center line of the sound wave irradiation range, and the swirl flow shown in FIG. 2B is generated by the sound pressure acting obliquely. The liquid to be measured can be effectively stirred with less acoustic energy.

また、音源駆動手段は、音源から発生する音波の強度及び周波数を可変する機能を有することが好ましい。これによれば、検査項目毎に音波の強度および周波数を被測定液の性状に応じて制御することができ、被測定液に応じて効率よく攪拌できる。   The sound source driving means preferably has a function of varying the intensity and frequency of sound waves generated from the sound source. According to this, the intensity | strength and frequency of a sound wave can be controlled according to the property of a to-be-measured liquid for every test | inspection item, and it can stir efficiently according to to-be-measured liquid.

本発明によれば、化学分析装置の反応容器内の被測定液を効率よく攪拌できる。   ADVANTAGE OF THE INVENTION According to this invention, the to-be-measured liquid in the reaction container of a chemical analyzer can be stirred efficiently.

以下、本発明の実施形態を図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

本発明を適用可能な化学分析装置の一例を、図1および図2を用いて説明する。図1は化学分析装置の構成を示す斜視図、図2は図1に示す化学分析装置に装備されている、被測定液に対して非接触で攪拌混合を行なう非侵襲(非接触)攪拌装置の構成を示す縦断面図である。   An example of a chemical analyzer to which the present invention can be applied will be described with reference to FIGS. FIG. 1 is a perspective view showing the structure of a chemical analyzer, and FIG. 2 is a non-invasive (non-contact) stirring device that is equipped in the chemical analyzer shown in FIG. It is a longitudinal cross-sectional view which shows the structure.

図示の化学分析装置は、水平断面が四角形の矩形型の反応容器102を格納する反応ディスク101、反応ディスク101の下方に恒温水214を満たして配置され反応容器102を前記恒温水214に浸した状態にしてその恒温状態を保つ恒温槽114、サンプルカップ104を収納するサンプル用ターンテーブル103、試薬ボトル105を格納する試薬用ターンテーブル106、サンプル、試薬をそれぞれ反応容器102に分注するサンプリング機構107、試薬分注機構108、分注されたサンプルと試薬の混合体(被測定液)を反応容器102内で攪拌する攪拌機構109、反応容器102内のサンプルと試薬の混合体の反応過程及び反応後の吸光度を測定する計測手段である測光機構110、検査(測光)が終了した後に反応容器102を洗浄する洗浄機構111、これらの各構成要素を所定のタイミングで順次動作させるとともに、所要のデータを収集して出力するコントローラ112、及び該コントローラ112に接続され、検査項目の設定、装置の起動,停止、収集されたデータの処理、各構成要素の動作の調整確認などを行うコンソール113を含んで構成される。サンプリング機構107と試薬分注機構108がサンプル・試薬供給手段を構成する。   The illustrated chemical analysis apparatus includes a reaction disk 101 storing a rectangular reaction vessel 102 having a rectangular horizontal cross section, and is placed under the reaction disk 101 with constant temperature water 214 and immersed in the constant temperature water 214. A constant temperature chamber 114 that maintains the constant temperature state, a sample turntable 103 that stores the sample cup 104, a reagent turntable 106 that stores the reagent bottle 105, and a sampling mechanism that dispenses the sample and the reagent into the reaction vessel 102, respectively. 107, reagent dispensing mechanism 108, stirring mechanism 109 for stirring the dispensed sample-reagent mixture (measuring solution) in the reaction vessel 102, reaction process of the sample-reagent mixture in the reaction vessel 102, and Photometric mechanism 110 that measures the absorbance after the reaction, cleaning mechanism 111 that cleans the reaction vessel 102 after the inspection (photometric measurement) is completed, and these components are operated in sequence at a predetermined timing. Controller 112 that collects and outputs the required data, and connected to controller 112, sets inspection items, starts / stops the device, processes the collected data, confirms adjustment of operation of each component, etc. It includes a console 113 that performs the above. The sampling mechanism 107 and the reagent dispensing mechanism 108 constitute sample / reagent supply means.

これらの各構成要素は、検査を開始する前に予めコンソール113より設定された情報(分析項目、分析を行なう体積)に基づいて自動的にコントローラ112より作成されるプログラムに従って動作する。   Each of these components operates according to a program automatically created by the controller 112 based on information (analysis items and volume to be analyzed) set in advance from the console 113 before starting the examination.

以上のような構成において本化学分析装置は以下のように動作する。まず、サンプルカップ104よりサンプリング機構107によって反応容器102内にサンプルが分注される。次にその反応容器102を格納したターンテーブル(反応ディスク101)は試薬分注位置まで回転し、試薬ボトル105より試薬分注機構108によってその反応容器102内に試薬が分注される。さらに反応ディスク101は攪拌機構109が設置されている位置まで回転し、反応容器102内のサンプル,試薬の攪拌混合が行なわれる。攪拌が終了した時点から測定が開始され、反応が終了した時点で洗浄機構111において反応容器内のサンプル・試薬混合物は吸引され、洗浄処理が施される。このような一連のプロセスが複数のサンプルに対して逐一バッチ処理的に進められていく。   In the above configuration, the chemical analyzer operates as follows. First, a sample is dispensed from the sample cup 104 into the reaction vessel 102 by the sampling mechanism 107. Next, the turntable (reaction disk 101) storing the reaction container 102 rotates to the reagent dispensing position, and the reagent is dispensed from the reagent bottle 105 into the reaction container 102 by the reagent dispensing mechanism 108. Further, the reaction disk 101 rotates to a position where the stirring mechanism 109 is installed, and the sample and reagent in the reaction vessel 102 are stirred and mixed. The measurement is started from the time when the stirring is completed, and the sample / reagent mixture in the reaction container is aspirated by the cleaning mechanism 111 when the reaction is completed, and the cleaning process is performed. Such a series of processes is performed batchwise for a plurality of samples.

次に、攪拌機構を図2に示した参考例を用いて説明する。図2の(a)は攪拌機構の縦断面図であり、反応容器212内の被攪拌物(被測定液)213を非接触で攪拌する原理について説明する。反応ディスク212(図1における反応ディスク101)に格納された反応容器203(図1における反応容器102)は恒温水214に浸されながらコントローラ112のプログラムによって自動的に回転および停止動作を繰り返しており、攪拌機構を備えた位置で停止したときに超音波がコントローラ112からの指令に従って攪拌機構から照射される。   Next, the stirring mechanism will be described using the reference example shown in FIG. FIG. 2A is a longitudinal sectional view of the stirring mechanism, and the principle of stirring the object to be stirred (measurement liquid) 213 in the reaction vessel 212 in a non-contact manner will be described. The reaction vessel 203 (reaction vessel 102 in FIG. 1) stored in the reaction disc 212 (reaction disc 101 in FIG. 1) is automatically rotated and stopped by the program of the controller 112 while being immersed in the constant temperature water 214. When stopped at a position where the stirring mechanism is provided, ultrasonic waves are emitted from the stirring mechanism in accordance with a command from the controller 112.

攪拌機構109は、コントローラ112に接続された圧電素子ドライバ209と、恒温槽114の内壁に固定されコントローラ112に接続された照射位置調節機構である位置決め機構201と、位置決め機構201に装着され圧電素子ドライバ209に接続された音源202と、を含んで構成され、位置決め機構201及び音源202は前記恒温水214に浸されており、圧電素子ドライバ209は恒温槽114の外部に配置されている。位置決め機構201は、音源202を反応容器203の深さ方向に移動可能で、かつ音波の照射方向が水平方向に対してなす角度を変えられる(煽りが可能な)ようになっている。本発明においては、被測定液213の攪拌は音波で行われ、攪拌機構はすなわち、音波発生手段を構成する。   The stirring mechanism 109 includes a piezoelectric element driver 209 connected to the controller 112, a positioning mechanism 201 which is an irradiation position adjusting mechanism fixed to the inner wall of the thermostatic chamber 114 and connected to the controller 112, and a piezoelectric element mounted on the positioning mechanism 201. And a sound source 202 connected to a driver 209. The positioning mechanism 201 and the sound source 202 are immersed in the constant temperature water 214, and the piezoelectric element driver 209 is disposed outside the constant temperature bath 114. The positioning mechanism 201 can move the sound source 202 in the depth direction of the reaction vessel 203 and can change the angle formed by the sound wave irradiation direction with respect to the horizontal direction (can be turned). In the present invention, the liquid to be measured 213 is stirred by sound waves, and the stirring mechanism constitutes a sound wave generating means.

圧電素子ドライバ209に駆動されて超音波を照射する音源202は、その照射方向や位置が自動的に変えられるように位置決め機構201に装着されている。一般に音源より照射される音波は、図2の(b)の曲線217に示すような強度分布(照射領域の中央部が強く周辺部が次第に弱くなる山形の分布)をもって進行するが、その照射範囲204に反応容器203内の液面205が含まれるように、かつ、該液面205に対して音波の照射範囲の中心線が、平行に、あるいは液相側から気相側に向かう方向に斜めに入射するように、音源202の位置及び照射方向は、位置決め機構201により自動的に制御される。位置決め機構201はコントローラ112から指示される音源202の位置及び照射方向の信号206に基づいて音源202の位置及び照射方向を制御する。   The sound source 202 that is driven by the piezoelectric element driver 209 and emits ultrasonic waves is attached to the positioning mechanism 201 so that the irradiation direction and position can be automatically changed. In general, a sound wave emitted from a sound source travels with an intensity distribution (a mountain-shaped distribution in which the central part of the irradiation region is strong and the peripheral part gradually becomes weak) as shown by a curve 217 in FIG. 204 includes the liquid surface 205 in the reaction vessel 203, and the center line of the irradiation range of the sound wave is oblique to the liquid surface 205 in parallel or obliquely in the direction from the liquid phase side to the gas phase side. The position and the irradiation direction of the sound source 202 are automatically controlled by the positioning mechanism 201 so as to be incident on. The positioning mechanism 201 controls the position and irradiation direction of the sound source 202 based on the signal 206 of the position and irradiation direction of the sound source 202 instructed from the controller 112.

反応容器203内の被攪拌物213に対しこのように音波を照射すると、液面付近の液体は固体壁からの摩擦力といった作用を一切受けずに、矢印215のように、もっとも効率良く流動する、その結果被攪拌物213内部には矢印216のような大きな旋廻流れが生じ、被攪拌物213の攪拌混合が行われる。   When the object 213 in the reaction vessel 203 is irradiated with the sound wave in this way, the liquid near the liquid level flows most efficiently as indicated by the arrow 215 without being affected by the frictional force from the solid wall. As a result, a large whirling flow as indicated by an arrow 216 is generated inside the object to be stirred 213, and the object to be stirred 213 is stirred and mixed.

図2の参考例によれば、被攪拌物213内部にヘラあるいはスクリューを入れることなく撹拌が行われるので、被撹拌物のキャリーオーバーによる減少やコンタミネーションの恐れがなく、また、被攪拌物213内部にヘラあるいはスクリューを入れる必要がないので、反応容器の小型化すなわちサンプル及び試薬を微量化することが可能となる。反応容器の小型化により、反応容器を格納する反応ディスクを、反応容器の個数を減らすことなく小型化でき、化学分析装置を全体として小型化することができる。本例によれば、また、前記特開平8−146007号公報開示の、反応容器の外部から音波を照射し、反応容器内の被測定液に適当な音場強度分布を与えて音響流動を誘起させる方法とは異なり、気液界面付近で音波により誘起される旋廻流れを利用して被測定液を撹拌混合するので、反応容器が小型化され、被測定液が微量になっても、被測定液を撹拌混合することが可能であり、かつ、より小さい出力で撹拌を行うことが可能である。   According to the reference example of FIG. 2, since stirring is performed without putting a spatula or a screw inside the object to be stirred 213, there is no fear of reduction or contamination due to carry-over of the object to be stirred, and the object to be stirred 213 Since it is not necessary to insert a spatula or a screw inside, it is possible to reduce the size of the reaction vessel, that is, to reduce the amount of sample and reagent. By reducing the size of the reaction vessel, the reaction disk for storing the reaction vessel can be reduced in size without reducing the number of reaction vessels, and the chemical analyzer can be downsized as a whole. According to this example, the acoustic flow is induced by irradiating a sound wave from the outside of the reaction vessel disclosed in JP-A-8-146007 and giving an appropriate sound field intensity distribution to the liquid to be measured in the reaction vessel. Unlike the method, the measured liquid is stirred and mixed using the swirl flow induced by sound waves near the gas-liquid interface, so the reaction vessel is downsized and the measured liquid is measured even if the measured liquid becomes very small. It is possible to stir and mix the liquids and to stir with a smaller output.

なお、図2の(a)および(b)の説明では、音波を、反応容器203の側面より斜め上方に向けて入射させる構成を示しているが、図2の(c)に示すような、より広い上部開口部を有する反応容器を用い、その底面部より液面218に向かって斜めに音波を入射させてもよい。この場合にも液面218が音波の進行する照射範囲221内に含まれていれば、液面218付近の被攪拌物213は矢印219のように効率良く流動し、その結果、被攪拌物213内部には矢印220のような旋廻流れが生じ、被攪拌物213の攪拌混合が行われる。   2 (a) and 2 (b) show a configuration in which sound waves are incident obliquely upward from the side surface of the reaction vessel 203. As shown in FIG. 2 (c), A reaction vessel having a wider upper opening may be used, and a sound wave may be incident obliquely from the bottom surface toward the liquid surface 218. Also in this case, if the liquid level 218 is included in the irradiation range 221 in which sound waves travel, the agitated object 213 in the vicinity of the liquid level 218 flows efficiently as indicated by an arrow 219. A whirling flow as indicated by an arrow 220 is generated inside, and the stirring target 213 is stirred and mixed.

また、分析項目(検査項目)によって被攪拌物(被測定液)の粘性、密度、表面張力といった力学特性が異なる場合には、攪拌に最も有効な音波の周波数やパワー(強度)もそれぞれ各分析項目毎に異なってくる場合が起こりうる。そのため図2の(a)に示すように、圧電素子ドライバ209は各分析項目において、被測定液の性状に応じて、攪拌に最も有効な周波数の情報207、パワーの情報208をコントローラ112から受け、それに基づいて音源202を駆動する。   In addition, when the mechanical properties such as viscosity, density, and surface tension of the object to be stirred (measurement liquid) differ depending on the analysis item (inspection item), the frequency and power (intensity) of the sound wave that is most effective for stirring are also analyzed. There may be cases where each item is different. Therefore, as shown in FIG. 2 (a), the piezoelectric element driver 209 receives from the controller 112 the frequency information 207 and power information 208 most effective for stirring in each analysis item according to the properties of the liquid to be measured. Based on this, the sound source 202 is driven.

また、照射する音波の強度を上げていくと、超音波加湿器と同様な効果で、液面が図2の(a)の液面210のような状態から矢印211のように液滴が飛び出す(飛散する)場合もあるが、図2の(a)のようにその先には反応容器壁があるような条件のもとで超音波を照射すれば、飛散した液体は反応容器壁に堰きとめられ反応容器203の外部に被攪拌物213が飛び出すということは避けられるばかりかではなく、液体は反応容器203の壁にぶつかって押し戻され、結果的には旋廻流れが被攪拌物213内部に生じ、攪拌混合が行なわれる。このような効果を積極的に利用した例として図5の(a)および(b)に示すような構成がある。   Further, when the intensity of the radiated sound wave is increased, the liquid surface is ejected as indicated by an arrow 211 from the state of the liquid surface 210 in FIG. 2A by the same effect as the ultrasonic humidifier. 2) If the ultrasonic wave is irradiated under the condition that there is a reaction vessel wall ahead as shown in FIG. 2 (a), the scattered liquid dams the reaction vessel wall. It is not only avoided that the stirred object 213 jumps out of the reaction vessel 203, but the liquid hits the wall of the reaction vessel 203 and is pushed back, resulting in a swirling flow inside the stirred vessel 213. Resulting in stirring and mixing. As an example in which such an effect is positively utilized, there is a configuration as shown in FIGS.

図5の(a)に示す構成と図2の(a)に示す構成が異なる点は、反応容器401を傾けることによって下方より鉛直上方向に照射する音波402に対して被攪拌物213の液相、被攪拌物213の液面における気液界面、反応容器壁の順にこれらが存在する条件を実現した点である。この場合には音源302の煽りを調節する機構が不要となる(但し、図の左右方向(反応ディスク212の半径方向)の移動は可能としてある)。   The difference between the configuration shown in FIG. 5 (a) and the configuration shown in FIG. 2 (a) is that the liquid of the agitated object 213 is applied to the sound wave 402 irradiated vertically downward from below by tilting the reaction vessel 401. The phase, the gas-liquid interface at the liquid level of the to-be-stirred object 213, and the reaction vessel wall are present in this order. In this case, a mechanism for adjusting the turn of the sound source 302 is not necessary (however, movement in the left-right direction (radial direction of the reaction disk 212) in the figure is possible).

同様に反応容器の形状を変えたもう一つの例を図5の(b)を用いて説明する。図5の(b)に示す構成が図2の(a)および図5の(a)に示す構成と異なる点は、上部開口部の一部に反応容器壁を設けた反応容器403に対し、下方より鉛直上方向に音波404を照射することによって、照射領域に、液相―気液界面−気相―反応容器壁の順にこれらが存在する条件を実現した点である。   Similarly, another example in which the shape of the reaction vessel is changed will be described with reference to FIG. The configuration shown in FIG. 5 (b) is different from the configuration shown in FIG. 2 (a) and FIG. 5 (a) in that the reaction vessel 403 provided with a reaction vessel wall in a part of the upper opening is By irradiating the sound wave 404 vertically upward from below, the condition that these exist in the irradiation region in the order of liquid phase-gas-liquid interface-gas phase-reaction vessel wall is realized.

また、液が飛散しない範囲の強度で超音波照射のオン・オフ動作を繰り返せば、反応容器403内の被攪拌物213は液面が、図2の(a)の液面210、222のように変形を繰り返すため結果的に被攪拌物213内の物質移動が起こり、この場合でも攪拌混合が行なわれる。   Further, if the on / off operation of ultrasonic irradiation is repeated with an intensity within a range where the liquid does not scatter, the liquid level of the agitated object 213 in the reaction vessel 403 is the liquid levels 210 and 222 in FIG. As a result, the mass transfer in the object to be stirred 213 occurs, and even in this case, stirring and mixing are performed.

この際、超音波照射をオン・オフする代わりに強度を時間とともに変える、例えば超音波の強度をある一定の強度から正弦波的に変えることで被測定液を撹拌することも可能である。   At this time, instead of turning on / off the ultrasonic irradiation, the liquid to be measured can be stirred by changing the intensity with time, for example, changing the intensity of the ultrasonic wave from a certain intensity in a sine wave.

また、図2の(a)では、一つの音源より照射される音波をひとつの反応容器壁から液面に向かって照射させる構成としているが、例えば断面が四角形の矩形型反応容器の場合、4つの側面全てから交互に入射させ、同様な液面の変化を生じさせて液面の変形を図ってもよい。   In FIG. 2 (a), a sound wave emitted from one sound source is irradiated from one reaction vessel wall toward the liquid surface. For example, in the case of a rectangular reaction vessel having a square cross section, 4 The liquid surface may be deformed by causing the liquid surface to enter alternately from all of the two side surfaces and causing a similar change in the liquid surface.

なお、これらの参考例では超音波を発生する手段として圧電素子による音源202を用いているが、他の機構の音源を用いてもよい。   In these reference examples, the sound source 202 using a piezoelectric element is used as a means for generating an ultrasonic wave, but a sound source of another mechanism may be used.

次に、本発明の一実施形態の特徴部である音源の構成について、図3を用いて説明する。上述の参考例では音源の向き、位置を変えるために移動ステージ(位置決め機構201)を用いているが、音源を独立に配列し、それらを独立に駆動し、個々の音波を重ね合わせる事によって所望の音波を反応容器に対して照射しても同様な効果が得られることはいうまでもない。例えば図3の(a)に示すように、反応容器深さ方向に各独立の音源をアレイ状に配列した音源223に対し、各音源の印加電圧224に示すように、駆動する音源を選択する事によって、直接移動ステージを用いた場合と同様に、実際に音波を発射する音源の高さ(反応容器深さ方向の音源位置)を変えることが可能となる。図3の(a)中の波面225は選択された音源より照射される音波の波面を表している。   Next, a configuration of a sound source that is a characteristic part of an embodiment of the present invention will be described with reference to FIG. In the above-mentioned reference example, the moving stage (positioning mechanism 201) is used to change the direction and position of the sound source. However, the sound sources are arranged independently, driven independently, and superposed on the individual sound waves. It goes without saying that the same effect can be obtained even if the reaction vessel is irradiated with the sound wave. For example, as shown in FIG. 3A, a sound source to be driven is selected as shown by an applied voltage 224 of each sound source for a sound source 223 in which independent sound sources are arrayed in the reaction vessel depth direction. As a result, the height of the sound source that actually emits the sound wave (the sound source position in the reaction vessel depth direction) can be changed as in the case of using the direct moving stage. A wavefront 225 in FIG. 3A represents the wavefront of the sound wave emitted from the selected sound source.

また、図3の(b)のように各独立の音源をアレイ状に配列した音源226の独立音源それぞれに印加される電圧の位相を印加電圧227に示すように順にずらすことによって、ゴニオステージ等の機械的な機構を用いずに波面228のように音波の進む方向を変えるようにしても、音波の照射方向を変化させることが可能である。すなわち、図3に示す、アレイ状に配列した音源223,226の場合、アレイ状に配列した音源223,226自体が、照射位置調節機構をなしているのである。   Further, by shifting the phase of the voltage applied to each independent sound source of the sound source 226 in which the individual sound sources are arranged in an array as shown in FIG. Even if the direction in which the sound wave travels is changed as in the wavefront 228 without using the mechanical mechanism, it is possible to change the irradiation direction of the sound wave. That is, in the case of the sound sources 223 and 226 arranged in an array as shown in FIG. 3, the sound sources 223 and 226 arranged in an array form an irradiation position adjusting mechanism.

化学分析装置では攪拌を行なった後に攪拌混合物の反応過程および反応後の吸光度を測定するため、現行の化学分析装置の反応容器は光学的に単純な、水平断面が四角形の矩形型反応容器が用いられている。しかし、装置全体の性能の点から攪拌をより十分に行なうためには、多少吸光度の測定に不利であっても特にこのような矩形形状の反応容器に限定する必要はない。これまでに示してきた実施例では細長い矩形型反応容器を想定しており、液面に向けてより広範囲な面を通じて反応容器内に音波を入射させるため、側方からの照射の例を示してきた。しかし、上述したように装置全体の性能の点から攪拌を重視する場合には、図2の(c)の他、例えば三角フラスコのような形状の反応容器を用い、下方より反応容器底面から音波を入射させてもよい。   In chemical analyzers, the reaction process of the stirring mixture and the absorbance after the reaction are measured after stirring, so the reaction vessel of the current chemical analyzer is an optically simple rectangular reaction vessel with a square horizontal section. It has been. However, in order to perform sufficient stirring from the viewpoint of the performance of the entire apparatus, it is not particularly necessary to limit the reaction vessel to such a rectangular shape even if it is somewhat disadvantageous for the measurement of absorbance. In the embodiments shown so far, an elongated rectangular reaction vessel is assumed, and an example of irradiation from the side has been shown in order to make sound waves enter the reaction vessel through a wider area toward the liquid surface. It was. However, as described above, when emphasis is placed on stirring from the viewpoint of the performance of the entire apparatus, in addition to (c) in FIG. May be incident.

本発明の特徴の一つは反応容器内の被攪拌物に対し、被攪拌物の液相、被攪拌物の液面における気液界面、気相、反応容器壁の順にこれらが存在する方向に、前記気液界面に対して斜めに音波を照射する点にあるが、本発明の他の実施形態について以下説明する。   One of the features of the present invention is that the liquid phase of the stirring object, the gas-liquid interface at the liquid level of the stirring object, the gas phase, and the reaction container wall are present in this order with respect to the stirring object in the reaction vessel. However, another embodiment of the present invention will be described below.

図4の(a)は下方からの補助的な音源を併用した場合の実施形態である。図4の(a)の実施形態が図2の(a)のものと異なる点は、側方から反応容器に音波を発射する側方音源301と下方から反応容器底面に向けて音波を発射する補助的な下方音源302を設け、両者を併用することによって被攪拌物の液相、被攪拌物の液面における気液界面、反応容器壁の順にこれらが存在する条件を実現する点にある。側方音源301と下方音源302は、いずれも同じコントローラ112に接続され、各分析項目において攪拌に最も有効な周波数とパワーの情報207、208をコントローラ112から受けそれに基づいて側方音源301と下方音源302をそれぞれ駆動する、一対の圧電素子ドライバ209により駆動される。   FIG. 4A shows an embodiment in which an auxiliary sound source from below is used in combination. The embodiment of FIG. 4 (a) is different from that of FIG. 2 (a) in that the side sound source 301 emits sound waves from the side to the reaction vessel and the sound waves are emitted from below to the bottom surface of the reaction vessel. By providing an auxiliary lower sound source 302 and using both in combination, the condition in which the liquid phase of the object to be stirred, the gas-liquid interface at the liquid level of the object to be stirred, and the reaction vessel wall exist in this order is realized. The side sound source 301 and the lower sound source 302 are both connected to the same controller 112, receive the frequency and power information 207 and 208 most effective for stirring for each analysis item from the controller 112, and based on that, the side sound source 301 and the lower sound source 302 It is driven by a pair of piezoelectric element drivers 209 that respectively drive the sound source 302.

図4の(a)に示す構成において、下方音源302から超音波306を反応容器203中心よりやや半径方向にずらした方向に照射する事によって液面は図に示すようにもともとの水平面に対して一部が持ち上がった状態の液面313となる。この状態で側方音源301から音波305を照射すれば、図2の例のように音源の向きを斜めにするための移動ステージ(位置決め機構201)を用いずに被攪拌物の液相、被攪拌物の液面における気液界面、気相、反応容器壁の順にこれらが存在する方向への音波の照射が可能となる。   In the configuration shown in FIG. 4 (a), the liquid level is relative to the original horizontal plane as shown in the figure by irradiating the ultrasonic wave 306 from the lower sound source 302 in a direction slightly shifted in the radial direction from the center of the reaction vessel 203. The liquid level 313 is partially lifted. If the sound wave 305 is irradiated from the side sound source 301 in this state, the liquid phase of the object to be agitated without being moved as shown in the example of FIG. It is possible to irradiate the sound wave in the direction in which the gas-liquid interface, the gas phase, and the reaction vessel wall in the liquid surface of the agitated material exist in this order.

これらのような構成のもと、図2の(a)の例で説明したように、音源をオン・オフ動作をさせる、あるいは音波の強度を時間とともに変化させる事によって液相を変形させて攪拌を行なう事ができる。   Under such a configuration, as described in the example of FIG. 2A, the liquid phase is deformed by turning on / off the sound source or changing the intensity of the sound wave with time, and stirring. Can be performed.

また、側方から照射する音波の強度を強めて液体を飛散させても、図2の(a)の場合と同様液相内に旋廻流れ307を発生させて攪拌を行なうこともできる。   Further, even when the intensity of the sound wave irradiated from the side is increased to disperse the liquid, the rotating flow 307 is generated in the liquid phase as in the case of FIG.

図4の(b)は反応容器を格納した反応ディスクの回転/停止と下方および側方からの音源の照射タイミングの関係を示すタイムチャートである。シークェンス308に示すように、反応ディスクが停止している間に両音源(側方音源301と下方音源302)から音波が照射される。個々の照射のタイミングは、まず、反応容器が停止したらシークェンス309に示すように、すぐに下方からの音波306が照射され、傾斜した液面が形成される。続いてシークェンス310に示すように側方からの音波305が前記傾斜した液面313に照射され、反応容器203内の被測定液の攪拌が行われる。この際、下方からの照射をシークェンス311に示すように側方照射が完了するまで持続させておいてもよい。この場合被攪拌物には上向きの力が作用するが、図2の(a)で矢印307で示すところの反時計廻り方向の旋廻流れに対するトルクとしてもこの上向きの力は寄与する。   FIG. 4B is a time chart showing the relationship between the rotation / stop of the reaction disk containing the reaction vessel and the irradiation timing of the sound source from below and from the side. As shown in sequence 308, sound waves are emitted from both sound sources (side sound source 301 and lower sound source 302) while the reaction disk is stopped. As for the timing of each irradiation, first, when the reaction vessel stops, as shown in the sequence 309, the sound wave 306 from the lower side is immediately irradiated to form an inclined liquid surface. Subsequently, as shown in a sequence 310, a sound wave 305 from the side is irradiated onto the inclined liquid surface 313, and the liquid to be measured in the reaction vessel 203 is stirred. At this time, irradiation from below may be continued until the side irradiation is completed as indicated by a sequence 311. In this case, an upward force acts on the object to be stirred, but this upward force also contributes as a torque against the counterclockwise rotation flow indicated by an arrow 307 in FIG.

なお、シークェンス309、310、および311のように音波の強度を一定にしてもよいが、シークェンス312に示すように時間と共に音波の強度を変化させてもよい。   Note that the intensity of the sound wave may be constant as in the sequences 309, 310, and 311. However, as indicated in the sequence 312, the intensity of the sound wave may be changed with time.

また、これらの方法では側方音源301の配置の調整に移動機構303,下方音源302の配置の調整に位置決め機構304を用いているが、図3の(a)のようにアレイ状に配置した音源を選択的に駆動させて、反応容器に対して照射する音源の相対位置を調整しても同様な効果が得られる。   In these methods, the moving mechanism 303 is used for adjusting the arrangement of the side sound source 301, and the positioning mechanism 304 is used for adjusting the arrangement of the lower sound source 302. However, they are arranged in an array as shown in FIG. The same effect can be obtained by selectively driving the sound source to adjust the relative position of the sound source irradiated to the reaction vessel.

図6の(a)は反応容器501の内壁に適当な表面処理等を施し、被攪拌物(反応容器内の被測定液)と内壁間の親水性を上げた場合の実施形態である。このような処理を内壁に施す事によって壁面が濡れやすくなり、液面502は図示のような中央部が凹み、壁面に接する部分が高くなった形になる。この結果、その側面から音波を照射しても、被攪拌物の液相、被攪拌物の液面における気液界面、気相、反応容器壁の順にこれらが存在する方向に、かつ気液界面に対して斜めに音波を照射することとなり、これまでの実施例と同様な攪拌混合を行うことができる。この場合においても一つの音源504で済み、また位置決め機構は高さを調節する直線移動ステージ509だけで済む。   FIG. 6A shows an embodiment in which an appropriate surface treatment or the like is applied to the inner wall of the reaction vessel 501 to increase the hydrophilicity between the object to be stirred (measurement liquid in the reaction vessel) and the inner wall. By applying such treatment to the inner wall, the wall surface is easily wetted, and the liquid surface 502 has a shape in which the central portion as shown in the figure is recessed and the portion in contact with the wall surface is raised. As a result, even if the sound wave is irradiated from the side, the liquid phase of the object to be stirred, the gas-liquid interface at the liquid level of the object to be stirred, the gas phase, the direction in which these exist, and the gas-liquid interface As a result, the sound wave is irradiated obliquely, and the same stirring and mixing as in the previous examples can be performed. In this case as well, only one sound source 504 is required, and only a linear moving stage 509 for adjusting the height is required for the positioning mechanism.

これまでの実施形態又は参考例では、攪拌機構が設置されている位置で反応容器およびターンテーブルを停止させ、その間に攪拌操作を行うシークェンスであったが、特に停止動作を行わない場合には遠心力の効果によって反応容器内の液面は回転中心から外側の向きに図6の(b)の液面506のように一方に傾く。このとき、音源508が設置されている箇所を反応容器が通過した際に側方より音波507を照射すればこれまでの実施例と同様に被攪拌物の液相、被攪拌物の液面における気液界面、気相、反応容器壁の順にこれらが存在する方向に、かつ気液界面に対して斜めに音波を照射することとなり、攪拌混合を行う事ができる。この場合においても一つの音源508で済み、また位置決め機構は高さを調節する直線移動ステージ510あるいは図3の(a)に示すようなアレイ状音源223だけで済む。   In the previous embodiments or reference examples, the reaction vessel and the turntable were stopped at the position where the stirring mechanism was installed, and the stirring operation was performed during that time. Due to the effect of the force, the liquid level in the reaction vessel is tilted to one side like the liquid level 506 in FIG. At this time, if the sound wave 507 is irradiated from the side when the reaction vessel passes through the place where the sound source 508 is installed, the liquid phase of the object to be stirred and the liquid level of the object to be stirred are the same as in the previous examples. A sound wave is irradiated in the direction in which the gas-liquid interface, the gas phase, and the reaction vessel wall exist in this order and obliquely with respect to the gas-liquid interface, so that stirring and mixing can be performed. Even in this case, only one sound source 508 is required, and the positioning mechanism may be only the linear moving stage 510 for adjusting the height or the array-like sound source 223 as shown in FIG.

本化学分析装置ではサンプルを分注した後に試薬を分注し、攪拌混合を行なうが、これらの順序が逆でも同様な効果が得られる。   In this chemical analyzer, the reagent is dispensed after the sample is dispensed, and the mixture is stirred and mixed. Even if the order is reversed, the same effect can be obtained.

上記図3,図4,図5,図6の各実施形態によっても、図2に示した参考例と同様、被攪拌物213内部にヘラあるいはスクリューを入れることなく撹拌が行われるので、被撹拌物のキャリーオーバーによる減少やコンタミネーションの恐れがなく、また、被攪拌物213内部にヘラあるいはスクリューを入れる必要がないので、反応容器の小型化すなわちサンプル及び試薬を微量化することが可能となる。反応容器の小型化により、反応容器を格納する反応ディスクを、反応容器の個数を減らすことなく小型化でき、化学分析装置を全体として小型化することができる。本実施形態によればまた、気液界面付近で音波により誘起される旋廻流れを利用して被測定液を撹拌混合するので、反応容器が小型化され、被測定液が微量になっても、被測定液を撹拌混合することが可能であり、被測定液に音場強度分布を与えて音響流動を生じさせる場合よりも、小さい音響出力で撹拌することができる。   According to each of the embodiments shown in FIGS. 3, 4, 5, and 6, as in the reference example shown in FIG. 2, stirring is performed without putting a spatula or a screw inside the stirring target 213. There is no risk of reduction or contamination due to carry-over of objects, and there is no need to put a spatula or a screw inside the object to be stirred 213, so the reaction vessel can be downsized, that is, the sample and reagent can be made in a very small amount. . By reducing the size of the reaction vessel, the reaction disk for storing the reaction vessel can be reduced in size without reducing the number of reaction vessels, and the chemical analyzer can be downsized as a whole. According to this embodiment, since the liquid to be measured is stirred and mixed using the swirl flow induced by sound waves in the vicinity of the gas-liquid interface, the reaction vessel is downsized, and even if the liquid to be measured becomes a very small amount, The liquid to be measured can be stirred and mixed, and the liquid to be measured can be stirred with a smaller acoustic output than when a sound field intensity distribution is given to the liquid to be measured to generate an acoustic flow.

これまでの説明では、恒温槽114内に恒温水214を満たして反応容器の恒温状態を保つ化学分析装置を前提にしていたため、反応容器外部から音波を照射し、恒温水214中を伝播させて反応容器内に音波を入射させる伝達形態をとってきたが、反応容器を恒温水214に浸して反応容器内の恒温状態を保つよりも音響的な伝達特性が得られない方法で反応容器内の恒温状態を保つ場合には、図7に示すような音響カプラ602を音源603に取り付け、攪拌を行う際に反応容器601に密着させて音源603からの音波を反応容器601内に入射させる事も可能である。   In the description so far, since the chemical analysis apparatus that maintains the constant temperature state of the reaction vessel by filling the constant temperature bath 114 with the constant temperature water 114 is assumed, a sound wave is irradiated from the outside of the reaction vessel and propagated in the constant temperature water 214. Although the transmission form in which sound waves are incident on the reaction vessel has been adopted, the method in which the acoustic transfer characteristic is not obtained is obtained in comparison with the case where the reaction vessel is immersed in the constant temperature water 214 to maintain the constant temperature state in the reaction vessel. In order to maintain a constant temperature state, an acoustic coupler 602 as shown in FIG. 7 is attached to the sound source 603, and when stirring, the sound wave from the sound source 603 is allowed to enter the reaction vessel 601 in close contact with the reaction vessel 601. Is possible.

また、この音響カプラ602はただ音波を伝播させるだけではなく、音波を制御する音響レンズ゛的な機能をもたせることによってより効率の良い攪拌を行う事も可能である。   Further, the acoustic coupler 602 can perform not only the propagation of the sound wave but also a more efficient stirring by providing an acoustic lens function for controlling the sound wave.

また、本化学分析装置の攪拌機構を洗浄機構に補助的に用いれば、装置全体の性能向上が図れる。上述したように洗浄機構では反応終了後のサンプル・試薬混合物が吸引され、洗浄液が反応容器に吐出されたのち、再び吸引されて反応容器内壁の洗浄を行って、次の検査にその反応容器が使われる。この洗浄液の反応容器への吐出後に、これまで説明してきた攪拌機構によって攪拌動作を行なえばより一層の洗浄効果が得られる。   Further, if the stirring mechanism of the present chemical analyzer is used as a supplementary mechanism for the cleaning mechanism, the performance of the entire apparatus can be improved. As described above, the sample / reagent mixture after the completion of the reaction is sucked in the cleaning mechanism, and after the cleaning liquid is discharged into the reaction container, it is sucked again to clean the inner wall of the reaction container, and the reaction container is then used for the next inspection. used. If the stirring operation is performed by the stirring mechanism described so far after the cleaning liquid is discharged into the reaction container, a further cleaning effect can be obtained.

以上説明したように、本発明によれば、より効率のよいサンプル・試薬の攪拌混合を可能とし、かつ、キャリーオーバーを防止することができる。また、より効率のよいサンプル・試薬の攪拌混合を可能とし、かつ、検査自体をより微量のサンプル、試薬で行う事ができる。また、より効率のよいサンプル・試薬の攪拌混合を可能とし、かつ、装置全体をより小型にする事ができる。   As described above, according to the present invention, it is possible to more efficiently stir and mix the sample / reagent and to prevent carryover. In addition, more efficient stirring and mixing of the sample / reagent is possible, and the inspection itself can be performed with a smaller amount of sample / reagent. In addition, more efficient stirring and mixing of the sample / reagent is possible, and the entire apparatus can be made smaller.

本発明を適用可能な一実施形態の化学分析装置の全体構成を示す斜視図である。1 is a perspective view showing an overall configuration of a chemical analyzer according to an embodiment to which the present invention is applicable. 図1に示す攪拌機構の原理を説明するための縦断面図である。It is a longitudinal cross-sectional view for demonstrating the principle of the stirring mechanism shown in FIG. 本発明の一実施態のアレイ状音源の概念構成図である。It is a conceptual lineblock diagram of an array-like sound source of one embodiment of the present invention. 本発明の他の実施形態の攪拌機構の縦断面図及び動作シークェンスである。It is the longitudinal cross-sectional view and operation | movement sequence of the stirring mechanism of other embodiment of this invention. 本発明の他の実施形態の攪拌機構の縦断面図である。It is a longitudinal cross-sectional view of the stirring mechanism of other embodiment of this invention. 本発明の他の実施形態の攪拌機構の縦断面図である。It is a longitudinal cross-sectional view of the stirring mechanism of other embodiment of this invention. 本発明の音源を反応容器に結合する一実施形態の音響カプラを説明する図である。It is a figure explaining the acoustic coupler of one Embodiment which couple | bonds the sound source of this invention with the reaction container.

符号の説明Explanation of symbols

101,212 反応ディスク
102,203,501,601 反応容器
103 サンプル用ターンテーブル
104 サンプルカップ
105 試薬ボトル
106 試薬用ターンテーブル
107 サンプリング機構
108 試薬分注機構
109 攪拌機構
110 測光機構
111 洗浄機構
112 コントローラ
113 コンソール
201,304,510 位置決め機構
202,504、508,603 音源
204 音波の照射範囲
205,218,502、506 液面
206 音源の位置及び照射方向の信号
209 圧電素子ドライバ
210 音波が照射されているときの液面
213 被攪拌物(被測定液)
214 恒温水
215,219 流動方向を示す矢印
216,220,307 旋廻流れを示す矢印
222 音波が照射されていないときの液面
223 アレイ状音源
225,228 波面
226 アレイ状音源
227 印加電圧
301 側方音源
302 下方音源
303 移動機構
305 側方からの音波
306 下方からの音波
402,404,503,507 音波
602 音響カプラ
101,212 reaction disk
102, 203, 501, 601 reaction vessel
103 Sample turntable
104 sample cups
105 reagent bottles
106 Reagent turntable
107 Sampling mechanism
108 Reagent dispensing mechanism
109 Stirring mechanism
110 Metering mechanism
111 Cleaning mechanism
112 controller
113 Console
201, 304, 510 Positioning mechanism
202, 504, 508, 603 Sound source
204 Range of sound wave irradiation
205, 218, 502, 506 Liquid level
206 Sound source position and irradiation direction signals
209 Piezoelectric driver
210 Liquid level when sound waves are applied
213 Object to be stirred (measurement liquid)
214 constant temperature water
215, 219 Flow direction arrows
216, 220, 307 Arrows indicating swirl flow
222 Liquid level when no sound is applied
223 Array sound source
225, 228 wavefront
226 array sound source
227 Applied voltage
301 Side sound source
302 Lower sound source
303 Movement mechanism
305 Sound waves from the side
306 Sound wave from below
402, 404, 503, 507 sound wave
602 acoustic coupler

Claims (5)

開口部を有し被測定液が注入される反応容器と、該反応容器の外部から前記被測定液に音波を照射して攪拌する音源を有する攪拌手段とを備えた化学分析装置において、前記音源は、アレイ状に配列された複数の音源要素を有して形成されてなることを特徴とする化学分析装置。   In the chemical analyzer, comprising: a reaction vessel having an opening and into which the liquid to be measured is injected; and a stirring means having a sound source for irradiating and stirring the liquid to be measured from outside the reaction vessel. Is formed by having a plurality of sound source elements arranged in an array. 前記複数の音源要素のそれぞれに独立に電圧を印加し、該印加電圧の位相をずらして前記音源の音波照射方向を変化させる音源駆動手段を有してなることを特徴とする請求項1に記載の化学分析装置。   2. The sound source driving means according to claim 1, further comprising sound source driving means for applying a voltage independently to each of the plurality of sound source elements and changing a sound wave irradiation direction of the sound source by shifting a phase of the applied voltage. Chemical analysis equipment. 前記音源駆動手段は、前記音源から前記被測定液に照射される音波照射範囲の中心線が、前記反応容器内の前記被測定液の液面に対して斜めに液相側から気相側に抜けるように前記電圧の位相をずらすことを特徴とする請求項2に記載の化学分析装置。   The sound source driving means is configured such that a center line of a sound wave irradiation range irradiated from the sound source to the measured liquid is inclined from the liquid phase side to the gas phase side with respect to the liquid surface of the measured liquid in the reaction container. The chemical analysis apparatus according to claim 2, wherein the phase of the voltage is shifted so as to escape. 前記音源駆動手段は、前記音源から発生する音波の強度及び周波数を可変する機能を有することを特徴とする請求項2又は3に記載の化学分析装置。   The chemical analysis apparatus according to claim 2 or 3, wherein the sound source driving means has a function of varying the intensity and frequency of a sound wave generated from the sound source. 前記音源駆動手段は、検査項目毎に音波の強度および周波数を前記被測定液の性状に応じて自動的に制御することを特徴とする請求項4に記載の化学分析装置。   5. The chemical analysis apparatus according to claim 4, wherein the sound source driving means automatically controls the intensity and frequency of sound waves for each inspection item according to the properties of the liquid to be measured.
JP2004368033A 2004-12-20 2004-12-20 Chemical analyzer Expired - Lifetime JP4045452B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004368033A JP4045452B2 (en) 2004-12-20 2004-12-20 Chemical analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004368033A JP4045452B2 (en) 2004-12-20 2004-12-20 Chemical analyzer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP32814198A Division JP3661076B2 (en) 1998-11-18 1998-11-18 Chemical analyzer

Publications (2)

Publication Number Publication Date
JP2005099049A true JP2005099049A (en) 2005-04-14
JP4045452B2 JP4045452B2 (en) 2008-02-13

Family

ID=34464538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004368033A Expired - Lifetime JP4045452B2 (en) 2004-12-20 2004-12-20 Chemical analyzer

Country Status (1)

Country Link
JP (1) JP4045452B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007040843A (en) * 2005-08-03 2007-02-15 Hitachi High-Technologies Corp Autoanalyzer
WO2007043147A1 (en) * 2005-10-05 2007-04-19 Olympus Corporation Agitation vessel, agitation method, agitation device, and analyzer comprising agitation device
JP2019124608A (en) * 2018-01-17 2019-07-25 株式会社日立ハイテクノロジーズ Chemical analyzer and sound wave stirrer used in chemical analyzer
KR20200101603A (en) * 2019-02-20 2020-08-28 부경대학교 산학협력단 Dispersionizer for nano particle by using ultrasonic streaming and shockwave

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007040843A (en) * 2005-08-03 2007-02-15 Hitachi High-Technologies Corp Autoanalyzer
WO2007043147A1 (en) * 2005-10-05 2007-04-19 Olympus Corporation Agitation vessel, agitation method, agitation device, and analyzer comprising agitation device
JP2019124608A (en) * 2018-01-17 2019-07-25 株式会社日立ハイテクノロジーズ Chemical analyzer and sound wave stirrer used in chemical analyzer
KR20200101603A (en) * 2019-02-20 2020-08-28 부경대학교 산학협력단 Dispersionizer for nano particle by using ultrasonic streaming and shockwave
KR102266846B1 (en) * 2019-02-20 2021-06-18 부경대학교 산학협력단 Dispersionizer for nano particle by using ultrasonic streaming and shockwave

Also Published As

Publication number Publication date
JP4045452B2 (en) 2008-02-13

Similar Documents

Publication Publication Date Title
JP3661076B2 (en) Chemical analyzer
US7955557B2 (en) Automatic analyzer
JP3168886B2 (en) Chemical analyzer
WO2009136612A1 (en) Automated analyzer
JP3828818B2 (en) Chemical analysis apparatus and chemical analysis method
JP4887174B2 (en) Automatic analyzer
JP3704035B2 (en) Automatic analyzer
WO2020003769A1 (en) Chemical analysis device
JP4045452B2 (en) Chemical analyzer
JP2001215232A (en) Chemical analyzer
JP3914838B2 (en) Automatic analyzer
JP3642713B2 (en) Automatic analyzer
JP3607557B2 (en) Automatic analyzer
JP4406629B2 (en) Chemical analyzer
WO2001077691A1 (en) Chemical analyzer
JP4085230B2 (en) Stirring device and analyzer equipped with the stirring device
JP5919364B2 (en) Automatic analyzer
JP4377318B2 (en) Automatic analyzer
JP5668021B2 (en) Automatic analyzer
JP4557854B2 (en) Automatic analyzer
JP2005291730A (en) Biochemical analyzer
US8790598B2 (en) Reaction cuvette for automatic analyzer and method of surface treatment for reaction cuvette
JP3783551B2 (en) Automatic analyzer
JP3829145B2 (en) Automatic analyzer
JP2021175952A (en) Autoanalyzer

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131130

Year of fee payment: 6

EXPY Cancellation because of completion of term