JP2005097431A - Iron sulfide composition, its production method, heavy metals-treatment agent and treatment method using the same - Google Patents

Iron sulfide composition, its production method, heavy metals-treatment agent and treatment method using the same Download PDF

Info

Publication number
JP2005097431A
JP2005097431A JP2003333327A JP2003333327A JP2005097431A JP 2005097431 A JP2005097431 A JP 2005097431A JP 2003333327 A JP2003333327 A JP 2003333327A JP 2003333327 A JP2003333327 A JP 2003333327A JP 2005097431 A JP2005097431 A JP 2005097431A
Authority
JP
Japan
Prior art keywords
iron sulfide
acid
salts
iron
sulfide composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003333327A
Other languages
Japanese (ja)
Inventor
Hajime Funakoshi
肇 船越
Masaki Ishida
政喜 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2003333327A priority Critical patent/JP2005097431A/en
Publication of JP2005097431A publication Critical patent/JP2005097431A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/30Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by reacting with chemical agents
    • A62D3/33Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by reacting with chemical agents by chemical fixing the harmful substance, e.g. by chelation or complexation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/08Reclamation of contaminated soil chemically
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/009Compounds containing, besides iron, two or more other elements, with the exception of oxygen or hydrogen
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2101/00Harmful chemical substances made harmless, or less harmful, by effecting chemical change
    • A62D2101/20Organic substances
    • A62D2101/24Organic substances containing heavy metals
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2101/00Harmful chemical substances made harmless, or less harmful, by effecting chemical change
    • A62D2101/40Inorganic substances
    • A62D2101/43Inorganic substances containing heavy metals, in the bonded or free state
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/103Arsenic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/22Chromium or chromium compounds, e.g. chromates

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new iron sulfide composition excellent in durability and treatment capability of heavy metals, to provide a method which produces the new iron sulfide composition, further to provide a heavy metals-treatment agent containing the iron sulfide composition as an active principle, and to provide a method which treats heavy metals contained in ashes, soil, waste water and so on to render those metals harmless by using the treatment agent. <P>SOLUTION: The method comprises treating wastes containing heavy metals using an iron sulfide composition as a heavy metals-treatment agent, wherein the iron sulfide composition is comprised of an iron sulfide having a maquinawate structure shown by FeM<SB>x</SB>N<SB>y</SB>S<SB>z</SB>as an essential component of constituting element (in the formula, M shows an alkaline earth metal, N shows an alkali metal, x, y and z show mol ratio, wherein 0.01<x≤0.5, 0<y≤0.2, 0.7≤z≤1.4) and at least one kind selected from the group consisting of organic acids, salts of organic acids other than alkali metal salts, ketones, water-soluble polymer compounds, weak inorganic acids, and salts of weak inorganic acids other than alkali metal salts. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、耐久性に優れた新規な硫化鉄組成物、その製造方法、この新規な硫化鉄組成物を有効成分とする重金属類処理剤、及びこの重金属類処理剤を用いた各種重金属類を含む廃棄物の無害化処理方法に関する。   The present invention relates to a novel iron sulfide composition excellent in durability, a method for producing the same, a heavy metal treating agent containing the novel iron sulfide composition as an active ingredient, and various heavy metals using the heavy metal treating agent. The present invention relates to a method for detoxification of wastes contained.

一般に知られている工業用硫化鉄や鉄粉と硫黄を融解して作られる硫化鉄はピロータイト構造であり、また、鉄(II)イオンを含んだ溶液と硫黄イオンを含んだ溶液を混合することにより生成する硫化鉄はマキナワイト構造であることが開示されている(例えば、非特許文献1、2参照。)。   Generally known industrial iron sulfide or iron sulfide made by melting iron powder and sulfur has a pyrotite structure, and a solution containing iron (II) ions and a solution containing sulfur ions are mixed. It is disclosed that the iron sulfide generated by this has a makinawite structure (see, for example, Non-Patent Documents 1 and 2).

硫化鉄を用いて各種重金属類を含んだ廃棄物を無害化処理することは広く知られており(例えば、特許文献1、2、3、4、5、6参照。)、工業用の硫化鉄(ピロータイト構造)等を用いて水溶液中のPb、Cd、Cr、Hg、As等の有害な重金属類を処理する方法が開示されている。   It is widely known that the waste containing various heavy metals is detoxified using iron sulfide (see, for example, Patent Documents 1, 2, 3, 4, 5, and 6), and industrial iron sulfide. A method of treating harmful heavy metals such as Pb, Cd, Cr, Hg and As in an aqueous solution using (pilotite structure) or the like is disclosed.

また、鉄(II)イオンを含んだ溶液と硫黄イオンを含んだ溶液を混合して調製したマキナワイト構造の硫化鉄を用いて重金属類を処理することも公知であり、この方法で得られた硫化鉄はピロータイト構造の硫化鉄よりも重金属類を処理する能力が高いことが知られており、鉄(II)イオンを含んだ溶液と硫黄イオンを含んだ溶液、あるいはこれらの溶液を混合して得られた硫化鉄を用いて有害な重金属類を処理する方法が開示されている(例えば、特許文献7、8、9、10、11、12参照。)。   In addition, it is also known to treat heavy metals using a makinawite-structured iron sulfide prepared by mixing a solution containing iron (II) ions and a solution containing sulfur ions. The sulfide obtained by this method is also known. Iron is known to have a higher ability to treat heavy metals than iron sulfide with a pyrotite structure, and a solution containing iron (II) ions and a solution containing sulfur ions, or a mixture of these solutions A method for treating harmful heavy metals using the obtained iron sulfide has been disclosed (see, for example, Patent Documents 7, 8, 9, 10, 11, and 12).

しかし、マキナワイト構造の硫化鉄は非常に酸化されやすく、空気中の水分及び酸素と反応してイオウと水酸化鉄(III)に分解し、重金属類を処理する能力が容易に低下してしまう。そのため従来は、鉄(II)イオンを含んだ溶液と硫黄イオンを含んだ溶液を混合し硫化鉄を含んだスラリーを調製し、スラリーのまま直ちに廃水のような被処理物と混合して使用することが通例であった。通常、硫黄イオンを含んだ溶液は価格および工業的な入手のしやすさから硫化ナトリウムまたは水硫化ナトリウム水溶液を用いるが、その有害性、腐食性、悪臭等のため化学の知識を有した熟練者が操作を行なう必要があり、一般的な取り扱いは困難であった。さらにスラリーで用いる場合、一定の流動性を持たせるために硫化鉄の濃度を高くすることは困難であり、例えば工場で硫化鉄スラリーを製造した場合、輸送コストが多大なものとなり、また、廃水処理等に用いる場合は問題が生じないものの、例えば高濃度の重金属類を含んだ飛灰や土壌を処理するために多量の硫化鉄を添加した場合、被処理物の含水量が高くなりすぎ、そのあとのハンドリングが困難となる等の課題があった。   However, the iron sulfide having a makinawite structure is very easily oxidized, reacts with moisture and oxygen in the air, decomposes into sulfur and iron (III) hydroxide, and easily reduces the ability to treat heavy metals. Therefore, conventionally, a solution containing iron (II) ions and a solution containing sulfur ions are mixed to prepare a slurry containing iron sulfide, and the slurry is immediately mixed with an object to be treated such as waste water. It was customary. Usually, a solution containing sulfur ions uses sodium sulfide or aqueous sodium hydrosulfide solution because of its price and industrial availability. However, a skilled person who has knowledge of chemistry due to its harmfulness, corrosiveness, bad odor, etc. However, it was necessary to perform operation, and general handling was difficult. Furthermore, when used in a slurry, it is difficult to increase the concentration of iron sulfide in order to have a certain fluidity. For example, when iron sulfide slurry is produced in a factory, the transportation cost becomes large, and wastewater When used for treatment, etc., no problem occurs, but for example when adding a large amount of iron sulfide to treat fly ash or soil containing high concentrations of heavy metals, the water content of the treated material becomes too high, There were problems such as subsequent handling becoming difficult.

一方、スラリーを濾過、乾燥してマキナワイト構造硫化鉄粉末を調製する場合、酸化を防ぐため、不活性雰囲気下で操作を行なうか酸化防止剤を加える必要があった。得られた硫化鉄粉末は酸化劣化を起こさないように、酸素および水分が透過しない容器に保存するか、酸化防止のための還元剤を加える必要があった。還元剤を加えても、酸化劣化されやすさを根本的に解決したわけでなく、還元剤が消費された時点で硫化鉄の酸化が始まるために保存安定性は極めて低いものであった。   On the other hand, when preparing the makinawite-structured iron sulfide powder by filtering and drying the slurry, it was necessary to operate in an inert atmosphere or add an antioxidant to prevent oxidation. It was necessary to store the obtained iron sulfide powder in a container that does not allow oxygen and moisture to permeate, or to add a reducing agent for preventing oxidation so as not to cause oxidative deterioration. Even when a reducing agent is added, the ease of oxidative degradation has not been fundamentally solved, and since the oxidation of iron sulfide starts when the reducing agent is consumed, the storage stability is extremely low.

本発明者らは、マキナワイト構造の硫化鉄の重金属処理活性が高いが耐久性に劣るという欠点を改良する方法として、硫化鉄中にアルカリ土類金属を一定量以上取り込ませ、構成元素の必須成分として、Fe・M・N・S(式中、Mはアルカリ土類金属、Nはアルカリ金属、x、y及びzはモル比であり、0.01<x≦0.5、y≦0.2、0.7≦z≦1.4を示す。)で表される新規な組成の硫化鉄とすること、また、このような硫化鉄の調製方法として、2価の鉄塩の水溶液と硫黄イオンを含む水溶液とアルカリ土類成分を混合し、かつ、混合後のスラリーpHを7.0以上とすることを提案した(特許文献13参照。)。 As a method for improving the disadvantage that the heavy metal treatment activity of the iron sulfide having a makinawite structure is high but inferior in durability, the present inventors have incorporated a certain amount of alkaline earth metal into the iron sulfide, and are essential components of the constituent elements. Fe · M x · N y · S z (wherein M is an alkaline earth metal, N is an alkali metal, x, y and z are molar ratios, 0.01 <x ≦ 0.5, y ≦ 0.2, 0.7 ≦ z ≦ 1.4)), and as a method for preparing such iron sulfide, a divalent iron salt It has been proposed to mix an aqueous solution, an aqueous solution containing sulfur ions, and an alkaline earth component, and to set the slurry pH after mixing to 7.0 or higher (see Patent Document 13).

特公昭49−43472号公報Japanese Patent Publication No.49-43472

特開昭47−31806号公報JP 47-31806 A 特開昭50−13294号公報Japanese Patent Laid-Open No. 50-13294 特開昭50−96053号公報Japanese Patent Laid-Open No. 50-96053 特開昭52−126685号公報Japanese Patent Laid-Open No. 52-126665 特開昭60−227881号公報JP 60-227881 A 特開昭48−11291号公報Japanese Patent Laid-Open No. 48-11291 特開昭48−59005号公報Japanese Patent Laid-Open No. 48-59005 特開昭49−31152号公報JP 49-31152 A 特開昭52−113559号公報Japanese Patent Laid-Open No. 52-113559 特開昭52−148473号公報JP 52-148473 A 特開昭53−112273号公報Japanese Patent Laid-Open No. 53-112273 特開2002−326819号公報JP 2002-326819 A Reviews of Pure and Applied Chemistry,(オーストラリア)、1970年、20巻,175〜206頁Reviews of Pure and Applied Chemistry, (Australia), 1970, 20, 175-206 JCPDSカード(Powder Diffraction File)15−37JCPDS Card (Powder Diffraction File) 15-37

本発明の目的は、上記記載の背景において、耐久性に優れ、重金属類の処理特性が優れた新規な硫化鉄組成物、この新規な硫化鉄組成物を合成する方法を提供することにある。さらに、その硫化鉄組成物を有効成分として含む重金属類処理剤、及びこの処理剤を用いて、灰、土壌、廃水等に含まれる重金属類を処理し無害化する方法を提供することも本発明の目的とする。   An object of the present invention is to provide a novel iron sulfide composition which is excellent in durability and excellent in processing characteristics of heavy metals and a method for synthesizing the novel iron sulfide composition in the background described above. Furthermore, the present invention also provides a method for treating and detoxifying heavy metals contained in ash, soil, wastewater, etc., using the treatment agent for heavy metals containing the iron sulfide composition as an active ingredient, and this treatment agent. The purpose.

本発明者らは、特許文献13で示した硫化鉄の特性を更に改良するために検討を行なった結果、構成元素の必須成分として、Fe・M・N・S(式中、Mはアルカリ土類金属、Nはアルカリ金属、x、y及びzはモル比であり、0.01<x≦0.5、0≦y≦0.2、0.7≦z≦1.4を示す。)で表されるマキナワイト構造を有する硫化鉄と、有機酸、アルカリ金属塩以外の有機酸の塩、ケトン、水溶性高分子化合物、無機の弱酸及びアルカリ金属塩以外の無機の弱酸の塩の群から選ばれる1種以上からなる硫化鉄組成物とすることにより耐久性をさらに向上させることができることを見出し、また、そのような硫化鉄組成物は、2価の鉄塩の水溶液と硫黄イオンを含む水溶液とアルカリ土類金属成分を混合し、かつ、混合後のスラリーpHを7.0以上とした後、ろ過・洗浄、乾燥を行ない硫化鉄を製造するプロセスにおいて、有機酸、アルカリ金属塩以外の有機酸の塩、ケトン、水溶性高分子化合物、無機の弱酸、アルカリ金属塩以外の無機の弱酸の塩の群から選ばれる1種以上を添加することにより得られることを見出し、本発明を完成させるに至った。 The present inventors have made conducted studies in order to further improve the properties of iron sulfide shown in Patent Document 13, as an essential component of the constituting elements, Fe · M x · N y · S z ( wherein, M Is an alkaline earth metal, N is an alkali metal, x, y and z are molar ratios, 0.01 <x ≦ 0.5, 0 ≦ y ≦ 0.2, 0.7 ≦ z ≦ 1.4 And iron sulfide having a makinawite structure represented by: and organic acid, salts of organic acids other than alkali metal salts, ketones, water-soluble polymer compounds, inorganic weak acids, and salts of inorganic weak acids other than alkali metal salts It has been found that the durability can be further improved by using an iron sulfide composition comprising at least one selected from the group consisting of an aqueous solution of a divalent iron salt and sulfur. After mixing the aqueous solution containing ions and the alkaline earth metal component, and after mixing In the process of producing iron sulfide by performing filtration, washing and drying after the slurry pH of 7.0 is not less than, organic acids, salts of organic acids other than alkali metal salts, ketones, water-soluble polymer compounds, inorganic It has been found that it can be obtained by adding one or more selected from the group of inorganic weak acid salts other than weak acids and alkali metal salts, and the present invention has been completed.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の硫化鉄組成物に用いる硫化鉄は、特許文献13で示した、その構成元素の必須成分として、Fe・M・N・S(式中、Mはアルカリ土類金属、Nはアルカリ金属、x、y及びzはモル比であり、0.01<x≦0.5、0≦y≦0.2、0.7≦z≦1.4を示す。)であるマキナワイト構造を有する硫化鉄であることが必須である。 Iron sulfide for use in the iron sulfide composition of the present invention, shown in Patent Document 13, as an essential component of the constituting elements, Fe · M x · N y · S z ( wherein, M is alkaline earth metal, N Is an alkali metal, x, y, and z are molar ratios, and 0.01 <x ≦ 0.5, 0 ≦ y ≦ 0.2, and 0.7 ≦ z ≦ 1.4.) It is essential that the iron sulfide has.

本発明に用いる硫化鉄は、鉄と硫黄のモル比はこれまでのマキナワイト構造の硫化鉄と同様不定比性を示し鉄に対するイオウのモル比は0.7以上1.4以下であり、また、カルシウム等のアルカリ土類金属を含有していることに特徴がありアルカリ土類金属の含有量は鉄に対してのモル比で0.01よりも大きく0.5以下であり、また、硫化鉄の原料に由来するアルカリ金属の含有量が通常のマキナワイト構造の硫化鉄よりもはるかに少なく鉄に対するモル比で0.2以下である。   The iron sulfide used in the present invention has a non-stoichiometric ratio of iron and sulfur in the same manner as that of the conventional makinawite-structured iron sulfide, and the molar ratio of sulfur to iron is 0.7 or more and 1.4 or less. It is characterized by containing an alkaline earth metal such as calcium, and the content of the alkaline earth metal is more than 0.01 and less than or equal to 0.5 in terms of molar ratio to iron. The content of the alkali metal derived from the raw material is much less than that of iron sulfide having a normal makinawite structure, and the molar ratio to iron is 0.2 or less.

マキナワイト構造は、非特許文献1、2に記載されており、非特許文献1に従うとその構造は鉄原子の層を挟んで2層の硫黄原子の層がある層状化合物構造となっており、鉄原子層−イオウ原子層−イオウ原子層−鉄原子層の繰り返し単位より形成されている。そのXRD回折パターンは非特許文献2に示されており、以下の表1の通りである。   The makinawite structure is described in Non-Patent Documents 1 and 2, and according to Non-Patent Document 1, the structure is a layered compound structure having two layers of sulfur atoms with an iron atom layer in between. It is formed of repeating units of atomic layer-sulfur atomic layer-sulfur atomic layer-iron atomic layer. The XRD diffraction pattern is shown in Non-Patent Document 2 and is shown in Table 1 below.

Figure 2005097431
本発明に用いる硫化鉄は、表1で示されるマキナワイト構造の硫化鉄にアルカリ土類金属が取り込まれている。アルカリ土類金属は硫化鉄中の鉄と置換して取り込まれるのではなく、アルカリ土類金属の水酸化物、または酸化物の形で、主としてマキナワイト構造中のイオウ原子層−イオウ原子層間に取り込まれているものと推定される。
Figure 2005097431
In the iron sulfide used in the present invention, an alkaline earth metal is incorporated into iron sulfide having a makinawite structure shown in Table 1. Alkaline earth metal is not incorporated by replacing iron in iron sulfide, but in the form of hydroxide or oxide of alkaline earth metal, mainly incorporated between the sulfur atom layer and the sulfur atom layer in the makinawite structure. It is estimated that

また、さらに本発明においては、上記表1に示されるマキナワイト構造のXRDの回折パターンにおいて、001面の面間隔が5.03オングストローム以上5.53オングストローム以下とc軸方向に広がり、この001面からのピーク強度を100とした場合、他のhkl面からの回折ピークの強度比がすべて20以下であることにより特徴づけられる「変性マキナワイト構造」となった、硫化鉄を用いる方がより好ましい。   Furthermore, in the present invention, in the XRD diffraction pattern of the makinawite structure shown in Table 1 above, the surface spacing of the 001 plane is 5.03 angstroms or more and 5.53 angstroms or less and extends in the c-axis direction. When the peak intensity of 100 is 100, it is more preferable to use iron sulfide having a “modified makinawite structure” characterized by the fact that the intensity ratios of diffraction peaks from other hkl planes are all 20 or less.

変性マキナワイト構造となる原因は明らかではないが、硫化鉄中のイオウ原子層−イオウ値原子層の間に取り込まれたアルカリ土類金属が、c軸の間隔を広げ、かつ、a軸及びb軸すなわち鉄原子及びイオウ原子の並びの乱れを生じさせるためと推定される。   The cause of the modified makinawite structure is not clear, but the alkaline earth metal incorporated between the sulfur atomic layer and the sulfur value atomic layer in the iron sulfide increases the c-axis interval, and the a-axis and b-axis. That is, it is presumed to cause disorder of the arrangement of iron atoms and sulfur atoms.

本発明に用いる硫化鉄の耐久性が向上している原因は明らかではないが、硫化鉄中に取り込まれたアルカリ土類金属によって、酸化分解を妨げる層が硫化鉄表面に形成される、酸化分解の進行そのものが妨げられる、酸化分解機構が変化し酸化分解速度が低下する、等であるためと推定される。   The reason why the durability of the iron sulfide used in the present invention is improved is not clear, but an oxidative decomposition in which a layer that prevents oxidative decomposition is formed on the surface of the iron sulfide by the alkaline earth metal incorporated in the iron sulfide. This is presumed to be because the progress of oxidization is hindered, the oxidative decomposition mechanism is changed, and the oxidative decomposition rate is lowered.

本発明において、ピロータイト構造の硫化鉄を用いた場合、耐久性は優れるものの重金属処理活性が低く、本発明の主旨である重金属処理特性が優れた硫化鉄組成物を得ることはできない。また、従来のマキナワイト構造の硫化鉄を用いた場合、耐久性が劣り本発明の主旨の耐久性に優れた硫化鉄組成物を得ることは困難である。   In the present invention, when iron sulfide having a pyrotite structure is used, although the durability is excellent, the heavy metal treatment activity is low, and it is not possible to obtain an iron sulfide composition excellent in heavy metal treatment characteristics, which is the gist of the present invention. Further, when iron sulfide having a conventional makinawite structure is used, it is difficult to obtain an iron sulfide composition having poor durability and excellent durability as the gist of the present invention.

本発明では、特許文献13で示した、構成元素の必須成分として、Fe・M・N・S(式中、Mはアルカリ土類金属、Nはアルカリ金属、x、y及びzはモル比であり、0.01<x≦0.5、0≦y≦0.2、0.7≦z≦1.4を示す。)で表されマキナワイト構造を有する硫化鉄に、有機酸、アルカリ金属塩以外の有機酸の塩、ケトン、水溶性高分子化合物、無機の弱酸及びアルカリ金属塩以外の無機の弱酸の塩の群から選ばれる1種以上を添加することにより、より耐久性に優れた硫化鉄組成物を得るところに特徴がある。 In the present invention, shown in Patent Document 13, as an essential component of the constituting elements in Fe · M x · N y · S z ( wherein, M is alkaline earth metal, N represents an alkali metal, x, y and z is The molar ratio is 0.01 <x ≦ 0.5, 0 ≦ y ≦ 0.2, 0.7 ≦ z ≦ 1.4.) The iron sulfide having a makinawite structure has an organic acid, By adding at least one selected from the group consisting of organic acid salts other than alkali metal salts, ketones, water-soluble polymer compounds, inorganic weak acids, and inorganic weak acid salts other than alkali metal salts, it becomes more durable. It is characterized by obtaining an excellent iron sulfide composition.

用いる有機酸としては、カルボン酸である、ギ酸、酢酸、プロピオン酸、ステアリン酸、シュウ酸、マロン酸、コハク酸、ポリアクリル酸、グリコール酸、乳酸、クエン酸、酒石酸、サリチル酸や、カルボン酸以外の有機酸であるアスコルビン酸、フェノール、クレゾールやアミノ酸であるアラニン等を例示できる。このなかで、本発明の目的である耐久性に優れた硫化鉄組成物をえるためにより好ましい有機酸としては、酢酸、コハク酸、乳酸、クエン酸、アスコルビン酸を例示できる。また、その塩としては、上記した酸のアルカリ土類金属塩、アンモニウム塩、鉄塩等を例示できるが、ナトリウムやカリウム等のアルカリ金属塩を添加した場合原因は不明であるが硫化鉄の耐久性が逆に大きく低下するため本発明の目的としては好ましくなく、最も好ましい塩としてはアルカリ土類金属塩、特にカルシウム塩、マグネシウム塩が上げられる。   The organic acid used is a carboxylic acid other than formic acid, acetic acid, propionic acid, stearic acid, oxalic acid, malonic acid, succinic acid, polyacrylic acid, glycolic acid, lactic acid, citric acid, tartaric acid, salicylic acid, and carboxylic acid Examples thereof include ascorbic acid, which is an organic acid, phenol, cresol, and alanine which is an amino acid. Among these, acetic acid, succinic acid, lactic acid, citric acid, and ascorbic acid can be exemplified as organic acids more preferable for obtaining an iron sulfide composition having excellent durability, which is the object of the present invention. In addition, examples of the salt include alkaline earth metal salts, ammonium salts, iron salts, and the like of the acids described above. However, when an alkali metal salt such as sodium or potassium is added, the cause is unknown, but the durability of iron sulfide. On the contrary, the properties are greatly reduced, so it is not preferred for the purpose of the present invention, and the most preferred salts include alkaline earth metal salts, especially calcium salts and magnesium salts.

用いるケトンとしてはアセトン、メチルエチルケトンやアセチルアセトン等を例示できる。   Examples of the ketone used include acetone, methyl ethyl ketone, and acetylacetone.

用いる水溶性高分子化合物としては、ポリエチレングリコールやポリビニルアルコール等を例示できる。   Examples of the water-soluble polymer compound used include polyethylene glycol and polyvinyl alcohol.

用いる無機の弱酸としては、ホウ酸、リン酸、ケイ酸等が例示できる。また、アルカリ金属塩以外の無機の弱酸の塩としては前述した弱酸のアルカリ土類金属塩、アンモニウム塩、鉄塩等を例示できるが、ナトリウムやカリウム等のアルカリ金属塩では原因は不明であるが硫化鉄の耐久性が逆に大きく低下するため本発明の目的としては好ましくなく、最も好ましい塩としてはアルカリ土類金属塩、特にカルシウム塩、マグネシウム塩が上げられる。   Examples of the inorganic weak acid used include boric acid, phosphoric acid, and silicic acid. Examples of inorganic weak acid salts other than alkali metal salts include the alkaline earth metal salts, ammonium salts, iron salts, and the like of the weak acids described above, but the cause of the alkali metal salts such as sodium and potassium is unknown. On the contrary, the durability of iron sulfide is greatly reduced, which is not preferable for the purpose of the present invention. The most preferable salts include alkaline earth metal salts, particularly calcium salts and magnesium salts.

本発明の硫化鉄組成物における、硫化鉄とこれらの物質との混合割合は特に限定されないが、硫化鉄に対しこれらの物質の混合割合が少なすぎた場合は耐久性の向上効果が不十分となり、また多すぎた場合は硫化鉄の含有量が減少しこの組成物を重金属類処理剤として用いた場合の処理特性が低下するため好ましくない。従って、用いる物質によって最適な量は変化するものの、硫化鉄に対し0.1〜50重量%を例示でき、好ましくは0.2〜40重量%を、より好ましくは0.5〜30重量%を例示できる。   In the iron sulfide composition of the present invention, the mixing ratio of iron sulfide and these substances is not particularly limited, but if the mixing ratio of these substances relative to iron sulfide is too small, the durability improvement effect becomes insufficient. On the other hand, when the amount is too large, the content of iron sulfide is decreased, and the treatment characteristics when this composition is used as a heavy metal treating agent is deteriorated. Accordingly, although the optimum amount varies depending on the substance to be used, it can be exemplified by 0.1 to 50% by weight, preferably 0.2 to 40% by weight, more preferably 0.5 to 30% by weight based on iron sulfide. It can be illustrated.

本発明の硫化鉄組成物とすることにより硫化鉄の耐久性がさらに向上する原因は明らかではないが、硫化鉄表面を被覆することに酸化の進行が妨げられる、あるいは還元性成分として硫化鉄の酸化の進行を妨げるためと推定される。   The reason why the durability of iron sulfide is further improved by using the iron sulfide composition of the present invention is not clear, but the coating of the iron sulfide surface hinders the progress of oxidation, or iron sulfide as a reducing component. It is presumed to prevent the progress of oxidation.

次に本発明の硫化鉄組成物の製造方法について詳細に説明する。   Next, the manufacturing method of the iron sulfide composition of this invention is demonstrated in detail.

本発明の硫化鉄組成物は、2価の鉄塩の水溶液と硫黄イオンを含む水溶液とアルカリ土類金属成分を混合し、かつ、混合後のスラリーpHを7.0以上とした後、ろ過・洗浄、乾燥を行ない硫化鉄を製造するプロセスにおいて、有機酸、アルカリ金属塩以外の有機酸の塩、ケトン、水溶性高分子化合物、無機の弱酸及びアルカリ金属塩以外の無機の弱酸の塩の群から選ばれる1種以上を添加することにより調製する。   The iron sulfide composition of the present invention comprises mixing an aqueous solution of a divalent iron salt, an aqueous solution containing sulfur ions, and an alkaline earth metal component, and setting the slurry pH after mixing to 7.0 or higher, In the process of producing iron sulfide by washing and drying, a group of organic acids, salts of organic acids other than alkali metal salts, ketones, water-soluble polymer compounds, inorganic weak acids and salts of inorganic weak acids other than alkali metal salts It prepares by adding 1 or more types chosen from these.

以後、「有機酸、アルカリ金属塩以外の有機酸の塩、ケトン、水溶性高分子化合物、無機の弱酸、アルカリ金属塩以外の無機の弱酸の塩の群から選ばれる1種以上」を「添加成分」と略記する。   "Addition of one or more selected from the group consisting of organic acids, salts of organic acids other than alkali metal salts, ketones, water-soluble polymer compounds, inorganic weak acids, and salts of inorganic weak acids other than alkali metal salts" Abbreviated as “component”.

本発明では、まず、2価の鉄塩の水溶液と硫黄イオンを含む水溶液とアルカリ土類金属成分を混合し、かつ、混合後のスラリーpHを7.0以上とすることにより、耐久性に優れたマキナワイト構造の硫化鉄を含んだスラリーを調製する。   In the present invention, first, an aqueous solution of a divalent iron salt, an aqueous solution containing sulfur ions, and an alkaline earth metal component are mixed, and the slurry pH after mixing is 7.0 or more, so that the durability is excellent. A slurry containing iron sulphide having a machina wite structure is prepared.

この時の上記した3つの成分の混合順序は、適宜選択することができ、2価の鉄塩の水溶液と硫黄イオンを含む水溶液を混合した後にアルカリ土類金属成分を混合してもよく、また、2価の鉄塩の水溶液とアルカリ土類金属成分を混合しその後硫黄イオンを含む水溶液と混合しても良く、また、硫黄イオンを含む水溶液とアルカリ土類金属成分を混合し、2価の鉄塩の水溶液を混合しても良く、生産プロセス上最適な方法を選択することができる。また、この時の混合方法において、2価の鉄塩の水溶液と硫黄イオンを含む水溶液を混合し硫化鉄が生成する際にアルカリ土類金属が存在した場合は、生成するマキナワイト構造の硫化鉄は変性マキナワイト構造となるため、混合方法としてはこの方法がより好ましい。   The mixing order of the above three components at this time can be selected as appropriate, and the alkaline earth metal component may be mixed after mixing the aqueous solution of the divalent iron salt and the aqueous solution containing sulfur ions. An aqueous solution of a divalent iron salt and an alkaline earth metal component may be mixed, and then mixed with an aqueous solution containing a sulfur ion, or an aqueous solution containing a sulfur ion and an alkaline earth metal component may be mixed and mixed. An aqueous solution of an iron salt may be mixed, and an optimum method for the production process can be selected. In addition, in the mixing method at this time, when an alkaline earth metal is present when an aqueous solution containing a divalent iron salt and an aqueous solution containing sulfur ions are mixed to produce iron sulfide, This method is more preferable as a mixing method because it has a modified makinawite structure.

本発明で用いる2価の鉄塩の水溶液は、水溶性の2価の鉄塩であれば特に限定されず、具体的には塩化鉄(II)、硝酸鉄(II)、硫酸鉄(II)酢酸鉄(II)等を例示することができる。また、鉄塩の水溶液の濃度は特に限定されないが、生産性やハンドリングを考えた場合、具体的な2価の鉄塩の濃度として、Feとして1〜25wt%、より好ましくは3〜20wt%の範囲を例示することができる。   The aqueous solution of the divalent iron salt used in the present invention is not particularly limited as long as it is a water-soluble divalent iron salt, and specifically, iron (II) chloride, iron (II) nitrate, iron (II) sulfate. Examples thereof include iron (II) acetate. Further, the concentration of the aqueous solution of the iron salt is not particularly limited, but when considering productivity and handling, the concentration of the specific divalent iron salt is 1 to 25 wt%, more preferably 3 to 20 wt% as Fe. A range can be illustrated.

本発明で用いる硫黄イオンを含む溶液は、硫黄イオンを含むものであれば特に限定されず、アルカリ金属塩の硫化物や水硫化物、アンモニウム塩の硫化物や水硫化物、アルカリ土類金属の硫化物や水硫化物を水に溶解したものであればすべて好適に用いることができる。また、硫黄イオンを含む溶液の濃度は特に限定されないが、生産性やハンドリングを考えた場合、具体的な硫黄イオンの濃度としては、Sとして1〜15wt%、より好ましくは2〜10wt%の範囲を例示することができる。   The solution containing sulfur ions used in the present invention is not particularly limited as long as it contains sulfur ions. Alkali metal salt sulfides and hydrosulfides, ammonium salt sulfides and hydrosulfides, alkaline earth metal solutions Any sulfide or hydrosulfide dissolved in water can be suitably used. In addition, the concentration of the solution containing sulfur ions is not particularly limited. However, when considering productivity and handling, the specific sulfur ion concentration is in the range of 1 to 15 wt%, more preferably 2 to 10 wt% as S. Can be illustrated.

アルカリ土類金属成分は水溶性のものであれば特に限定されず、また、炭酸塩のように水溶性を示さないものであっても酸性溶液に溶解するものも使用が可能である。具体的なアルカリ土類金属成分としてはアルカリ土類金属の塩化物やカルボン酸塩、硝酸塩、水酸化物、硫化物を例示することができる。   The alkaline earth metal component is not particularly limited as long as it is water-soluble, and even if it does not show water solubility such as carbonate, it can be used that dissolves in an acidic solution. Specific examples of the alkaline earth metal component include alkaline earth metal chlorides, carboxylates, nitrates, hydroxides, and sulfides.

2価の鉄塩の水溶液と硫黄イオンを含む水溶液との混合割合は特に限定されないが、生産性や特性を考慮した場合、FeとSのモル比で、1:0.7〜1.8、さらに好ましくは1:0.8〜1.5の範囲になるように混合することが好ましい。   The mixing ratio of the aqueous solution of the divalent iron salt and the aqueous solution containing sulfur ions is not particularly limited, but considering the productivity and characteristics, the molar ratio of Fe and S is 1: 0.7 to 1.8, More preferably, mixing is performed so as to be in a range of 1: 0.8 to 1.5.

2価の鉄塩の水溶液とアルカリ土類金属成分の混合割合はアルカリ土類金属の種類により異なるが、アルカリ土類金属の量が少ないと耐久性に優れたマキナワイト構造を有する硫化鉄は得られない。従って、アルカリ土類金属成分がマグネシウム(Mg)の場合FeとMgのモル比が、1:0.04以上となるように混合することが好ましく、アルカリ土類金属成分がカルシウム(Ca)の場合FeとCaのモル比が、1:0.03以上なるように混合することが好ましく、アルカリ土類金属成分がストロンチウム(Sr)の場合FeとSrのモル比が、1:0.02以上となるように混合することが好ましく、アルカリ土類金属成分がバリウム(Ba)の場合FeとBaのモル比が、1:0.01以上となるように混合することが好ましい。   The mixing ratio of the divalent iron salt aqueous solution and the alkaline earth metal component varies depending on the type of alkaline earth metal, but if the amount of alkaline earth metal is small, iron sulfide having a makinawite structure with excellent durability can be obtained. Absent. Therefore, when the alkaline earth metal component is magnesium (Mg), it is preferable to mix so that the molar ratio of Fe and Mg is 1: 0.04 or more. When the alkaline earth metal component is calcium (Ca) It is preferable to mix so that the molar ratio of Fe and Ca is 1: 0.03 or more. When the alkaline earth metal component is strontium (Sr), the molar ratio of Fe and Sr is 1: 0.02 or more. It is preferable to mix so that the molar ratio of Fe to Ba is 1: 0.01 or more when the alkaline earth metal component is barium (Ba).

混合操作は特に限定されず、化学工学で知られている半回分式方法または連続式を用いることができる。   The mixing operation is not particularly limited, and a semi-batch method or a continuous method known in chemical engineering can be used.

混合時の温度は特に限定されず、冷却及び加熱する必要はなく、例えば10〜60℃の温度を例示することができる。   The temperature at the time of mixing is not specifically limited, It is not necessary to cool and heat, For example, the temperature of 10-60 degreeC can be illustrated.

混合時の撹拌は特に限定されず、生成する硫化鉄を含んだスラリーの滞留が生じないような撹拌強度であれば特に問題はない。   Stirring at the time of mixing is not particularly limited, and there is no particular problem as long as the stirring strength does not cause retention of the slurry containing iron sulfide to be generated.

原料の混合速度は特に限定されないが、混合があまり遅いと生産性が低下することがあり、速すぎると局部的な滞留や粘度の上昇が起きる可能性がある。従って、例えば半回分式の場合1〜240分で、より好ましくは3〜120分ですべての原料が混ざるような添加速度を選択すればよく、また連続法では原料の供給速度を平均滞留時間が10〜240分、より好ましくは15〜120分となるようにすればよい。   The mixing speed of the raw materials is not particularly limited, but if the mixing is too slow, the productivity may be reduced, and if it is too fast, local stagnation and increase in viscosity may occur. Therefore, for example, in the case of a semi-batch type, the addition rate should be selected such that all the raw materials are mixed in 1 to 240 minutes, more preferably 3 to 120 minutes. The time may be 10 to 240 minutes, more preferably 15 to 120 minutes.

以上のように、混合操作が終了した時点で本発明の硫化鉄を含むスラリーが得られるが、この時の、混合操作終了時のスラリーpHが7.0以上ととなっていることが必須である。スラリーpHを7.0以上とするために混合終了後にアルカリ源を添加してもよいが、予めアルカリ源を硫黄イオンを含む水溶液に添加しておくことがより好ましい。アルカリ源は特に限定されず、アルカリ金属の水酸化物、アルカリ土類金属の水酸化物等を例示でき、具体的には水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化バリウム等を例示できる。スラリーpHが7.0未満の場合、アルカリ土類金属が硫化鉄内に取り込まれず本発明の硫化鉄は得られない。スラリーpHは高いほど好ましく、8.0以上、より好ましくは10.0以上、さらに好ましくは12.0前後とすることがよい。   As described above, the slurry containing the iron sulfide of the present invention is obtained when the mixing operation is completed. At this time, it is essential that the slurry pH at the end of the mixing operation is 7.0 or more. is there. An alkali source may be added after mixing to make the slurry pH 7.0 or more, but it is more preferable to add the alkali source to the aqueous solution containing sulfur ions in advance. The alkali source is not particularly limited, and examples thereof include alkali metal hydroxides and alkaline earth metal hydroxides. Specific examples include sodium hydroxide, potassium hydroxide, calcium hydroxide, and barium hydroxide. it can. When the slurry pH is less than 7.0, the alkaline earth metal is not taken into the iron sulfide and the iron sulfide of the present invention cannot be obtained. The slurry pH is preferably as high as possible, and is preferably 8.0 or more, more preferably 10.0 or more, and still more preferably around 12.0.

また、原料の混合が終了した後、生成したスラリー全体を均一にするために、そのまま撹拌を継続し、熟成を行なってもよい。熟成時間は特に限定されず、例えば0〜300分の時間を例示することができる。   Further, after the mixing of the raw materials is completed, in order to make the entire slurry generated uniform, stirring may be continued as it is and aging may be performed. The aging time is not particularly limited, and for example, a time of 0 to 300 minutes can be exemplified.

本発明においては以上の方法で調製した硫化鉄を用いることが必要である。なぜならば、この条件を外れた場合、耐久性に優れた硫化鉄を調製することが困難となり、そのような方法で得られた硫化鉄を含んだ硫化鉄組成物は、本発明の目的である重金属類処理剤としての特性が乏しいためである。   In the present invention, it is necessary to use iron sulfide prepared by the above method. This is because it is difficult to prepare iron sulfide having excellent durability when this condition is exceeded, and an iron sulfide composition containing iron sulfide obtained by such a method is an object of the present invention. This is because the properties as a heavy metal treating agent are poor.

本発明においては、このようにして得た硫化鉄を含んだスラリーに、「添加成分」を添加し硫化鉄組成物含有スラリーとし、そのまま重金属類の処理に用いてもよい。この時の「添加成分」の添加方法としては特に限定されず、硫化鉄の合成時に「添加成分」を添加してもよく、あるいは、硫化鉄を含んだスラリーを調製した後に「添加成分」を添加してもよい。   In the present invention, an “additional component” may be added to the slurry containing iron sulfide obtained in this way to obtain an iron sulfide composition-containing slurry, which may be used as it is for the treatment of heavy metals. The addition method of the “addition component” at this time is not particularly limited, and the “addition component” may be added during the synthesis of iron sulfide, or the “addition component” may be added after preparing the slurry containing iron sulfide. It may be added.

しかし、このようなスラリー状の硫化鉄組成物をそのまま重金属処理に用いた場合、輸送コストが多大なものとなり、また、高濃度の重金属類を含んだ飛灰や土壌を処理するために多量の添加を行なった場合、被処理物の含水量が高くなりすぎ、そのあとのハンドリングが困難となる可能性がある。そのため、必要に応じて熟成を行い、濾過・洗浄を行なった後、乾燥を行ない硫化鉄組成物の粉末とする。   However, when such a slurry-like iron sulfide composition is used as it is for heavy metal treatment, the transportation cost becomes enormous, and in order to treat fly ash and soil containing high concentrations of heavy metals, a large amount is required. When the addition is performed, the water content of the object to be processed becomes too high, and the subsequent handling may be difficult. Therefore, it is aged as necessary, filtered and washed, and then dried to obtain an iron sulfide composition powder.

本発明においては、上記したように、硫化鉄組成物含有スラリーを調製し、その後ろ過・洗浄、乾燥を行ない、硫化鉄組成物を調製してもよいが、この場合、ろ過・洗浄工程において「添加成分」の一部が失われる可能性がある。従って、「添加成分」の添加は、硫化鉄のろ過・洗浄以降の工程で行なうことがより好ましい。   In the present invention, as described above, an iron sulfide composition-containing slurry is prepared, followed by filtration, washing and drying to prepare an iron sulfide composition. In this case, in the filtration and washing step, Part of the “additive component” may be lost. Therefore, it is more preferable to add the “addition component” in the steps after filtration and washing of iron sulfide.

具体的な好ましい方法としては、硫化鉄の濾過・洗浄後に、「添加成分」を添加し、その後、乾燥を行なう方法や、硫化鉄の乾燥後に、「添加成分」を添加し、その後、混合を行なう方法を例示できる。   Specific preferred methods include a method of adding “additional components” after filtration and washing of iron sulfide and then drying, or a method of adding “additional components” after drying of iron sulfide, and then mixing. The method of performing can be illustrated.

硫化鉄の濾過・洗浄後に「添加成分」を添加する方法は特に限定されず、「添加成分」を濾過洗浄工程の最後の段階において加える方法や、濾過・洗浄後の硫化鉄ケーキをリパルプすることによりスラリー状となし、「添加成分」を加え混練を行ない、引き続き乾燥を行なう方法等を例示できる。   The method of adding “additional components” after filtration and washing of iron sulfide is not particularly limited, and the method of adding “additional components” at the final stage of the filtration and washing process, or repulping the iron sulfide cake after filtration and washing A method of forming a slurry, adding an “addition component”, kneading, and subsequently drying can be exemplified.

また、硫化鉄の乾燥後に「添加成分」を添加する方法は特に限定されず、乾燥後の硫化鉄に「添加成分」を加え混合してもよく、必要に応じて粉砕を行なっても良い。   The method of adding the “addition component” after the iron sulfide is dried is not particularly limited, and the “addition component” may be added to the iron sulfide after drying and mixed, or may be pulverized as necessary.

以上の方法で本発明の硫化鉄組成物を得ることができる。   The iron sulfide composition of the present invention can be obtained by the above method.

本発明の硫化鉄組成物は、極めて耐久性に優れ、これを有効成分とする「重金属類処理剤」として用いた場合、きわめて高い性能を発揮する。本発明の硫化物組成物単独でも「重金属類処理剤」として極めて好適に用いることができるが、アルカリ性または中性の他種の重金属処理に用いられる薬剤と併用して用いることも可能であり、例えばセメント等と混合して使用しても良く、また、有機キレート系重金属類処理剤と併用しても良い。   The iron sulfide composition of the present invention is extremely excellent in durability and exhibits extremely high performance when used as a “heavy metal treating agent” containing this as an active ingredient. The sulfide composition of the present invention alone can be used very suitably as a “heavy metal treating agent”, but it can also be used in combination with a chemical used for treating other heavy metals of alkaline or neutral type, For example, it may be used by mixing with cement or the like, or may be used in combination with an organic chelate heavy metal treating agent.

以下、本発明の重金属類処理剤について、その詳細を説明する。   Hereinafter, the details of the treatment agent for heavy metals of the present invention will be described.

本発明の重金属類処理剤では、その処理が可能な重金属類とは具体的な元素として、Pb、Cd、Hg、Zn、Cu、Ni、Cr、As、Se、Sb及びMoを示すことができる。もちろん、本発明の処理剤では上記した重金属類をそれぞれ単独に処理するだけでなく、これらの内の任意の複数の元素が含まれたものを処理する場合においても処理が可能である。   In the heavy metal treating agent of the present invention, the heavy metals that can be treated can include Pb, Cd, Hg, Zn, Cu, Ni, Cr, As, Se, Sb, and Mo as specific elements. . Of course, the treatment agent of the present invention can treat not only each of the above-mentioned heavy metals, but also treatment of those containing any of these elements.

本発明の重金属類処理剤は、重金属類を含むごみ焼却灰、飛灰又は溶融飛灰の処理に極めて有効である。ごみ焼却灰、飛灰や溶融飛灰中には、各種ごみに含まれていた重金属類が濃縮されている。特に飛灰や溶融飛灰において顕著であり、溶融飛灰の中にはパーセントオーダーで鉛のような重金属が含まれているものも数多く、無害化処理が必要とされる。飛灰や溶融飛灰は焼却炉の構造や運転方法の違いにより、アルカリ性飛灰、中性飛灰、アルカリ性溶融飛灰、中性溶融飛灰等の種類があり、また、焼却するごみの種類によって含まれる重金属類の種類と含有量は大きく異なっていることが知られているが、本発明の重金属類処理剤はどのような種類の飛灰にも用いることができる。これらごみ焼却灰、飛灰や溶融飛灰に対し、本発明の重金属類処理剤と水を添加し混練する。   The heavy metal treatment agent of the present invention is extremely effective for the treatment of refuse incineration ash, fly ash or molten fly ash containing heavy metals. Heavy metals contained in various types of garbage are concentrated in the waste incineration ash, fly ash and molten fly ash. This is particularly noticeable in fly ash and molten fly ash, and many of the molten fly ash contain heavy metals such as lead in a percent order, and thus a detoxification treatment is required. Fly ash and molten fly ash are classified into alkaline fly ash, neutral fly ash, alkaline molten fly ash, neutral molten fly ash, etc., depending on the structure and operation method of the incinerator, and the type of garbage to be incinerated. Although it is known that the kind and content of heavy metals contained greatly differ depending on each other, the heavy metal treating agent of the present invention can be used for any kind of fly ash. The heavy metal treating agent of the present invention and water are added to and kneaded with these waste incineration ash, fly ash and molten fly ash.

本発明の重金属類処理剤の添加量は、ごみ焼却灰、飛灰や溶融飛灰に含まれる重金属類の種類と総量により異なるため一概に規定できず、ごみ焼却灰や飛灰の量に対して、0.1〜50wt%、好ましくは0.5〜30wt%を例示することができ、さらに、予めごみ焼却灰、飛灰や溶融飛灰をサンプリングしてラボテストで最小添加量を求め、ごみ焼却灰、飛灰や溶融飛灰に含まれる重金属類の量の変動を考慮して最適添加量を求めておくことが好ましい。また、仮に過剰添加を行なっても、例えば水銀(Hg)が多硫化物となり可溶性となるような現象は生じず、問題はない。   The amount of the heavy metal treating agent of the present invention varies depending on the type and total amount of heavy metals contained in waste incineration ash, fly ash and molten fly ash, and therefore cannot be specified unconditionally. 0.1 to 50 wt%, preferably 0.5 to 30 wt%, and in addition, the incineration ash, fly ash and molten fly ash are sampled in advance and the minimum addition amount is obtained by a laboratory test. It is preferable to obtain the optimum addition amount in consideration of fluctuations in the amount of heavy metals contained in the incinerated ash, fly ash and molten fly ash. Further, even if excessive addition is performed, for example, a phenomenon that mercury (Hg) becomes polysulfide and becomes soluble does not occur, and there is no problem.

水の添加量はごみ焼却灰、飛灰や溶融飛灰の性質により異なるが、通常、ごみ焼却灰、飛灰や溶融飛灰の量に対して、10〜40wt%を例示することができる。混練の方法、時間は特に限定されず従来から知られている方法を用いることができ、可溶性の重金属類は不溶性の硫化物または鉄塩となり処理が行われる。   The amount of water added varies depending on the properties of the waste incineration ash, fly ash, and molten fly ash, but usually, 10 to 40 wt% can be exemplified with respect to the amount of the waste incineration ash, fly ash, and molten fly ash. The kneading method and time are not particularly limited, and a conventionally known method can be used. The soluble heavy metals are converted into insoluble sulfides or iron salts, and the treatment is performed.

また、本発明の重金属類処理剤は、重金属類を含んだ土壌の処理にも有効である。重金属類を含んだ土壌に対して、重金属類処理剤を、さらに必要に応じて、水を添加し、混練する。   The heavy metal treatment agent of the present invention is also effective for treating soil containing heavy metals. A heavy metal treatment agent is further added to the soil containing heavy metals, if necessary, and kneaded.

本発明の重金属類処理剤の添加量は、土壌に含まれる重金属類の総量により異なるため一概に規定できず、処理すべき土壌の量に対して0.1〜20wt%を例示することができ、さらに、予め土壌をサンプリングしてラボテストで最小添加量を求め、安全を見込んで若干過剰量を添加することが好ましい。土壌に含まれる水分が少ない場合は、土壌の種類によっても異なるが、必要に応じて水を添加し、土壌に含まれる水分の量が通常10〜60wt%となるようにする。混練の方法、時間は特に限定されず従来から知られている方法を用いることができ、可溶性の重金属類は不溶性の硫化物または鉄塩となり処理が行われる。   The addition amount of the heavy metal treatment agent of the present invention cannot be defined unconditionally because it varies depending on the total amount of heavy metals contained in the soil, and can be exemplified by 0.1 to 20 wt% with respect to the amount of soil to be treated. Furthermore, it is preferable to sample the soil in advance and obtain the minimum addition amount by a laboratory test, and add a slight excess amount in anticipation of safety. When the amount of water contained in the soil is small, although depending on the type of soil, water is added as necessary so that the amount of water contained in the soil is usually 10 to 60 wt%. The kneading method and time are not particularly limited, and a conventionally known method can be used. The soluble heavy metals are converted into insoluble sulfides or iron salts, and the treatment is performed.

さらに、本発明の重金属類処理剤を用い、重金属類を含んだ廃水の処理も可能である。重金属類を含んだ廃水に対して、重金属類処理剤を添加し混合する。重金属類処理剤の添加量は、廃水に含まれる重金属類の総量により異なるため一概に規定できず、予め廃水をサンプリングしてラボテストで最小添加量を求め、安全を見込んで若干過剰量を添加することが好ましい。この時に、廃水のpHが低いと硫化鉄が分解し硫化水素の生成の可能性があるため、廃水のpHを前もって調整しておくことが好ましく、その場合には廃水のpHは3.0以上、より好ましくは6.0以上となるようにする。混合の方法、時間は特に限定されず従来から知られている方法を用いることができ、廃水中の重金属類は不溶性の硫化物または鉄塩となり処理が行われる。また、通常、凝集沈澱処理の際に使用される無機系凝集沈澱剤、例えば塩化第2鉄、ポリ塩化アルミニウム、硫酸バンド等を併用し、あるいは凝集速度を速める高分子凝集剤等を併用することも可能である。   Furthermore, wastewater containing heavy metals can be treated using the heavy metal treatment agent of the present invention. A heavy metal treatment agent is added to and mixed with wastewater containing heavy metals. The amount of heavy metal treatment agent added depends on the total amount of heavy metals contained in the wastewater, so it cannot be specified unconditionally. The wastewater is sampled in advance and the minimum amount is obtained by a laboratory test. It is preferable. At this time, if the pH of the wastewater is low, iron sulfide may decompose and hydrogen sulfide may be generated. Therefore, it is preferable to adjust the pH of the wastewater in advance, in which case the pH of the wastewater is 3.0 or more. More preferably, it should be 6.0 or more. The mixing method and time are not particularly limited, and a conventionally known method can be used, and the heavy metals in the wastewater are treated as insoluble sulfides or iron salts. Ordinarily, inorganic coagulant precipitants used in the coagulation precipitation process, for example, ferric chloride, polyaluminum chloride, sulfuric acid band, etc. are used in combination, or polymer coagulants that increase the coagulation rate are used in combination. Is also possible.

本発明によれば、以下の効果を奏する。
1)本発明の硫化鉄組成物は、重金属類の処理特性が優れると共に、その耐久性も優れている。
2)本発明の製造方法は、この優れた硫化鉄組成物を容易に製造することができる。
3)本発明の重金属類処理剤は、この優れた硫化鉄を有効成分として含むものであり、この処理剤を用いることで、灰、土壌、廃水等に含まれる重金属類を処理し無害化できる。
The present invention has the following effects.
1) The iron sulfide composition of the present invention has excellent processing characteristics for heavy metals and also has excellent durability.
2) The production method of the present invention can easily produce this excellent iron sulfide composition.
3) The heavy metal treatment agent of the present invention contains this excellent iron sulfide as an active ingredient, and by using this treatment agent, heavy metals contained in ash, soil, waste water, etc. can be treated and rendered harmless. .

以下、実施例において本発明をさらに詳細に説明する。しかし、本発明はこれら実施例のみに限定されるものではない。尚、実施例における各測定方法は以下の通りである。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples. In addition, each measuring method in an Example is as follows.

(1)化学組成の測定方法
Fe、S、Caは、蛍光X線分析装置(日本電子社製、型式JSX−3200)を用いて測定した。また、Na、Feは試料を塩酸で溶解した後、ICP発光分析装置(パーキンエルマー社製、型式:optima 3000)を用いて測定した。測定後、鉄を基準としてアルカリ土類金属元素、アルカリ金属元素、硫黄のモル比を求めた。
(1) Measuring method of chemical composition Fe, S, and Ca were measured using a fluorescent X-ray analyzer (manufactured by JEOL Ltd., model JSX-3200). Na and Fe were measured using an ICP emission spectrometer (model: optima 3000, manufactured by Perkin Elmer) after dissolving the sample with hydrochloric acid. After the measurement, the molar ratio of alkaline earth metal element, alkali metal element, and sulfur was determined based on iron.

(2)結晶構造の測定方法
X線回折装置(マックサイエンス社製、型式:MXP−3、Cuターゲット)を用い測定した。
(2) Measuring method of crystal structure The crystal structure was measured using an X-ray diffractometer (manufactured by Mac Science, model: MXP-3, Cu target).

(3)硫化鉄の耐久性試験
硫化鉄組成物粉末を70℃、相対湿度70%の恒温恒湿機に入れ、1日耐久処理を行い、耐久処理前の硫化鉄のX線回折のメインピーク強度をI1、耐久処理後の硫化鉄のX線回折のメインピーク強度をI2として、
硫化鉄残存率(%)=I2/I1*100
を計算し、硫化鉄の耐久性を評価した。
(3) Durability test of iron sulfide The iron sulfide composition powder is put into a constant temperature and humidity machine at 70 ° C. and a relative humidity of 70%, subjected to a one-day durability treatment, and the main peak of X-ray diffraction of iron sulfide before the durability treatment. The intensity is I1, and the main peak intensity of X-ray diffraction of iron sulfide after endurance treatment is I2.
Iron sulfide residual rate (%) = I2 / I1 * 100
And the durability of iron sulfide was evaluated.

実施例1
内容積2リットルのガラス製反応容器に市販試薬の水硫化ナトリウム600mmol、水酸化ナトリウム840mmol、水1000gを入れ撹拌・溶解しながらウォーターバスを用い25℃に保った。この溶液に、水600gに塩化鉄(II)420mmol、塩化カルシウム180mmolを溶解した溶液を30分かけて添加した。添加終了後のスラリーのpHは、12.9であった。このまま30分撹拌を継続し熟成を行なった。熟成後得られたスラリーを濾過・洗浄した後、乾燥し、硫化鉄を得た。この時の硫化鉄の構造はX線回折の結果変性マキナワイト構造であり、組成分析の結果、各成分のモル比は、Fe・Ca0.37・Na0.016・S0.98であった。得られた硫化鉄に対し、試薬の酢酸カルシウム1水和物を20重量%添加し、ボールミルで粉砕混合し、硫化鉄と酢酸カルシウムとからなる硫化鉄組成物の粉末を得た。この硫化鉄組成物は、X線回折の結果マキナワイト構造の硫化鉄ピークがメインで、酢酸カルシウムピークは添加量から期待される強度よりも弱く、硫化鉄と酢酸カルシウムが何らかの相互作用を持った、硫化鉄と酢酸カルシウムとからなる硫化鉄組成物の粉末と推定された。
Example 1
In a glass reaction vessel having an internal volume of 2 liters, 600 mmol of commercially available reagents, sodium hydrosulfide, 840 mmol of sodium hydroxide, and 1000 g of water were placed and kept at 25 ° C. using a water bath while stirring and dissolving. A solution prepared by dissolving 420 mmol of iron (II) chloride and 180 mmol of calcium chloride in 600 g of water was added to this solution over 30 minutes. The pH of the slurry after the addition was 12.9. In this state, stirring was continued for 30 minutes and aging was performed. The slurry obtained after aging was filtered and washed, and then dried to obtain iron sulfide. The structure of iron sulfide at this time was a modified makinawite structure as a result of X-ray diffraction, and as a result of composition analysis, the molar ratio of each component was Fe · Ca 0.37 · Na 0.016 · S 0.98 . . To the obtained iron sulfide, 20% by weight of calcium acetate monohydrate as a reagent was added and pulverized and mixed with a ball mill to obtain a powder of an iron sulfide composition composed of iron sulfide and calcium acetate. As a result of X-ray diffraction, this iron sulfide composition mainly has an iron sulfide peak with a makinawite structure, and the calcium acetate peak is weaker than the intensity expected from the added amount, and iron sulfide and calcium acetate have some interaction. It was presumed to be a powder of an iron sulfide composition consisting of iron sulfide and calcium acetate.

次に、得られた硫化鉄組成物粉末の一部を70℃、相対湿度70%の恒温恒湿機に入れ、1日耐久処理を行なった。硫化鉄の分解生成物である硫黄、および酸化鉄(III)のピークは観察されなかった。耐久処理前後におけるメインピークの強度比をもとに硫化鉄の残存率を計算した結果、94%であった。   Next, a part of the obtained iron sulfide composition powder was put into a constant temperature and humidity machine of 70 ° C. and a relative humidity of 70%, and subjected to a one-day durability treatment. Peaks of sulfur, which is a decomposition product of iron sulfide, and iron (III) oxide were not observed. As a result of calculating the residual ratio of iron sulfide based on the intensity ratio of the main peak before and after the durability treatment, it was 94%.

実施例2
酢酸カルシウム1水和物の代りにコハク酸カルシウム3水和物を用いて実施例1と同じ操作を行なった。この時の硫化鉄の残存率は95%であった。
Example 2
The same procedure as in Example 1 was performed using calcium succinate trihydrate instead of calcium acetate monohydrate. At this time, the residual ratio of iron sulfide was 95%.

実施例3
酢酸カルシウム1水和物の代りに試薬のクエン酸カルシウム4水和物を用いて実施例1と同じ操作を行なった。この時の硫化鉄の残存率は93%であった。
Example 3
The same operation as in Example 1 was performed using calcium citrate tetrahydrate as a reagent instead of calcium acetate monohydrate. At this time, the residual ratio of iron sulfide was 93%.

実施例4
酢酸カルシウム1水和物の代りに試薬のアスコルビン酸カルシウム2水和物を用いて実施例1と同じ操作を行なった。この時の硫化鉄の残存率は96%であった。
Example 4
The same operation as in Example 1 was performed using calcium ascorbate dihydrate as a reagent instead of calcium acetate monohydrate. At this time, the residual ratio of iron sulfide was 96%.

実施例5
酢酸カルシウム1水和物の代りに試薬のコハク酸を用い、添加量を5重量%とした以外は、実施例1と同じ操作を行なった。この時の硫化鉄の残存率95%であった。
Example 5
The same operation as in Example 1 was performed, except that the reagent succinic acid was used in place of calcium acetate monohydrate and the addition amount was 5% by weight. The residual ratio of iron sulfide at this time was 95%.

比較例1
酢酸カルシウムを加えずに実施例1と同じ操作を行なった(硫化鉄そのものの耐久性試験)。このときの硫化鉄の残存率は91%であった。
Comparative Example 1
The same operation as in Example 1 was performed without adding calcium acetate (durability test of iron sulfide itself). The residual ratio of iron sulfide at this time was 91%.

比較例2
酢酸カルシウム1水和物の代りに試薬の酢酸ナトリウムを用いて実施例1と同じ操作を行なった。この時の硫化鉄の残存率は10%以下であり、硫化鉄分解生成物のSのピークがメインであった。
Comparative Example 2
The same procedure as in Example 1 was performed using sodium acetate as a reagent instead of calcium acetate monohydrate. The residual ratio of iron sulfide at this time was 10% or less, and the S peak of the iron sulfide decomposition product was the main.

実施例1〜5、比較例1、2より、本発明の硫化鉄組成物とすることにより、硫化鉄の耐久性がより向上することがわかる。また、アルカリ金属塩は本発明の目的には不適で、逆に耐久性を低下させる作用があることがわかる。   From Examples 1 to 5 and Comparative Examples 1 and 2, it can be seen that the durability of iron sulfide is further improved by using the iron sulfide composition of the present invention. It can also be seen that alkali metal salts are unsuitable for the purposes of the present invention, and conversely have the effect of reducing durability.

実施例6
熟成操作までは実施例1と同様の操作を行ない、硫化鉄を含むスラリーを調製した。熟成後のスラリーを濾過・洗浄し、ろ過ケーキを得た。得られたろ過ケーキを1000mlポリエチレン製ビーカーに移し、薬さじで混練し、ペースト状の硫化鉄スラリーを得た。得られた硫化鉄スラリーの混練を続けながら、アセチルアセトン水溶液(アセチルアセトン2gを水50gに溶解したもの)を徐々に添加した。添加終了後、スラリーを乾燥、粉砕し硫化鉄組成物粉末を得た。得られた硫化鉄組成物粉末に対し実施例1と同様の操作により残存率を求めた。このときの硫化鉄の残存率は94%であった。
Example 6
Until the ripening operation, the same operation as in Example 1 was performed to prepare a slurry containing iron sulfide. The slurry after aging was filtered and washed to obtain a filter cake. The obtained filter cake was transferred to a 1000 ml polyethylene beaker and kneaded with a spoonful to obtain a paste-like iron sulfide slurry. While continuing to knead the obtained iron sulfide slurry, an aqueous acetylacetone solution (dissolved in 2 g of acetylacetone in 50 g of water) was gradually added. After completion of the addition, the slurry was dried and pulverized to obtain an iron sulfide composition powder. The residual rate was calculated | required by operation similar to Example 1 with respect to the obtained iron sulfide composition powder. At this time, the residual ratio of iron sulfide was 94%.

実施例7
アセチルアセトン水溶液の代りにポリエチレングリコール水溶液(ポリエチレングリコール(平均分子量2000)4gを水50gに溶解したもの)用いて実施例6と同様の操作を行なった。このときの硫化鉄の残存率は93%であった。
Example 7
The same operation as in Example 6 was performed using a polyethylene glycol aqueous solution (4 g of polyethylene glycol (average molecular weight 2000) dissolved in 50 g of water) instead of the acetylacetone aqueous solution. At this time, the residual ratio of iron sulfide was 93%.

次に本発明の硫化鉄組成物を用いて重金属類の処理を行なった結果を示す。   Next, the result of having processed heavy metals using the iron sulfide composition of the present invention is shown.

実施例8
鉛を2400ppm、クロムを160ppm、水銀を2.1ppm含有するアルカリ性飛灰を用い、重金属類の処理特性の検討を行なった。アルカリ性飛灰100重量部に対し、水30重量部、および実施例、比較例で調製した硫化鉄を加え、混練し重金属処理を行なった。得られた処理飛灰に対し、環境庁告示第13号溶出試験(1973年)を行ない、その結果を表2に示した。
Example 8
Using alkaline fly ash containing 2400 ppm of lead, 160 ppm of chromium and 2.1 ppm of mercury, the processing characteristics of heavy metals were examined. To 100 parts by weight of alkaline fly ash, 30 parts by weight of water and the iron sulfide prepared in Examples and Comparative Examples were added and kneaded to carry out heavy metal treatment. The obtained treated fly ash was subjected to Environmental Agency Notification No. 13 dissolution test (1973), and the results are shown in Table 2.

Figure 2005097431
表2の結果から明らかなように、実施例1で調製した硫化鉄組成物は良好な重金属処理特性を有しており、また、比較例1で調製した硫化鉄よりも70℃、相対湿度70%で1日耐久処理を行なったあとの重金属処理特性の低下がより小さく、本発明の硫化鉄組成物とすることにより、硫化鉄の耐久性がより向上することがわかる。
Figure 2005097431
As is apparent from the results in Table 2, the iron sulfide composition prepared in Example 1 has good heavy metal treatment characteristics, and is 70 ° C. and relative humidity 70 than the iron sulfide prepared in Comparative Example 1. It can be seen that the durability of the iron sulfide is further improved by using the iron sulfide composition of the present invention, since the deterioration of the heavy metal treatment characteristics after the one-day durability treatment at% is smaller.

Claims (14)

構成元素の必須成分として、Fe・M・N・S(式中、Mはアルカリ土類金属、Nはアルカリ金属、x、y及びzはモル比であり、0.01<x≦0.5、0≦y≦0.2、0.7≦z≦1.4を示す。)で表されるマキナワイト構造を有する硫化鉄と、有機酸、アルカリ金属塩以外の有機酸の塩、ケトン、水溶性高分子化合物、無機の弱酸及びアルカリ金属塩以外の無機の弱酸の塩の群から選ばれる1種以上からなる硫化鉄組成物。 As an essential component of the constituent element, Fe · M x · N y · S z (wherein M is an alkaline earth metal, N is an alkali metal, x, y and z are molar ratios, and 0.01 <x ≦ 0.5, 0 ≦ y ≦ 0.2, 0.7 ≦ z ≦ 1.4.) Iron sulfide having a makinawite structure represented by: a salt of an organic acid other than an organic acid or an alkali metal salt, An iron sulfide composition comprising at least one selected from the group consisting of ketones, water-soluble polymer compounds, inorganic weak acids, and salts of inorganic weak acids other than alkali metal salts. 硫化鉄が、001面の面間隔が5.03オングストローム以上5.53オングストローム以下であり、001面のXRDピーク強度を100とした場合、他のhkl面の回折ピークの強度比がすべて20以下である変性マキナワイト構造を有する請求項1記載の硫化鉄組成物。 In the case of iron sulfide, when the plane spacing of the 001 plane is 5.03 angstroms or more and 5.53 angstroms or less and the XRD peak intensity of the 001 plane is 100, the intensity ratios of the diffraction peaks of other hkl planes are all 20 or less. The iron sulfide composition according to claim 1, which has a modified makinawite structure. 有機酸がカルボン酸である請求項1又は請求項2記載の硫化鉄組成物。 The iron sulfide composition according to claim 1 or 2, wherein the organic acid is a carboxylic acid. カルボン酸が酢酸、コハク酸、乳酸及びクエン酸の群から選ばれる1種以上である請求項3記載の硫化鉄組成物 The iron sulfide composition according to claim 3, wherein the carboxylic acid is at least one selected from the group consisting of acetic acid, succinic acid, lactic acid and citric acid. 有機酸が、アスコルビン酸である請求項1又は請求項2記載の硫化鉄組成物。 The iron sulfide composition according to claim 1 or 2, wherein the organic acid is ascorbic acid. 無機の弱酸がホウ酸、リン酸及びケイ酸の群から選ばれる1種以上である請求項1又は請求項2記載の硫化鉄組成物。 The iron sulfide composition according to claim 1 or 2, wherein the weak inorganic acid is at least one selected from the group consisting of boric acid, phosphoric acid and silicic acid. 2価の鉄塩の水溶液と硫黄イオンを含む水溶液とアルカリ土類金属成分を混合し、かつ、混合後のスラリーpHを7.0以上とした後、ろ過・洗浄、乾燥を行ない硫化鉄を製造するプロセスにおいて、硫化鉄の濾過・洗浄後に、有機酸、有機酸の塩、ケトン、水溶性高分子化合物、無機の弱酸及びアルカリ金属塩以外の無機の弱酸の塩の群から選ばれる1種以上を添加し、その後、乾燥を行なう請求項1乃至請求項6のいずれかに記載の硫化鉄組成物の製造方法。 Mixing an aqueous solution of a divalent iron salt, an aqueous solution containing sulfur ions, and an alkaline earth metal component, and setting the slurry pH after mixing to 7.0 or higher, followed by filtration, washing, and drying to produce iron sulfide One or more selected from the group consisting of organic acids, organic acid salts, ketones, water-soluble polymer compounds, inorganic weak acids and salts of inorganic weak acids other than alkali metal salts after filtration and washing of iron sulfide The method for producing an iron sulfide composition according to any one of claims 1 to 6, wherein the iron sulfide is added and then dried. 2価の鉄塩の水溶液と硫黄イオンを含む水溶液とアルカリ土類金属成分を混合し、かつ、混合後のスラリーpHを7.0以上とした後、ろ過・洗浄、乾燥を行ない硫化鉄を製造するプロセスにおいて、硫化鉄の乾燥後に、有機酸、アルカリ金属塩以外の有機酸の塩、ケトン、水溶性高分子化合物、無機の弱酸及びアルカリ金属塩以外の無機の弱酸の塩の群から選ばれる1種以上を添加し、その後、混合を行なう請求項1乃至請求項6のいずれかに記載の硫化鉄組成物の製造方法。 Mixing an aqueous solution of a divalent iron salt, an aqueous solution containing sulfur ions, and an alkaline earth metal component, and setting the slurry pH after mixing to 7.0 or higher, followed by filtration, washing, and drying to produce iron sulfide In the process, after the iron sulfide is dried, it is selected from the group of organic acids, salts of organic acids other than alkali metal salts, ketones, water-soluble polymer compounds, inorganic weak acids and salts of inorganic weak acids other than alkali metal salts The method for producing an iron sulfide composition according to any one of claims 1 to 6, wherein one or more kinds are added and then mixed. 請求項1乃至請求項6のいずれかに記載の硫化鉄組成物を有効成分とする重金属類処理剤。 The heavy metal processing agent which uses the iron sulfide composition in any one of Claims 1 thru | or 6 as an active ingredient. 重金属類を含むごみ焼却灰、飛灰又は溶融飛灰のいずれかに、請求項9記載の重金属類処理剤と水を添加し混練することを特徴とする無害化処理方法。 A detoxification treatment method comprising adding the heavy metal treatment agent according to claim 9 and water to any one of incineration ash, fly ash, and molten fly ash containing heavy metals, and kneading. 重金属類を含む土壌に、請求項9記載の重金属類処理剤を添加し、混練することを特徴とする無害化処理方法。 A detoxification treatment method comprising adding the heavy metal treatment agent according to claim 9 to a soil containing heavy metals and kneading. 重金属類処理剤に加えさらに水を添加することを特徴とする請求項11記載の無害化処理方法。 The detoxification treatment method according to claim 11, further comprising adding water in addition to the heavy metal treatment agent. 重金属類を含む廃水に、請求項9記載の重金属類処理剤を添加し、混合することを特徴とする無害化処理方法。 A detoxification treatment method comprising adding and mixing the heavy metal treating agent according to claim 9 to wastewater containing heavy metals. 重金属類が、Pb、Cd、Hg、Zn、Cu、Ni、Cr、As、Se、Sb及びMoからなる群より選択される1種以上の元素である請求項10乃至請求項13のいずれかに記載の無害化処理方法。
The heavy metal is one or more elements selected from the group consisting of Pb, Cd, Hg, Zn, Cu, Ni, Cr, As, Se, Sb, and Mo. Detoxification processing method of description.
JP2003333327A 2003-09-25 2003-09-25 Iron sulfide composition, its production method, heavy metals-treatment agent and treatment method using the same Pending JP2005097431A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003333327A JP2005097431A (en) 2003-09-25 2003-09-25 Iron sulfide composition, its production method, heavy metals-treatment agent and treatment method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003333327A JP2005097431A (en) 2003-09-25 2003-09-25 Iron sulfide composition, its production method, heavy metals-treatment agent and treatment method using the same

Publications (1)

Publication Number Publication Date
JP2005097431A true JP2005097431A (en) 2005-04-14

Family

ID=34461362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003333327A Pending JP2005097431A (en) 2003-09-25 2003-09-25 Iron sulfide composition, its production method, heavy metals-treatment agent and treatment method using the same

Country Status (1)

Country Link
JP (1) JP2005097431A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007063026A (en) * 2005-06-28 2007-03-15 Tosoh Corp Iron sulfide particle-containing solution, method for producing the same, heavy metal treating agent using the same and method for treating heavy metal
JP2010088991A (en) * 2008-10-07 2010-04-22 Waseda Univ Water treatment agent and water treatment method
JP2010261024A (en) * 2009-04-07 2010-11-18 Toei Kasei Kk Treating agent of contaminated soil and treating method of contaminated soil
CN115487831A (en) * 2022-09-28 2022-12-20 中国科学院南京土壤研究所 Preparation method of Fe modified material and application of Fe modified material in degradation of organic pollutants in soil by activating persulfate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007063026A (en) * 2005-06-28 2007-03-15 Tosoh Corp Iron sulfide particle-containing solution, method for producing the same, heavy metal treating agent using the same and method for treating heavy metal
JP2010088991A (en) * 2008-10-07 2010-04-22 Waseda Univ Water treatment agent and water treatment method
JP2010261024A (en) * 2009-04-07 2010-11-18 Toei Kasei Kk Treating agent of contaminated soil and treating method of contaminated soil
CN115487831A (en) * 2022-09-28 2022-12-20 中国科学院南京土壤研究所 Preparation method of Fe modified material and application of Fe modified material in degradation of organic pollutants in soil by activating persulfate
CN115487831B (en) * 2022-09-28 2023-11-03 中国科学院南京土壤研究所 Preparation method of Fe modified material and application of Fe modified material in degradation of organic pollutants in soil by activated persulfate

Similar Documents

Publication Publication Date Title
US6682713B2 (en) Iron sulfides, processes for producing the same, iron sulfide mixture, heavy metal treating agent, and method of treating with the agent
US8092764B2 (en) Method of processing non-ferrous smelting intermediate containing arsenic
JP2008018312A (en) Manganese dioxide heavy metal adsorbent and treatment method using the same
EP1923370A1 (en) Additives and methods for reducing hexavalent chromium in cement and cement based materials
CN101065518A (en) Gold plating liquid and gold plating method
JP2009242223A (en) Method of treating diarsenic trioxide
JP2007283168A (en) Adsorbent and its manufacturing method
JP4178794B2 (en) Iron sulfide, method for producing the same, iron sulfide composition, treatment agent for heavy metals, and treatment method using the same
JP5176839B2 (en) Soil or slag treatment method
HU207498B (en) Process for removing heavy metals from waste waters and process for producing precipitating agent for them
JP2005097431A (en) Iron sulfide composition, its production method, heavy metals-treatment agent and treatment method using the same
JP2020032382A (en) Processing method of heavy metal-containing waste water
JP4614093B2 (en) Arsenic wastewater treatment method
JP2008255171A (en) Fixing agent for inorganic harmful component
Kim et al. Li+ extraction reactions with spinel-type LiM0. 5Mn1. 5O4 (M= Ti, Fe) and their electronic structures
JPH0657354B2 (en) Simultaneous removal method of arsenic and silicon
JP2008272557A (en) Heavy-metal elution inhibitor
Gunawan et al. Ferrate (VI) synthesis using Fe (OH) 3 from waste iron electrolysis and its application for the removal of metal ions and anions in water
JP4423734B2 (en) Cyanide wastewater treatment method
JP6158385B1 (en) Method for producing sulfur compound remover
JPH0780479A (en) Treatment of organic compound-containing waste liquid
CN113039170A (en) Method for producing liquid fertilizer
KR102643126B1 (en) A method of treating sewage sludge and landfill cover soil composition including the sewage sludge treated by the method
JP4034775B2 (en) Arsenic-containing soil improving agent and method for producing improved soil
CN114560549B (en) Application of synthetic wurtzite in advanced oxidation process water treatment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100105