JP2005097389A - Olefinic resin composition for foam-molding and foamed article - Google Patents

Olefinic resin composition for foam-molding and foamed article Download PDF

Info

Publication number
JP2005097389A
JP2005097389A JP2003331319A JP2003331319A JP2005097389A JP 2005097389 A JP2005097389 A JP 2005097389A JP 2003331319 A JP2003331319 A JP 2003331319A JP 2003331319 A JP2003331319 A JP 2003331319A JP 2005097389 A JP2005097389 A JP 2005097389A
Authority
JP
Japan
Prior art keywords
foam
resin
resin composition
olefin
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003331319A
Other languages
Japanese (ja)
Inventor
Takashi Fujimoto
隆 藤元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2003331319A priority Critical patent/JP2005097389A/en
Publication of JP2005097389A publication Critical patent/JP2005097389A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an olefinic resin composition which is used for foam-molding and gives foamed articles having high expansion ratios. <P>SOLUTION: [1] This olefinic resin composition for foam-molding is characterized by having at least one crystallization exothermic peak in a DSC crystallization exothermic curve obtained by measuring with a differential scanning calorimeter (DSC), while cooling from 200°C to 40°C at a rate of 10°C/min, satisfying the expression: Tc1-Tc2≥12°C (Tc1 is 2% crystallization temperature; Tc2 is 98 % crystallization temperature), and has melt tension of ≥0.5 g. [2] The foamed article is characterized by melting the resin composition to obtain the melted resin composition, mixing the melted resin composition with a foaming agent to obtain the mixture, and then foaming and molding the mixture. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は発泡成形用オレフィン系樹脂組成物に関する。   The present invention relates to an olefin resin composition for foam molding.

従来より、自動車部品、家電部品等には、軽量化、高剛性化や衝撃吸収などの目的でオレフィン系樹脂からなる発泡体が広く用いられていおり、軽量化の観点から、高発泡倍率の発泡体の開発が望まれている。   Conventionally, foams made of olefin resin have been widely used for automobile parts, home appliance parts, etc. for the purpose of weight reduction, high rigidity and shock absorption. From the viewpoint of weight reduction, foaming with a high expansion ratio is used. Body development is desired.

発泡性を改良して高発泡倍率の発泡体を得るためには、溶融樹脂のメルトテンションを高くすればよいことが知られている。
例えば、ポリプロピレン樹脂とペルオキシジカーボネートとを溶融混練して得られるメルトテンションが高い改質ポリプロピレン系樹脂組成物(メルトテンション:3〜20g)を用いて得られる発泡体が知られているが(特許文献1参照)、該樹脂組成物の結晶化温度幅(後述のTc1−Tc2)は10℃であるため、該発泡体の発泡倍率は2程度であり、さらに高発泡倍率の発泡体を与える樹脂組成物の開発が望まれていた。
In order to improve the foamability and obtain a foam having a high expansion ratio, it is known that the melt tension of the molten resin should be increased.
For example, a foam obtained by using a modified polypropylene resin composition (melt tension: 3 to 20 g) having a high melt tension obtained by melt-kneading a polypropylene resin and peroxydicarbonate is known (patent) Since the crystallization temperature range (Tc1-Tc2 described later) of the resin composition is 10 ° C., the foam has a foaming ratio of about 2, and a resin that gives a foam with a high foaming ratio. Development of a composition has been desired.

特開2002−53714JP 2002-53714 A

本発明の目的は、高発泡倍率の発泡体を与える発泡成形用オレフィン系樹脂組成物を提供することにある。   An object of the present invention is to provide an olefin resin composition for foam molding which gives a foam having a high expansion ratio.

本発明者らは、上記したような問題を解決し得る発泡成形用オレフィン系樹脂組成物を見出すべく、鋭意検討を重ねた結果、結晶化温度幅が12以上のオレフィン系樹脂を含有する樹脂組成物が、高発泡倍率の発泡体を与えることを見出し、本発明を完成させるに至った。   As a result of intensive studies to find an olefin-based resin composition for foam molding that can solve the above-described problems, the present inventors have found that a resin composition containing an olefin-based resin having a crystallization temperature range of 12 or more. The product has been found to give a foam with a high expansion ratio, and the present invention has been completed.

即ち、本発明は、下記[1]〜[6]に係るものである。
[1]示差走査熱量計(DSC)によって200℃から40℃まで10℃/分で降温して測定した時に得られるDSC結晶化発熱曲線において、少なくとも1個以上の結晶化発熱ピークを有し、2%結晶化する温度をTc1、98%結晶化する温度をTc2としたとき、Tc1−Tc2≧12℃を満足し、メルトテンションが0.5g以上であるオレフィン系樹脂を含有することを特徴とする発泡成形用オレフィン系樹脂組成物。
[2]オレフィン系樹脂が、ポリプロピレン系樹脂である[1]記載の樹脂組成物。
[3][1]または[2]記載の樹脂組成物を溶融して溶融樹脂組成物を得、該溶融樹脂組成物に発泡剤を混合して混合物を得、該混合物を発泡成形して得られることを特徴とする発泡体。
[4]発泡剤が、超臨界状態の二酸化炭素および/または超臨界状態の窒素である[3]記載の発泡体。
[5]射出機シリンダ内で溶融樹脂組成物と発泡剤とを混合する[3]または[4]記載の発泡体。
[6]スキン層を有し、かつ発泡倍率が1.5倍以上である[3]〜[5]記載の発泡体。
That is, the present invention relates to the following [1] to [6].
[1] In a DSC crystallization exothermic curve obtained when measured by a differential scanning calorimeter (DSC) with a temperature lowered from 200 ° C. to 40 ° C. at 10 ° C./min, it has at least one crystallization exothermic peak, Tc1 is a temperature at which 2% crystallization is performed, Tc2 is a temperature at which 98% crystallization is performed, and Tc1−Tc2 ≧ 12 ° C. is satisfied, and an olefin resin having a melt tension of 0.5 g or more is contained. An olefin resin composition for foam molding.
[2] The resin composition according to [1], wherein the olefin resin is a polypropylene resin.
[3] A molten resin composition is obtained by melting the resin composition according to [1] or [2], a foaming agent is mixed with the molten resin composition to obtain a mixture, and the mixture is obtained by foam molding. A foam characterized in that
[4] The foam according to [3], wherein the foaming agent is carbon dioxide in a supercritical state and / or nitrogen in a supercritical state.
[5] The foam according to [3] or [4], wherein the molten resin composition and the foaming agent are mixed in an injection machine cylinder.
[6] The foam according to [3] to [5], which has a skin layer and has an expansion ratio of 1.5 times or more.

本発明によれば、高発泡倍率の発泡体を与える発泡成形用オレフィン系樹脂組成物を提供することが可能となる。   According to the present invention, it is possible to provide an olefin-based resin composition for foam molding that gives a foam having a high expansion ratio.

本発明のオレフィン系樹脂は、示差走査熱量計(DSC)によって200℃から40℃まで10℃/分で降温して測定した時に得られるDSC結晶化発熱曲線において、少なくともひとつ以上の発熱ピークを有し、2%結晶化する温度をTc1、98%結晶化する温度をTc2としたとき、Tc1−Tc2≧12℃であることが必要であり、好ましくはTc1−Tc2≧13℃である。   The olefin-based resin of the present invention has at least one exothermic peak in a DSC crystallization exothermic curve obtained when measured by a differential scanning calorimeter (DSC) at a rate of 10 ° C./min from 200 ° C. to 40 ° C. When Tc1 is the temperature for crystallization of 2% and Tc2 is the temperature for crystallization of 98%, it is necessary that Tc1-Tc2 ≧ 12 ° C., and preferably Tc1-Tc2 ≧ 13 ° C.

オレフィン系樹脂のTc1−Tc2が12℃未満であると、発泡に適性な結晶化挙動を示す温度範囲幅が狭くなり、高発泡倍率の発泡体を得ることができない。   When Tc1-Tc2 of the olefin resin is less than 12 ° C., the temperature range width showing crystallization behavior suitable for foaming becomes narrow, and a foam with a high expansion ratio cannot be obtained.

図1は、結晶化発熱曲線を示す図である。結晶化発熱曲線の測定には、示差走査熱量計(DSC)(パーキンエルマー社製DSC7型)を用いる。
結晶化発熱曲線は、熱プレス成形した厚さ0.2mmのシート10mg程度を用いて窒素雰囲気下で200℃、5分間溶融した後、10℃/分の降温速度で40℃まで降温させることにより得られる。
図2は、DSCによる積算結晶化発熱量と温度の関係を示す図であり、図1の結晶化発熱曲線において、完全溶融状態から結晶化が開始し発熱がスタートする温度と結晶化が完全に完了し未溶融状態となった温度との接線でベースラインを引き、この温度間での全結晶化発熱量に対し、降温側からの積算結晶化発熱量の割合を示した図である。
FIG. 1 is a diagram showing a crystallization exothermic curve. For the measurement of the crystallization exothermic curve, a differential scanning calorimeter (DSC) (DSC7 type manufactured by Perkin Elmer) is used.
The crystallization exothermic curve is obtained by melting about 200 mg of a 0.2 mm-thick hot-pressed sheet at 200 ° C. for 5 minutes in a nitrogen atmosphere and then lowering the temperature to 40 ° C. at a rate of 10 ° C./min. can get.
FIG. 2 is a diagram showing the relationship between integrated crystallization heat generation by DSC and temperature. In the crystallization heat generation curve of FIG. 1, the temperature at which crystallization starts from a completely melted state and heat generation starts and the crystallization is completely complete. FIG. 5 is a diagram showing a ratio of an integrated crystallization heat generation amount from the temperature lowering side with respect to a total crystallization heat generation amount between the temperatures when the base line is drawn with a tangent to a temperature that is completed and in an unmelted state.

本発明で用いるオレフィン系樹脂は、高発泡倍率の発泡体を製造するために、メルトテンションが0.5g以上であることが必要であり、0.7g以上であることが好ましく、0.8g以上であることがより好ましい。メルトテンションが0.5g未満であると、発泡時の樹脂が発泡剤を保持できず気泡が破れたり、気泡膜が引きちぎられたりするため良好な発泡体を製造することができない。
また、メルトテンションの上限値は、特に限定されるものではないが、成形加工上、30g以下であることが好ましい。30gを超えると成形加工性が低下する傾向がある。
The olefin resin used in the present invention is required to have a melt tension of 0.5 g or more, preferably 0.7 g or more, and 0.8 g or more in order to produce a foam having a high expansion ratio. It is more preferable that If the melt tension is less than 0.5 g, the foamed resin cannot hold the foaming agent, and the bubbles are torn or the cell membrane is torn off, making it impossible to produce a good foam.
The upper limit of the melt tension is not particularly limited, but is preferably 30 g or less in terms of molding. If it exceeds 30 g, the moldability tends to decrease.

本発明で用いられるオレフィン系樹脂としては、例えば、エチレン、プロピレン、ブテン−1、ペンテン−1、ヘキセン−1、3−メチルブテン−1、4−メチルペンテン−1などの炭素数が20以下のα−オレフィンの単独重合体、該α−オレフィンの中から選ばれる少なくとも2種類のモノマーを共重合してなる共重合体、該α−オレフィンと、該α−オレフィンと共重合可能な他の不飽和単量体との共重合体、これらの2種類以上の混合物などが挙げられる。
他の不飽和単量体としては、例えば、アクリル酸、メタクリル酸等の不飽和カルボン酸;メチル(メタ)アクリレート、2−エチルヘキシルアクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート等の不飽和カルボン酸のアルキルエステル誘導体;フマル酸、マレイン酸、無水マレイン酸、イタコン酸等の不飽和ジカルボン酸または酸無水物;アクリルアミド、N−(ヒドロキシメチル)アクリルアミド、グリシジル(メタ)アクリレート、アクリロニトリル、メタアクリロニトリル、マレイン酸のモノまたはジエチルエステル、N−フェニルマレイミド、N,N’−メタフェニレンビスマレイミド等の不飽和カルボン酸または不飽和ジカルボン酸の誘導体等が挙げられる。
オレフィン系樹脂の中でも、ポリプロピレン系樹脂が好ましく使用される。
Examples of the olefin resin used in the present invention include ethylene, propylene, butene-1, pentene-1, hexene-1, 3-methylbutene-1, 4-methylpentene-1, etc. An olefin homopolymer, a copolymer obtained by copolymerizing at least two types of monomers selected from the α-olefin, the α-olefin, and other unsaturated compounds copolymerizable with the α-olefin Examples thereof include a copolymer with a monomer and a mixture of two or more of these.
Examples of other unsaturated monomers include unsaturated carboxylic acids such as acrylic acid and methacrylic acid; unsaturated compounds such as methyl (meth) acrylate, 2-ethylhexyl acrylate, ethyl (meth) acrylate, and butyl (meth) acrylate. Alkyl ester derivatives of carboxylic acids; unsaturated dicarboxylic acids or acid anhydrides such as fumaric acid, maleic acid, maleic anhydride, itaconic acid; acrylamide, N- (hydroxymethyl) acrylamide, glycidyl (meth) acrylate, acrylonitrile, methacrylonitrile And unsaturated carboxylic acid or unsaturated dicarboxylic acid derivatives such as mono- or diethyl ester of maleic acid, N-phenylmaleimide, N, N′-metaphenylene bismaleimide, and the like.
Among olefin resins, polypropylene resins are preferably used.

ポリプロピレン系樹脂としては、例えば、プロピレンの単独重合体、エチレン及び炭素数4〜12のα−オレフィンからなる群から選ばれる少なくとも1種とプロピレンとの共重合体などが挙げられる。前記の単独重合体または共重合体は、単独でも、2種以上を組合せて用いてもよい。ここで、炭素数4〜12のα−オレフィンとしては、例えば、1−ブテン、4−メチル−1−ペンテン、1−ヘキセン、1−オクテンなどを挙げることができる。
エチレン及び炭素数4〜12のα−オレフィンからなる群から選ばれる少なくとも1種とプロピレンとの共重合体は、プロピレンから誘導される繰り返し単位(以下、「プロピレン単位」と称することがある)を、該共重合体100重量%に対して少なくとも50重量%含む共重合体であることが好ましい。
共重合体中のエチレンや炭素数4〜12のα−オレフィンから誘導される繰り返し単位の量を選択することにより、該共重合体の柔軟性や耐衝撃性を制御することができる。
また、該共重合体がプロピレン単位以外に2種以上の繰り返し単位を有する場合には、そのプロピレン単位以外の繰り返し単位の合計量は35重量%以下であることが好ましい。
ポリプロピレン系樹脂の具体例としては、(i)プロピレンの単独重合体、(ii)プロピレンとエチレンとのランダム共重合体、(iii)プロピレンとα−オレフィンとのランダム共重合体、(iv)プロピレンとエチレンとα−オレフィンとのランダム共重合体、および(v)プロピレンとエチレンとのブロック共重合体などが挙げられる。ここで、α−オレフィンとしては、炭素数4〜12のα−オレフィンが挙げられる。
ポリプロピレン系樹脂のJIS K6758に基づいて測定したメルトフローレート(MFR)は、1〜100g/10分であることが好ましく、成形加工性の観点から5〜100g/10分がより好ましく、8〜100g/10分であることがさらに好ましい。
Examples of the polypropylene resin include a propylene homopolymer, a copolymer of propylene and at least one selected from the group consisting of ethylene and an α-olefin having 4 to 12 carbon atoms. The homopolymer or copolymer may be used alone or in combination of two or more. Examples of the α-olefin having 4 to 12 carbon atoms include 1-butene, 4-methyl-1-pentene, 1-hexene, and 1-octene.
A copolymer of propylene and at least one selected from the group consisting of ethylene and an α-olefin having 4 to 12 carbon atoms is a repeating unit derived from propylene (hereinafter sometimes referred to as “propylene unit”). A copolymer containing at least 50% by weight with respect to 100% by weight of the copolymer is preferable.
By selecting the amount of repeating units derived from ethylene or an α-olefin having 4 to 12 carbon atoms in the copolymer, the flexibility and impact resistance of the copolymer can be controlled.
Moreover, when this copolymer has 2 or more types of repeating units other than a propylene unit, it is preferable that the total amount of repeating units other than the propylene unit is 35 weight% or less.
Specific examples of the polypropylene resin include (i) a propylene homopolymer, (ii) a random copolymer of propylene and ethylene, (iii) a random copolymer of propylene and an α-olefin, and (iv) propylene. And a random copolymer of ethylene and α-olefin, and (v) a block copolymer of propylene and ethylene. Here, as an alpha olefin, a C4-C12 alpha olefin is mentioned.
The melt flow rate (MFR) measured based on JIS K6758 of the polypropylene resin is preferably 1 to 100 g / 10 min, more preferably 5 to 100 g / 10 min, and 8 to 100 g from the viewpoint of moldability. More preferably, it is / 10 minutes.

本発明で用いられるオレフィン系樹脂を製造する方法は、特に限定されない。
オレフィン系樹脂の代表例であるポリプロピレン系樹脂の製造方法としては、例えば、重合の操作を2以上の多段階に分けて行なう方法などが挙げられる。該製造方法は、第一段階でプロピレンを主成分とするモノマーを重合して超高分子量成分である極限粘度が5dl/g以上の結晶性ポリプロピレン系重合体(I)を製造し、第二段階以降でプロピレンを主成分とするモノマーを重合して極限粘度が3dl/g未満の結晶性ポリプロピレン系重合体(II)を連続的に製造する方法である。かかる方法により得られる超高分子量成分が導入されたポリプロピレン系樹脂は、溶融粘度の観点から、前記重合体(I)の含量が0.05重量%以上35重量%未満、樹脂全体の極限粘度が3dl/g未満、Mw/Mnが10未満であることが好ましい。
The method for producing the olefin resin used in the present invention is not particularly limited.
Examples of a method for producing a polypropylene resin, which is a typical example of an olefin resin, include a method in which the polymerization operation is performed in two or more stages. The production method comprises polymerizing a monomer having propylene as a main component in the first step to produce a crystalline polypropylene polymer (I) having an intrinsic viscosity of 5 dl / g or more as an ultrahigh molecular weight component; This is a method for continuously producing a crystalline polypropylene polymer (II) having an intrinsic viscosity of less than 3 dl / g by polymerizing a monomer mainly composed of propylene. From the viewpoint of melt viscosity, the polypropylene resin into which the ultrahigh molecular weight component obtained by such a method is introduced has a content of the polymer (I) of 0.05% by weight or more and less than 35% by weight, and the intrinsic viscosity of the entire resin. It is preferable that it is less than 3 dl / g and Mw / Mn is less than 10.

また、ポリプロピレン系樹脂の製造方法としては、例えば、特開昭62−121704号公報に記載の低レベルの放射線による架橋によって長鎖分岐を導入させる方法、ポリプロピレン系樹脂とラジカル重合性単量体とラジカル開始剤を反応させる方法、樹脂の主鎖切断が優先的に起こらない程度の温度条件下でポリプロピレン系樹脂とラジカル開始剤とを混合させる方法などが挙げられる。
ポリプロピレン系樹脂は、主としてその端部に長鎖分岐を有する枝別れ状構造を有するものであることが好ましい。
In addition, as a method for producing a polypropylene resin, for example, a method of introducing long chain branching by crosslinking with a low level of radiation described in JP-A-62-1121704, a polypropylene resin and a radical polymerizable monomer Examples thereof include a method of reacting a radical initiator and a method of mixing a polypropylene resin and a radical initiator under temperature conditions such that the main chain of the resin does not break preferentially.
The polypropylene resin preferably has a branched structure mainly having a long chain branch at the end thereof.

本発明においては、前記のポリプロピレン系樹脂に代表されるオレフィン系樹脂は、単独で用いられてもよいし、特定の結晶化温度幅および特定のメルトテンションを有しないオレフィン系樹脂とを混合して用いてもよい。
樹脂を混合する場合、その混合方法としては、例えば、ドライブレンド、単軸または2軸押出機による混練などの方法が挙げられる。
In the present invention, the olefin resin typified by the polypropylene resin may be used alone or mixed with an olefin resin not having a specific crystallization temperature range and a specific melt tension. It may be used.
When the resin is mixed, examples of the mixing method include dry blending and kneading with a single screw or twin screw extruder.

本発明で用いられるオレフィン系樹脂には、本発明の目的を損なわない限り、他の樹脂および/またはエラストマーを用途に応じて適宜添加してもよい。
具体的には、低密度ポリエチレン、高密度ポリエチレン、直鎖状低密度ポリエチレン、超低密度ポリエチレン、α−オレフィンの炭素数が4〜12であるエチレン−α−オレフィン共重合体、α−オレフィンの炭素数が4〜12であるプロピレン−α−オレフィン共重合体、α−オレフィンの炭素数が4〜12であるエチレン−プロピレン−α−オレフィン共重合体、スチレン−ブタジエンジブロック共重合体の水素添加物、スチレン−ブタジエン−スチレントリブロック共重合体の水素添加物、スチレン−イソプレンジブロック共重合体の水素添加物、スチレン−イソプレン−スチレントリブロック共重合体の水素添加物、エチレン−エチルアクリレート共重合体、エチレン−酢酸ビニル共重合体、ポリブテンなどが挙げられる。これらの樹脂および/またはエラストマーは単独でも、2種以上の混合物を添加してもよい。
As long as the purpose of the present invention is not impaired, other resins and / or elastomers may be appropriately added to the olefin resin used in the present invention depending on applications.
Specifically, low-density polyethylene, high-density polyethylene, linear low-density polyethylene, ultra-low-density polyethylene, an α-olefin copolymer having 4 to 12 carbon atoms, an α-olefin copolymer, Hydrogen of propylene-α-olefin copolymer having 4 to 12 carbon atoms, ethylene-propylene-α-olefin copolymer having 4 to 12 carbon atoms of α-olefin, and styrene-butadiene diblock copolymer Additive, hydrogenated styrene-butadiene-styrene triblock copolymer, hydrogenated styrene-isoprene diblock copolymer, hydrogenated styrene-isoprene-styrene triblock copolymer, ethylene-ethyl acrylate Examples thereof include a copolymer, an ethylene-vinyl acetate copolymer, and polybutene. These resins and / or elastomers may be used alone or as a mixture of two or more.

これらのオレフィン系樹脂以外の樹脂および/またはエラストマーは、結晶化温度幅やメルトテンションの制御を目的として添加されてもかまわない。   Resins and / or elastomers other than these olefinic resins may be added for the purpose of controlling the crystallization temperature range and the melt tension.

本発明のオレフィン系樹脂組成物には、本発明の目的を損なわない範囲で、タルク、マイカ、クレー、炭酸カルシウム、水酸化アルミニウム、水酸化マグネシウム、ワラストナイト、硫酸バリウム、ガラス繊維、カーボン繊維、シリカ、ケイ酸カルシウム、チタン酸カリウム、ウォラストナイト等の無機充填材などが含有されていてもよい。上記した無機充填剤は、単独でも2種以上を併用してもよい。   The olefin-based resin composition of the present invention includes talc, mica, clay, calcium carbonate, aluminum hydroxide, magnesium hydroxide, wollastonite, barium sulfate, glass fiber, and carbon fiber as long as the object of the present invention is not impaired. Further, inorganic fillers such as silica, calcium silicate, potassium titanate, and wollastonite may be contained. The above inorganic fillers may be used alone or in combination of two or more.

また、本発明のオレフィン系樹脂組成物には、さらに、発明の目的を損なわない範囲で、各種の添加剤が含有されていてもよい。
添加剤の具体的としては、フェノール系、有機ホスファイト系、ホスナイトなどの有機リン系、チオエーテル系等の酸化防止剤;ヒンダードアミン系等の熱安定剤;ベンゾフェノン系、ベンゾトリアゾール系、ベンゾエート系等の紫外線吸収剤;ノニオン系、カチオン系、アニオン系等の帯電防止剤;ビスアミド系、ワックス系、有機金属塩系等の分散剤;アルカリ土類金属塩のカルボン酸塩系等の塩素補足剤;アミド系、ワックス系、有機金属塩系、エステル系等の滑剤;オキシド系、ハイドロタルサイト系等の分解剤;ヒドラジン系、アミン系等の金属不活性剤;含臭素有機系、リン酸系、三酸化アンチモン、水酸化マグネシウム、赤リン等の難燃剤;有機顔料;無機顔料;有機充填剤;金属イオン系などの無機、有機抗菌剤、有機リン酸系、ソルビトール系化合物などの結晶核剤などが挙げられる。
Moreover, the olefin resin composition of the present invention may further contain various additives as long as the object of the invention is not impaired.
Specific additives include phenolic, organic phosphite, phosnite, etc. organic phosphorus, thioether and other antioxidants; hindered amines and other thermal stabilizers; benzophenone, benzotriazole, benzoate, etc. UV absorbers; nonionic, cationic, anionic and other antistatic agents; bisamides, waxes, organometallic salt-based dispersants; alkaline earth metal salt carboxylates, etc .; amides -Based, wax-based, organometallic salt-based, ester-based lubricants; oxide-based, hydrotalcite-based decomposing agents; hydrazine-based, amine-based metal deactivators; bromine-containing organic-based, phosphoric acid-based, three Flame retardants such as antimony oxide, magnesium hydroxide, red phosphorus; organic pigments; inorganic pigments; organic fillers; inorganic and organic antibacterial agents such as metal ions, organic phosphorus Systems, like crystal nucleating agent such as sorbitol based compounds.

本発明のオレフィン系樹脂組成物は、溶融して発泡剤と混合して発泡成形することにより発泡体を得ることができる。
本発明で使用される発泡剤は、特に限定されるものではなく、化学発泡剤、物理発泡剤などの公知のものを使用することができる。
The olefin resin composition of the present invention can be foamed by melting, mixing with a foaming agent and foam molding.
The foaming agent used by this invention is not specifically limited, Well-known things, such as a chemical foaming agent and a physical foaming agent, can be used.

化学発泡剤は、オレフィン系樹脂の溶融温度以下では分解せず、オレフィン系樹脂の溶融温度以上で分解または反応するものであれば特に限定されず、無機化合物であっても、有機化合物であってもよく、2種以上を併用してもよい。
無機化合物としては、例えば、炭酸水素ナトリウム等の炭酸水素塩、炭酸アンモニウムなどが挙げられる。
有機化合物としては、例えば、ポリカルボン酸、アゾ化合物、スルホンヒドラジド化合物、ニトロソ化合物、p−トルエンスルホニルセミカルバジド、イソシアネート化合物などが挙げられる。
ポリカルボン酸としては、例えば、クエン酸、クエン酸、シュウ酸、フマル酸、フタル酸などが挙げられる。
アゾ化合物としては、例えば、アゾジカルボンアミド(ADCA)などが挙げられる。
スルホンヒドラジド化合物としては、例えば、p−メチルウレタンベンゼンスルホニルヒドラジド、2,4−トルエンジスルホニルヒドラジド、4,4'−オキシビスベンゼンスルホニルヒドラジドなどが挙げられる。
ニトロソ化合物としては、例えば、ジニトロソペンタメチレンテトラミン(DPT)などが挙げられる。
The chemical foaming agent is not particularly limited as long as it does not decompose below the melting temperature of the olefinic resin and decomposes or reacts above the melting temperature of the olefinic resin. Or two or more of them may be used in combination.
Examples of the inorganic compound include hydrogen carbonates such as sodium hydrogen carbonate, ammonium carbonate, and the like.
Examples of the organic compound include polycarboxylic acid, azo compound, sulfone hydrazide compound, nitroso compound, p-toluenesulfonyl semicarbazide, isocyanate compound and the like.
Examples of the polycarboxylic acid include citric acid, citric acid, oxalic acid, fumaric acid, and phthalic acid.
Examples of the azo compound include azodicarbonamide (ADCA).
Examples of the sulfone hydrazide compound include p-methylurethanebenzenesulfonyl hydrazide, 2,4-toluenedisulfonyl hydrazide, 4,4′-oxybisbenzenesulfonyl hydrazide, and the like.
Examples of the nitroso compound include dinitrosopentamethylenetetramine (DPT).

物理発泡剤としては、例えば、窒素、二酸化炭素等の不活性ガス、ブタン、ペンタン等のフロン系以外の揮発性有機化合物などが挙げられる。物理発泡剤は2種以上を併用してもよく、化学発泡剤と物理発泡剤を併用してもよい。   Examples of the physical foaming agent include inert gases such as nitrogen and carbon dioxide, and volatile organic compounds other than chlorofluorocarbons such as butane and pentane. Two or more physical foaming agents may be used in combination, or a chemical foaming agent and a physical foaming agent may be used in combination.

本発明で用いられる発泡剤は、不活性ガスであることが好ましい。不活性ガスは、対象となる樹脂に対し反応性を示さず、樹脂を劣化させる恐れのない、常温常圧でガス状の無機物質であることが好ましい。不活性ガスとしては、例えば、二酸化炭素、窒素、アルゴン、ネオン、ヘリウム、酸素等が挙げられる。これらは、単独でも、2種類以上を併用してもよい。これらの中で、二酸化炭素、窒素、これらの混合物は安価であり安全性が高いため、好ましく用いられ、超臨界状態の二酸化炭素、超臨界状態の窒素、これらの混合物が、より好ましく用いられる。   The foaming agent used in the present invention is preferably an inert gas. The inert gas is preferably an inorganic substance which is gaseous at normal temperature and pressure and does not show reactivity with the target resin and does not cause deterioration of the resin. Examples of the inert gas include carbon dioxide, nitrogen, argon, neon, helium, oxygen, and the like. These may be used alone or in combination of two or more. Among these, carbon dioxide, nitrogen, and a mixture thereof are preferably used because they are inexpensive and highly safe, and supercritical carbon dioxide, supercritical nitrogen, and a mixture thereof are more preferably used.

発泡成形の方法としては、前記オレフィン系樹脂を用いる限り、特に限定されない。具体的には、例えば、射出発泡成形、プレス発泡成形、押出発泡成形、スタンパブル発泡成形、加熱発泡成形などの公知の方法を採用することができる。   The foam molding method is not particularly limited as long as the olefin resin is used. Specifically, for example, known methods such as injection foam molding, press foam molding, extrusion foam molding, stampable foam molding, and heat foam molding can be employed.

発泡成形方法の中で、射出発泡成形は、射出発泡成形は、射出成形装置の金型のキャビティ内に、発泡剤として不活性ガスが溶解した溶融樹脂を充填して、金型内で同溶融樹脂を発泡させ、次いで発泡樹脂を冷却、固化して発泡成形品を得る工程の中で、溶融樹脂を射出するとともにスキン層を形成させる工程が含まれるため、容易に安定してスキン層を有する発泡体を形成することができるため好適である。   Among the foam molding methods, injection foam molding is the same as injection foam molding, in which a molten resin in which an inert gas is dissolved as a foaming agent is filled into a mold cavity of an injection molding apparatus, and the same melting is performed in the mold. In the process of foaming the resin and then cooling and solidifying the foamed resin to obtain a foamed molded product, a process of injecting the molten resin and forming a skin layer is included. It is preferable because a foam can be formed.

射出発泡成形による発泡方法は、特に限定されるものでなく、例えば、金型キャビティに発泡剤を含む樹脂の充填終了直後の時点で、該キャビティ容積すべてが樹脂で充填され、冷却に伴う樹脂の収縮体積分を、発泡剤のガスを膨張させて発泡させる方法(フルパック法)、金型キャビティの容積より少ない体積の発泡剤を含む樹脂を射出し、発泡剤のガスの膨張により金型キャビティに樹脂を充填させ発泡させる方法(ショートショット法)、金型キャビティに発泡剤を含む樹脂を射出し、しかる後金型のキャビティ壁面を後退させて該キャビティ容積を拡大させ、発泡剤のガスを膨張させ金型内の樹脂を発泡させる方法(コアバック法)、金型に油圧装置を取り付け金型キャビティに発泡剤を含む樹脂を射出し、樹脂充填後油圧装置により金型のキャビティ壁面を部分的に後退させ発泡剤のガスを膨張させ金型内の樹脂を発泡させる方法などが挙げられる。
本発明においては、容易にスキン層を有する発泡体が得られるとともに、発泡体全体の発泡倍率が容易に制御できるという観点から、射出成形装置の金型のキャビティ内に、発泡剤が混合・溶解した溶融樹脂を充填し、溶融樹脂の充填後、金型キャビティ容積を拡大することで同溶融樹脂を発泡せしめ、次いで発泡樹脂を冷却、固化して発泡体を得るコアバック法が好ましい。
また、金型キャビティに発泡剤を含む樹脂の射出終了直後の時点で、該キャビティ容積すべてが樹脂で充填され、冷却に伴う樹脂の収縮体積分を、発泡剤のガスを膨張させ発泡させる低発泡層を形成した後、さらに金型キャビティ容積を拡大することで発泡倍率を高くする方法や、金型キャビティに発泡剤を含む樹脂を射出し、しかる後金型のキャビティ壁面を目的の発泡体よりも小さな容積となるように、金型壁面を微少量後退させて該キャビティ容積を拡大させ、発泡剤のガスを膨張させ金型内の樹脂を発泡させた後、さらに金型キャビティ容積を拡大することで発泡倍率を高くする方法なども好適に用いられる。
The foaming method by injection foam molding is not particularly limited. For example, immediately after the filling of the resin containing the foaming agent into the mold cavity, all of the cavity volume is filled with the resin, and the resin of the resin accompanying cooling is reduced. A method of expanding the foam volume by expanding the foaming agent gas (full pack method), injecting a resin containing a foaming agent with a volume smaller than the volume of the mold cavity, and expanding the foaming agent gas to mold cavity Fill the resin with foam (short shot method), inject the resin containing the foaming agent into the mold cavity, then recede the cavity wall surface of the mold to enlarge the cavity volume, A method of expanding and foaming the resin in the mold (core back method), attaching a hydraulic device to the mold, injecting a resin containing a foaming agent into the mold cavity, and filling the resin with a hydraulic device The cavity walls of the mold and a method of foaming the partially retracted so the resin in the mold to inflate the gas blowing agent.
In the present invention, a foam having a skin layer can be easily obtained, and the foaming agent is mixed and dissolved in the mold cavity of the injection molding apparatus from the viewpoint that the foaming ratio of the entire foam can be easily controlled. The core back method is preferred in which the molten resin is filled, and after filling the molten resin, the mold cavity volume is expanded to foam the molten resin, and then the foamed resin is cooled and solidified to obtain a foam.
In addition, immediately after the injection of the resin containing the foaming agent into the mold cavity, the entire cavity volume is filled with the resin, and the shrinkage volume of the resin accompanying the cooling is reduced by expanding the foaming agent gas and foaming. After forming the layer, expand the mold cavity volume to increase the expansion ratio, or inject a resin containing a foaming agent into the mold cavity, and then the cavity wall surface of the mold from the target foam. In order to reduce the volume of the mold, the mold wall is retracted by a small amount to expand the cavity volume, the foaming agent gas is expanded to expand the resin in the mold, and the mold cavity volume is further expanded. Thus, a method of increasing the expansion ratio is also preferably used.

金型キャビティに発泡剤を含む樹脂の充填中の金型キャビティ容積の縮小/拡大については特に限定されるものでなく、例えば、溶融樹脂の充填開始から充填完了まで金型キャビティ容積を一定としていてもよいし、溶融樹脂の充填開始と充填完了時の金型キャビティ容積が異なっていてもよい。   There is no particular limitation on the reduction / expansion of the mold cavity volume during filling of the resin containing the foaming agent in the mold cavity. For example, the mold cavity volume is kept constant from the start of filling of the molten resin to the completion of filling. Alternatively, the mold cavity volume at the start of filling the molten resin and at the completion of filling may be different.

該射出発泡成形法は、ガスアシスト成形、メルトコア成形、インサート成形、2色成形等の如何なる方法と組み合わされて実施されてもよい。   The injection foam molding method may be performed in combination with any method such as gas assist molding, melt core molding, insert molding, and two-color molding.

本発明におけるオレフィン系樹脂と発泡剤との混合方法は、公知の如何なる方法を用いてもよいが、発泡剤として、窒素および/または二酸化炭素を超臨界状態で射出成形装置のシリンダ内に注入して、溶融樹脂と窒素および/または二酸化炭素を混合、分散、溶解させる方法が、発泡体が全体的に均一な発泡状態となり、また成形サイクル短縮の観点からも好ましい。   Any known method may be used for mixing the olefin resin and the foaming agent in the present invention, but nitrogen and / or carbon dioxide is injected into the cylinder of the injection molding apparatus in a supercritical state as the foaming agent. Thus, a method of mixing, dispersing, and dissolving the molten resin and nitrogen and / or carbon dioxide is preferable from the viewpoint of reducing the molding cycle, and the foam has a uniform foamed state as a whole.

発泡剤として超臨界状態の窒素および/または二酸化炭素を用いると、ガスの樹脂への溶解性速度が高く、短時間で物理発泡剤を樹脂中に均一に拡散させることが可能で、発生する発泡セル数を増加させる効果があるため、良好な発泡セル構造をもつ発泡体が得られる。さらには発泡剤としての超臨界状態の窒素および/または二酸化炭素は、樹脂への溶解度が高いので、樹脂中へ多量の発泡剤を含むことが可能となり、高発泡倍率の発泡体を得られるため好ましく用いられる。   When nitrogen and / or carbon dioxide in a supercritical state is used as a foaming agent, the gas has a high solubility rate in the resin, and the physical foaming agent can be uniformly diffused in the resin in a short time. Due to the effect of increasing the number of cells, a foam having a good foam cell structure can be obtained. Furthermore, since supercritical nitrogen and / or carbon dioxide as a foaming agent has high solubility in the resin, a large amount of foaming agent can be contained in the resin, and a foam with a high foaming ratio can be obtained. Preferably used.

このようにして得られる発泡体は、上記オレフィン系樹脂を用いる限り、特に限定されず、その形状も、特に限定されず、公知の如何なる形状のものであってもよい。
該発泡体は、軽量かつ剛性に優れ、さらには衝撃吸収等の高付加価値をもつためにスキン層を有することが好ましい。スキン層を有さない場合、特に軽量化と高剛性を両立することが困難となる傾向がある。
The foam thus obtained is not particularly limited as long as the olefin resin is used, and the shape thereof is not particularly limited, and may be any known shape.
The foam preferably has a skin layer in order to be lightweight and excellent in rigidity and to have high added value such as shock absorption. When it does not have a skin layer, it tends to be difficult to achieve both weight reduction and high rigidity.

該発泡体は、軽量化と高剛性化の両立の観点から、スキン層と低発泡層と高発泡層の3種の層から構成されていることがより好ましい。   The foam is more preferably composed of three layers of a skin layer, a low foam layer, and a high foam layer from the viewpoint of achieving both weight reduction and high rigidity.

該発泡体の発泡倍率は、発泡体の比重計で比重を測定し、未発泡体の比重を発泡体の比重で割った値として求められ、1.5倍以上であることが好ましく、更なる軽量化のためには2.0倍以上であることがより好ましい。   The foaming ratio of the foam is determined as a value obtained by measuring the specific gravity of the foam with a specific gravity meter of the foam and dividing the specific gravity of the unfoamed material by the specific gravity of the foam, and is preferably 1.5 times or more. For weight reduction, it is more preferably 2.0 times or more.

該発泡体は、成形体全体が前記したようなスキン層を有し、かつ発泡倍率が1.5倍以上である必要はなく、成形体としての主要部分が前記したような部分で構成されていればよい。また、発泡体の使用目的によってはこのような発泡部分あるいは非発泡部分には、同一材料または金属や木材等の異種材料からなる別部品が一体的に取り付けられていてもよい。さらには、発泡体表面の所望の位置にオレフィン系樹脂からなるシートやフィルム、あるいは織布、不職布棟の表皮材が貼合されていてもよい。   The foam does not have to have the skin layer as described above, and the foaming ratio is not required to be 1.5 times or more, and the main part as the molded body is composed of the parts as described above. Just do it. Further, depending on the purpose of use of the foam, such a foamed part or non-foamed part may be integrally attached with another part made of the same material or a different material such as metal or wood. Furthermore, the sheet | seat and film which consist of an olefin resin, or the woven fabric and the skin material of an unemployed cloth ridge may be bonded by the desired position of the foam surface.

本発明の発泡成形用オレフィン系樹脂組成物は、幅広い成形温度範囲と高発泡倍率に必要な溶融張力を兼ね備え、成形加工性に優れており、軽量かつ剛性に優れ、さらには衝撃吸収等の高付加価値をもつ発泡体を提供することが可能である。
該発泡体は、その特性を生かして、自動車部品、家電部品、その他工業部品、日用品などの用途に好適に使用することができる。
The olefin resin composition for foam molding of the present invention has the melt tension necessary for a wide molding temperature range and a high foaming ratio, is excellent in molding processability, is lightweight and rigid, and has high impact absorption and the like. It is possible to provide a foam with added value.
The foam can be suitably used for applications such as automobile parts, home appliance parts, other industrial parts, and daily necessities, taking advantage of its characteristics.

以下、本発明を実施例に基づいて更に具体的に説明するが、本発明が実施例により限定されるものでないことは言うまでもない。   EXAMPLES Hereinafter, although this invention is demonstrated further more concretely based on an Example, it cannot be overemphasized that this invention is not what is limited by an Example.

[評価方法]
メルトフローレート(MFR)(単位:g/10分)
実施例中の分析値は以下の方法で求めた。
JIS K7210に準拠して、プロピレンから誘導される繰り返し単位を主成分とする樹脂については温度230℃、荷重2.16kgfなる条件で測定した。
メルトテンション(単位:g)
東洋精機社製溶融張力測定機を用い、オリフィス:L/D=5 (D=2mm)、押出速度:10mm/分、引取速度:3m/分、測定温度:230℃、なる条件にて測定した。ただし、引取速度が3m/分未満でひも状ストランドが切断する場合は、切断直前の張力を測定し、これをメルトテンションとした。
発泡倍率
発泡体の発泡倍率は、比重計(ミラージュ貿易株式会社製、電子比重計 EW−200SG)で比重を測定し、未発泡体の比重を発泡体の比重で割った値で示した。
最大発泡倍率
後述する方法を用いて、オレフィン系樹脂の発泡成形可能な発泡体の最大の発泡倍率を示した。
3倍発泡倍率
後述した方法を用いて、発泡倍率3倍の発泡体の発泡状態を光学顕微鏡にて観察し、
◎ 気泡の状態が均一で、気泡の破れ、裂け等が見られない。
○ 気泡の状態が一部不均一であるが、気泡の破れ、裂け等が見られない。
△ 気泡の状態が不均一であり、気泡の破れ、裂け等が一部見られる。
× 気泡の破れ、裂け等が激しい、若しくは膨れが発生し、評価不可能である。
として評価した。
[Evaluation methods]
Melt flow rate (MFR) (Unit: g / 10 min)
The analytical values in the examples were determined by the following method.
In accordance with JIS K7210, a resin mainly composed of a repeating unit derived from propylene was measured under the conditions of a temperature of 230 ° C. and a load of 2.16 kgf.
Melt tension (unit: g)
Using a melt tension measuring machine manufactured by Toyo Seiki Co., Ltd., orifice: L / D = 5 (D = 2 mm), extrusion speed: 10 mm / min, take-up speed: 3 m / min, measurement temperature: 230 ° C. . However, when the string-like strand was cut at a take-off speed of less than 3 m / min, the tension immediately before cutting was measured and this was used as the melt tension.
Foaming ratio The foaming ratio of the foam was measured by measuring the specific gravity with a hydrometer (Mirage Trading Co., Ltd., electronic hydrometer EW-200SG), and the specific gravity of the unfoamed material was divided by the specific gravity of the foam.
Maximum foaming ratio Using the method described later, the maximum foaming ratio of an olefin resin foamable foam was shown.
3 times expansion ratio Using the method described later, the foaming state of the foam having a expansion ratio of 3 times was observed with an optical microscope.
◎ Bubbles are uniform and no bubble breaks or tears.
○ Bubbles are partially uneven, but no bubbles are broken or broken.
Δ: The state of the bubbles is not uniform, and some of the bubbles are broken or broken.
× Bubbles are severely torn and torn, or blisters occur, and evaluation is impossible.
As evaluated.

実施例1
オレフィン系樹脂として、直鎖状ホモポリプロピレン Z101S(三井住友ポリオレフィン社製 MFR 20g/10分)と長鎖分岐を有するホモポリプロピレン PF814(BASELL社製 MFR 2.2g/10分)を80/20の割合で混合して得られたポリプロピレン系樹脂の、メルトテンション、結晶化特性、MFRの測定を行った。結果を表1に示す。上記ポリプロピレン系樹脂を用い、射出成形機として、エンゲル社製ES2550/400HL−MuCell(型締力400トン)、金型として図3に示した、成形品部寸法が290mm×370mm、高さ45mm、厚み2mmtの箱型形状(ゲート構造:バルブゲート、成形体中央部分)を有するものを用いて発泡成形を実施した。発泡剤として超臨界状態の窒素を用い、成形機のシリンダ内に20MPaに加圧して供給した(発泡剤注入量 1.2%)。オレフィン系樹脂と発泡剤の混合物を成形温度200℃、型温60℃で、金型内にフル充填するように射出し、ついで、発泡樹脂が破断する、またはそれ以上発泡しなくなるまで金型のキャビティ壁面を後退させて該キャビティ容積を拡大させ発泡樹脂を冷却、固化させる方法で最大発泡倍率の評価を行った。また、金型のキャビティ壁面を3.9mm後退させて該キャビティ容積を拡大させ発泡樹脂を冷却、固化させ、発泡倍率3倍の発泡体を得、発泡状態の評価を行った。結果を表1に示す。
Example 1
80/20 ratio of linear homopolypropylene Z101S (MFR 20 g / 10 min, manufactured by Sumitomo Mitsui Polyolefin) and homopolypropylene PF814 (BAFR MFR 2.2 g / 10 min) having a long chain branch as the olefin resin. The melt tension, crystallization characteristics, and MFR of the polypropylene-based resin obtained by mixing were measured. The results are shown in Table 1. Using the above polypropylene resin, as an injection molding machine, ES2550 / 400HL-MuCell manufactured by Engel Co., Ltd. (clamping force: 400 tons), the mold part dimensions shown in FIG. 3 are 290 mm × 370 mm, height 45 mm, Foam molding was carried out using a box-shaped shape having a thickness of 2 mmt (gate structure: valve gate, central part of the molded body). Nitrogen in a supercritical state was used as a foaming agent, and the pressure was supplied to 20 MPa in a cylinder of a molding machine (foaming agent injection amount 1.2%). The mixture of the olefin resin and the foaming agent is injected at a molding temperature of 200 ° C. and a mold temperature of 60 ° C. so as to be fully filled in the mold, and then the mold resin is broken until the foamed resin breaks or no longer foams. The maximum expansion ratio was evaluated by a method of retracting the cavity wall surface to enlarge the cavity volume and cooling and solidifying the foamed resin. Further, the cavity wall surface of the mold was retracted by 3.9 mm to enlarge the cavity volume, and the foamed resin was cooled and solidified to obtain a foam having a foaming ratio of 3 times, and the foamed state was evaluated. The results are shown in Table 1.

実施例2
オレフィン系樹脂として、直鎖状ホモポリプロピレン Z101S(三井住友ポリオレフィン社製 MFR 20g/10分)と長鎖分岐を有するホモポリプロピレン PF814(BASELL社製 MFR 2.2g/10分)を90/10の割合で混合して得られたポリプロピレン系樹脂を用いた以外は実施例1と同様の方法で最大発泡倍率の評価を実施し、発泡倍率3倍の樹脂発泡体を得て発泡状態の評価を実施した。結果を表1に示す。
Example 2
As an olefin resin, linear homopolypropylene Z101S (MFR 20 g / 10 min manufactured by Sumitomo Mitsui Polyolefin) and homopolypropylene PF814 having long chain branching (MFR 2.2 g / 10 min manufactured by BASELL) at a ratio of 90/10 The maximum foaming ratio was evaluated in the same manner as in Example 1 except that the polypropylene-based resin obtained by mixing was used to obtain a resin foam having a foaming ratio of 3 times, and the foamed state was evaluated. . The results are shown in Table 1.

比較例1
オレフィン系樹脂として、直鎖状ホモポリプロピレン Y101(三井住友ポリオレフィン社製 MFR 13g/10分)を用いた以外は実施例1と同様の方法で最大発泡倍率の評価を実施した。発泡倍率3倍の系樹脂発泡体の成形は不可能であった。結果を表1に示す。
Comparative Example 1
The maximum foaming ratio was evaluated in the same manner as in Example 1 except that linear homopolypropylene Y101 (MFR 13 g / 10 min, manufactured by Sumitomo Mitsui Polyolefin Co., Ltd.) was used as the olefin resin. It was impossible to mold a resin foam having a foaming ratio of 3 times. The results are shown in Table 1.

比較例2
オレフィン系樹脂として、直鎖状プロピレン−エチレンランダムコポリマー Z144(三井住友ポリオレフィン社製 MFR 20g/10分)を用いた以外は実施例1と同様の方法で最大発泡倍率の評価を実施した。発泡倍率3倍の樹脂発泡体を得て発泡状態の評価を実施した。結果を表1に示す。
Comparative Example 2
Evaluation of the maximum expansion ratio was carried out in the same manner as in Example 1 except that linear propylene-ethylene random copolymer Z144 (MFR 20 g / 10 min, manufactured by Sumitomo Mitsui Polyolefin Co., Ltd.) was used as the olefin resin. A resin foam having an expansion ratio of 3 times was obtained, and the foamed state was evaluated. The results are shown in Table 1.

比較例3
オレフィン系樹脂として、直鎖状ホモポリプロピレン Z101S(三井住友ポリオレフィン社製 MFR 20g/10分)と直鎖状ホモポリプロピレン D101(三井住友ポリオレフィン社製 MFR 1g/10分)を80/20の割合で混合して得られたポリプロピレン系樹脂を用いた以外は実施例1と同様の方法で最大発泡倍率の評価を実施し、発泡倍率3倍の樹脂発泡体を得て発泡状態の評価を実施した。結果を表1に示す。
Comparative Example 3
As an olefin resin, linear homopolypropylene Z101S (Mitsui Sumitomo Polyolefin MFR 20 g / 10 min) and linear homopolypropylene D101 (Mitsui Sumitomo Polyolefin MFR 1 g / 10 min) are mixed at a ratio of 80/20. The maximum foaming ratio was evaluated in the same manner as in Example 1 except that the obtained polypropylene resin was used, and a foamed resin foam having a foaming ratio of 3 was obtained to evaluate the foamed state. The results are shown in Table 1.

Figure 2005097389
Figure 2005097389

DSCによる結晶化発熱曲線を示す図である。It is a figure which shows the crystallization exothermic curve by DSC. DSCによる積算結晶化発熱量と温度の関係を示す図である。It is a figure which shows the relationship between the integrated crystallization calorific value by DSC, and temperature. 熱可塑性樹脂発泡成形体の作成時に用いた成形体の外観図である。It is an external view of the molded object used at the time of preparation of a thermoplastic resin foam molded object.

Claims (6)

示差走査熱量計(DSC)によって200℃から40℃まで10℃/分で降温して測定した時に得られるDSC結晶化発熱曲線において、少なくとも1個以上の結晶化発熱ピークを有し、2%結晶化する温度をTc1、98%結晶化する温度をTc2としたとき、Tc1−Tc2≧12℃を満足し、メルトテンションが0.5g以上であるオレフィン系樹脂を含有することを特徴とする発泡成形用オレフィン系樹脂組成物。   In the DSC crystallization exotherm curve obtained when the temperature is measured at 10 ° C./min from 200 ° C. to 40 ° C. with a differential scanning calorimeter (DSC), it has at least one crystallization exothermic peak and 2% crystal Foam molding characterized by containing an olefin-based resin satisfying Tc1-Tc2 ≧ 12 ° C. and having a melt tension of 0.5 g or more, where Tc1 is the temperature to crystallize and Tc2 is the temperature to crystallize 98% Olefin-based resin composition. オレフィン系樹脂が、ポリプロピレン系樹脂である請求項1記載の樹脂組成物。   The resin composition according to claim 1, wherein the olefin resin is a polypropylene resin. 請求項1または2記載の樹脂組成物を溶融して溶融樹脂組成物を得、該溶融樹脂組成物に発泡剤を混合して混合物を得、該混合物を発泡成形して得られることを特徴とする発泡体。   It is obtained by melting the resin composition according to claim 1 or 2 to obtain a molten resin composition, mixing the molten resin composition with a foaming agent to obtain a mixture, and foaming and molding the mixture. Foam. 発泡剤が、超臨界状態の二酸化炭素および/または超臨界状態の窒素である請求項3記載の発泡体。   The foam according to claim 3, wherein the foaming agent is carbon dioxide in a supercritical state and / or nitrogen in a supercritical state. 射出機シリンダ内で溶融樹脂組成物と発泡剤とを混合する請求項3または4記載の発泡体。   The foam of Claim 3 or 4 which mixes a molten resin composition and a foaming agent within an injection machine cylinder. スキン層を有し、かつ発泡倍率が1.5倍以上である請求項3〜5記載の発泡体。
The foam according to claim 3, which has a skin layer and has an expansion ratio of 1.5 times or more.
JP2003331319A 2003-09-24 2003-09-24 Olefinic resin composition for foam-molding and foamed article Pending JP2005097389A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003331319A JP2005097389A (en) 2003-09-24 2003-09-24 Olefinic resin composition for foam-molding and foamed article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003331319A JP2005097389A (en) 2003-09-24 2003-09-24 Olefinic resin composition for foam-molding and foamed article

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011025919A Division JP2011089140A (en) 2011-02-09 2011-02-09 Olefinic resin composition for foam-molding and foam

Publications (1)

Publication Number Publication Date
JP2005097389A true JP2005097389A (en) 2005-04-14

Family

ID=34460022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003331319A Pending JP2005097389A (en) 2003-09-24 2003-09-24 Olefinic resin composition for foam-molding and foamed article

Country Status (1)

Country Link
JP (1) JP2005097389A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007015231A (en) * 2005-07-08 2007-01-25 Takagi Seiko Corp Thermoplastic resin foamed molding and its manufacturing method
JP2009001772A (en) * 2007-05-23 2009-01-08 Kaneka Corp Polypropylene resin foam injection-molded article
JP2009299056A (en) * 2008-05-16 2009-12-24 Prime Polymer Co Ltd Polypropylene-based injection foamed article, and method of manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0867758A (en) * 1994-08-31 1996-03-12 Kanegafuchi Chem Ind Co Ltd Polypropylene resin foam and its production
WO1999007752A1 (en) * 1997-08-05 1999-02-18 Grand Polymer Co., Ltd. Polypropylene resin composition and use thereof
JP2003147110A (en) * 2001-11-09 2003-05-21 Mitsui Chemicals Inc Foam of polyolefin composition and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0867758A (en) * 1994-08-31 1996-03-12 Kanegafuchi Chem Ind Co Ltd Polypropylene resin foam and its production
WO1999007752A1 (en) * 1997-08-05 1999-02-18 Grand Polymer Co., Ltd. Polypropylene resin composition and use thereof
JP2003147110A (en) * 2001-11-09 2003-05-21 Mitsui Chemicals Inc Foam of polyolefin composition and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007015231A (en) * 2005-07-08 2007-01-25 Takagi Seiko Corp Thermoplastic resin foamed molding and its manufacturing method
JP2009001772A (en) * 2007-05-23 2009-01-08 Kaneka Corp Polypropylene resin foam injection-molded article
JP2009299056A (en) * 2008-05-16 2009-12-24 Prime Polymer Co Ltd Polypropylene-based injection foamed article, and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US7524556B2 (en) Thermoplastic resin foamed article
JP5770634B2 (en) Polypropylene resin, polypropylene resin composition, and injection-foamed molded article
WO2005026255A1 (en) Polypropylene based resin composition, expanded moldings comprising the same and method for production thereof
JP4269821B2 (en) Thermoplastic resin foam
JP5368148B2 (en) Polypropylene resin composition for injection foam molding and injection foam molded body comprising the resin composition
JPWO2009041361A1 (en) Polypropylene resin composition for foaming and method for producing injection foam molding using the same
JP2011089140A (en) Olefinic resin composition for foam-molding and foam
JP5628553B2 (en) Thermoplastic elastomer composition for injection foam molding and injection foam molded article comprising the resin composition
JP4851104B2 (en) Polypropylene resin foam molded article and method for producing the same
WO2007004524A1 (en) Constructional heat-insulating foam board and process for production thereof
JP2005097389A (en) Olefinic resin composition for foam-molding and foamed article
JP2002018887A (en) Foamed molded body of polypropylene resin
JP2005059224A (en) Thermoplastic resin foamed molded product
JP4910286B2 (en) Method for producing thermoplastic resin foam molding
JP2020152781A (en) Method for producing foam molding
JP4752560B2 (en) Method for producing thermoplastic resin foam molding
JP2012107097A (en) Polypropylene-based resin composition and injection foaming molded article comprising the resin composition
JP2010269530A (en) Method of manufacturing thermoplastic resin injection foamed molding
JP2008142997A (en) Method for manufacturing injection-foamed article and molding obtained by the method
JP2011236330A (en) Thermoplastic elastomer composition for injection foam molding, and injection foam molding formed of the resin composition
JP2012197345A (en) Polypropylenic resin composition for injection foam molding, and injection foam molded body comprising the same
JP2005224963A (en) Polypropylene resin foam molded product and its manufacturing method
JP5638928B2 (en) Polypropylene resin for injection foam molding and injection foam molded body thereof
JP2011094068A (en) Polypropylene-based resin composition for injection foam molding and injection foam molded article comprising the resin composition
JP4126491B2 (en) Foamable resin composition and propylene-based resin foam

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060602

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080130

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110209