JP2005095729A - Treatment method and treatment apparatus for organic type waste containing biodegradable plastic - Google Patents

Treatment method and treatment apparatus for organic type waste containing biodegradable plastic Download PDF

Info

Publication number
JP2005095729A
JP2005095729A JP2003330538A JP2003330538A JP2005095729A JP 2005095729 A JP2005095729 A JP 2005095729A JP 2003330538 A JP2003330538 A JP 2003330538A JP 2003330538 A JP2003330538 A JP 2003330538A JP 2005095729 A JP2005095729 A JP 2005095729A
Authority
JP
Japan
Prior art keywords
fermentation
organic waste
biodegradable plastic
hydrolysis
methane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003330538A
Other languages
Japanese (ja)
Inventor
Masahiko Miura
雅彦 三浦
Koji Yamamoto
浩司 山本
Yasuo Tanaka
康夫 田中
Motokazu Kamimura
基和 神村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aicello Chemical Co Ltd
Kobe Steel Ltd
Original Assignee
Aicello Chemical Co Ltd
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aicello Chemical Co Ltd, Kobe Steel Ltd filed Critical Aicello Chemical Co Ltd
Priority to JP2003330538A priority Critical patent/JP2005095729A/en
Publication of JP2005095729A publication Critical patent/JP2005095729A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/105Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with enzymes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for treating an organic type waste containing biodegradable plastics using an excellent recycle technology with a compact apparatus that effects a high productivity and advantages in securing a site therefor, which comprises decomposing and fermenting the organic type waste containing the biodegradable plastics intermingled therewith to recover methane gas efficiently in a short term by utilizing the methane fermentation technology. <P>SOLUTION: The method for treating the organic type waste containing the biodegradable plastics comprises a hydrolysis step of performing the hydrolysis in a hydrolysis tank 21 by adding a diluted water 25 to inflammable refuse 1 as the organic type waste intermingled with the biodegradable plastics, a methane fermentation step of performing the methane fermentation of the hydrolyzed decomposed product 23 under anaerobic conditions using a methane fermentation tank 6 and a recovery step of recovering the methane gas 7 produced by the fermentation. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、有機系廃棄物の処理方法に関し、特に生分解性プラスチックを含む有機系廃棄物のリサイクルを実現する有益な処理技術に係るものである。   The present invention relates to a method for treating organic waste, and particularly relates to a useful treatment technique for realizing recycling of organic waste containing biodegradable plastics.

生ゴミ、厨芥、食品系廃棄物、剪定枝や廃木材などの木質系廃棄物、紙類などの有機系廃棄物は一般に可燃ゴミとして焼却処理がなされているが、近年これに伴って発生する排ガス中の二酸化炭素やダイオキシンが大気環境に与える問題が表面化しており、それらの一段と厳しい排出規制が加えられる状況にいたっている。これらの有害ガスの排出を最小限に抑えるための燃焼技術などの技術開発、実用化が進められる一方において、有機系廃棄物をリサイクル(再資源化)することによって上記問題を一挙に解決しようとする新たな動きが活発となっている。この有機系廃棄物のリサイクルを実現するものとして、メタン発酵技術の利用が注目を浴びている。   Garbage, firewood, food waste, woody waste such as pruned branches and waste wood, and organic waste such as paper are generally incinerated as combustible waste. The problem that carbon dioxide and dioxin in exhaust gas give to the air environment has surfaced, and the situation is that stricter emission regulations are being added. While technological development and practical application such as combustion technology for minimizing the emission of these harmful gases are being promoted, the above problems will be solved at once by recycling (recycling) organic waste. New movements are becoming active. The use of methane fermentation technology is attracting attention as a means to realize recycling of organic waste.

このメタン発酵技術を用いた従来の有機系廃棄物のリサイクルプロセスを図6の工程概要図に示す。この技術の概略を説明すると、まず回収されてきた有機系廃棄物を含む可燃ゴミ1は破袋・破砕されたのち分別機2にかけられ、有機系廃棄物からなる発酵適性物3とゴミ袋、プラスチック類、金属類などからなる発酵不適物4とに分別され、発酵不適物は廃棄物として系外へ排出される。破砕された発酵適性物3は調整槽5へ送られ、ここで一時ストックされる。続いて、調整槽5から一定量の発酵適性物3が取り出され、発酵槽6に投入される。この発酵槽6において発酵適性物3は嫌気性条件下に嫌気性微生物によってメタン発酵が促進される。そしてメタン発酵により生成したメタンガス7が発酵槽6より回収され、発酵を終えた消化物8は発酵槽6から排出される。その後は消化物8は脱水機9に送られて脱水され、脱水残渣10と脱水ろ液11に分けられて系外へ排出される。なお、脱水ろ液11は、後段の排水処理プロセスで浄化され、発酵不適物と脱水残渣は、一般的には焼却により処理される。   A conventional organic waste recycling process using this methane fermentation technology is shown in the process schematic diagram of FIG. The outline of this technology will be explained. First, combustible garbage 1 containing organic waste that has been collected is broken and crushed, and then applied to a separator 2 to be fermentable material 3 made of organic waste and a garbage bag. They are separated into unsuitable fermentation 4 made of plastics, metals, etc., and unsuitable fermentation is discharged out of the system as waste. The fermentable material 3 that has been crushed is sent to the adjustment tank 5 where it is temporarily stocked. Subsequently, a certain amount of the fermentable material 3 is taken out from the adjustment tank 5 and put into the fermentation tank 6. In this fermenter 6, methane fermentation of the fermentable material 3 is promoted by anaerobic microorganisms under anaerobic conditions. And the methane gas 7 produced | generated by methane fermentation is collect | recovered from the fermenter 6, and the digest 8 which finished fermentation is discharged | emitted from the fermenter 6. FIG. Thereafter, the digested product 8 is sent to a dehydrator 9 and dehydrated, separated into a dehydrated residue 10 and a dehydrated filtrate 11 and discharged out of the system. The dehydrated filtrate 11 is purified by a subsequent wastewater treatment process, and unsuitable fermentation materials and dehydrated residues are generally treated by incineration.

また、この発酵槽6における反応をさらに速めるために、発酵適性物3を事前に別途反応器により高圧高温下で流動化処理を行う技術も提案(特許文献1など)されている。   In addition, in order to further accelerate the reaction in the fermenter 6, a technique has been proposed in which the fermentable material 3 is fluidized at a high pressure and high temperature using a separate reactor in advance (Patent Document 1, etc.).

このようなメタン発酵技術の採用により、大部分の有機系廃棄物が焼却することなくクリーンな燃料としてのメタンガスに転換され、有用資源としてリサイクルされることになるのである。   By adopting such methane fermentation technology, most organic waste is converted into methane gas as clean fuel without being incinerated and recycled as useful resources.

ところで、有機系廃棄物を含む可燃ごみには前記のようにゴミ袋やプラスチック製品などのプラスチック材料が混入している場合が多い。最近、これらのプラスチック材料の中にまだ僅かの量ではあるが生分解性プラスチックが含まれていることがある。これは、プラスチックの分野においても環境問題に的確に対応した環境に優しい高分子材料の利用が要請されており、生分解性プラスチックはこれに応える最適な材料として実用化されつつあるためである。   By the way, combustible waste containing organic waste is often mixed with plastic materials such as garbage bags and plastic products as described above. Recently, some of these plastic materials still contain small amounts of biodegradable plastic. This is because, in the field of plastics, there is a demand for the use of an environmentally friendly polymer material that accurately responds to environmental problems, and biodegradable plastics are being put into practical use as an optimum material that can respond to this.

この生分解性プラスチックは使用期間中はその性能を維持し、使用後は自然環境下(地中など)においてバクテリアなどの微生物によって分解され、最終的に二酸化炭素と水になることから環境に負荷を与えないといった一般のプラスチックにはない優れた環境適性を備えている。このため、生分解性プラスチックは現在未だコスト上の不利はあるものの、農林水産用資源材(マルチフィルム、苗ポット、魚網など)、土木・建築用資材(断熱材、型枠、保水シートなど)や食品包装用品(生鮮食品トレー、ファーストフード・インスタント食品容器など)、衛生用品(紙おむつなど)さらにゴミ袋、水切り、コップなどの各種日用・雑貨品などの分野で徐々に使用されつつあり、将来的には多くの分野、製品に利用されることが期待されている。   This biodegradable plastic maintains its performance during the period of use, and after use it is decomposed by microorganisms such as bacteria in the natural environment (such as in the ground) and eventually becomes carbon dioxide and water, which is an environmental load. It has excellent environmental suitability not found in ordinary plastics. For this reason, biodegradable plastics are still at a cost disadvantage, but resource materials for agriculture, forestry and fisheries (multi-films, seedling pots, fish nets, etc.), civil engineering and construction materials (insulation materials, formwork, water retention sheets, etc.) And food packaging supplies (fresh food trays, fast food / instant food containers, etc.), sanitary goods (paper diapers, etc.), and various daily and miscellaneous goods such as garbage bags, drainers, cups, etc., are gradually being used. It is expected to be used in many fields and products in the future.

そこで、この生分解性プラスチックが本格的に生産、使用された場合を想定すると、自然環境下での使用を前提とする製品の場合は良いとしても、それ以外の様々な分野で使用される場合においては、使用後の廃品も多量に発生することになり、その結果として可燃ごみ中に有機系廃棄物とともに少なからず混入してくるものと予想される。しかも、生分解性プラスチックは前記環境適性を有しているにもかかわらず、分解困難な通常のプラスチック類と混在し、両者の分別も容易でないことから、これらをまとめて地中に埋めて、処理することができない。   Therefore, assuming that this biodegradable plastic is produced and used in earnest, it may be a product that is supposed to be used in a natural environment, but it may be used in various other fields. In this case, a large amount of waste after use is generated, and as a result, it is expected that the waste will be mixed with combustible waste together with organic waste. Moreover, although biodegradable plastics have the above environmental suitability, they are mixed with ordinary plastics that are difficult to decompose, and separation of both is not easy, so these are buried together in the ground, It cannot be processed.

先に述べたメタン発酵技術を利用する従来技術においては、生分解性プラスチックも他のプラスチックと同様に発酵不適物4として最終的には焼却されることになり、そのリサイクルまでは全く考慮されていない。従って、有機系廃棄物はリサイクルされるものの生分解性プラスチックについては焼却処理による二酸化炭素の発生、ダイオキシン発生の観点から環境への負荷の問題が依然として残っている。   In the conventional technology using the methane fermentation technology described above, biodegradable plastics are finally incinerated as fermentation unsuitables 4 like other plastics, and their recycling is completely taken into consideration. Absent. Therefore, although organic wastes are recycled, biodegradable plastics still have the problem of environmental burden from the viewpoint of carbon dioxide generation and dioxin generation by incineration.

また、極く最近になってポリエステル系樹脂を主原料とする生分解性プラスチック製のゴミ袋も使用され始めているが、同従来技術では可燃ゴミ(有機系廃棄物を含む)を回収する際に使用したこの生分解性プラスチック製のゴミ袋も同様に前処理で発酵不適物4として分別される。その結果、ゴミ袋由来の大量の廃棄物が発生し(カサ比重が小さくかさばるため)、その処理も多くの場合はやはり焼却により行われるため、同様な観点から環境への負荷が大きい。 さらに、この従来技術の場合は、分別しきれなかったゴミ袋の破片は後段の発酵槽6に溜まり、有効メタン発酵容積を減少させるという問題がある。加えて、発酵槽6の攪拌駆動部やスラリー移送ポンプにからみつき、機械的トラブルを起こしたり、配管への詰まりの原因にもなる。   Recently, biodegradable plastic garbage bags made mainly of polyester resin have begun to be used. However, the conventional technology collects combustible garbage (including organic waste). The used biodegradable plastic garbage bags are also separated as fermentation unsuitables 4 by pretreatment. As a result, a large amount of waste derived from garbage bags is generated (because the bulk density is small and bulky), and the treatment is also often carried out by incineration, so that the load on the environment is large from the same viewpoint. Furthermore, in the case of this prior art, there exists a problem that the fragment | piece of the garbage bag which could not be separated would accumulate in the subsequent fermentation tank 6, and reduce an effective methane fermentation volume. In addition, it may become entangled with the agitation drive section of the fermenter 6 and the slurry transfer pump, causing mechanical troubles and causing clogging of the piping.

一方、生分解性プラスチックが混入した有機系廃棄物の処理を意識したものとして、有機系廃棄物を60〜100℃、1〜48時間で熱処理して廃棄物中の生分解性プラスチックを崩壊させ、その後にコンポスト化する技術が提案(特許文献2など)されている。この技術は、生分解性プラスチックを含めて最終的にコンポスト化して肥料や土壌改良剤としてリサイクルする意味で有用な技術である。   On the other hand, considering that organic waste mixed with biodegradable plastic is conscious, the organic waste is heat-treated at 60 to 100 ° C. for 1 to 48 hours to collapse the biodegradable plastic in the waste. Then, a technique for composting has been proposed (Patent Document 2 and the like). This technology is useful in the sense that it is finally composted including biodegradable plastics and recycled as fertilizer and soil conditioner.

しかしながら、この従来技術はコンポスト化を意図しているために生分解性プラスチックの分解のための熱処理は低温で長時間の条件となっており、この前処理では同プラスチックの分解はせいぜい約半分の分子量までしか進行しない。しかも、後処理の好気条件下におけるコンポスト化には数ヶ月の発酵期間を要することになり、さらにこの発酵のために巨大な装置や広大な敷地を必要とする。さらに、日本ではその利用される量は実際に排出される量に対して僅かであり、その上、移送などのコストがかかるため、有効なリサイクル方法であるとは言い難い面がある。またメタンガスのようなクリーンなエネルギーを回収、利用できないためリサイクル技術としてもなお不十分といわざるを得ない。
特開平8−99099号公報 特開2001−269652号公報
However, because this conventional technology is intended for composting, heat treatment for biodegradable plastic decomposition is a low temperature and long-time condition, and in this pretreatment, the plastic decomposition is at most about half. It only progresses to molecular weight. Moreover, composting under post-treatment aerobic conditions requires a fermentation period of several months, and a huge apparatus and a large site are required for this fermentation. Furthermore, in Japan, the amount used is very small compared to the amount actually discharged, and in addition, the cost of transportation and the like is high, so it is difficult to say that this is an effective recycling method. In addition, clean energy such as methane gas cannot be recovered and used, so it must be said that the recycling technology is still insufficient.
JP-A-8-99099 JP 2001-269652 A

本発明は、上記の技術背景並びに従来技術の問題点を考慮してなされたものであって、メタン発酵技術を利用して生分解性プラスチックが混在する有機系廃棄物を、生分解性プラスチックを含めて短期間に効率よく分解、発酵してメタンガスを回収することが可能な生産性の高く、しかも敷地の確保も有利なコンパクトな装置によって実現しうる優れたリサイクル技術を提供することをその技術的課題とするものである。   The present invention has been made in view of the above technical background and the problems of the prior art, and uses organic waste containing biodegradable plastics by using methane fermentation technology to replace biodegradable plastics. In order to provide excellent recycling technology that can be realized by a compact device that can efficiently decompose and ferment in a short period of time and recover methane gas by recovering methane gas and that is advantageous for securing the site. It is a subject.

上記の課題を達成するために、本発明者らが提案するに生分解性プラスチックを含有する有機系廃棄物のリサイクル技術についての発明の特徴は以下のとおりである。
(1)生分解性プラスチックが混在する有機系廃棄物に希釈水を添加して加水分解を行う加水分解工程と、加水分解された分解生成物を嫌気性条件化でメタン発酵を行うメタン発酵工程と、前記発酵により生成したメタンガスを回収する回収工程と、からなる生分解性プラスチックを含む有機系廃棄物の処理方法(請求項1)。
(2)生分解性プラスチックが混在する有機系廃棄物を、発酵適性物と、生分解性プラスチックを含む発酵不適物に分別する分別工程と、前記発酵不適物に希釈水を添加して加水分解を行う加水分解工程と、前記発酵適性物と加水分解された分解生成物とを嫌気性条件下でメタン発酵を行うメタン発酵工程と、前記発酵により生成したメタンガスを回収する回収工程と、からなる生分解性プラスチックを含む有機系廃棄物の処理方法(請求項2)。
(3)前記加水分解工程の後に、加水分解された分解生成物から残留する発酵不適物を分離する分離工程を加えた各工程からなる前記(1)又は(2)に記載の生分解性プラスチックを含む有機系廃棄物の処理方法 (請求項3)。
(4) 前記メタン発酵工程に先立ち、前記加水分解された分解生成物及び/又は前記発酵適性物のメタン発酵工程への投入濃度を調整する調整工程を加えた各工程からなる前記(1)〜(3)のいずれかに記載の生分解性プラスチックを含む有機系廃棄物の処理方法(請求項4)。
(5)前記生分解性プラスチックが有機系廃棄物用の容器として使用されたものである前記(1)〜(4)のいずれかに記載の生分解性プラスチックを含む有機系廃棄物の処理方法(請求項5)。
(6)前記有機系廃棄物用の容器がポリエステル系樹脂の材料からなる前記(5)に記載の生分解性プラスチックを含む有機系廃棄物の処理方法(請求項6)。
(7)前記生分解性プラスチックが食品系包装容器として使用されたものである前記(1)〜(4)のいずれかに記載の生分解性プラスチックを含む有機系廃棄物の処理方法(請求項7)。
(8)前記加水分解工程の温度が120℃〜250℃である前記(1)〜(7)のいずれかに記載の生分解性プラスチックを含む有機系廃棄物の処理方法(請求項8)。
(9)前記加水分解工程の処理時間が5分〜60分であるである(1)〜(8)のいずれかに記載の生分解性プラスチックを含む有機系廃棄物の処理方法(請求項9)。
(10)前記加水分解工程の前記発酵不適物に対する希釈水の添加が、その固形分含有量が50%以下になるように行われるものである(1)〜(9)のいずれかに記載の生分解性プラスチックを含む有機系廃棄物の処理方法(請求項10)。
(11)前記加水分解工程の希釈水として前記メタン発酵工程で得られた消化物の脱水分離液を用いる前記(1)〜(10)のいずれかに記載の生分解性プラスチックを含む有機系廃棄物の処理方法(請求項11)。
(12)生分解性プラスチックが混在する有機系廃棄物を発酵適性物と生分解性プラスチックを含む発酵不適物に分別する分別手段と、前記発酵不適物に希釈水を添加して加水分解を行う加水分解手段と、前記加水分解された分解生成物から残留する発酵不適物を分離する分離手段と、前記発酵適性物と加水分解された分解生成物とを嫌気性条件下でメタン発酵を行うメタン発酵手段と、前記発酵により生成したメタンガスを回収する回収手段と、を備えた生分解性プラスチックを含む有機系廃棄物の処理装置。
In order to achieve the above-mentioned problems, the present invention proposes the following features of the invention regarding the recycling technology of organic waste containing biodegradable plastic.
(1) Hydrolysis process in which diluted water is added to organic waste containing biodegradable plastics for hydrolysis, and methane fermentation process in which hydrolyzed decomposition products are subjected to methane fermentation under anaerobic conditions And a recovery step of recovering the methane gas generated by the fermentation, and a method for treating organic waste containing biodegradable plastic (claim 1).
(2) Organic waste containing biodegradable plastics is separated into fermentable materials and unsuitable fermentation materials containing biodegradable plastics, and hydrolysis is performed by adding dilution water to the unsuitable fermentation materials. A hydrolysis process for performing fermentation, a methane fermentation process for performing methane fermentation of the fermentation suitability product and the hydrolyzed degradation product under anaerobic conditions, and a recovery process for recovering methane gas generated by the fermentation. A method for treating organic waste containing biodegradable plastics (Claim 2).
(3) The biodegradable plastic according to the above (1) or (2), which comprises each step after the hydrolysis step and a separation step for separating unsuitable fermentation products from the hydrolyzed decomposition product. (Claim 3) A method for treating organic waste containing
(4) Prior to the methane fermentation step, (1) to (1) comprising the steps of adjusting the concentration of the hydrolyzed decomposition product and / or the fermentable material into the methane fermentation step. A method for treating organic waste containing the biodegradable plastic according to any one of (3) (Claim 4).
(5) The method for treating organic waste containing the biodegradable plastic according to any one of (1) to (4), wherein the biodegradable plastic is used as a container for organic waste. (Claim 5).
(6) The organic waste processing method including the biodegradable plastic according to (5), wherein the organic waste container is made of a polyester resin material (Claim 6).
(7) A method for treating organic waste containing the biodegradable plastic according to any one of (1) to (4), wherein the biodegradable plastic is used as a food packaging container (claim). 7).
(8) The processing method of the organic waste containing the biodegradable plastic in any one of said (1)-(7) whose temperature of the said hydrolysis process is 120 to 250 degreeC (Claim 8).
(9) The processing method of the organic waste containing the biodegradable plastic according to any one of (1) to (8), wherein the treatment time of the hydrolysis step is 5 minutes to 60 minutes. ).
(10) The addition according to any one of (1) to (9), wherein addition of dilution water to the unsuitable fermentation product in the hydrolysis step is performed such that the solid content is 50% or less. A method for treating organic waste containing biodegradable plastics (claim 10).
(11) Organic waste containing the biodegradable plastic according to any one of (1) to (10), wherein a dehydrated separation liquid obtained from the methane fermentation step is used as the dilution water in the hydrolysis step. A method for processing an object (claim 11).
(12) Separation means for separating organic waste mixed with biodegradable plastic into fermentable material and unsuitable fermented material containing biodegradable plastic, and hydrolysis is performed by adding dilution water to the unsuitable fermented material. Methane that performs methane fermentation under anaerobic conditions between hydrolysis means, separation means for separating unsuitable fermentation residue from the hydrolyzed decomposition product, and fermentation suitability and hydrolyzed decomposition product An organic waste processing apparatus comprising a biodegradable plastic, comprising: fermentation means; and recovery means for recovering methane gas generated by the fermentation.

かかる特徴を備えた本発明によれば、下記に列挙するような有利な効果が得られる。
(1)生分解性プラスチックが混在する有機系廃棄物で構成された各種のごみの処理については、効果的なリサイクル(プロセス)を容易に実現することができる。
(2)特に、ゴミ収集に使用された生分解性プラスチックを素材とするゴミ袋の場合においても従来問題となっている発酵槽やその周辺機器、配管系でのトラブルが解消され、また、減容化も効果的に行うことができる。
(3)効率的でかつ簡易なプロセスであることから、その実現の必要な装置、機器も比較的少なく、またコンパクトな規模で済み、用地確保も有利であり、全体として実用化が容易である。
According to the present invention having such characteristics, the advantageous effects listed below can be obtained.
(1) Effective recycling (process) can be easily realized for the treatment of various types of waste composed of organic waste mixed with biodegradable plastics.
(2) Especially in the case of garbage bags made of biodegradable plastic used for garbage collection, troubles in the fermenter, its peripheral equipment, and piping systems, which have been problematic in the past, are resolved and reduced. Tonality can also be done effectively.
(3) Since it is an efficient and simple process, it requires relatively few devices and equipment, requires only a small scale, is advantageous in securing land, and is easy to put into practical use as a whole. .

以下、本発明の実施形態を図面に基づいて説明する。図1は、本発明の典型的な実施形態に係る有機系廃棄物のリサイクルプロセスを示す工程概要図である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a process outline diagram showing an organic waste recycling process according to an exemplary embodiment of the present invention.

まず、ここで回収されてきた本発明の処理対象となる可燃ごみ1は生分解性プラスチック製のゴミ袋に収容されており、種々の有機系廃棄物とともにプラスチック類や金属などが含まれ、さらにプラスチック類の中には生分解性プラスチックが混在しているものとする。   First of all, the combustible waste 1 collected here and stored in a garbage bag made of biodegradable plastic includes plastics, metals and the like together with various organic wastes. It is assumed that biodegradable plastics are mixed in plastics.

なお、ここでいう生分解性プラスチックとはアミロース、デキストラン、アルギン酸、キチン、キトサン、セルロース、デンプン、プルラン等の多糖類、ポリグリコール酸、ポリ−3−ヒドロキシプロピオネート、ポリ乳酸、ポリ−3−ヒドロキシブチレート、ポリ−4−ヒドロキシブチレート、ポリヒドロキシバリレート、ポリカプロラクトン、ポリエチレンサクシネート、ポリブチレンサクシネート、ポリブチレンアジペート、ポリブチレンサクシネート/アジペート、ポリブチレンアジペート/テレフタレート、ポリブチレンサクシネート/テレフタレート、ポリブチレンサクシネート/アジペート/テレフタレート、ポリテトラメチレンアジペート/テレフタレート等のポリエステル系樹脂、さらにポリビニルアルコール、ポリペプチド等が挙げられるが、生分解性プラスチック製のゴミ袋は主としてポリエステル系樹脂を主成分としたものが多い。   The biodegradable plastic here refers to polysaccharides such as amylose, dextran, alginic acid, chitin, chitosan, cellulose, starch, pullulan, polyglycolic acid, poly-3-hydroxypropionate, polylactic acid, poly-3. -Hydroxybutyrate, poly-4-hydroxybutyrate, polyhydroxyvalylate, polycaprolactone, polyethylene succinate, polybutylene succinate, polybutylene adipate, polybutylene succinate / adipate, polybutylene adipate / terephthalate, polybutylene succinate Polyester resins such as nate / terephthalate, polybutylene succinate / adipate / terephthalate, polytetramethylene adipate / terephthalate, polyvinyl alcohol, polypeptides, etc. But it is under, biodegradable plastic garbage bag there are many things that mainly composed mainly of polyester resin.

可燃ごみ1は従来と同様に破袋、破砕がなされた後、分別機2に送られ、有機系廃棄物からなる発酵適性物3とゴミ袋、プラスチック類、金属類などからなる発酵不適物4とに分別される(分別工程)。発酵適性物3は調整槽5に送られてストックされ、ここで次のメタン発酵槽6への投入濃度が調整される(調整工程)。この調整槽5ではストックされている間に酸発酵が進行する。   The combustible waste 1 is broken and crushed in the same manner as before, and then sent to the sorter 2 to be fermentable 3 made of organic waste and unsuitable for fermentation 4 made of garbage bags, plastics, metals, etc. (Sorting process). The fermentable material 3 is sent to the adjustment tank 5 and stocked, where the concentration charged into the next methane fermentation tank 6 is adjusted (adjustment process). In this adjustment tank 5, acid fermentation proceeds while being stocked.

一方、発酵不適物4は加水分解装置21に送られ、ここで水(希釈水)が添加され、生分解性プラスチック(ゴミ袋及びプラスチック類の一部)の加水分解が行われる(加水分解工程)。この加水分解工程における条件は、120℃〜250℃の温度で、望ましくは150℃〜180℃において、5〜60分間、各温度での蒸気圧で実施される。また、希釈水の添加量は発酵不適物4の固形分が50%以下になるようにして行われる。希釈水25は後工程の脱水機9から得られる脱水ろ液11が利用される。   On the other hand, the unsuitable fermentation 4 is sent to the hydrolysis device 21, where water (diluted water) is added, and the biodegradable plastic (garbage bag and part of the plastic) is hydrolyzed (hydrolysis step). ). The conditions in this hydrolysis step are carried out at a temperature of 120 ° C. to 250 ° C., preferably 150 ° C. to 180 ° C., for 5 to 60 minutes, with a vapor pressure at each temperature. Moreover, the addition amount of dilution water is performed so that the solid content of the fermentation unsuitable 4 may be 50% or less. As the dilution water 25, the dehydrated filtrate 11 obtained from the dehydrator 9 in the subsequent process is used.

このようにして加水分解を終えた発酵不適物4はスクリーン22に送られ、生分解性プラスチックの分解反応により生成した有機酸、アルコール、糖などのモノマーやオリゴナーを主体とした低分子量の分解生成物23と、通常のプラスチック類や金属などの非分解物24とに機械的に分離される(分離工程)。非分解物24は系外に排出される。   The fermentation unsuitable 4 that has been hydrolyzed in this way is sent to the screen 22, and is decomposed and produced with a low molecular weight mainly composed of monomers and oligomers such as organic acids, alcohols, and sugars produced by the decomposition reaction of the biodegradable plastic. The product 23 is mechanically separated into a normal plastic and a non-decomposed product 24 such as metal (separation process). Non-decomposed matter 24 is discharged out of the system.

次に、加水分解により発酵容易な形態となった分解生成物23は、調整槽5にストックされた発酵適性物3とともにメタン発酵槽6に供給され、ここで嫌気性条件下で微生物(メタン菌)によってメタン発酵がなされる(メタン発酵工程)。このメタン発酵は2週間前後で完了し、発酵により発生したメタンガスは順次、発酵槽6より回収され、ガスホルダ(図示しない)に貯蔵される(回収工程)。こうして、回収されたメタンガスはクリーンな燃料エネルギーとして活用されることになる。
また、この発酵により生成した消化物8は発酵槽6より取出された後、脱水機9に送られ、脱水残渣10と脱水ろ液11とに固液分離される。脱水残渣10はその後コンポスト化されて、肥料などに利用されたり、埋め立てや焼却処理される。脱水ろ液11は前述のように、加水分解工程に送られ、希釈水25として循環使用される。この脱水分離液を希釈液として加水分解した場合、アンモニアが蒸発によって除去され、返流希釈水中のアンモニア濃度が低くなる。その結果、メタン発酵槽6内のアンモニア濃度も低減され、メタン発酵の安定化につながる。
Next, the decomposition product 23 that has become a form that is easily fermented by hydrolysis is supplied to the methane fermentation tank 6 together with the fermentable material 3 stocked in the adjustment tank 5, where microorganisms (methane methane) are analyzed under anaerobic conditions. ) To perform methane fermentation (methane fermentation process). This methane fermentation is completed in about two weeks, and the methane gas generated by the fermentation is sequentially recovered from the fermenter 6 and stored in a gas holder (not shown) (recovery step). In this way, the recovered methane gas is used as clean fuel energy.
The digest 8 produced by this fermentation is taken out from the fermenter 6 and then sent to a dehydrator 9 where it is separated into a dehydrated residue 10 and a dehydrated filtrate 11. The dehydrated residue 10 is then composted and used as a fertilizer or landfilled or incinerated. As described above, the dehydrated filtrate 11 is sent to the hydrolysis step and circulated and used as the dilution water 25. When this dehydrated separation liquid is hydrolyzed as a diluent, ammonia is removed by evaporation, and the ammonia concentration in the return diluted water is lowered. As a result, the ammonia concentration in the methane fermentation tank 6 is also reduced, leading to stabilization of methane fermentation.

本実施形態においては生分解性プラスチック、通常のプラスチック類、金属類を特に分別せず、発酵不適物として一緒に加水分解装置に供給しているが、金属類については磁選機などによりあらかじめプラスチック類から分離して、プラスチック類のみを加水分解するようにしても良く、これにより加水分解装置の負荷を軽減できる。また、生分解性プラスチックと通常のプラスチックの分別が可能であれば、生分解性プラスチックのみを加水分解するようにしてももちろん良く、この場合は一層加水分解時の装置負荷を下げることができる。さらに、ゴミの収集段階において既に生分解性プラスチックが分別されている場合においてはこれを破砕してそのまま加水分解装置に供給できるので、分別プロセスが不要になり、また、装置負荷は最小限となり、これが最も良い態様といえる。   In the present embodiment, biodegradable plastics, ordinary plastics, and metals are not particularly separated and are supplied to the hydrolysis apparatus together as unsuitable fermentation materials. It is also possible to separate only the plastics and hydrolyze only the plastics, thereby reducing the load on the hydrolysis apparatus. If the biodegradable plastic and the normal plastic can be separated, it is of course possible to hydrolyze only the biodegradable plastic. In this case, the load on the apparatus during hydrolysis can be further reduced. Furthermore, when the biodegradable plastic has already been separated in the garbage collection stage, it can be crushed and supplied as it is to the hydrolysis device, so that the separation process becomes unnecessary, and the load on the device is minimized. This is the best mode.

また、本実施形態にあって、加水分解工程に使用する希釈水は発酵を終えた消化物の脱水ろ液を利用したが、用水など他の水を使用してもかまわないものである。   In the present embodiment, the dilution water used in the hydrolysis step uses the dehydrated filtrate of digested material after fermentation, but other water such as irrigation water may be used.

次に、図2は、本発明の他の実施形態に係る有機系廃棄物のリサイクルプロセスを示す工程概要図である。   Next, FIG. 2 is a process outline diagram showing an organic waste recycling process according to another embodiment of the present invention.

まず、ここで回収されてきた本発明の処理対象となる可燃ごみ1は生分解性プラスチック製のゴミ袋に収容されており、収容されたゴミはすべて有機系廃棄物からなり、プラスチック類や金属などは実質的にこれに含まれていないものとする。   First of all, the combustible waste 1 collected here is stored in a biodegradable plastic garbage bag, and all the collected garbage is made of organic waste, such as plastics and metal. Etc. are not substantially included in this.

有機系廃棄物が収容された可燃ごみ1は破袋、破砕がなされた後、分別をすることなく加水分解装置21に送られる。この加水分解装置21で水(希釈水)が添加され、生分解性プラスチック(ゴミ袋)及び有機系廃棄物の加水分解が行われる(加水分解工程)。この加水分解工程における条件は、前記実施形態と同様で、120℃〜250℃の温度(望ましくは150℃〜180℃)において、5〜60分間、各温度での蒸気圧で実施される。また、希釈水の添加量も同様にして可燃ごみ1の固形分が50%以下になるようにして行われる。希釈水25は後工程の脱水機9から得られる脱水ろ液11が利用される
この加水分解工程によりを生分解性プラスチック(ゴミ袋)は殆ど全てが有機酸、アルコール、糖などのモノマーやオリゴナーを主体とした低分子量の分解生成物23となり、発酵容易な形態となって装置外に排出される。
The combustible waste 1 containing organic waste is broken and crushed, and then sent to the hydrolysis device 21 without being separated. Water (diluted water) is added in the hydrolysis device 21 to hydrolyze the biodegradable plastic (trash bag) and organic waste (hydrolysis step). The conditions in this hydrolysis step are the same as in the above-described embodiment, and are carried out at a temperature of 120 ° C. to 250 ° C. (preferably 150 ° C. to 180 ° C.) at a vapor pressure at each temperature for 5 to 60 minutes. Similarly, the amount of dilution water added is such that the solid content of the combustible waste 1 is 50% or less. Diluted water 25 uses dehydrated filtrate 11 obtained from the dehydrator 9 in the subsequent process. By this hydrolysis process, almost all biodegradable plastics (trash bags) are monomers and oligomers such as organic acids, alcohols and sugars. Is a low-molecular-weight decomposition product 23 mainly composed of, which is easily fermented and discharged out of the apparatus.

これらの分解生成物23は全量が調整槽5に送られてストックされ、ここでメタン発酵槽6への投入量が調整される(調整工程)。また、調整槽5においては酸発酵が進行する。   The total amount of these decomposition products 23 is sent to the adjustment tank 5 and stocked, and the input amount to the methane fermentation tank 6 is adjusted here (adjustment process). Moreover, in the adjustment tank 5, acid fermentation advances.

次に、この調整槽5内の分解性生物は適宜取り出され、発酵物が所定の濃度となるようにメタン発酵槽6に必要量が投入される。そして、この発酵槽6において前記実施形態同様に、嫌気性条件下で微生物(メタン菌)によってメタン発酵がなされ(メタン発酵工程)、このメタン発酵は2週間前後で完了し、発酵により発生したメタンガス7は順次、発酵槽6より回収され、ガスホルダ(図示しない)に貯蔵される(回収工程)。こうして、回収されたメタンガスはクリーンな燃料エネルギーとして活用されることになる。   Next, the degradable organisms in the adjustment tank 5 are taken out as appropriate, and a necessary amount is charged into the methane fermentation tank 6 so that the fermented product has a predetermined concentration. And in this fermenter 6, like the said embodiment, methane fermentation is made | formed by microorganisms (methane bacterium) under anaerobic conditions (methane fermentation process), this methane fermentation is completed in about two weeks, and the methane gas generated by fermentation 7 is sequentially recovered from the fermenter 6 and stored in a gas holder (not shown) (recovery step). In this way, the recovered methane gas is used as clean fuel energy.

また、この発酵により生成した消化物8は発酵槽6より取出された後、脱水機9に送られ、脱水残渣10と脱水ろ液11とに固液分離される。脱水残渣10はその後コンポスト化されて、肥料などに利用されたり、埋め立てや焼却処理される。   The digest 8 produced by this fermentation is taken out from the fermenter 6 and then sent to the dehydrator 9 where it is separated into a dehydrated residue 10 and a dehydrated filtrate 11. The dehydrated residue 10 is then composted and used as a fertilizer or landfilled or incinerated.

本実施形態によれば、先の実施形態のプロセスに比べ、加水分解工程前後での発酵不適物や非分解物の分別や分離工程が省略でき、また生分解性プラスチック以外の発酵不適物(通常のプラスチック類や金属類など)を加水分解工程に持ち込まなくてすむため、プロセス効率が優れているとともに、装置、機器の簡略化も図れることから、有機系廃棄物と生分解性プラスチックで構成される可燃ごみを処理対象とする場合においてはすこぶる有効なリサイクルプロセスとして推奨されるものである。   According to the present embodiment, compared to the process of the previous embodiment, the separation and separation steps of unsuitable fermentation products and non-degradable products before and after the hydrolysis step can be omitted, and unsuitable fermentation materials other than biodegradable plastics (usually normal) It is made up of organic waste and biodegradable plastics because the process efficiency is excellent and the equipment and equipment can be simplified. It is recommended as an extremely effective recycling process for combustible waste.

なお、上述した両実施形態ではいずれも有機系廃棄物の収集、回収用に使用される容器として生分解性プラスチック製の不定形のゴミ袋を用いた場合について説明したが、このゴミ袋に代えて定形の容器として使用されたものを対象としても勿論かまわない。
以下、本発明の有利な効果を実証するため、本発明の採用した加水分解工程におけるプロセス条件を中心に実験例を挙げて説明する。
(実施例1)
先ず、生分解性プラスチックであるポリ乳酸系材料の袋を用いた処理時間と加水分解効果の関係を実験、検討した結果を述べる。対象のポリ乳酸系材料からなる袋を蒸留水に10g/Lに懸濁したものを高温恒温槽に所定時間保持し、その後、室温の水に入れて急冷することにより処理時間を制御した。また、加水分解効果は加熱処理前後の固形分(SS;Suspended Solids)の減少率で表した。測定方法は下水道試験法(建設省、厚生省監修、1997年度版)に従い測定した。
In both of the above-described embodiments, the case where an amorphous garbage bag made of biodegradable plastic is used as a container used for collecting and collecting organic waste has been described. Needless to say, it may be a container that has been used as a regular container.
Hereinafter, in order to demonstrate the advantageous effects of the present invention, description will be given by giving experimental examples focusing on the process conditions in the hydrolysis step employed by the present invention.
(Example 1)
First, the results of experiments and examinations on the relationship between the treatment time using a bag of polylactic acid material, which is a biodegradable plastic, and the hydrolysis effect will be described. A bag made of the target polylactic acid material suspended in distilled water at 10 g / L was kept in a high-temperature thermostatic bath for a predetermined time, and then placed in water at room temperature to rapidly cool the treatment time. Moreover, the hydrolysis effect was represented by the reduction rate of solid content (SS; Suspended Solids) before and after the heat treatment. The measuring method was measured according to the sewer test method (supervised by the Ministry of Construction and the Ministry of Health and Welfare, 1997 edition).

図3にこの実験結果による処理時間と固形分減少率の関係を示す。この図から3分間の加水分解処理で50%の固形分重量が減少し、また5分間の処理で70%、さらに10分間の処理で98%の固形分が減少していることが分かる。一方、10分以上の処理時間では固形分減少量が95%前後でほぼ一定であり、そして60分間を超えると固形分減少量は逆に低下していることが知れる。さらに、120分処理の結果では固形分の減少率が80%に低下し、このとき、加水分解液に褐色の着色が認められた。従って、処理時間を長くすることはエネルギー的に不利であるとともに、上述のような障害が認められたことから、本発明では加水分解時間は5分間〜60分間とし、好ましくは10〜30分間とする。   FIG. 3 shows the relationship between the processing time and the solid content reduction rate according to the experimental results. From this figure, it can be seen that 50% solids weight is reduced by hydrolysis for 3 minutes, 70% is reduced by treatment for 5 minutes, and 98% solids is reduced by treatment for 10 minutes. On the other hand, it is known that the solid content reduction amount is almost constant at around 95% in the treatment time of 10 minutes or more, and the solid content reduction amount is conversely lowered after 60 minutes. Furthermore, as a result of the 120-minute treatment, the solid content reduction rate was reduced to 80%, and at this time, brown coloration was observed in the hydrolyzate. Therefore, it is energetically disadvantageous to lengthen the treatment time and the above-mentioned obstacles are recognized. Therefore, in the present invention, the hydrolysis time is 5 minutes to 60 minutes, preferably 10 to 30 minutes. To do.

(実施例2)
次に、加水分解温度と固形分減少率の関係を述べる。対象のポリ乳酸系材料からなる袋を蒸留水に10g/Lに懸濁したものをオートクレーブを用いて所定温度に置いて30分間処理した。また、加水分解効果は加熱処理前後の固形分(SS;Suspended Solid)の減少率で表した。測定方法は下水道試験法(建設省、厚生省監修、1997年度版)に従い測定した。
(Example 2)
Next, the relationship between the hydrolysis temperature and the solid content reduction rate will be described. A bag made of the target polylactic acid material suspended in distilled water at 10 g / L was placed at a predetermined temperature using an autoclave and treated for 30 minutes. Moreover, the hydrolysis effect was represented by the reduction rate of solid content (SS; Suspended Solid) before and after the heat treatment. The measuring method was measured according to the sewer test method (supervised by the Ministry of Construction and the Ministry of Health and Welfare, 1997 edition).

図4にこの実験結果による処理温度と固形分減少率の関係を示す。同図から100℃における加水分解処理では固形分減少率が5%と殆ど効果がないことが判明する。120℃処理では40%の固形分重量が減少し、150℃処理で80%減少していることが分かる。さらに、170℃以上では、95%の固形分減少率で効果が頭打ちとなっている。また、270℃の処理では、加水分解液に褐色の着色が認められた。従って、処理温度を高くすることはエネルギー的に不利であるとともに、上述のような障害が認められたことから、本発明では加水分解時間は120℃〜250℃とし、望ましくは150℃〜180℃とする。   FIG. 4 shows the relationship between the treatment temperature and the solid content reduction rate according to this experimental result. It can be seen from the figure that the hydrolysis treatment at 100 ° C. has almost no effect at a solid content reduction rate of 5%. It can be seen that the solid content weight of 40% is reduced by the treatment at 120 ° C., and is reduced by 80% by the treatment at 150 ° C. Furthermore, at 170 ° C. or higher, the effect reaches a peak at a solid content reduction rate of 95%. In the treatment at 270 ° C., brown color was observed in the hydrolyzate. Therefore, increasing the treatment temperature is disadvantageous in terms of energy, and the above-mentioned obstacles have been recognized. Therefore, in the present invention, the hydrolysis time is 120 ° C. to 250 ° C., preferably 150 ° C. to 180 ° C. And

(実施例3)
次いで、同様にポリ乳酸系材料の袋を用い、生分解性プラスチックの加水分解処理への希釈水量の効果を実験、検討した結果を述べる。対象のポリ乳酸系材料からなる袋10gに対して、蒸留水を1ml、10ml、100ml、1000ml加えて懸濁したものをオートクレーブを用いて170℃において30分間処理した。また、加水分解効果は加熱処理前後の固形分(SS;Suspended Solid)の減少率で表した。測定方法は下水道試験法(建設省、厚生省監修、1997年度版)に従い測定した。希釈水添加量と固形分減少率の関係を図5に示す。1mlの希釈水添加条件では殆ど加水分解効果は認められなかった。希釈水を10mlにした条件では75%の固形分が減少し液化(加水分解)した。さらに希釈水を100ml、1000mlとした条件では、ほぼ100%が加水分解された。従って、効果的な加水分解のために本発明では固形分含有量として50%(本実施例では10gポリ乳酸系材料、10ml水)以下になるよう希釈水の添加量を調整する必要がある。
(実施例4)
次に、加水分解処理の生分解性プラスチックのメタン発酵によるリサイクル効果についての実験、検討結果を述べる。対象のポリ乳酸系材料からなる袋を蒸留水に10g/Lに懸濁したものをオートクレーブを用いて170℃において30分間処理した。生分解性の効果は生化学的酸素要求量(BOD;biochemical oxygen demand)で評価した。リサイクル効果はメタン菌による発酵によって発生してくるバイオガス(メタン60%〜70%、二酸化炭素30〜40%)によって評価した。具体的な発酵条件としては、120ml容量のバイアル瓶に60mlの10,000mg/L濃度のメタン菌汚泥を入れ、そこに、無処理生分解性プラスチック試料、加水分解処理した同生分解性プラスチック試料、乳酸、酢酸を1kg・試料/m3の負荷で添加し、2週間、55℃において発生してくるバイオガスを定量した。その結果を表1に示す。
(Example 3)
Next, the results of experiments and examinations on the effect of dilution water amount on the hydrolysis treatment of biodegradable plastics using a bag of polylactic acid material will be described. To 10 g of a bag made of the target polylactic acid material, 1 ml, 10 ml, 100 ml, and 1000 ml of distilled water were added and suspended for 30 minutes at 170 ° C. using an autoclave. Moreover, the hydrolysis effect was represented by the reduction rate of solid content (SS; Suspended Solid) before and after the heat treatment. The measuring method was measured according to the sewer test method (supervised by the Ministry of Construction and the Ministry of Health and Welfare, 1997 edition). FIG. 5 shows the relationship between the amount of diluted water added and the solid content reduction rate. Under the condition of adding 1 ml of diluted water, almost no hydrolysis effect was observed. Under the condition where the dilution water was 10 ml, the solid content of 75% decreased and liquefied (hydrolyzed). Furthermore, almost 100% was hydrolyzed under the conditions where the dilution water was 100 ml and 1000 ml. Therefore, for effective hydrolysis, it is necessary to adjust the amount of dilution water added so that the solid content is 50% or less (10 g polylactic acid-based material, 10 ml water in this embodiment).
Example 4
Next, we will describe the results of experiments and examinations on the recycling effect of hydrolyzed biodegradable plastics by methane fermentation. A bag made of the target polylactic acid material suspended in distilled water at 10 g / L was treated at 170 ° C. for 30 minutes using an autoclave. The biodegradability effect was evaluated by biochemical oxygen demand (BOD). The recycling effect was evaluated by biogas (methane 60% to 70%, carbon dioxide 30 to 40%) generated by fermentation with methane bacteria. As specific fermentation conditions, 60 ml of 10,000 mg / L methane bacteria sludge is placed in a 120 ml capacity vial, and there is an untreated biodegradable plastic sample and a hydrolyzed biodegradable plastic sample. Then, lactic acid and acetic acid were added at a load of 1 kg / sample / m 3 , and biogas generated at 55 ° C. was quantified for 2 weeks. The results are shown in Table 1.

Figure 2005095729
注1) バイオガスはメタン菌によって発生したメタン、二酸化炭素、水素などのガスの総量であり、おおよそ65%程度がメタンと考えられる。
Figure 2005095729
Note 1) Biogas is the total amount of methane, carbon dioxide, hydrogen and other gases generated by methane bacteria, and about 65% is considered to be methane.

表1から、無処理のものでは、BODが20mg/Lであり殆ど生分解性がないことが分かる。また、メタン発酵によるバイオガスの発生量も0.01L/g・試料と非常に低い。   From Table 1, it can be seen that the untreated sample has a BOD of 20 mg / L and almost no biodegradability. In addition, the amount of biogas generated by methane fermentation is as low as 0.01 L / g · sample.

一方、本発明による加水分解処理を行うと、BOD値が6550mg/Lになり生分解性が高まることがわかる。また、メタン発酵による対象試料重量あたりのバイオガス発生量も0.56L/g・試料となった。この数値は対照実験として実施した酢酸や乳酸の有機酸のメタン発酵から発生してくるバイオガス量と整合している。従って、熱処理による加水分解でポリ乳酸系材料からポリ乳酸などの有機酸等が生成され、その有機酸をメタン菌がバイオガス化したものと推測される。   On the other hand, when the hydrolysis treatment according to the present invention is performed, the BOD value becomes 6550 mg / L and it is understood that biodegradability is improved. In addition, the amount of biogas generated by the methane fermentation per target sample weight was also 0.56 L / g · sample. This figure is consistent with the amount of biogas generated from methane fermentation of organic acids such as acetic acid and lactic acid as a control experiment. Accordingly, it is presumed that an organic acid such as polylactic acid is generated from the polylactic acid-based material by hydrolysis by heat treatment, and the organic acid is converted to biogas by the organic acid.

以上のように、無処理では殆どメタン菌によってリサイクル(バイオガス化に続くエネルギー回収)されなかった生分解性プラスチックが、加水分解により、ほぼ全量がバイオガスとしてリサイクルされることが分かる。
(実施例5)
続いて、ポリ乳酸系材料以外の生分解性プラスチックに対する加水分解のメタン発酵への効果を確認した結果を表2に示す。材料には、多糖類系のものとポリカプロラクトン系のものを用いた。加水分解処理はそれぞれの材料からなるゴミ袋を蒸留水に10g/Lに懸濁したものをオートクレーブを用いて170℃において30分間処理した。また、生分解性評価、リサイクル効果とも実施例4に従った。どちらの材料も無処理の系では、生分解性およびリサイクル効果が低い。対して、加水分解を行った系では生分解性、リサイクル効果とも向上した。また、それらのバイオガスの発生量は、ほぼ、実施例4のポリ乳酸系材料の結果と整合している。
As described above, it can be seen that biodegradable plastic that was hardly recycled (energy recovery following biogasification) without treatment was recycled almost entirely as biogas by hydrolysis.
(Example 5)
Subsequently, Table 2 shows the results of confirming the effect of hydrolysis on biodegradable plastics other than polylactic acid materials on methane fermentation. The materials used were polysaccharides and polycaprolactones. In the hydrolysis treatment, waste bags made of the respective materials were suspended in distilled water at 10 g / L and treated at 170 ° C. for 30 minutes using an autoclave. The biodegradability evaluation and the recycling effect were in accordance with Example 4. Both materials have low biodegradability and recyclability in an untreated system. On the other hand, biodegradability and recycling effect were improved in the hydrolyzed system. In addition, the amount of biogas generated is almost consistent with the result of the polylactic acid material of Example 4.

Figure 2005095729
注1)多糖類系生分解性プラスチックにはキトサン/セルロース/でんぷん系の材料を使用した。
Figure 2005095729
Note 1) Chitosan / cellulose / starch materials were used for polysaccharide biodegradable plastics.

(実施例6)
40L容量のゴミ袋で分別回収された生ゴミのメタン発酵のベンチスケール実験による排出廃棄物の減容効果、同減量効果、さらにバイオガス発生量の増量効果を示す。メタン発酵は40L容量のポリ乳酸系の生分解性プラスチック製のゴミ袋に収集した厨芥を処理した。発酵不適物を分別後に水道水で2倍希釈して発酵槽へ投入した。発酵槽は1.5m3容量のものを用い、55℃の発酵温度で、滞留時間20日で処理した。有機物負荷は4.5kg・有機物/m3・日であった。
Example 6
Demonstrates the effects of volume reduction and reduction of discharged waste, and the effect of increasing the amount of biogas generated by bench-scale experiments of methane fermentation of garbage collected and collected in a 40L garbage bag. In the methane fermentation, the collected litter was treated in a 40-liter polylactic acid-based biodegradable plastic garbage bag. After fractionating unsuitable fermentation, it was diluted twice with tap water and charged into the fermenter. A fermenter having a capacity of 1.5 m 3 was used and treated at a fermentation temperature of 55 ° C. for a residence time of 20 days. The organic load was 4.5 kg · organic matter / m 3 · day.

生ゴミの比重は0.5kg/Lであった。ゴミ袋1袋の重さは50gであった。同ゴミ袋の容積は1Lであった。メタン発酵による生ゴミからのバイオガス発生量は0.6L/gdry・生ゴミであった。ゴミ袋以外の発酵不適物混入率は15%であった。発酵不適物の比重は0.5kg/Lであった。   The specific gravity of the raw garbage was 0.5 kg / L. The weight of one garbage bag was 50 g. The volume of the garbage bag was 1L. The amount of biogas generated from the garbage by methane fermentation was 0.6 L / gdry · garbage. The mixing rate of unsuitable fermentation materials other than garbage bags was 15%. The specific gravity of the unsuitable fermentation product was 0.5 kg / L.

この実験結果を表3〜5にまとめて示す。   The experimental results are summarized in Tables 3-5.

Figure 2005095729
Figure 2005095729

Figure 2005095729
Figure 2005095729

Figure 2005095729
Figure 2005095729

これらの表から、廃棄物の容積の減容効果は12%であり、また、廃棄物重量の減量効果は1.2%であることが分かる。バイオガス増量効果は0.3%であった。本発明では、廃棄物の減容に特に効果があることが知れる。   From these tables, it can be seen that the volume reduction effect of the waste is 12% and the weight reduction effect of the waste weight is 1.2%. The effect of increasing the biogas was 0.3%. In the present invention, it is known that the volume reduction of waste is particularly effective.

本発明によれば、前述の技術的効果を達成することにより、廃棄物処理分野並びにプラスチック分野における地球環境問題の改善に大きく資することができ、これら重要産業分野の技術的進歩と産業発展に貢献し得るものである。   According to the present invention, by achieving the above-mentioned technical effects, it can greatly contribute to the improvement of global environmental problems in the waste treatment field and the plastic field, and contribute to the technical progress and industrial development of these important industrial fields. It is possible.

本発明の典型的な実施形態に係る有機系廃棄物のリサイクルプロセスを示す工程概要図である。It is process outline | summary figure which shows the recycling process of the organic waste which concerns on typical embodiment of this invention. 本発明の別の実施形態に係る有機系廃棄物のリサイクルプロセスを示す工程概要図である。It is process outline | summary figure which shows the recycling process of the organic waste which concerns on another embodiment of this invention. 本発明に係る加水分解処理の効果を実験・調査した結果を示すもので、生分解性プラスチック(ポリ乳酸系材料)の袋を用いた処理時間と固形分減少率の関係を表すグラフである。It is the graph which shows the result of having experimented and investigated the effect of the hydrolysis process which concerns on this invention, and showing the relationship between the processing time using the bag of biodegradable plastics (polylactic acid-type material), and solid content reduction | decrease rate. 本発明に係る加水分解処理の効果を実験・調査した結果を示すもので、生分解性プラスチック(ポリ乳酸系材料)の袋を用いた加水分解温度と固形分減少率の関係を表すグラフである。It is a graph showing the result of experiment and investigation of the effect of the hydrolysis treatment according to the present invention, and showing the relationship between the hydrolysis temperature and the solid content reduction rate using a biodegradable plastic (polylactic acid-based material) bag. . 本発明に係る加水分解処理の効果を実験・調査した結果を示すもので、生分解性プラスチック(ポリ乳酸系材料)の袋を用いた希釈水量(添加量)と固形分減少率の関係を表すグラフである。This shows the results of experiments and investigations on the effect of the hydrolysis treatment according to the present invention, and shows the relationship between the amount of diluted water (added amount) using a bag of biodegradable plastic (polylactic acid-based material) and the solid content reduction rate. It is a graph. メタン発酵技術を用いた従来の有機系廃棄物のリサイクルプロセスの工程概要図である。It is a process outline figure of the recycling process of the conventional organic waste which used methane fermentation technology.

符号の説明Explanation of symbols

1:可燃ゴミ 2:分別機 3:発酵適性物 4:発酵不適物
5:調整槽 6:メタン発酵槽 7:メタンガス 8:消化物
9:脱水機 10:脱水残渣 11:脱水ろ液
21:加水分解装置 22:スクリーン 23:分解生成物
24:非分解物 25:希釈水
1: Combustible waste 2: Sorting machine 3: Fermentation suitable material 4: Fermentation inappropriate material 5: Adjustment tank 6: Methane fermentation tank 7: Methane gas 8: Digested material 9: Dehydrator 10: Dehydrated residue 11: Dehydrated filtrate 21: Water Decomposition equipment 22: Screen 23: Decomposition product 24: Non-decomposition product 25: Diluted water

Claims (12)

生分解性プラスチックが混在する有機系廃棄物に希釈水を添加して加水分解を行う加水分解工程と、加水分解された分解生成物を嫌気性条件化でメタン発酵を行うメタン発酵工程と、前記発酵により生成したメタンガスを回収する回収工程と、からなる生分解性プラスチックを含む有機系廃棄物の処理方法。   A hydrolysis step of performing hydrolysis by adding dilution water to organic waste containing biodegradable plastic, a methane fermentation step of performing methane fermentation under anaerobic conditions on the hydrolyzed decomposition product, and A recovery process for recovering methane gas produced by fermentation, and a method for treating organic waste containing biodegradable plastic. 生分解性プラスチックが混在する有機系廃棄物を、発酵適性物と、生分解性プラスチックを含む発酵不適物に分別する分別工程と、前記発酵不適物に希釈水を添加して加水分解を行う加水分解工程と、前記発酵適性物と加水分解された分解生成物とを嫌気性条件下でメタン発酵を行うメタン発酵工程と、前記発酵により生成したメタンガスを回収する回収工程と、からなる生分解性プラスチックを含む有機系廃棄物の処理方法。   Separation process for separating organic waste containing biodegradable plastic into fermentable material and unsuitable fermented material containing biodegradable plastic, and adding hydrolysis water to the unsuitable fermented material for hydrolysis A biodegradability comprising a decomposition step, a methane fermentation step in which methane fermentation is performed under anaerobic conditions, and a recovery step in which methane gas generated by the fermentation is recovered. A method for treating organic waste containing plastics. 前記加水分解工程の後に、加水分解された分解生成物から残留する発酵不適物を分離する分離工程を加えた各工程からなる前記請求項1又は請求項2に記載の生分解性プラスチックを含む有機系廃棄物の処理方法。   The organic material containing the biodegradable plastic according to claim 1 or 2, comprising a separation step of separating a fermentation unsuitable product remaining from the hydrolyzed decomposition product after the hydrolysis step. Of waste treatment. 前記メタン発酵工程に先立ち、前記加水分解された分解生成物及び/又は前記発酵適性物のメタン発酵工程への投入濃度を調整する調整工程を加えた各工程からなる前記請求項1〜請求項3のいずれかに記載の生分解性プラスチックを含む有機系廃棄物の処理方法。   Prior to the methane fermentation step, the hydrolyzed decomposition products and / or the adjustment steps for adjusting the concentration of the fermentable material into the methane fermentation step are added. The processing method of the organic waste containing the biodegradable plastic in any one of. 前記生分解性プラスチックが有機系廃棄物用の容器として使用されたものである前記請求項1〜請求項4のいずれかに記載の生分解性プラスチックを含む有機系廃棄物の処理方法。   The processing method of the organic waste containing the biodegradable plastic according to any one of claims 1 to 4, wherein the biodegradable plastic is used as a container for organic waste. 前記有機系廃棄物用の容器がポリエステル系樹脂の材料からなる前記請求項5に記載の生分解性プラスチックを含む有機系廃棄物の処理方法。   The processing method of the organic waste containing the biodegradable plastic according to claim 5, wherein the organic waste container is made of a polyester resin material. 前記生分解性プラスチックが食品系包装容器として使用されたものである前記請求項1〜請求項4のいずれかに記載の生分解性プラスチックを含む有機系廃棄物の処理方法。   The processing method of the organic waste containing the biodegradable plastic according to any one of claims 1 to 4, wherein the biodegradable plastic is used as a food packaging container. 前記加水分解工程の温度が120℃〜250℃である請求項1〜請求項7のいずれかに記載の生分解性プラスチックを含む有機系廃棄物の処理方法。   The temperature of the said hydrolysis process is 120 to 250 degreeC, The processing method of the organic waste containing the biodegradable plastic in any one of Claims 1-7. 前記加水分解工程の処理時間が5分〜60分であるである請求項1〜請求項8のいずれかに記載の生分解性プラスチックを含む有機系廃棄物の処理方法。   The processing method of the organic waste containing the biodegradable plastic according to any one of claims 1 to 8, wherein a treatment time of the hydrolysis step is 5 minutes to 60 minutes. 前記加水分解工程の前記発酵不適物に対する希釈水の添加が、その固形分含有量が50%以下になるように行われるものである請求項1〜請求項9のいずれかに記載の生分解性プラスチックを含む有機系廃棄物の処理方法。   The biodegradability according to any one of claims 1 to 9, wherein the addition of dilution water to the unsuitable fermentation product in the hydrolysis step is performed such that the solid content is 50% or less. A method for treating organic waste containing plastics. 前記加水分解工程の希釈水として前記メタン発酵工程で排出された消化物の脱水分離液を用いる請求項1〜請求項10のいずれかに記載の生分解性プラスチックを含む有機系廃棄物の処理方法。   The processing method of the organic waste containing the biodegradable plastic in any one of Claims 1-10 which uses the dehydrated separation liquid of the digest discharged | emitted at the said methane fermentation process as the dilution water of the said hydrolysis process. . 生分解性プラスチックが混在する有機系廃棄物を発酵適性物と生分解性プラスチックを含む発酵不適物に分別する分別手段と、前記発酵不適物に希釈水を添加して加水分解を行う加水分解手段と、前記加水分解された分解生成物から残留する発酵不適物を分離する分離手段と、前記発酵適性物と加水分解された分解生成物とを嫌気性条件下でメタン発酵を行うメタン発酵手段と、前記発酵により生成したメタンガスを回収する回収手段と、を備えた生分解性プラスチックを含む有機系廃棄物の処理装置。
Separation means for separating organic waste mixed with biodegradable plastics into fermentable materials and unsuitable fermentation materials containing biodegradable plastics, and hydrolysis means for adding diluted water to the unsuitable fermentation materials and performing hydrolysis And separation means for separating unsuitable fermentation residue from the hydrolyzed decomposition product, and methane fermentation means for performing methane fermentation of the fermentation suitability and hydrolyzed decomposition product under anaerobic conditions And a recovery means for recovering the methane gas generated by the fermentation, and an organic waste processing apparatus including a biodegradable plastic.
JP2003330538A 2003-09-22 2003-09-22 Treatment method and treatment apparatus for organic type waste containing biodegradable plastic Pending JP2005095729A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003330538A JP2005095729A (en) 2003-09-22 2003-09-22 Treatment method and treatment apparatus for organic type waste containing biodegradable plastic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003330538A JP2005095729A (en) 2003-09-22 2003-09-22 Treatment method and treatment apparatus for organic type waste containing biodegradable plastic

Publications (1)

Publication Number Publication Date
JP2005095729A true JP2005095729A (en) 2005-04-14

Family

ID=34459473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003330538A Pending JP2005095729A (en) 2003-09-22 2003-09-22 Treatment method and treatment apparatus for organic type waste containing biodegradable plastic

Country Status (1)

Country Link
JP (1) JP2005095729A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006224062A (en) * 2005-02-21 2006-08-31 Kurita Water Ind Ltd Methane fermentation method and equipment
WO2007102488A1 (en) * 2006-03-07 2007-09-13 Koichi Nakamura Process for the decomposition and reclamation of synthetic resins having ester-linkage structures
JP2008179713A (en) * 2007-01-25 2008-08-07 Real Plastic Kk Method for recycling polylactic acid resin
JP2009154126A (en) * 2007-12-27 2009-07-16 Osaka Gas Co Ltd Method for improving settleability of sludge
JP2010144102A (en) * 2008-12-19 2010-07-01 Osaka Gas Co Ltd Method for degrading polylactic acid
WO2011152611A3 (en) * 2010-06-04 2012-02-02 주식회사 부강테크 Method and equipment for producing biogas in which technique for improving quality of injected raw materials is applied
JP2015040265A (en) * 2013-08-22 2015-03-02 国立大学法人豊橋技術科学大学 Polylactic acid-based resin for use in anaerobic digestion process and method for producing the same
US9174912B2 (en) 2010-06-30 2015-11-03 Osaka Gas Co., Ltd. Polylactic acid decomposition method
WO2016027805A1 (en) * 2014-08-18 2016-02-25 つくば農業生産農事株式会社 Processing method for methane fermentation raw material from food waste, and methane fermentation raw material
CN114990166A (en) * 2022-07-04 2022-09-02 沈阳航空航天大学 Method for producing methane by wet oxidation-anaerobic digestion of polylactic acid plastic garbage
JP7177563B1 (en) * 2022-06-30 2022-11-24 株式会社エキシーエンジニアリング Methane fermentation raw material generator, methane generator, power generation system, fluid generator, methane fermentation raw material generation method, methane generation method, power generation method, and fluid generation method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05123664A (en) * 1991-01-25 1993-05-21 Zousui Sokushin Center Treatment of waste and waste water
JPH1142472A (en) * 1997-05-29 1999-02-16 Toto Ltd Garbage waste water treating device and its operation
JP2000015231A (en) * 1998-07-06 2000-01-18 Kubota Corp Method for methane fermentation of organic waste
JP2001137812A (en) * 1999-11-11 2001-05-22 Ataka Construction & Engineering Co Ltd Waste treatment method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05123664A (en) * 1991-01-25 1993-05-21 Zousui Sokushin Center Treatment of waste and waste water
JPH1142472A (en) * 1997-05-29 1999-02-16 Toto Ltd Garbage waste water treating device and its operation
JP2000015231A (en) * 1998-07-06 2000-01-18 Kubota Corp Method for methane fermentation of organic waste
JP2001137812A (en) * 1999-11-11 2001-05-22 Ataka Construction & Engineering Co Ltd Waste treatment method

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006224062A (en) * 2005-02-21 2006-08-31 Kurita Water Ind Ltd Methane fermentation method and equipment
JP4626332B2 (en) * 2005-02-21 2011-02-09 栗田工業株式会社 Methane fermentation treatment method and apparatus
WO2007102488A1 (en) * 2006-03-07 2007-09-13 Koichi Nakamura Process for the decomposition and reclamation of synthetic resins having ester-linkage structures
US7985778B2 (en) 2006-03-07 2011-07-26 Koichi Nakamura Method for decomposing and reclaiming synthetic resin having ester bond in the composition structure
KR101360777B1 (en) 2006-03-07 2014-02-11 닛토덴코 가부시키가이샤 Process for the decomposition and reclamation of synthetic resins having ester-linkage structures
JP2008179713A (en) * 2007-01-25 2008-08-07 Real Plastic Kk Method for recycling polylactic acid resin
JP2009154126A (en) * 2007-12-27 2009-07-16 Osaka Gas Co Ltd Method for improving settleability of sludge
JP2010144102A (en) * 2008-12-19 2010-07-01 Osaka Gas Co Ltd Method for degrading polylactic acid
KR101216193B1 (en) * 2010-06-04 2012-12-27 주식회사 부강테크 Appliance and Method for producing bio-gas employing technology for improving quality of raw material fed thereto
CN102933508A (en) * 2010-06-04 2013-02-13 富康科技株式会社 Method and apparatus for producing bio-gas employing technology for improving quality of raw material fed thereto
US8506809B2 (en) 2010-06-04 2013-08-13 Boo Kang Tech Co., Ltd. Method and apparatus for producing bio-gas employing technology for improving quality of raw material fed thereto
WO2011152611A3 (en) * 2010-06-04 2012-02-02 주식회사 부강테크 Method and equipment for producing biogas in which technique for improving quality of injected raw materials is applied
US9174912B2 (en) 2010-06-30 2015-11-03 Osaka Gas Co., Ltd. Polylactic acid decomposition method
JP2015040265A (en) * 2013-08-22 2015-03-02 国立大学法人豊橋技術科学大学 Polylactic acid-based resin for use in anaerobic digestion process and method for producing the same
WO2016027805A1 (en) * 2014-08-18 2016-02-25 つくば農業生産農事株式会社 Processing method for methane fermentation raw material from food waste, and methane fermentation raw material
JP7177563B1 (en) * 2022-06-30 2022-11-24 株式会社エキシーエンジニアリング Methane fermentation raw material generator, methane generator, power generation system, fluid generator, methane fermentation raw material generation method, methane generation method, power generation method, and fluid generation method
WO2024005134A1 (en) * 2022-06-30 2024-01-04 株式会社エキシーエンジニアリング Methane fermentation starting material production device, methane generating device, power generating system, liquid generating device, methane fermentation starting material production method, methane generating method, power generating method, and liquid generating method
CN114990166A (en) * 2022-07-04 2022-09-02 沈阳航空航天大学 Method for producing methane by wet oxidation-anaerobic digestion of polylactic acid plastic garbage

Similar Documents

Publication Publication Date Title
Muhammad Nasir et al. Production of biogas from solid organic wastes through anaerobic digestion: a review
Mshandete et al. Anaerobic batch co-digestion of sisal pulp and fish wastes
US20080193994A1 (en) Systems and methods for the co-treatment of solid organic waste and sewage
CN110902861A (en) Kitchen waste treatment and resource utilization method and treatment system
NZ545688A (en) A microbial consortium and use thereof for liquefaction of solid organic matter
JP2005095729A (en) Treatment method and treatment apparatus for organic type waste containing biodegradable plastic
Briassoulis et al. Organic recycling of post-consumer/industrial bio-based plastics through industrial aerobic composting and anaerobic digestion-Techno-economic sustainability criteria and indicators
JP4626332B2 (en) Methane fermentation treatment method and apparatus
JP2001300486A (en) Apparatus and method for methane fermentation treatment of organic waste
JP4864339B2 (en) Organic waste processing apparatus and processing method
JP2004058010A (en) Method of treating organic waste containing molded article made of biodegradable resin
JP2004237246A (en) Methane fermentation treating apparatus and method
US20050252261A1 (en) System and method for composting-free disposal of organic wastes
JP2003103292A (en) Combined treatment method of wastewater and waste derived from organism
KR100286180B1 (en) Biogas method and plant of living waste and animal carcass
CN1274824A (en) Incineration-catalytic hydrolysis combined fast city refuse treating process
JP2006255537A (en) Method and apparatus for treating garbage and paper refuse
JP4231801B2 (en) Method for solubilizing polylactic acid biodegradable plastics
JP2005206735A (en) Method for recovering energy from polylactic acid-based biodegradable plastic
JPH09249474A (en) Composting treatment of organic waste containing biodegradable plastic
CN111112282A (en) Improved biochemical treatment method for kitchen waste
EP1557403B1 (en) System and method for composting-free disposal of organic wastes
JP4454436B2 (en) Organic waste treatment method and apparatus using peroxidase-producing plant
Rajameena et al. A Critical Review on Biochemical Process of Anaerobic Digestion
Zarroli Assessment of the production of bioplastics from industrial wastewater from fish canning industry

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070918

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080129