JP2004058010A - Method of treating organic waste containing molded article made of biodegradable resin - Google Patents

Method of treating organic waste containing molded article made of biodegradable resin Download PDF

Info

Publication number
JP2004058010A
JP2004058010A JP2002223237A JP2002223237A JP2004058010A JP 2004058010 A JP2004058010 A JP 2004058010A JP 2002223237 A JP2002223237 A JP 2002223237A JP 2002223237 A JP2002223237 A JP 2002223237A JP 2004058010 A JP2004058010 A JP 2004058010A
Authority
JP
Japan
Prior art keywords
biodegradable resin
organic waste
waste containing
enzyme
molded product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002223237A
Other languages
Japanese (ja)
Inventor
Shizuo Hattori
服部 静夫
Hiroshige Sugiyama
杉山 博茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2002223237A priority Critical patent/JP2004058010A/en
Publication of JP2004058010A publication Critical patent/JP2004058010A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/105Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with enzymes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of efficiently performing an anaerobic biodegradation treatment of an organic waste containing a molded article of a biodegradable resin. <P>SOLUTION: When the organic waste containing the molded articles made of the biodegradable resin such as polycaprolactone refuse bags, is treated by an anaerobic biodegradation method, a biodegradable resin decomposition enzyme, such as a lipase, or a microorganism producing the enzyme is added to the organic waste containing the molded articles made of the biodegradable resin, and the organic waste is pretreated. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、生分解性樹脂成形物を含む有機廃棄物の嫌気性生分解法による処理方法に関するものである。
【0002】
【従来の技術】
近年、排出されている有機廃棄物のうち、生ゴミだけでも年間二千トン以上にも達し、そのほとんどは焼却処理されている。しかしながら焼却処理に関しては、環境汚染、埋め立て地などの最終処分場の残余容積、処理費用の高騰で見直す動きがあり、循環型社会形成に向けての取組みが進められている。その一つの取組みとして、生ゴミや農畜産系廃棄物を高温好気的発酵処理により肥料や堆肥などの原材料へ再利用するコンポスト処理が注目を集めている。ところが都市型の生ゴミについては、肥料や堆肥への適性やそれを受入れる農業のキャパシティの面でコンポスト処理では問題があるので、バイオガス取得による循環系を形成する、メタン発酵処理法が注目されている。
【0003】
一方、生分解性樹脂は、プラスチック廃棄物の処理問題に対応して、低エネルギーで循環型回収が可能な生物学的分解処理法が適用可能な樹脂として、種々の用途開発が進められている。その一例として生分解性樹脂製の生ゴミ回収袋が挙げられるが、この生ゴミ回収袋はそのままコンポスト化施設に投入しても、生ゴミと共にそのままコンポスト化できるというメリットがあり、普及が期待されている。更には生ゴミの有する臭気を抑制するという働きもあることが知られている(特開2000−239085等)。
【0004】
【発明が解決しようとする課題】
都市型生ゴミの回収において生分解性樹脂製の生ゴミ回収袋を使用して生ゴミと共に生物学的分解を行うことが期待されるが、メタン発酵処理法に代表される嫌気性生分解条件では、コンポスト化施設等のような高温好気発酵処理と異なり、生分解性樹脂の分解挙動が著しく劣ることが報告されている。例えばJ.Biotechnol.86(2001)p113では、比較的生分解性が高いとされる化学合成系生分解性樹脂ポリカプロラクトン(以下PCLと略す)でも分解は非常に遅いことが報告されている。一方、生分解の速いポリヒドロキシブチレート(以下PHBと略す)の場合は成形性に劣ることが知られている(工業材料Vol.49 No.10(2001)62頁等)。
本発明は、生分解性樹脂製成形物を含む有機廃棄物を効率的に嫌気性生分解処理する方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明者らは上記問題点を解決するため鋭意研究を重ねた結果、生分解性樹脂製生ゴミ袋等の成形物を含む有機廃棄物に生分解性樹脂分解酵素を添加し、生分解性樹脂を分解、若しくは崩壊させることによりメタン発酵処理法においても生分解性樹脂を生ゴミ処理袋として適用できることを見い出した。
すなわち本発明は、生分解性樹脂製成形物を含む有機廃棄物を嫌気性生分解法にて処理する方法において、該生分解性樹脂製成形物を含む有機廃棄物に、生分解性樹脂分解酵素またはその酵素を生成する微生物を添加し前処理することを特徴とする生分解性樹脂製成形物を含む有機廃棄物の処理方法である。
【0006】
また、本発明の好ましい態様は生分解性樹脂製成形物がポリエステル系樹脂又はセルロース系樹脂より選ばれた樹脂を成形したものであることを特徴とする上記の生分解性樹脂製成形物を含む有機廃棄物の嫌気性生分解処理方法である。
また、本発明の好ましい態様は生分解性樹脂分解酵素がリパーゼ、エステラーゼ、セルラーゼより選ばれた酵素であることを特徴とする上記の生分解性樹脂製成形物を含む有機廃棄物の嫌気性生分解処理方法である。
【0007】
【発明の実施の形態】
本発明における生分解性樹脂とは、コンポスト化施設、活性汚泥、土壌あるいは水系等の自然環境下で生化学的に分解される樹脂である。本発明の生分解性樹脂は、微生物産生系、化学合成系、天然系に分けることができる。微生物生産系の生分解性樹脂としては、PHBやPHBとパラヒドロキシバリレート(以下PBVと略す)の共重合体を挙げることが出来る。
【0008】
化学合成系の生分解性樹脂としては、ポリ乳酸(以下PLAと略す)、PCL、ポリブチレンサクシネート(以下PBSと略す)、ポリブチレンアジペート/サクシネート(PBSA)、ポリブチレンサクシーネート・カーボネート変性タイプ、ポリエチレンサクシネート(PES)、ポリブチレンサクシネート/テレフタレート(PBST)、ポリブチレンアジペート/テレフタレート(PBAT)、ポリブチレンスクシネート/アジペート/テレフタレート(PBSAT)、ポリビニルアルコール(PVA)等を挙げることができる。これらの共重合品やブレンド品も含まれる。
天然系としては、修飾デンプン、酢酸セルロース、キトサン等やこれらと化学合成系や微生物産生系の生分解性樹脂とのブレンド品が含まれる。
【0009】
本発明における上記生分解性樹脂製の成形物とは、例えば、生ゴミ処理袋をはじめとする使用後に回収や再利用が困難な用途の成形物であり、例えば、水切りネット、コップ、生鮮食品用トレイ、即席食品容器、ファーストフード容器、弁当箱や飲食店等の使い捨て箸、ナイフ、フォークなど食品分野での用途や、紙おむつ、生理用品など衛生用品の用途や衣服、クッション材、宿泊施設等の備品が挙げられる。また、環境中で使用される例としては、マルチフィルム、移植用苗ポット、釣り糸、魚網、疑似餌等を挙げることができる。
【0010】
本発明に使用する生分解性樹脂分解酵素としては、処理する生分解性樹脂の種類に依存するが、例えばPHB等に対しては、PHBデポリメラーゼ、3HB−オリゴマーハイドロラーゼが挙げられ、PLAに対してはプロティナーゼ K等が挙げられる。その他のポリエステルについては、リパーゼ、エステラーゼ等の添加が好ましい。また、デンプン、セルロース、キトサンについてはそれぞれ、アミラーゼ、セルラーゼ、キトサナーゼを添加するが、ブレンド品についてはそれぞれのコンポーネントに対する分解酵素を複数添加することが好ましい。またマンガンペルオキシダーゼ(特開平6−296949)、クチナーゼ(特開2002−65300)等も樹脂分解能を有しているのでこれらを上記酵素群と組合わせても良い。
【0011】
また、本発明においては、生分解性樹脂分解酵素に限らず、これらの酵素を生産する微生物の菌体を使用しても良い。上述の酵素を生産する微生物はもちろん、樹脂を分解すると報告されている微生物、例えば、Acinetobacter属細菌(特許第1168160)、Amycolatopsis属放線菌(特開平9−252791)、Arthrobacter属細菌、Comamonas属細菌(特許第2971757)、Trichosporon属酵母(特許第3054702)、Bacillus属細菌(特開平11−158318)、Bacteorides属細菌(特開平6−253865)、Microbispora属放線菌(特開2001−226518)、Pseudomonas属細菌(特許第2600115、特許第1002064)、Saccharopolyspora属放線菌(特開2001−128667)等を使用することができる。
【0012】
本発明における嫌気性生分解法としては、メタン発酵、乳酸発酵、水素発酵等有機物の生分解法が挙げられるが、メタン発酵が代表的である。メタン発酵は下水汚泥、屎尿、家畜糞尿、剪定枝や生ゴミ等の有機系廃棄物を嫌気発酵させ、バイオガスを得るもので、その中に約60%存在するメタンガス(他は炭酸ガス)を回収利用することを目的とした技術である。乳酸発酵は有機系廃棄物に、乳酸菌を接種して乳酸発酵さしめ、発酵産物である乳酸を回収するものであり、得られる乳酸は良質の肥料成分として、またPLAの合成原料として使用できる。また水素発酵は有機系廃棄物をある条件で嫌気発酵させ、得られる水素ガスを回収する技術であり、将来的な技術とされる(第36回日本水環境学会年会講演集(2002年)407頁)。
【0013】
生分解性樹脂成形体を含む有機廃棄物に生分解性樹脂分解酵素を投入して、生分解性樹脂成形体を分解、若しくは崩壊させる前処理は、メタン発酵を主とする嫌気性処理槽(メタン発酵槽)内で直接行っても良く、また前処理としてメタン発酵槽とは別の前処理槽内で行い、処理物をメタン発酵槽内に投入しても良い。
生分解性樹脂成形物を生分解性樹脂分解酵素で分解する前処理は、一般的な酵素が作用する条件である中性から弱アルカリ性(pH6〜8.5)、および中温域(30〜45℃)に保持して行うことが望ましい。しかしながらより酸性域やアルカリ性域でも、エステル結合の加水分解が促進されるので、もし酵素がこれらの条件で作用するなら生分解性ポリエステル樹脂の分解、若しくは崩壊が加速される。また酵素がより高温域(45〜70℃)で作用するなら生分解性樹脂のTgと処理温度の差は直接的に分解速度に影響を与えるため、高温で処理することが望ましい。また前処理をメタン発酵槽内で直接行う場合には、メタン発酵処理温度の45〜70℃に保持することが望ましい。
【0014】
生分解性樹脂分解酵素による生分解性樹脂成形体の処理は、メタン発酵に先立ち独立して行うことが一般的であるが、メタン発酵処理と同時に行うこともできる。また前記の場合、例えば好気可溶化処理を導入したメタン発酵プロセスでは、有機廃棄物の可溶化工程で生分解樹脂分解処理が開始され、その後非スラリー除去を経て酸生成工程を経てメタン発酵槽で処理されることが一般的である。
【0015】
【実施例】
以下、実施例を挙げて本発明を具体的に説明する。
(参考例1)
PCL樹脂(数平均分子量70,000)20gを80mlのクロロホルムに溶解後、太佑機械(株)製アプリケーターを用いて約150μmの厚さにキャストした。本フィルムを100℃、10分間加熱乾燥させた後、室温で放置し約30μmの厚さのフィルムを作製した。本フィルム 5gを5% リパーゼ溶液(東洋紡製LPL−311) 100mlに浸漬して、溶液を攪拌しつつ37℃で24時間インキュベートした。
24時間後に目視で観察したその結果、PCLフィルムは完全に形状が崩壊し、スラリー状の沈殿を形成した。
【0016】
(実施例1)
参考例1で作製したPCLフィルムを溶断シール器で袋状に加工し(20cm×20cm)、含水させたドッグフードを使用した模擬生ゴミ 300gを包んだ袋を袋ごと5% リパーゼ溶液 1000ml中に入れて37℃、24時間攪拌した。得られた液を1mmメッシュ網でろ過後、更に37℃、24時間攪拌した。1mmメッシュ網にはフィルム片は残存していなかった。ろ過液を1L ガラス製リアクターで37℃でメタン発酵せしめた。その結果、本処理装置15日間の運転でCOD除去率85%と、生分解性フィルムを使用しない時の運転状況と変わらないことが確認された。
【0017】
(比較例1)
参考例1で作製したPCLフィルムを溶断シール器で袋状に加工し(20cm×20cm)、含水させたドッグフードを使用した模擬生ゴミ 300gを包んだ袋を袋ごとイオン交換水 1000ml中に入れて37℃、24時間攪拌した。
24時間後に目視で観察したその結果、PCLフィルム製の袋は完全に形状を保持しており、メタン発酵のリアクターに供することができなかった。
【0018】
【発明の効果】
従来、有機廃棄物の嫌気性生分解処理を行う際に生分解性樹脂製成形物が有機廃棄物に混入した場合、生分解性樹脂製成形物の生分解が遅いために混入させることができなかった。しかし、本発明によれば、混入させても嫌気性生分解処理が可能になる。そのため、例えば、生分解性樹脂製の生ゴミ処理袋を使用することによって、都市型生ゴミを効率的に嫌気性生分解処理することができるので社会的に大きなメリットを生み出すことが出来る。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for treating an organic waste containing a biodegradable resin molded product by an anaerobic biodegradation method.
[0002]
[Prior art]
In recent years, only garbage alone has exceeded 2,000 tons of organic waste discharged annually, and most of it has been incinerated. However, regarding incineration, there is a movement to review due to environmental pollution, the remaining volume of final disposal sites such as landfills, and rising disposal costs, and efforts are being made to create a recycling-based society. As one of the efforts, composting, which reuses raw garbage and agricultural and livestock wastes as raw materials such as fertilizers and composts by high-temperature aerobic fermentation, has attracted attention. However, with regard to urban garbage, composting has problems in terms of suitability for fertilizer and compost and the capacity of agriculture to accept it, so methane fermentation, which forms a circulatory system by obtaining biogas, is attracting attention. Have been.
[0003]
On the other hand, biodegradable resins are being developed in various applications as a resin to which a biological decomposition method capable of recycling and recovering with low energy can be applied in response to the problem of treating plastic waste. . An example is a garbage collection bag made of biodegradable resin.The garbage collection bag has the merit that it can be composted with garbage as it is when it is put into a composting facility. ing. Furthermore, it is known that it also has a function of suppressing the odor of garbage (Japanese Patent Laid-Open No. 2000-239085).
[0004]
[Problems to be solved by the invention]
Biodegradation is expected to be performed together with garbage using garbage collection bags made of biodegradable resin in the collection of urban garbage, but anaerobic biodegradation conditions represented by the methane fermentation treatment method are expected. Report that the decomposition behavior of biodegradable resin is remarkably inferior to high temperature aerobic fermentation treatment such as composting facilities. For example, J. Biotechnol. 86 (2001) p113, it is reported that the decomposition of even a chemically synthesized biodegradable resin polycaprolactone (hereinafter abbreviated as PCL), which is considered to be relatively high in biodegradability, is extremely slow. On the other hand, it is known that polyhydroxybutyrate (hereinafter abbreviated as PHB), which is rapidly biodegradable, is inferior in moldability (industrial material Vol. 49 No. 10 (2001) p. 62, etc.).
An object of the present invention is to provide a method for efficiently performing an anaerobic biodegradation treatment on an organic waste including a molded product made of a biodegradable resin.
[0005]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the above problems, and as a result, added biodegradable resin-degrading enzyme to organic waste including molded products such as biodegradable resin garbage bags, By decomposing or disintegrating the resin, it has been found that the biodegradable resin can be applied as a garbage disposal bag also in the methane fermentation treatment method.
That is, the present invention provides a method of treating an organic waste containing a biodegradable resin molded product by an anaerobic biodegradation method, wherein the organic waste containing the biodegradable resin molded product is decomposed into biodegradable resin. This is a method for treating organic waste including a biodegradable resin molded product, which comprises pretreating by adding an enzyme or a microorganism that produces the enzyme.
[0006]
Further, a preferred embodiment of the present invention includes the above-mentioned biodegradable resin molded product, wherein the molded product made of a biodegradable resin is a product obtained by molding a resin selected from a polyester resin or a cellulose resin. An anaerobic biodegradation treatment method for organic waste.
In a preferred embodiment of the present invention, the biodegradable resin-degrading enzyme is an enzyme selected from lipase, esterase, and cellulase. This is a decomposition processing method.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
The biodegradable resin in the present invention is a resin that is biochemically decomposed in a natural environment such as a composting facility, activated sludge, soil, or an aqueous system. The biodegradable resin of the present invention can be classified into a microorganism production system, a chemically synthesized system, and a natural system. Examples of the biodegradable resin for the microorganism production system include PHB and a copolymer of PHB and parahydroxyvalerate (hereinafter abbreviated as PBV).
[0008]
Examples of the biosynthetic resin of the chemical synthesis system include polylactic acid (hereinafter abbreviated as PLA), PCL, polybutylene succinate (hereinafter abbreviated as PBS), polybutylene adipate / succinate (PBSA), and polybutylene succinate-carbonate modified Types, polyethylene succinate (PES), polybutylene succinate / terephthalate (PBST), polybutylene adipate / terephthalate (PBAT), polybutylene succinate / adipate / terephthalate (PBSAT), polyvinyl alcohol (PVA), etc. Can be. These copolymers and blends are also included.
Examples of the natural system include modified starch, cellulose acetate, chitosan, and the like, and blended products thereof with a biosynthetic resin of a chemical synthesis system or a microorganism production system.
[0009]
The molded product made of the biodegradable resin in the present invention is, for example, a molded product for use that is difficult to collect and reuse after use, such as a garbage disposal bag, and is, for example, a drainer net, a cup, and a fresh food. Trays, instant food containers, fast food containers, food applications such as disposable chopsticks, knives and forks such as lunch boxes and restaurants, uses for hygiene products such as disposable diapers and sanitary products, clothing, cushioning materials, accommodation facilities, etc. Equipment. Examples used in the environment include a multifilm, a seedling pot for transplantation, a fishing line, a fishnet, a pseudo bait, and the like.
[0010]
The biodegradable resin-degrading enzyme used in the present invention depends on the type of biodegradable resin to be treated. For example, for PHB and the like, PHB depolymerase, 3HB-oligomer hydrolase, and PLA can be used. On the other hand, proteinase K and the like can be mentioned. For other polyesters, it is preferable to add lipase, esterase and the like. Amylase, cellulase, and chitosanase are added to starch, cellulose, and chitosan, respectively, but it is preferable to add a plurality of degrading enzymes for each component to a blended product. Further, manganese peroxidase (Japanese Patent Application Laid-Open No. 6-296949), cutinase (Japanese Patent Application Laid-Open No. 2002-65300), and the like also have a resin decomposability, and may be combined with the above enzyme group.
[0011]
In the present invention, not only biodegradable resin-degrading enzymes, but also cells of microorganisms producing these enzymes may be used. Microorganisms that produce the above-mentioned enzymes, as well as microorganisms that are reported to degrade resins, such as Acinetobacter bacterium (Japanese Patent No. 1168160), Amycolatopsis actinomycetes (Japanese Unexamined Patent Publication No. 9-252791), Arthrobacter bacterium, and Comamonas bacterium (Japanese Patent No. 2971757), Trichosporon genus yeast (Patent No. 3054072), Bacillus genus bacteria (JP-A-11-158318), Bacteroides genus bacteria (JP-A-6-253865), Microbispora actinomycetes (JP-A-2001-226518), Pseudomonas Genus bacteria (Japanese Patent No. 26000115, Patent No. 1002064), Saccharopolyspora actinomycetes (JP-A-2001-128667) and the like. It is possible to use.
[0012]
Examples of the anaerobic biodegradation method in the present invention include biodegradation methods for organic substances such as methane fermentation, lactic acid fermentation, and hydrogen fermentation, and methane fermentation is typical. Methane fermentation is an anaerobic fermentation of organic wastes such as sewage sludge, human waste, livestock manure, pruned branches and garbage to obtain biogas, in which about 60% of methane gas (others is carbon dioxide) is present. It is a technology that aims to collect and use. Lactic acid fermentation involves inoculating organic waste with lactic acid bacteria and lactic acid fermentation to recover lactic acid as a fermentation product. The lactic acid obtained can be used as a high-quality fertilizer component and as a raw material for PLA synthesis. Hydrogen fermentation is a technology for anaerobic fermentation of organic waste under certain conditions to recover the resulting hydrogen gas, and is considered to be a future technology (The 36th Annual Meeting of the Japan Society on Water Environment (2002)) 407).
[0013]
The pretreatment for decomposing or disintegrating the biodegradable resin molded body by introducing the biodegradable resin-degrading enzyme into the organic waste containing the biodegradable resin molded body is performed in an anaerobic treatment tank (mainly methane fermentation). The treatment may be directly performed in a methane fermentation tank, or the pretreatment may be performed in a pretreatment tank different from the methane fermentation tank, and the processed product may be charged into the methane fermentation tank.
The pretreatment for decomposing the biodegradable resin molded product with the biodegradable resin-degrading enzyme includes neutral to weakly alkaline conditions (pH 6 to 8.5), which are conditions under which general enzymes act, and a medium temperature range (30 to 45). C). However, the hydrolysis of the ester bond is promoted even in a more acidic region or an alkaline region, so that if the enzyme acts under these conditions, the decomposition or disintegration of the biodegradable polyester resin is accelerated. If the enzyme acts in a higher temperature range (45 to 70 ° C.), the difference between the Tg of the biodegradable resin and the processing temperature directly affects the decomposition rate. When the pretreatment is performed directly in the methane fermentation tank, it is desirable to maintain the methane fermentation treatment temperature at 45 to 70 ° C.
[0014]
The treatment of the biodegradable resin molded article with the biodegradable resin-degrading enzyme is generally performed independently prior to the methane fermentation, but can be performed simultaneously with the methane fermentation treatment. In the above case, for example, in a methane fermentation process in which an aerobic solubilization treatment is introduced, a biodegradable resin decomposition treatment is started in a solubilization step of organic waste, and then a non-slurry removal and an acid generation step, followed by a methane fermentation tank. It is generally processed by.
[0015]
【Example】
Hereinafter, the present invention will be described specifically with reference to examples.
(Reference Example 1)
After dissolving 20 g of PCL resin (number average molecular weight 70,000) in 80 ml of chloroform, it was cast to a thickness of about 150 μm using an applicator manufactured by Taiyo Kikai Co., Ltd. This film was dried by heating at 100 ° C. for 10 minutes, and then allowed to stand at room temperature to produce a film having a thickness of about 30 μm. 5 g of this film was immersed in 100 ml of a 5% lipase solution (Toyobo LPL-311), and the solution was incubated at 37 ° C. for 24 hours with stirring.
As a result of visual observation after 24 hours, the PCL film completely collapsed in shape and formed a slurry-like precipitate.
[0016]
(Example 1)
The PCL film produced in Reference Example 1 was processed into a bag shape (20 cm × 20 cm) using a fusing sealer, and a bag wrapped with 300 g of simulated garbage using a hydrated dog food was put into a 5% lipase solution 1000 ml together with the bag. At 37 ° C. for 24 hours. After the obtained liquid was filtered through a 1 mm mesh net, it was further stirred at 37 ° C. for 24 hours. No film pieces remained on the 1 mm mesh net. The filtrate was methane fermented at 37 ° C. in a 1 L glass reactor. As a result, it was confirmed that the COD removal rate was 85% in the operation of the present processing apparatus for 15 days, which was the same as the operation state when the biodegradable film was not used.
[0017]
(Comparative Example 1)
The PCL film produced in Reference Example 1 was processed into a bag shape (20 cm × 20 cm) with a fusing sealer, and a bag wrapped with 300 g of simulated garbage using a hydrated dog food was put into 1000 ml of ion-exchanged water together with the bag. The mixture was stirred at 37 ° C for 24 hours.
As a result of visual observation after 24 hours, the bag made of the PCL film completely retained its shape and could not be supplied to the reactor for methane fermentation.
[0018]
【The invention's effect】
Conventionally, when a biodegradable resin molded product is mixed into organic waste when performing anaerobic biodegradation treatment of organic waste, the biodegradable resin molded product can be mixed due to slow biodegradation. Did not. However, according to the present invention, anaerobic biodegradation treatment becomes possible even when mixed. Therefore, for example, by using a garbage disposal bag made of a biodegradable resin, urban garbage can be efficiently subjected to anaerobic biodegradation treatment, so that great social benefits can be produced.

Claims (3)

生分解性樹脂製成形物を含む有機廃棄物を嫌気性生分解法にて処理する方法において、該生分解性樹脂製成形物を含む有機廃棄物に、生分解性樹脂分解酵素またはその酵素を生成する微生物を添加し前処理することを特徴とする生分解性樹脂製成形物を含む有機廃棄物の処理方法。In a method of treating an organic waste containing a biodegradable resin molded product by an anaerobic biodegradation method, the biodegradable resin-degrading enzyme or the enzyme is added to the organic waste containing the biodegradable resin molded product. A method for treating organic waste including a biodegradable resin molded product, comprising adding a microorganism to be produced and performing pretreatment. 生分解性樹脂製成形物がポリエステル系樹脂又はセルロース系樹脂を成形したものであることを特徴とする請求項1記載の処理方法。2. The processing method according to claim 1, wherein the biodegradable resin molded product is formed by molding a polyester resin or a cellulose resin. 生分解性樹脂分解酵素がリパーゼ、エステラーゼ、セルラーゼより選ばれた酵素であることを特徴とする請求項1記載の処理方法。The treatment method according to claim 1, wherein the biodegradable resin-decomposing enzyme is an enzyme selected from lipase, esterase, and cellulase.
JP2002223237A 2002-07-31 2002-07-31 Method of treating organic waste containing molded article made of biodegradable resin Pending JP2004058010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002223237A JP2004058010A (en) 2002-07-31 2002-07-31 Method of treating organic waste containing molded article made of biodegradable resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002223237A JP2004058010A (en) 2002-07-31 2002-07-31 Method of treating organic waste containing molded article made of biodegradable resin

Publications (1)

Publication Number Publication Date
JP2004058010A true JP2004058010A (en) 2004-02-26

Family

ID=31943046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002223237A Pending JP2004058010A (en) 2002-07-31 2002-07-31 Method of treating organic waste containing molded article made of biodegradable resin

Country Status (1)

Country Link
JP (1) JP2004058010A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010131528A (en) * 2008-12-04 2010-06-17 Toyo Seikan Kaisha Ltd Method of treating organic waste including biodegradable resin molding
JP2010138390A (en) * 2008-11-12 2010-06-24 Toyo Seikan Kaisha Ltd Solution and method for degrading easily degradable resin composition
JP2010138389A (en) * 2008-11-12 2010-06-24 Toyo Seikan Kaisha Ltd Method for degrading easily degradable resin composition
JP2011157483A (en) * 2010-02-01 2011-08-18 Toyo Seikan Kaisha Ltd Method for treating biodegradable resin
JP2011240272A (en) * 2010-05-19 2011-12-01 Toyo Seikan Kaisha Ltd Treatment device of waste containing biodegradable resin and treatment method of waste containing biodegradable resin
JPWO2010052805A1 (en) * 2008-11-07 2012-03-29 国立大学法人帯広畜産大学 Organic waste treatment system and method, and organic waste-derived fermentation broth modification method
US8501445B2 (en) 2008-10-27 2013-08-06 Toyo Seikan Kaisha, Ltd. Method for producing oligomer and/or monomer by degrading biodegradable resin
WO2015067619A3 (en) * 2013-11-05 2015-07-02 Carbios A method for degrading a plastic
US10287561B2 (en) 2014-10-21 2019-05-14 Carbios Polypeptide having a polyester degrading activity and uses thereof
US10385183B2 (en) 2014-05-16 2019-08-20 Carbios Process of recycling mixed PET plastic articles
US10508269B2 (en) 2015-03-13 2019-12-17 Carbios Polypeptide having a polyester degrading activity and uses thereof
US10626242B2 (en) 2014-12-19 2020-04-21 Carbios Plastic compound and preparation process
US10717996B2 (en) 2015-12-21 2020-07-21 Carbios Recombinant yeast cells producing polylactic acid and uses thereof
US10723848B2 (en) 2015-06-12 2020-07-28 Carbios Masterbatch composition comprising a high concentration of biological entities
US10767026B2 (en) 2016-05-19 2020-09-08 Carbios Process for degrading plastic products

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8501445B2 (en) 2008-10-27 2013-08-06 Toyo Seikan Kaisha, Ltd. Method for producing oligomer and/or monomer by degrading biodegradable resin
US9284432B2 (en) 2008-10-27 2016-03-15 Toyo Seikan Kaisha, Ltd. Method for degrading a readily-degradable resin composition
US8846355B2 (en) 2008-10-27 2014-09-30 Toyo Seikan Kaisha, Ltd. Method for degrading biodegradable resin
JPWO2010052805A1 (en) * 2008-11-07 2012-03-29 国立大学法人帯広畜産大学 Organic waste treatment system and method, and organic waste-derived fermentation broth modification method
JP5400792B2 (en) * 2008-11-07 2014-01-29 国立大学法人帯広畜産大学 Organic waste treatment system and method, and organic waste-derived fermentation broth modification method
JP2010138389A (en) * 2008-11-12 2010-06-24 Toyo Seikan Kaisha Ltd Method for degrading easily degradable resin composition
JP2010138390A (en) * 2008-11-12 2010-06-24 Toyo Seikan Kaisha Ltd Solution and method for degrading easily degradable resin composition
JP2010131528A (en) * 2008-12-04 2010-06-17 Toyo Seikan Kaisha Ltd Method of treating organic waste including biodegradable resin molding
JP2011157483A (en) * 2010-02-01 2011-08-18 Toyo Seikan Kaisha Ltd Method for treating biodegradable resin
JP2011240272A (en) * 2010-05-19 2011-12-01 Toyo Seikan Kaisha Ltd Treatment device of waste containing biodegradable resin and treatment method of waste containing biodegradable resin
WO2015067619A3 (en) * 2013-11-05 2015-07-02 Carbios A method for degrading a plastic
US10385183B2 (en) 2014-05-16 2019-08-20 Carbios Process of recycling mixed PET plastic articles
US10287561B2 (en) 2014-10-21 2019-05-14 Carbios Polypeptide having a polyester degrading activity and uses thereof
US10626242B2 (en) 2014-12-19 2020-04-21 Carbios Plastic compound and preparation process
US10508269B2 (en) 2015-03-13 2019-12-17 Carbios Polypeptide having a polyester degrading activity and uses thereof
US10723848B2 (en) 2015-06-12 2020-07-28 Carbios Masterbatch composition comprising a high concentration of biological entities
US11198767B2 (en) 2015-06-12 2021-12-14 Carbios Process for preparing a biodegradable plastic composition
US11802185B2 (en) 2015-06-12 2023-10-31 Carbios Masterbatch composition comprising a high concentration of biological entities
US10717996B2 (en) 2015-12-21 2020-07-21 Carbios Recombinant yeast cells producing polylactic acid and uses thereof
US10767026B2 (en) 2016-05-19 2020-09-08 Carbios Process for degrading plastic products
US11377533B2 (en) 2016-05-19 2022-07-05 Carbios Process for degrading plastic products

Similar Documents

Publication Publication Date Title
Jadaun et al. Biodegradation of plastics for sustainable environment
Cucina et al. The role of waste management in reducing bioplastics’ leakage into the environment: A review
Meereboer et al. Review of recent advances in the biodegradability of polyhydroxyalkanoate (PHA) bioplastics and their composites
Nandakumar et al. Bioplastics: A boon or bane?
Devi et al. The role of microbes in plastic degradation
Gioia et al. End of life of biodegradable plastics: composting versus Re/upcycling
JP2004058010A (en) Method of treating organic waste containing molded article made of biodegradable resin
Yang et al. Progresses in polystyrene biodegradation and prospects for solutions to plastic waste pollution
Sankhla et al. Fungal degradation of bioplastics: An overview
JP2007143542A (en) New microbial consortium and use thereof for liquefaction of solid organic matter
La Fuente et al. Biodegradable polymers: A review about biodegradation and its implications and applications
Thakur Screening of plastic degrading bacteria from dumped soil area
KR20120017710A (en) Method to produce fertilizer using garbage
Buragohain et al. Microbial degradation of waste: a review
Rambabu et al. Bioprocessing of plastics for sustainable environment: Progress, challenges, and prospects
JPH04168150A (en) Biodegradable plastic
KR100188446B1 (en) Method of degrading polymer
JP2000143868A (en) Method for decomposing aromatic-containing polyester, method for weight reduction processing of aromatic- containing polyester fiber, aromatic-containing polyester fiber, and degradation bacterium of aromatic- containing polyester
JP2005095729A (en) Treatment method and treatment apparatus for organic type waste containing biodegradable plastic
Belal Biodegradation of aliphatic-aromatic coplyester under thermophilic conditions
Islam et al. A Review on Biodegradations of Polymers and its Effect on Environment
JP4231801B2 (en) Method for solubilizing polylactic acid biodegradable plastics
Ku Marsilla et al. Potential Biodegradable Product from Dewatered Sludge
JP2005206735A (en) Method for recovering energy from polylactic acid-based biodegradable plastic
Sourkouni et al. Study of PLA pre-treatment, enzymatic and model-compost degradation, and valorization of degradation products to bacterial nanocellulose

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071101

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080306