JP2005093989A - Surface treatment method for printed circuit board - Google Patents

Surface treatment method for printed circuit board Download PDF

Info

Publication number
JP2005093989A
JP2005093989A JP2004219517A JP2004219517A JP2005093989A JP 2005093989 A JP2005093989 A JP 2005093989A JP 2004219517 A JP2004219517 A JP 2004219517A JP 2004219517 A JP2004219517 A JP 2004219517A JP 2005093989 A JP2005093989 A JP 2005093989A
Authority
JP
Japan
Prior art keywords
polyimide film
printed circuit
circuit board
ozone
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004219517A
Other languages
Japanese (ja)
Inventor
Kunihiko Koike
国彦 小池
Toshihiro Aida
敏広 相田
Hitoshi Habuka
等 羽深
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwatani International Corp
Original Assignee
Iwatani International Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwatani International Corp filed Critical Iwatani International Corp
Priority to JP2004219517A priority Critical patent/JP2005093989A/en
Publication of JP2005093989A publication Critical patent/JP2005093989A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Printed Wiring (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To promote high-density wiring packaging for a printed circuit board by improving affinity on the surface of a polyimide film. <P>SOLUTION: The printed circuit board in which at least a surface layer is composed of the polyimide film is exposed to ozone gas of 3 to 50 vol% at an ambient temperature from room temperature to 200°C and the surface of the polyimide film is chemically surface-modified so that affinity is improved. It is preferable that the ambient temperature is room temperature to 60°C, the concentration of the ozone gas is 15 to 30 vol%, and the chemical surface modification is performed at normal atmospheric pressure. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、電子機器に多用されるプリント基板の化学的表面修飾を行わせるための表面処理方法に関する。   The present invention relates to a surface treatment method for performing chemical surface modification of a printed circuit board frequently used in electronic equipment.

電子機器に用いられる半導体パッケージは必要な電子素子をプリント基板上に配列し、配線を介してそれらを接続することにより本来の機能を発揮するようになるのである。近年の情報通信技術・情報処理技術の発達に伴い、電子機器の高性能化と小型化が進められてきた。今後、特に携帯電話などのより一層の小型情報機器の実現のためには、集積回路から成る電子素子の高集積化だけではなく、それらを配列するプリント基板の一段の小型化の推進が必須の課題である。   A semiconductor package used in an electronic device exhibits its original function by arranging necessary electronic elements on a printed circuit board and connecting them via wiring. With the development of information communication technology and information processing technology in recent years, electronic devices have been improved in performance and size. In the future, in order to realize even more compact information devices such as mobile phones, it is essential not only to increase the integration of electronic elements composed of integrated circuits, but also to promote the miniaturization of printed circuit boards on which they are arranged. It is a problem.

プリント基板には、変形可能な(フレキシブル)基板として、ポリイミド(Polyimide)膜そのものが、また、ポリイミド膜が基板(シリコンウエハ)上に成膜されたものが用いられている。この場合、その表面に配列された電子素子間の配線には銅(Cu)が用いられるが、水溶液中で施されるメッキにより銅が配線されるのが一般的である。従って、ポリイミドと銅を強固に接着させなければならないが、本来、ポリイミドと銅の間に強い接着力を期待できないので、次のような工夫により接着性を向上する手段が従来から成されている。   As the printed circuit board, as a deformable (flexible) substrate, a polyimide film itself or a polyimide film formed on a substrate (silicon wafer) is used. In this case, copper (Cu) is used for wiring between the electronic elements arranged on the surface, but copper is generally wired by plating performed in an aqueous solution. Therefore, it is necessary to firmly bond polyimide and copper. However, since a strong adhesive force cannot be expected between polyimide and copper, means for improving adhesiveness has been conventionally made by the following devices. .

(1)エポキシ接着剤をポリイミド膜と銅の間に介在させる、
(2)ポリイミド表面をプラズマ処理・強い酸アルカリ処理などにより削って凹凸を形成させ、そこに銅をメッキすることにより凹凸に碇を下ろすように銅を食い込ませる(アンカー効果:例えば特許文献1参照)、
などである。
特開平09−157417
(1) An epoxy adhesive is interposed between the polyimide film and copper,
(2) The polyimide surface is shaved by plasma treatment, strong acid-alkali treatment, etc. to form irregularities, and copper is eroded into the irregularities by plating copper there (anchor effect: see Patent Document 1, for example) ),
Etc.
JP 09-157417 A

上述する従来の(1)の手段では、工程が余分にかかること、プリント基板の厚さ・体積が大きくなるため、プリント基板の集積度を上げるためには限界があるのが問題である。何となればポリイミド膜に配線した基板を例えば10枚以上貼り合わせて行く必要があるためである。
一方、(2)の手段では、表面に凹凸を設けることが必要条件なので、配線の幅が細かくなると凹凸の幅よりも細かい配線をする際にはパターン変形が生じる。従って、微細配線には限界があった。なお、(2)の効果には化学的効果が含まれていると考えられるが、凹凸が著しいために、微細化による高密度の配線実装展開の妨げになっていると思われる。
The conventional means (1) described above is problematic in that it takes extra steps and increases the thickness and volume of the printed circuit board, so that there is a limit to increasing the degree of integration of the printed circuit board. This is because, for example, ten or more substrates wired on the polyimide film must be bonded together.
On the other hand, in the means (2), since it is necessary to provide unevenness on the surface, if the width of the wiring is reduced, pattern deformation occurs when wiring is made finer than the width of the unevenness. Therefore, there is a limit to fine wiring. In addition, although it is thought that the effect of (2) includes a chemical effect, since unevenness | corrugation is remarkable, it is thought that it is preventing the high-density wiring mounting expansion | deployment by refinement | miniaturization.

このようなことから、従来の諸問題を解決する方法として、表面の凹凸を形成させることなく、或いは、表面の凹凸の大きさを配線の幅よりも明らかに小さく微細に抑えながら、ポリイミド膜表面の分子構造を変えること(化学的表面修飾)によって、銅とポリイミド膜の間の化学的結合力(化学的接着力)を強化する手段が最近になって斯界において着目され、その技術の開示が大いに期待されている。
ところで、銅とポリイミドの表面の接着力と親水性の間には明らかな相関が存在することが知られているところから、ポリイミド膜表面を親水化することは銅の接着力向上に直結する所以であるのは疑いのない処である。
Therefore, as a method for solving various conventional problems, the surface of the polyimide film is formed without forming surface irregularities or while suppressing the size of the surface irregularities to be clearly smaller than the width of the wiring. Recently, a means for enhancing the chemical bonding force (chemical adhesion force) between copper and a polyimide film by changing the molecular structure of the film (chemical surface modification) has attracted attention in this field, and the disclosure of the technology has been disclosed. Highly expected.
By the way, since it is known that there is a clear correlation between the adhesive force and hydrophilicity of the surface of copper and polyimide, hydrophilization of the polyimide film surface directly leads to an improvement in the adhesive force of copper. It is an unquestionable place.

かかる着目点に基づくものとして、何らかの方法によって表面荒れを極力抑制しながらポリイミド膜表面の化学的表面修飾を施すことにより親水性を向上させ、その状態が長期間に亘って安定に持続できる状態を形成し得る技術を開発することが、高密度配線及び高密度実装を推進する重要な鍵となるものである。   Based on these points of interest, the hydrophilicity is improved by applying chemical surface modification to the polyimide film surface while suppressing surface roughness as much as possible by some method, and the state where the state can be stably maintained over a long period of time. Developing a technology that can be formed is an important key for promoting high-density wiring and high-density packaging.

上記の課題を解決するためとして本発明者等は種々の実験及び化学的検討を重ねた結果、ここに本発明を完成するに至ったものであり、従って、本発明は、常温〜200℃の雰囲気温度下でオゾンガス濃度が3〜50vol%のオゾンガスを少なくとも表面層がポリイミド膜からなるプリント基板に暴露させ、該ポリイミド膜の表面に対し化学的表面修飾を行わせて親水性を向上させるようにすることを特徴とするプリント基板の表面処理方法を重要な手段とするものである。   In order to solve the above problems, the present inventors have conducted various experiments and chemical studies, and as a result, the present invention has been completed here. To improve the hydrophilicity by exposing ozone gas having an ozone gas concentration of 3 to 50 vol% under atmospheric temperature to a printed circuit board having at least a surface layer made of a polyimide film and performing chemical surface modification on the surface of the polyimide film. Therefore, an important means is a surface treatment method for a printed circuit board.

本発明は又、前[0008]項に記載のプリント基板の表面処理方法において、雰囲気温度が常温〜60℃であり、オゾンガス濃度が15〜30vol%であり、常圧下で化学的表面修飾を行わせる構成としたことを重要な手段とするものである。   The present invention also provides the method for surface treatment of a printed circuit board according to the previous [0008] item, wherein the ambient temperature is normal temperature to 60 ° C., the ozone gas concentration is 15 to 30 vol%, and chemical surface modification is performed under normal pressure. It is an important means to have a configuration that can be applied.

本発明は又、前々[0008]項又は前[0009]項に記載のプリント基板の表面処理方法において、ポリイミド膜の表面に対しClF3によるハロゲン保護処理を施した後、該ポリイミド膜の表面に対し化学的表面修飾を行わせる構成としたことを重要な手段とするものである。 The present invention also provides the surface treatment method for a printed circuit board according to [0008] or [0009], wherein the surface of the polyimide film is subjected to a halogen protection treatment with ClF 3 on the surface of the polyimide film. Therefore, it is an important means that chemical surface modification is performed.

このような本発明によれば、比較的高濃度のオゾンガスをポリイミド膜に暴露することによって、ポリイミド膜表面の親水性を飛躍的に向上できて、液滴に対するぬれ性を現す接触角を例えば70度から30度まで小さくすることが可能となったのである。即ち、Cuに対する接着力を増強できるのである。 According to the present invention as described above, by exposing the polyimide film to a relatively high concentration of ozone gas, the hydrophilicity of the polyimide film surface can be drastically improved, and the contact angle exhibiting the wettability with respect to the droplet is set to 70, for example. It became possible to reduce the angle from 30 degrees to 30 degrees. That is, the adhesive force to Cu can be enhanced.

さらに本発明によれば化学的表面修飾を施したにも拘らず、ポリイミド膜表面の荒れを最低限に抑制できて、最悪でも極微細なピットの形成に留められることから、微細高密度配線の実現を果たし得るのである。しかも、親水化処理したポリイミド膜表面は工業的な取扱期間を超える長い期間に亘って安定性が図れることから、簡易な手段でかつ低コストの下での高密度配線及び高密度実装を実現できる。   In addition, according to the present invention, the surface roughness of the polyimide film can be suppressed to the minimum despite the chemical surface modification, and the formation of extremely fine pits can be suppressed at the worst. Realization can be achieved. Moreover, since the surface of the polyimide film subjected to hydrophilic treatment can be stable over a long period exceeding the industrial handling period, it is possible to realize high-density wiring and high-density mounting with simple means and low cost. .

本発明の化学的表面修飾処理方法は、ポリイミド膜表面の親水性を簡単な手段で向上できてCuに対する接着力を増強させることが可能であり、さらに表面の荒れを極力防いで粗大凹凸化させないので、従来にない微細なプリント基板配線を精度良く形成できる。従って、従来不可能とされていた極微細な銅配線を形成可能となり、高密度実装を実現できる。   The chemical surface modification treatment method of the present invention can improve the hydrophilicity of the polyimide film surface by a simple means and can enhance the adhesion to Cu, and further prevents the surface from being roughed as much as possible to prevent rough surface irregularities. Therefore, it is possible to accurately form a fine printed circuit board wiring that has not been conventionally obtained. Therefore, it is possible to form extremely fine copper wiring, which has been impossible in the past, and to realize high-density mounting.

例えば、メッキ法を応用した公知の電解堆積法を用いることにより、均一な厚さのポリイミド膜を作製し、該ポリイミド膜により形成されてなるプリント基板を試料として、常圧下で気密に保持したチャンバー内の支持台上にポリイミド膜の表面が上面になるように載せ、このチャンバー内にオゾンガス濃度及び保持温度を調節可能とした高濃度のオゾンガスを30分間供給してポリイミド膜に暴露させ、該ポリイミド膜表面に対し化学的表面修飾を行わせた。   For example, by using a known electrolytic deposition method to which a plating method is applied, a polyimide film having a uniform thickness is produced, and a printed circuit board formed by the polyimide film is used as a sample and a chamber that is kept airtight under normal pressure. The polyimide film is placed on the support stand so that the surface of the polyimide film becomes the upper surface, and ozone gas concentration and holding temperature that can be adjusted are supplied into the chamber for 30 minutes to expose the polyimide film. Chemical surface modification was performed on the membrane surface.

この場合、高濃度のオゾンガスを所要時間安定して供給するには、例えば、本出願人が先に特開2002−68712号公報により提案してなる装置が用いられる。この装置は、オゾン発生器で発生させたオゾンガスを冷却されている吸着剤に大気圧状態で飽和吸着させる吸着工程と、吸着剤を収容している吸着筒内を供給オゾンガスの分圧まで減圧排気する精製工程と、吸着筒内を冷却状態及び減圧状態を維持したまま、抽気状態下のオゾン消費設備(本実施形態の場合は前記気密チャンバー)に連通させて圧力差によって所定の流量で高濃度オゾンを供給する脱離工程とで構成される。   In this case, in order to stably supply high-concentration ozone gas for a required time, for example, an apparatus previously proposed by the present applicant in Japanese Patent Laid-Open No. 2002-68712 is used. This device has an adsorption process in which the ozone gas generated by the ozone generator is saturated and adsorbed to the cooled adsorbent at atmospheric pressure, and the inside of the adsorption cylinder containing the adsorbent is decompressed to the partial pressure of the supplied ozone gas. High concentration at a predetermined flow rate by a pressure difference by communicating with the ozone consuming equipment (in the case of the present embodiment, the airtight chamber in this embodiment) while maintaining the cooling state and the reduced pressure state inside the adsorption cylinder. And a desorption process for supplying ozone.

前述するポリイミド膜表面への化学的表面修飾処理に際しては、オゾンガス濃度を3%、9%、14%、20%、30%、50%の6種の濃度毎に常温下において処理時間30分でテストした。その結果は、図1に示す通りである。   In the above-described chemical surface modification treatment on the polyimide film surface, the treatment time is 30 minutes at room temperature for each of six concentrations of ozone gas concentration of 3%, 9%, 14%, 20%, 30%, and 50%. Tested. The result is as shown in FIG.

図1から判るように、処理ガスとしてのオゾンガスの濃度が高い程、オゾン暴露後の各試料表面における液滴の接触角が順次小さくなり、50.3度(3%)に対して50%の場合で30.3度に小さくなることが判った。このように、接触角が小さくなるということは、ポリイミド膜表面への化学的表面修飾処理がより進んで親水性が向上してきていることを明らかにしている。   As can be seen from FIG. 1, the higher the concentration of ozone gas as the processing gas, the smaller the contact angle of droplets on the surface of each sample after exposure to ozone, and 50% for 50.3 degrees (3%). In some cases, it was found to be as small as 30.3 degrees. Thus, the smaller contact angle reveals that the chemical surface modification treatment on the surface of the polyimide film has further progressed and the hydrophilicity has been improved.

また、ポリイミド膜表面への化学的表面修飾処理に際して雰囲気温度がどのように影響するかについてテストしたところ、オゾンガス濃度20%のものでオゾン暴露の処理時間30分一定で比較した結果は図2に示される通りである。   In addition, when the effect of the atmospheric temperature on the chemical surface modification treatment on the polyimide film surface was tested, the result of comparison with a constant ozone treatment time of 30 minutes with an ozone gas concentration of 20% is shown in FIG. As shown.

図2によれば、常温の25℃から60℃まで上昇する過程では接触角が漸減してその後、100℃を経て180℃までは緩やかに減少することが判った。このように、ポリイミド膜表面への化学的表面修飾処理が25℃から60℃まではより一層進んで親水性が向上し、その後200℃程度までは温度の影響をあまり受けないことを明らかにしている。なお、このような傾向は、3%、9%、14%、30%、50%の5種の濃度の場合についても同様である。   According to FIG. 2, it was found that the contact angle gradually decreased in the process of increasing from 25 ° C. to 60 ° C., and then gradually decreased to 100 ° C. and then to 180 ° C. In this way, it has been clarified that the chemical surface modification treatment on the polyimide film surface proceeds further from 25 ° C. to 60 ° C. to improve the hydrophilicity, and is less affected by temperature until about 200 ° C. Yes. Such a tendency is the same in the case of 5 types of concentrations of 3%, 9%, 14%, 30%, and 50%.

なお、ポリイミド膜表面への化学的表面修飾処理を施すに際して、雰囲気温度を常温よりも高くなるよう加熱した温度一定状態(例えば180℃)の下でオゾンガス濃度を20%、40%の2種の濃度毎に処理時間20分でテストした。その結果は、図7に示す通りである。   When performing chemical surface modification treatment on the polyimide film surface, two kinds of ozone gas concentrations of 20% and 40% under a constant temperature state (for example, 180 ° C.) heated so that the ambient temperature is higher than normal temperature are used. Each concentration was tested with a treatment time of 20 minutes. The result is as shown in FIG.

この図7から判るように、処理ガスとしてのオゾンガスの濃度が高い程、オゾン暴露後の各試料表面における液滴の接触角がより小さくなることが明らかであり、このような傾向は、60℃、100℃の温度の場合についても同様である。   As can be seen from FIG. 7, it is clear that the higher the concentration of ozone gas as the processing gas, the smaller the contact angle of the droplets on the surface of each sample after exposure to ozone. The same applies to the case of a temperature of 100 ° C.

一方、オゾン暴露の処理時間と接触角との関係を常温下においてオゾン濃度14%の場合について調べたが、その結果が示されてなる図3によれば、30分の経過までは化学的表面修飾処理が比較的顕著に進行して、その後は最終限度の接触角に達するまで緩慢に進行する傾向が窺われるのであって、このような現象は3%、9%、20%、30%、50%の5種の濃度の場合についても同傾向を呈することが判っている。 On the other hand, the relationship between the ozone exposure treatment time and the contact angle was investigated for a case where the ozone concentration was 14% at room temperature. According to FIG. The modification process proceeds relatively remarkably and then tends to proceed slowly until the final limit contact angle is reached, and this phenomenon is 3%, 9%, 20%, 30%, It has been found that the same tendency is exhibited in the case of five concentrations of 50%.

上述する化学的表面修飾処理を行った場合において、ポリイミド膜表面の状態が如何のように変化しているかを顕微鏡的に観察したところ、図5及び図6にそれぞれ示す結果となった。図5は、オゾンガス濃度を変化させた場合におけるオゾン暴露後の各試料の表面凹凸態様を比較試料と対比して電子顕微鏡写真で示す状態説明図であって、(イ)はポリイミド膜生成直後の新品の表面、(ロ)は酸素を暴露した際のポリイミド膜表面、(ハ)は9%オゾンを暴露した際のポリイミド膜表面、(ニ)は14%オゾンを暴露した際のポリイミド膜表面、(ホ)は20%オゾンを暴露した際のポリイミド膜表面をそれぞれ示していて、何れも左側は5000倍、右側は10000倍の状態図である。   When the above-described chemical surface modification treatment was performed, it was observed microscopically how the state of the polyimide film surface changed, and the results shown in FIGS. 5 and 6 were obtained. FIG. 5 is a state explanatory view showing the surface unevenness of each sample after ozone exposure when the ozone gas concentration is changed, as compared with a comparative sample, in an electron micrograph. (B) is the polyimide film surface when 9% ozone is exposed, (d) is the polyimide film surface when 14% ozone is exposed, (E) shows the polyimide film surface when exposed to 20% ozone, respectively, and the left side is a state diagram of 5000 times on the left side and 10000 times on the right side.

また、図6は、雰囲気温度を変化させた場合におけるオゾン暴露後の各試料の表面凹凸態様を比較試料と対比して電子顕微鏡写真で示す状態説明図であって、(イ)は酸素を100℃下で暴露した際のポリイミド膜(比較試料)表面、(ロ)は20%オゾンを常温下で暴露した際のポリイミド膜表面、(ハ)は20%オゾンを60℃下で暴露した際のポリイミド膜表面、(ニ)は20%オゾンを100℃下で暴露した際のポリイミド膜表面、(ホ)は20%オゾンを180℃下で暴露した際のポリイミド膜表面をそれぞれ示していて、何れも左側は5000倍、右側は10000倍の状態図である。   FIG. 6 is a state explanatory view showing the surface unevenness of each sample after ozone exposure when the ambient temperature is changed, as compared with a comparative sample, in an electron micrograph. The surface of the polyimide film (comparative sample) when exposed at ℃, (b) is the surface of the polyimide film when exposed to 20% ozone at room temperature, and (c) is when the 20% ozone is exposed at 60 ° C. The polyimide film surface, (d) shows the polyimide film surface when 20% ozone is exposed at 100 ° C, and (e) shows the polyimide film surface when 20% ozone is exposed at 180 ° C. The left side is a state diagram of 5000 times and the right side is 10,000 times.

図5を参照して明らかであるが、オゾン濃度が高い程、表面の凹凸状態が密になりかつ個々の凹凸部が微細になっており、更に何れの場合でも1μmと極微小であり、従って、ポリイミド膜表面の親水性を向上してCuに対する接着力を増強させることが可能であり、さらに表面の大きい荒れを防いで粗大な凹凸を作らせないので、従来にない微細なプリント基板配線を精度良く形成できる。   As is apparent with reference to FIG. 5, the higher the ozone concentration, the denser the surface unevenness and the finer the individual unevenness, and in each case, the extremely small 1 μm. It is possible to improve the hydrophilicity of the polyimide film surface and enhance the adhesion to Cu, and further prevent the rough surface and prevent the formation of rough irregularities, so it is possible to create a fine printed circuit board wiring that has never been seen before It can be formed with high accuracy.

また、図6を参照すれば明らかなように、雰囲気温度が高い程、表面の凹凸状態が密になりかつ個々の凹凸部が微細になっており、更に何れの場合でも1μmと極微小であり、従って、ポリイミド膜表面の親水性を向上してCuに対する接着力を増強させることが可能である。なお、100℃及び180℃の場合は、60℃に比較して表面の凹凸状態が密になるものの、表面の荒れが僅かに大きくなる傾向が示されている。   Further, as apparent from FIG. 6, the higher the ambient temperature, the denser the surface unevenness and the finer the individual unevenness, and in each case, 1 μm is extremely small. Therefore, it is possible to enhance the adhesion to Cu by improving the hydrophilicity of the polyimide film surface. In addition, in the case of 100 degreeC and 180 degreeC, although the uneven | corrugated state of a surface becomes dense compared with 60 degreeC, the tendency for the surface roughness to become slightly large is shown.

以上の結果から、本発明に係るポリイミド膜表面の化学的表面修飾処理を行うに際して、雰囲気温度は常温〜200℃の範囲であれば有効であるが、60℃超過では高温保持のために処理コスト高となるところから、望ましくは常温〜60℃の範囲が実用的であり、また、オゾンガス濃度は3〜50%の範囲であれば有効であるが、15%未満では表面の凹凸状態のバラツキが大きくなる傾向があり、一方、30%超過では処理コスト高の点で不利であって、望ましくは15〜30%の範囲が実用的である。   From the above results, when performing the chemical surface modification treatment of the polyimide film surface according to the present invention, it is effective if the ambient temperature is in the range of room temperature to 200 ° C., but if it exceeds 60 ° C., the treatment cost for maintaining the high temperature is effective. From the point of being high, desirably the range from room temperature to 60 ° C. is practical, and the ozone gas concentration is effective if it is in the range of 3 to 50%. On the other hand, if it exceeds 30%, it is disadvantageous in terms of high processing cost, and a range of 15 to 30% is practical.

さらに、本発明に係るポリイミド膜表面の化学的表面修飾処理を行うに際して、処理雰囲気を減圧状態に保持するだけでなく、大気圧の常圧下でも有効な化学的表面修飾処理を実現できることが実験により判った。また、常温下でも問題なく所要の化学的表面修飾処理を行い得ることも判っている。 Furthermore, when performing the chemical surface modification treatment of the polyimide film surface according to the present invention, it is possible not only to maintain the treatment atmosphere in a reduced pressure state but also to realize an effective chemical surface modification treatment even under atmospheric pressure. understood. It has also been found that the required chemical surface modification treatment can be performed without problems even at room temperature.

さらにまた、ポリイミド膜表面に対し従来から行われているClF3によるハロゲン保護処理を施した後に、該ポリイミド膜表面に対しオゾン暴露に基づく化学的表面修飾を行わせることによっても、ポリイミド膜表面の親水性を向上させることが可能であり、この場合、ポリイミド膜表面の荒れがハロゲン保護処理を施さないものの場合に比してより改善されることが明らかであり、かかる態様も当然本発明の範囲に包含されるものである。 Furthermore, after the conventional halogen protection treatment with ClF 3 is performed on the polyimide film surface, the polyimide film surface is subjected to chemical surface modification based on ozone exposure, so that the polyimide film surface can be modified. It is clear that the hydrophilicity can be improved, and in this case, it is clear that the roughness of the polyimide film surface is improved as compared with the case where the halogen protective treatment is not performed. It is included in.

次いで、本発明に係るポリイミド膜表面の化学的表面修飾処理について、該処理の安定性がどの程度のものであるかを実際に測定した。その結果は図4に示される通りであり、未処理、オゾン処理、ClF3によるハロゲン保護処理+オゾン処理の各処理状態と接触角との関係を顕微鏡写真による水滴の態様を併せて経時的に示しているように、7日間の経過によっても接触角の増加程度、即ち、親水性の低下程度は約7%〜12%と僅かであって、親水化処理したポリイミド膜表面は工業的な取扱期間を超える比較的長い期間に亘って安定性が図れることが明らかである。 Next, the chemical surface modification treatment on the polyimide film surface according to the present invention was actually measured to determine the degree of stability of the treatment. The result is as shown in FIG. 4. The relationship between each treatment state of untreated, ozone treatment, halogen protection treatment with ClF 3 + ozone treatment and contact angle and the form of water droplets by micrograph is shown over time. As shown in the figure, even after 7 days, the increase in contact angle, that is, the decrease in hydrophilicity is only about 7% to 12%. It is clear that stability can be achieved over a relatively long period exceeding the period.

処理ガス(オゾンガス)の濃度を変化させた場合における処理ガスとオゾン暴露後の各試料表面における接触角との関係を比較試料と対比して示す棒グラフ線図。The bar graph diagram which shows the relationship between the contact angle in each sample surface after process gas and ozone exposure at the time of changing the density | concentration of process gas (ozone gas) with a comparative sample. 処理ガス(オゾンガス)濃度20%一定で雰囲気温度を変化させた場合における温度とオゾン暴露後の各試料表面における接触角との関係を比較試料と対比して示す棒グラフ線図。The bar graph diagram which shows the relationship between the temperature at the time of changing atmospheric temperature with process gas (ozone gas) density | concentration 20% constant, and the contact angle in each sample surface after ozone exposure as compared with a comparative sample. 処理ガス(オゾンガス)濃度14%の場合における処理時間と接触角との関係を示す経時線図。The time line diagram which shows the relationship between processing time and contact angle in the case of processing gas (ozone gas) concentration 14%. 未処理、オゾン処理、ClF3によるハロゲン保護処理+オゾン処理の各処理と接触角との関係を顕微鏡写真による水滴の態様と併せて経時的に示す説明図。Explanatory drawing which shows the relationship between each process of untreated, ozone treatment, halogen protection treatment with ozone + ClF 3 + ozone treatment, and the contact angle together with the form of water droplets by micrographs. 処理ガス(オゾンガス)濃度を変化させた場合におけるオゾン暴露後の各試料の表面凹凸態様を比較試料と対比して電子顕微鏡写真で示す状態説明図。State explanatory drawing which shows the surface uneven | corrugated aspect of each sample after ozone exposure in the case of changing process gas (ozone gas) density | concentration with an electron micrograph compared with a comparative sample. 処理ガス(オゾンガス)濃度一定で温度を変化させた場合におけるオゾン暴露後の各試料の表面凹凸態様を比較試料と対比して電子顕微鏡写真で示す状態説明図。State explanatory drawing which shows the surface unevenness | corrugation aspect of each sample after ozone exposure in the case of changing temperature by process gas (ozone gas) density | concentration constant with an electron micrograph compared with a comparative sample. 雰囲気温度180℃一定で処理ガス(オゾンガス)の濃度を変化させた場合における処理ガスとオゾン暴露後の各試料表面における接触角との関係を比較試料と対比して示す棒グラフ線図。The bar graph diagram which shows the relationship between the contact angle in each sample surface after process gas and ozone exposure at the time of changing the density | concentration of process gas (ozone gas) with atmospheric temperature constant 180 degreeC, and a comparison sample.

Claims (3)

常温〜200℃の雰囲気温度下でオゾンガス濃度が3〜50vol%のオゾンガスを少なくとも表面層がポリイミド膜からなるプリント基板に暴露させ、該ポリイミド膜の表面に対し化学的表面修飾を行わせて親水性を向上させるようにすることを特徴とするプリント基板の表面処理方法。   Exposing ozone gas having an ozone gas concentration of 3 to 50 vol% under an ambient temperature of normal temperature to 200 ° C. to a printed circuit board having at least a surface layer made of a polyimide film, the surface of the polyimide film is subjected to chemical surface modification to be hydrophilic. A method for surface treatment of a printed circuit board, characterized in that: 雰囲気温度が常温〜60℃であり、オゾンガス濃度が15〜30vol%であり、常圧下で化学的表面修飾を行わせる請求項1に記載のプリント基板の表面処理方法。   The surface treatment method for a printed circuit board according to claim 1, wherein the atmospheric temperature is from room temperature to 60 ° C, the ozone gas concentration is from 15 to 30 vol%, and chemical surface modification is performed under normal pressure. ポリイミド膜の表面に対しClF3によるハロゲン保護処理を施した後、該ポリイミド膜の表面に対し化学的表面修飾を行わせる請求項1又は2に記載のプリント基板の表面処理方法。 The surface treatment method for a printed circuit board according to claim 1 or 2, wherein the surface of the polyimide film is subjected to a halogen protection treatment with ClF 3 and then the surface of the polyimide film is chemically modified.
JP2004219517A 2003-08-04 2004-07-28 Surface treatment method for printed circuit board Pending JP2005093989A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004219517A JP2005093989A (en) 2003-08-04 2004-07-28 Surface treatment method for printed circuit board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003285736 2003-08-04
JP2004219517A JP2005093989A (en) 2003-08-04 2004-07-28 Surface treatment method for printed circuit board

Publications (1)

Publication Number Publication Date
JP2005093989A true JP2005093989A (en) 2005-04-07

Family

ID=34466747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004219517A Pending JP2005093989A (en) 2003-08-04 2004-07-28 Surface treatment method for printed circuit board

Country Status (1)

Country Link
JP (1) JP2005093989A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8580347B2 (en) 2007-11-01 2013-11-12 Iwatani Corporation Method for producing calcium phosphate complex

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05147157A (en) * 1991-03-04 1993-06-15 Matsushita Electric Works Ltd Electrical laminate
JPH08162758A (en) * 1994-12-07 1996-06-21 Murata Mfg Co Ltd Production of wiring board
JP2001319789A (en) * 2000-02-29 2001-11-16 Semiconductor Energy Lab Co Ltd Light emission device and its preparation method
JP2002246730A (en) * 2001-02-13 2002-08-30 Mitsubishi Electric Corp Method and system for desmearing printed wiring board

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05147157A (en) * 1991-03-04 1993-06-15 Matsushita Electric Works Ltd Electrical laminate
JPH08162758A (en) * 1994-12-07 1996-06-21 Murata Mfg Co Ltd Production of wiring board
JP2001319789A (en) * 2000-02-29 2001-11-16 Semiconductor Energy Lab Co Ltd Light emission device and its preparation method
JP2002246730A (en) * 2001-02-13 2002-08-30 Mitsubishi Electric Corp Method and system for desmearing printed wiring board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8580347B2 (en) 2007-11-01 2013-11-12 Iwatani Corporation Method for producing calcium phosphate complex

Similar Documents

Publication Publication Date Title
RU2573583C2 (en) Method for creeping corrosion reduction
US20090288870A1 (en) Wiring substrate and method of manufacturing the same
CN101409267A (en) Semiconductor device and method of manufacturing the same
US8088294B2 (en) Method for manufacturing printed circuit boards
KR101264673B1 (en) method for fabricating detail pattern by using soft mold
KR101019154B1 (en) manufacturing method or PCB
TW200629432A (en) Method of manufacturing a wiring substrate and an electronic instrument
KR20210039179A (en) Etchant for etching Ti-W film
JP2005093989A (en) Surface treatment method for printed circuit board
JP2007165651A (en) Recess formation method and electronic device
US20090162566A1 (en) Method for the selective coating of a surface with liquid
JP2000353866A (en) Manufacture of electronic component
WO2024093022A1 (en) Fine-line circuit board based on semi-additive process, preparation method therefor, surface treatment method, and use
TWI768029B (en) Manufacturing method of printed circuit board
KR20100105400A (en) Ceramic substrate metallization process
US20080179760A1 (en) Method for producing a device and device
TW200704306A (en) Method for forming via hole in substrate for flexible printed circuit board
JP7230908B2 (en) Etching solution for copper foil and method for producing printed wiring board using the same, etching solution for electrolytic copper layer and method for producing copper pillar using the same
JP6400146B2 (en) Structure and manufacturing method of structure
KR20110038462A (en) A method of manufacturing a printed circuit board
JP2019212653A (en) Method for manufacturing wiring board
JP2005347429A (en) Manufacturing method of printed circuit board
US6620735B2 (en) Method for processing substrates
JP2019029451A (en) Method of manufacturing semiconductor device manufacturing member
KR100636345B1 (en) Method for Surface Treatment of Tape-Type Semiconductor Device Using Plasma

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041225

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060908

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100115

A02 Decision of refusal

Effective date: 20100615

Free format text: JAPANESE INTERMEDIATE CODE: A02