JP2005093969A - Semiconductor device cooler - Google Patents

Semiconductor device cooler Download PDF

Info

Publication number
JP2005093969A
JP2005093969A JP2003365287A JP2003365287A JP2005093969A JP 2005093969 A JP2005093969 A JP 2005093969A JP 2003365287 A JP2003365287 A JP 2003365287A JP 2003365287 A JP2003365287 A JP 2003365287A JP 2005093969 A JP2005093969 A JP 2005093969A
Authority
JP
Japan
Prior art keywords
heat
heat pipe
housing
semiconductor element
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003365287A
Other languages
Japanese (ja)
Inventor
Takahiro Oda
貴弘 小田
Kazuhiro Kitagawa
和宏 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SCYTHE KK
TS Heatronics Co Ltd
Original Assignee
SCYTHE KK
TS Heatronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SCYTHE KK, TS Heatronics Co Ltd filed Critical SCYTHE KK
Priority to JP2003365287A priority Critical patent/JP2005093969A/en
Publication of JP2005093969A publication Critical patent/JP2005093969A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device cooler which efficiently dissipates heat generated from heating components such as CPU, etc. out of a frame to prevent heat from being stored in the frame. <P>SOLUTION: The cooler has a heating part composed of heating components such as CPU, etc. mounted on a board, etc. inserted in a frame. A heat pipe is closely contacted with the heating components and the frame to transport heat from the heating part to the frame, and the frame forms a dissipator. In the dissipator, the wall of a frame portion closely contacted with the heat pipe is removed and dissipation fins are mounted on the opposite side of the frame to the heat pipe, so that the heat pipe is closely contacted with the dissipation fins directly or through a heat conductive material. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、筐体内部に配設されたCPUなどの発熱部品を冷却するための電子機器用冷却装置に関する。  The present invention relates to an electronic device cooling apparatus for cooling a heat generating component such as a CPU disposed in a housing.

近年の半導体素子の発熱密度の増加及びそれを収納する筐体の小型化に伴い、筐体内での放熱が困難になってきている。例えば、パソコンに搭載されるCPUは、動作クロックの高速化、高集積化がなされて飛躍的に性能が向上している。しかしながら、このCPUは、高性能化されればされるほど、動作時における発熱量は一般的に多くなる。パソコンを製造するにあたって、このような高性能化されたCPUを採用するには、まず第1に、CPU等の発熱部品から発せられた熱を効率良く放熱させる手段、すなわち、熱対策を講じる必要がある。スーパーコンピュータなど、大量の熱を発生するプロセッサには水冷方式のものもあるが、この方式を汎用コンピュータに採用すれば、極めてコスト高となり、また、装置が大型化する虞があり、あまり現実的とはいえない。  With the recent increase in the heat generation density of semiconductor elements and the miniaturization of the housing for housing them, heat radiation within the housing has become difficult. For example, a CPU mounted on a personal computer has dramatically improved performance due to an increase in operating clock speed and integration. However, the higher the performance of this CPU, the greater the amount of heat generated during operation. In order to adopt such a high-performance CPU when manufacturing a personal computer, first of all, it is necessary to take measures to efficiently dissipate the heat generated from the heat generating parts such as the CPU, that is, to take measures against heat. There is. Some processors that generate a large amount of heat, such as supercomputers, are water-cooled. However, if this method is used in a general-purpose computer, the cost will be extremely high, and the size of the device may increase. That's not true.

そこで一般的に行われている冷却手段は、ヒート・シンクとクーラーという小さな強制空冷ファンとを組み合わせてCPU等の発熱部品に密着させて、発熱部品から発せられた熱を放出するようになっている。このような冷却手段に改良を試みたものとして、たとえば、特許文献1に開示されたCPU冷却構造がある。  Therefore, a commonly used cooling means is a combination of a heat sink and a small forced air cooling fan called a cooler that is closely attached to a heat generating component such as a CPU, and releases heat generated from the heat generating component. Yes. As an attempt to improve such cooling means, for example, there is a CPU cooling structure disclosed in Patent Document 1.

このCPU冷却構造によれば、アクティブヒートシンクとCPU表面との間に、高い熱伝導性を有し所要の撓み量を持った金属製冷却導板を挟装することで、AHSの固定用スプリング部材の変形量を吸収し、しかも、十分な熱伝導性を発揮できる、としている。  According to this CPU cooling structure, a metal cooling guide plate having high thermal conductivity and a required amount of deflection is sandwiched between the active heat sink and the CPU surface, thereby fixing the AHS fixing spring member. It is said that it can absorb the amount of deformation and exhibits sufficient thermal conductivity.

しかしながら、この先行技術は、アクティブヒートシンクとCPU表面との密着度を高めることで冷却性の向上を図るものであり、かかる技術的手段では、昨今の高性能化された発熱部品の発熱量に対応することはできない。かりに大型アクティブヒートシンクと大型のファンとを組み合わせれば、一見問題は解決するように思われるが、しかしながら以下の問題が惹起する。  However, this prior art is intended to improve the cooling performance by increasing the degree of adhesion between the active heat sink and the CPU surface, and such technical means can cope with the heat generation amount of recent high-performance heat-generating components. I can't do it. However, the combination of a large active heat sink and a large fan seems to solve the problem at first glance. However, the following problems are caused.

第1の問題点は、さらなる小型軽量化を目指す昨今のパソコンに対し、冷却装置を大型化することは実装エリアの確保が難しく、そもそも、小型軽量化という技術的課題と逆行することになり、とても採用できるものではない。  The first problem is that it is difficult to secure a mounting area to increase the size of the cooling device for the recent personal computers aiming for further miniaturization and weight reduction, which goes against the technical problem of miniaturization and weight reduction in the first place. It cannot be adopted very much.

第2の問題点は、仮に、冷却装置を大型化して採用したとしても、その技術的手段は旧来通りのため、ファン一体型ヒートシンクからの放熱は、パソコン内部の温度を上昇させ、他のユニット・部品などに影響を与える虞がある。電源部に設けられたファンのようにパソコン内を吹き抜けるファンが別途設けられていても、十分な冷却効果が得られるとは言い難く、また、このファンも大型化すればその駆動音や風きり音等が大きくなり、とても採用できるものではない。そこで、昨今、旧来の冷却手段から脱却し、ヒートパイプを採用した冷却手段が提案されてきている。  The second problem is that even if the cooling device is enlarged and adopted, the technical means is the same as before, so the heat from the fan-integrated heat sink raises the temperature inside the personal computer, and other units・ It may affect parts. Even if a fan that blows through the PC like a fan provided in the power supply section is provided separately, it is difficult to say that a sufficient cooling effect is obtained, and if this fan is enlarged, its driving sound and wind Sound becomes loud and cannot be adopted very much. Therefore, recently, a cooling means has been proposed in which the conventional cooling means is used and a heat pipe is used.

従来技術このヒートパイプを採用したものとして、たとえば、特許文献2に開示された携帯型電子機器の冷却制御方法および冷却装置と、特許文献3に開示されたコンピュータの冷却装置と、特許文献4に開示されたパソコンの冷却装置と、特許文献5に開示されたパソコンの冷却装置等がある。  Prior Art As an example of adopting this heat pipe, for example, a cooling control method and cooling device for a portable electronic device disclosed in Patent Document 2, a computer cooling device disclosed in Patent Document 3, and Patent Document 4 There are a disclosed personal computer cooling device, a personal computer cooling device disclosed in Patent Document 5, and the like.

まず、特許文献2に開示された携帯型電子機器の冷却制御方法および冷却装置には、ヒートパイプの一端(受熱部)が接続された金属ブロックと、熱拡散板、放熱板を介して該金属ブロックに一体的に固定されたCPU(パッケージ)と、ヒートパイプに他端(放熱部)が固定されパソコン側面に内装されたフィンとを備えて構成されたノートパソコンが開示されており、このノートパソコンは、ヒートパイプを介してCPU(パッケージ)から発せられた熱が駆動させたフィンによって外部放熱されるようなっている。  First, the portable electronic device cooling control method and cooling device disclosed in Patent Document 2 include a metal block to which one end (heat receiving portion) of a heat pipe is connected, a heat diffusion plate, and a heat dissipation plate. There is disclosed a notebook computer comprising a CPU (package) fixed integrally to a block and a fin that is fixed to the heat pipe with the other end (heat dissipating part) fixed to the side of the personal computer. The personal computer is radiated to the outside by fins driven by heat generated from a CPU (package) via a heat pipe.

特許文献3に開示されたコンピュータの冷却装置は、中央演算処理装置などの発熱部品の熱を、電源ファン下流に設けられたヒートシンクまでヒートパイプにより伝熱して放出し、伝動ファンからの送風によってコンピュータ外部へ放出するようになっている。  The cooling device for a computer disclosed in Patent Document 3 transfers heat from a heat-generating component such as a central processing unit by a heat pipe to a heat sink provided downstream of a power supply fan, and releases the computer by blowing air from the transmission fan. Released to the outside.

特許文献4に開示されたパソコンの冷却装置は、CPUに少なくとも2本のヒートパイプの一端部が熱授受可能に配設されると共に第2のヒートパイプの他端部が、パソコン本体とディスプレイとの連結個所の近傍に配設されたヒンジ機構に熱授受可能に配設され、第1ヒートパイプの他端部が前記ヒンジ機構から隔離してパソコン内に設けられたヒートシンクに熱授受可能に配設されており、CPUから発せられた熱は、ヒートパイプを介してヒートシンクに伝熱されてコンピュータ外部へ放出するようになっている。  In the personal computer cooling device disclosed in Patent Document 4, one end of at least two heat pipes is disposed in a CPU so as to be able to transfer heat, and the other end of the second heat pipe is connected to a personal computer main body, a display, The hinge mechanism disposed in the vicinity of the connecting portion of the first heat pipe is disposed so as to be able to transfer heat, and the other end of the first heat pipe is isolated from the hinge mechanism so that heat can be transferred to a heat sink provided in the personal computer. The heat generated from the CPU is transferred to the heat sink via the heat pipe and released to the outside of the computer.

特許文献5に開示されたパソコンの冷却装置は、筐体内部に配設された複数個の発熱部材をヒートパイプによって連絡すると共に、ヒートパイプ一端部を伝動ファンに隣接して設けられたヒートシンクに接続された構成になっており、発熱部材から発せられた熱は、ヒートパイプを介してヒートシンクに伝熱し伝動ファンによってコンピュータ外部へ放出するようになっている。
特開平10−308482号公報 特開2000−228594号公報 特開2000−250660号公報 特開2000−277963号公報 特開平11−67997号公報
A cooling device for a personal computer disclosed in Patent Document 5 connects a plurality of heat generating members disposed inside a housing by a heat pipe and a heat sink provided at one end of the heat pipe adjacent to a transmission fan. In this configuration, the heat generated from the heat generating member is transferred to the heat sink via the heat pipe and released to the outside of the computer by the transmission fan.
JP-A-10-308482 JP 2000-228594 A JP 2000-250660 A JP 2000-277963 A Japanese Patent Laid-Open No. 11-67997

しかしながら、これら従来技術で挙げた冷却手段は、いずれもヒートパイプ放熱部がパソコン筐体内部に配設されたファンに連絡された構成になっている。してみれば、この冷却手段ではパソコン内部に熱が蓄積される虞があり、他の部品への影響などを勘案すれば、極めて好適とは言い難い。  However, all of the cooling means mentioned in the prior art has a configuration in which the heat pipe heat dissipating part is communicated with a fan disposed inside the personal computer casing. As a result, there is a possibility that heat is accumulated in the personal computer in this cooling means, and it is difficult to say that it is extremely suitable if the influence on other components is taken into consideration.

そこで、本発明は、CPU等の発熱部品から発せられた熱を効率よくパソコン外部へ放熱させて、パソコン内部に熱が蓄積されることを防止できるパソコン冷却装置を提供することを目的とする。Accordingly, an object of the present invention is to provide a personal computer cooling device that can efficiently dissipate heat generated from a heat generating component such as a CPU to the outside of the personal computer to prevent heat from being accumulated inside the personal computer.

上記課題を解決するために、本発明における半導体素子冷却装置は、下記の技術的手段を講じた。
請求項1の発明によれば、筐体に内装された基板等に装着されるCPU等の発熱部品で構成された発熱部を有し、前記発熱部品と筐体にヒートパイプが密着し、該発熱部の熱をヒートパイプにより筐体まで輸送し、該筐体で放熱部を構成した。
請求項2の発明によれば、前記放熱部において、前記筐体のヒートパイプとは反対面に放熱フィンを取り付けた。該フィンとしてはコルゲートフィン等が考えられる。
請求項3の発明によれば、前記放熱部において、前記筐体のヒートパイプが密着する面を放熱フィンで構成した。該フィンとしてはコルゲートフィン等が考えられる。
請求項4の発明によれば、前記前記筐体のヒートパイプ及び放熱フィンが密着する面を熱伝導性素材で構成した。該フィンとしてはコルゲートフィン等がある。
請求項5の発明によれば、前記放熱部において、前記ヒートパイプが密着する部分の筐体部分の壁を取り除き、前記筐体のヒートパイプとは反対面に放熱フィンを取り付け、前記ヒートパイプと前記放熱フィンが直接もしくは熱伝導性素材を通して接触するようにした。熱伝導性素材としては、シリコングリースや熱伝導シート等がある。
請求項6の発明によれば、前記ヒートパイプとしてプレート型多孔細管ヒートパイプを使用した。プレート型多孔細管ヒートパイプとしてはアルミニウム系やマグネシウム系可曉性金属を押出し形成により成型し、該通路を蛇行や非蛇行等としたものを用いることができる。
請求項7の発明によれば、前記基板に装着されたCPU等の発熱部品に密着されているヒートパイプを基板端部でターンさせて前記筐体に密着させた。
In order to solve the above-described problems, the semiconductor element cooling apparatus according to the present invention employs the following technical means.
According to invention of Claim 1, it has a heat generating part comprised with heat generating parts, such as CPU with which a board etc. which were built in a case, etc. are equipped, a heat pipe adheres to the heat generating part and a case, The heat of the heat generating portion was transported to the housing by a heat pipe, and the heat radiating portion was constituted by the housing.
According to the invention of claim 2, in the heat radiating portion, a heat radiating fin is attached to a surface of the housing opposite to the heat pipe. Corrugated fins or the like can be considered as the fins.
According to invention of Claim 3, in the said thermal radiation part, the surface where the heat pipe of the said housing | casing closely_contact | adhered was comprised with the thermal radiation fin. Corrugated fins or the like can be considered as the fins.
According to invention of Claim 4, the surface with which the heat pipe and the radiation fin of the said housing | casing closely_contact | adhered was comprised with the heat conductive material. Examples of the fin include a corrugated fin.
According to the invention of claim 5, in the heat radiating portion, the wall of the portion of the housing where the heat pipe is in close contact is removed, and a heat radiating fin is attached to the surface opposite to the heat pipe of the housing, The heat radiating fins were brought into contact directly or through a heat conductive material. Examples of the heat conductive material include silicon grease and a heat conductive sheet.
According to the invention of claim 6, a plate-type perforated capillary heat pipe is used as the heat pipe. As the plate-type porous thin pipe heat pipe, it is possible to use an aluminum-based or magnesium-based flexible metal formed by extrusion and the passage is meandering or non-meandering.
According to the seventh aspect of the present invention, a heat pipe that is in close contact with a heat-generating component such as a CPU mounted on the substrate is turned at the end of the substrate to be in close contact with the housing.

本発明は以上のように構成したから、下記の有利な効果を奏する。
請求項1の発明によれば、筐体に内装された基板等に装着されるCPU等の発熱部品で構成された発熱部を有し、前記発熱部品と筐体にヒートパイプが密着し、該発熱部の熱をヒートパイプにより筐体まで輸送し、該筐体で放熱部を構成したことにより、筐体に熱を伝え筐体外に発熱することにより筐体内の温度を上げることがなくなり、筐体内の他の電子機器に高温になることによる障害の発生を抑えることができる。
請求項2の発明によれば、前記放熱部において、前記筐体のヒートパイプとは反対面に放熱フィンを取り付けたことにより、筐体外への放熱効率をさらにあげることができる。
請求項3の発明によれば、前記放熱部において、前記筐体のヒートパイプが密着する面を放熱フィンで構成した。このような構成にすることにより、筐体とフィン及び筐体とヒートパイプの2箇所の接触加工工程をフィンで構成された筐体とヒートパイプの一回の接触加工工程にすることができる。
請求項4の発明によれば、前記前記筐体のヒートパイプ及び放熱フィンが密着する面を熱伝導性素材で構成したことにより、筐体がヒートパイプから放熱フィンへのが熱抵抗になることを防ぐことができるようになる。
請求項5の発明によれば、前記放熱部において、前記ヒートパイプが密着する部分の筐体部分の壁を取り除き、前記筐体のヒートパイプとは反対面に放熱フィンを取り付け、前記ヒートパイプと前記放熱フィンが直接もしくは熱伝導性素材を通して接触するようにした。このような構成にすることにより、筐体の材質を熱伝導率の良い材質にする必要がなくなり、筐体の材質の選択肢が増え、さらにヒートパイプから直接フィンに熱伝導をすることができ、熱抵抗を極力減らすことができるようになる。
請求項6の発明によれば、前記ヒートパイプとしてプレート型多孔細管ヒートパイプを使用した。このような構成にすることにより、本件発明の半導体素子冷却装置は姿勢に影響されること無くあらゆる姿勢で良好な放熱を行うことができる。
請求項7の発明によれば、前記基板に装着されたCPU等の発熱部品に密着されているヒートパイプを基板端部でターンさせて前記筐体に密着させた。このようなこうせいにすることにより、基板に装着されている発熱素子と筐体が近接対面していない場合でも、筐体と近接対面している基板の裏側にヒートパイプにより最短経路で熱を移送し放熱することができる。
Since the present invention is configured as described above, the following advantageous effects are obtained.
According to invention of Claim 1, it has a heat generating part comprised with heat generating parts, such as CPU with which a board etc. which were built in a case, etc. are equipped, a heat pipe adheres to the heat generating part and a case, By transporting the heat of the heat generating part to the case by a heat pipe and configuring the heat radiating part with the case, the temperature inside the case is not raised by transferring heat to the case and generating heat outside the case. Occurrence of damage due to high temperatures in other electronic devices in the body can be suppressed.
According to the second aspect of the present invention, in the heat radiating portion, the heat radiation efficiency to the outside of the housing can be further increased by attaching the heat radiating fin to the surface opposite to the heat pipe of the housing.
According to invention of Claim 3, in the said thermal radiation part, the surface where the heat pipe of the said housing | casing closely_contact | adhered was comprised with the thermal radiation fin. With such a configuration, the two contact processing steps of the housing and the fin and the housing and the heat pipe can be performed as a single contact processing step of the housing and the heat pipe formed of the fin.
According to the invention of claim 4, since the surface of the housing where the heat pipe and the radiating fin are in close contact with each other is made of a heat conductive material, the heat resistance from the heat pipe to the radiating fin becomes the housing. Will be able to prevent.
According to the invention of claim 5, in the heat radiating portion, the wall of the portion of the housing where the heat pipe is in close contact is removed, and a heat radiating fin is attached to the surface opposite to the heat pipe of the housing, The heat radiating fins were brought into contact directly or through a heat conductive material. By adopting such a configuration, there is no need to make the housing material a material with good thermal conductivity, the choice of housing material is increased, and heat conduction can be performed directly from the heat pipe to the fin. Thermal resistance can be reduced as much as possible.
According to the invention of claim 6, a plate-type perforated capillary heat pipe is used as the heat pipe. By adopting such a configuration, the semiconductor element cooling device of the present invention can perform good heat dissipation in any posture without being affected by the posture.
According to the seventh aspect of the present invention, a heat pipe that is in close contact with a heat-generating component such as a CPU mounted on the substrate is turned at the end of the substrate to be in close contact with the housing. In this way, even when the heating element mounted on the board and the housing are not in close proximity, heat is transferred to the back of the board in close proximity to the housing by a heat pipe through the shortest path. Heat can be dissipated.

次に、本発明にかかる半導体素子冷却装置の一実施形態を図面に基づいて説明する。
図1及び図2は本件発明による半導体素子冷却装置の概略図である。101は電子基板であり、電子基板101上には発熱素子103が装着されている。また電子基板101は筐体105に固定されている。発熱素子103にはシリコングリースや熱伝導シート等の熱伝導性素材を介してヒートパイプ107が密着し、発熱素子103から熱を吸収している。ヒートパイプ107と発熱素子103は固定用部材113を介してネジ115で固定することにより、密着度を上げ、熱抵抗が少なくなるようにしている。該ヒートパイプ107は、電子基板101の端部にて筐体105側に折り曲げられている。筐体105にはヒートパイプ107が接触する部分に穴109が開けられており、該穴109でヒートパイプと筐体105の外部に取り付けられている放熱フィン111をシリコングリースや熱伝導シート等の熱伝導性素材を介して接触させることにより筐体105の熱抵抗を気にすることなく、性能の良い半導体素子冷却装置ができる。
次に図3及び図4を用いてヒートパイプ207と放熱フィン211の密着度を上げる実施例を示す。該実施例は実施例1と同様の構成部分の説明は省く。ヒートパイプ207と放熱フィン211はヒートパイプの折り曲げ部219を固定部材215をネジ217で筐体205を挟んで放熱フィン211に固定し、さらにヒートパイプ207の別の最端部を固定部材221をネジ223で筐体205を挟んで放熱フィン211に固定することによりヒートパイプ207と放熱フィン211の密着度を上げることができ、放熱性能も上がる。また、該固定部材を銅等の熱伝導率の良い素材で構成した場合は、該固定部材部が瀬放熱フィンに密着しているだけでもよい。さらに前記ヒートパイプとして放熱フィンとの接触面が平面のものを用いた場合はさらに放熱効率は上がる。
また、前記平面を持つヒートパイプとしてプレート型多孔細管ヒートパイプを用いることにより、配置姿勢に関係なく良好な半導体素子冷却装置を構成できる。
ここでプレート型多孔細管ヒートパイプの構造を図5及び6を用いて説明する。
図5の蛇行細孔トンネルプレート型ヒートパイプもしくは図6の平行細孔トンネルプレート型ヒートパイプで構成されている。これら細孔トンネルプレート型ヒートパイプについて蛇行細孔トンネルプレート型ヒートパイプを例にとって説明する。
なお、ここで、蛇行細管ヒートパイプとは、以下の特性を有するヒートパイプのことである(特開平4−190090号参照)。
(1)細管(熱媒体通路)の両端末が相互に流通自在に連結されて密閉されている。
(2)細管のある部分は受熱部、他のある部分は放熱部となっている。
(3)受熱部と放熱部が交互に配設されており、両部の間を細管が蛇行している。
(4)細管内には2相凝縮性作動流体が封入されている。
(5)細管の内壁は、上記作動流体が常に管内を閉塞した状態のままで循環又は移動することが出来る最大流体直径以下の直径である。
このような細管ヒートパイプを用いることにより、発熱体への細管ヒートパイプの取り付け姿勢に関係なく熱輸送させることができる。
次にヒートパイプと発熱素子を密着させるための固定用部材を放熱フィンにした実施例を図7及び8に示す。図7及び図8の構成は、フィンでできた固定用部材301以外は図1及び図2と同じなのでここでは省略する。フィンでできた固定用部材301はネジ303により固定されヒートパイプ305と発熱素子307とフィンでできた固定用部材301を密着させ、放熱効率を上げている。
Next, an embodiment of a semiconductor element cooling apparatus according to the present invention will be described with reference to the drawings.
1 and 2 are schematic views of a semiconductor element cooling apparatus according to the present invention. Reference numeral 101 denotes an electronic substrate, and a heating element 103 is mounted on the electronic substrate 101. The electronic substrate 101 is fixed to the housing 105. A heat pipe 107 is in close contact with the heat generating element 103 via a heat conductive material such as silicon grease or a heat conductive sheet to absorb heat from the heat generating element 103. The heat pipe 107 and the heat generating element 103 are fixed with screws 115 via a fixing member 113, thereby increasing the adhesion and reducing the thermal resistance. The heat pipe 107 is bent toward the housing 105 at the end of the electronic substrate 101. The housing 105 has a hole 109 in a portion where the heat pipe 107 contacts, and the heat sink 111 attached to the outside of the heat pipe and the housing 105 through the hole 109 is made of silicon grease, a heat conductive sheet or the like. By contacting through the thermally conductive material, a semiconductor device cooling device with good performance can be obtained without worrying about the thermal resistance of the housing 105.
Next, an embodiment for increasing the degree of adhesion between the heat pipe 207 and the radiation fins 211 will be described with reference to FIGS. 3 and 4. In this embodiment, the description of the same components as those in Embodiment 1 is omitted. The heat pipe 207 and the heat radiating fin 211 are fixed to the heat radiating fin 211 with the fixing member 215 sandwiched by the housing 205 with the screw 217 and the heat pipe 207 and the heat radiating fin 211 to the heat radiating fin 211. By fixing the housing 205 with the screw 223 to the heat radiation fin 211, the degree of adhesion between the heat pipe 207 and the heat radiation fin 211 can be increased, and the heat radiation performance is also improved. Further, when the fixing member is made of a material having good thermal conductivity such as copper, the fixing member portion may be in close contact with the heat sink fin. Further, when the heat pipe having a flat contact surface with the heat radiation fin is used, the heat radiation efficiency is further increased.
Moreover, by using a plate-type perforated capillary heat pipe as the heat pipe having the flat surface, a good semiconductor element cooling device can be configured regardless of the arrangement posture.
Here, the structure of the plate-type porous capillary heat pipe will be described with reference to FIGS.
The meandering pore tunnel plate type heat pipe of FIG. 5 or the parallel pore tunnel plate type heat pipe of FIG. 6 is used. The pore tunnel plate type heat pipe will be described by taking a meandering pore tunnel plate type heat pipe as an example.
Here, the meandering capillary heat pipe is a heat pipe having the following characteristics (refer to Japanese Patent Laid-Open No. 4-190090).
(1) Both ends of the narrow tube (heat medium passage) are connected and sealed so as to be able to flow with each other.
(2) The part with the thin tube is the heat receiving part, and the other part is the heat radiating part.
(3) The heat receiving portion and the heat radiating portion are alternately arranged, and a narrow tube meanders between the two portions.
(4) A two-phase condensable working fluid is sealed in the narrow tube.
(5) The inner wall of the narrow tube has a diameter equal to or smaller than the maximum fluid diameter that allows the working fluid to circulate or move while always closing the inside of the tube.
By using such a thin tube heat pipe, heat transport can be performed regardless of the attachment posture of the thin tube heat pipe to the heating element.
Next, FIGS. 7 and 8 show an embodiment in which a fixing member for bringing the heat pipe and the heat generating element into close contact with each other is a heat radiating fin. The configuration of FIGS. 7 and 8 is the same as that of FIGS. 1 and 2 except for the fixing member 301 made of fins, and is therefore omitted here. The fixing member 301 made of fins is fixed by screws 303, and the heat pipe 305, the heat generating element 307, and the fixing member 301 made of fins are brought into close contact with each other to increase the heat radiation efficiency.

本件発明の半導体素子冷却装置の実施方法を示した筐体内上面図である。It is the top view in a housing | casing which showed the implementation method of the semiconductor element cooling device of this invention. 本件発明の半導体素子冷却装置の実施方法を示した筐体内側面図である。It is the side view in a housing | casing which showed the implementation method of the semiconductor element cooling device of this invention. 本件発明の半導体素子冷却装置の筐体への固定方法を示した筐体内上面図である。It is the upper surface figure in a housing | casing which showed the fixing method to the housing | casing of the semiconductor element cooling device of this invention. 本件発明の半導体素子冷却装置の筐体への固定方法を示した筐体内側面図である。It is the housing inner side view which showed the fixing method to the housing | casing of the semiconductor element cooling device of this invention. 蛇行細孔トンネルプレート型ヒートパイプの平面断面図である。It is a plane sectional view of a meandering pore tunnel plate type heat pipe. 平行細孔トンネルプレート型ヒートパイプの平面断面図である。It is a plane sectional view of a parallel pore tunnel plate type heat pipe. 本件発明の半導体素子冷却装置の発熱素子側固定用部材の別実施方法を示した筐体内上面図である。It is the upper surface figure in a housing | casing which showed another implementation method of the heating element side fixing member of the semiconductor element cooling device of this invention. 本件発明の半導体素子冷却装置の発熱素子側固定用部材の別実施方法を示した筐体内側面図である。It is the side view inside a housing | casing which showed another implementation method of the heating element side fixing member of the semiconductor element cooling device of this invention.

符号の説明Explanation of symbols

101 電子基板
103 発熱素子
105 筐体
107 ヒートパイプ
113 固定用部材
115 ネジ
109 穴
DESCRIPTION OF SYMBOLS 101 Electronic substrate 103 Heating element 105 Case 107 Heat pipe 113 Fixing member 115 Screw 109 Hole

Claims (7)

筐体に内装された基板等に装着されるCPU等の発熱部品で構成された発熱部を有し、前記発熱部品と筐体にヒートパイプが密着し、該発熱部の熱をヒートパイプにより筐体まで輸送し、該筐体で放熱部を構成したことを特徴とする半導体素子冷却装置。  A heat generating part composed of a heat generating component such as a CPU mounted on a substrate or the like installed in the housing; a heat pipe is in close contact with the heat generating component and the case; and the heat of the heat generating unit is encased by the heat pipe. A semiconductor element cooling apparatus, characterized in that it is transported to a body and a heat radiating portion is constituted by the casing. 前記放熱部において、前記筐体のヒートパイプとは反対面に放熱フィンを取り付けたことを特徴とする請求項1記載の半導体素子冷却装置。  The semiconductor element cooling device according to claim 1, wherein in the heat radiating portion, a heat radiating fin is attached to a surface of the housing opposite to the heat pipe. 前記放熱部において、前記筐体のヒートパイプが密着する面を放熱フィンで構成したことを特徴とする請求項1に記載の半導体素子冷却装置。  2. The semiconductor element cooling device according to claim 1, wherein a surface of the heat dissipating part that is in close contact with the heat pipe of the housing is configured with a heat dissipating fin. 3. 前記前記筐体のヒートパイプ及び放熱フィンが密着する面を熱伝導性素材で構成したことを特徴とする請求項2又は3に記載の半導体素子冷却装置。  The semiconductor element cooling device according to claim 2 or 3, wherein a surface of the housing where the heat pipe and the heat radiation fin are in close contact is formed of a heat conductive material. 前記放熱部において、前記ヒートパイプが密着する部分の筐体部分の壁を取り除き、前記筐体のヒートパイプとは反対面に放熱フィンを取り付け、前記ヒートパイプと前記放熱フィンが直接もしくは熱伝導性素材を通して接触するようにしたことを特徴とする請求項1に記載の半導体素子冷却装置。  In the heat radiating part, the wall of the housing part where the heat pipe is in close contact is removed, and a heat radiating fin is attached to the opposite surface of the housing to the heat pipe, and the heat pipe and the heat radiating fin are directly or thermally conductive. The semiconductor element cooling apparatus according to claim 1, wherein the semiconductor element cooling apparatus is in contact with each other through a material. 前記ヒートパイプとしてプレート型多孔細管ヒートパイプを使用したことを特徴とする請求項1〜5に記載の半導体素子冷却装置。  6. The semiconductor element cooling apparatus according to claim 1, wherein a plate-type porous capillary heat pipe is used as the heat pipe. 前記基板に装着されたCPU等の発熱部品に密着されているヒートパイプを基板端部でターンさせて前記筐体に密着させたことを特徴とする請求項1〜6に記載の半導体素子冷却装置。  The semiconductor element cooling device according to claim 1, wherein a heat pipe that is in close contact with a heat-generating component such as a CPU mounted on the substrate is turned at the end of the substrate and is in close contact with the housing. .
JP2003365287A 2003-09-19 2003-09-19 Semiconductor device cooler Pending JP2005093969A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003365287A JP2005093969A (en) 2003-09-19 2003-09-19 Semiconductor device cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003365287A JP2005093969A (en) 2003-09-19 2003-09-19 Semiconductor device cooler

Publications (1)

Publication Number Publication Date
JP2005093969A true JP2005093969A (en) 2005-04-07

Family

ID=34463580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003365287A Pending JP2005093969A (en) 2003-09-19 2003-09-19 Semiconductor device cooler

Country Status (1)

Country Link
JP (1) JP2005093969A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7412844B2 (en) 2006-03-07 2008-08-19 Blue Zone 40 Inc. Method and apparatus for cooling semiconductor chips
US7561426B2 (en) 2005-04-12 2009-07-14 Samsung Sdi Co., Ltd. Display module
JP2012513170A (en) * 2008-12-19 2012-06-07 オープンピーク インコーポレイテッド Telephony and digital media service devices
WO2022004183A1 (en) * 2020-07-01 2022-01-06 日立Astemo株式会社 Electronic control device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7561426B2 (en) 2005-04-12 2009-07-14 Samsung Sdi Co., Ltd. Display module
US7412844B2 (en) 2006-03-07 2008-08-19 Blue Zone 40 Inc. Method and apparatus for cooling semiconductor chips
JP2012513170A (en) * 2008-12-19 2012-06-07 オープンピーク インコーポレイテッド Telephony and digital media service devices
WO2022004183A1 (en) * 2020-07-01 2022-01-06 日立Astemo株式会社 Electronic control device

Similar Documents

Publication Publication Date Title
JP4234722B2 (en) Cooling device and electronic equipment
JP5472955B2 (en) Heat dissipation module
JP2004111968A (en) Heat sink with heat pipe directly brought into contact with component
US20060203451A1 (en) Heat dissipation apparatus with second degree curve shape heat pipe
JP2004111966A (en) Heat sink equipped with heat pipe and base fin
JP2004295718A (en) Liquid cooling system for information processor
JPWO2006095436A1 (en) Endothermic member, cooling device and electronic device
JP2004111969A (en) Heat sink with angled heat pipe
US6760222B1 (en) Dissipating heat using a heat conduit
US7463484B2 (en) Heatsink apparatus
US6646341B2 (en) Heat sink apparatus utilizing the heat sink shroud to dissipate heat
US20080218964A1 (en) Desktop personal computer and thermal module thereof
JP2009193350A (en) Electronic device
JP2006339223A (en) Heat dissipation structure of cpu
US7688590B2 (en) Thermal module and electronic apparatus using the same
JP3665508B2 (en) Heat sink with fins
JP2005093969A (en) Semiconductor device cooler
JP4529703B2 (en) Heat dissipation structure and heat dissipation parts
US7729120B2 (en) Heat sink apparatus
JP4229738B2 (en) Heat pipe type heat dissipation unit
JP2005057070A (en) Heat radiating structure of electronic equipment
JP2007073579A (en) Cooling device of electronic apparatus
JP2000035291A (en) Cooling unit and cooling structure
KR100488104B1 (en) Plate Radiator Structure of CPU Cooling Module
JP2000332476A (en) Heat sink