JP2005091171A - Method and device for testing rubbing strength, and test piece therefor - Google Patents

Method and device for testing rubbing strength, and test piece therefor Download PDF

Info

Publication number
JP2005091171A
JP2005091171A JP2003325224A JP2003325224A JP2005091171A JP 2005091171 A JP2005091171 A JP 2005091171A JP 2003325224 A JP2003325224 A JP 2003325224A JP 2003325224 A JP2003325224 A JP 2003325224A JP 2005091171 A JP2005091171 A JP 2005091171A
Authority
JP
Japan
Prior art keywords
test piece
metal material
synthetic resin
test
resin material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003325224A
Other languages
Japanese (ja)
Inventor
Sadahito Chiaki
貞仁 千秋
Satoshi Hashimoto
聖史 橋本
Hidekazu Murakawa
英一 村川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Maritime Research Institute
Original Assignee
National Maritime Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Maritime Research Institute filed Critical National Maritime Research Institute
Priority to JP2003325224A priority Critical patent/JP2005091171A/en
Publication of JP2005091171A publication Critical patent/JP2005091171A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method, a device and a test piece for testing rubbing strength capable of testing the rubbing strength in a bonding face end part of the test piece between a metal material and a synthetic resin material, without providing an initial crack. <P>SOLUTION: In this rubbing strength testing method for testing the rubbing strength in the bonding face end part of the test piece 1 bonded with the metal material and the synthetic resin material, by measuring a crack occurrence load in the bonding face end part by a three-point bending test, a support space for supporting the test piece 1 is brought into a length of precluding plastic deformation from being caused in a metal material layer of the test piece 1. The test piece 1 has a prism shape, and a longitudinal-directional neutral axis of a bending stress is positioned on a bonding face between the metal material and the synthetic resin material. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、金属材料と合成樹脂材料との二層構造を有する試験片の端部での剪断強度を正確に把握することができる摺り強度試験方法及び装置、試験片に関する。   The present invention relates to a sliding strength test method and apparatus that can accurately grasp the shear strength at the end of a test piece having a two-layer structure of a metal material and a synthetic resin material, and the test piece.

複合材料の接着面端部での摺り強度を試験する場合、従来は、3点曲げ試験を応用した複合材料の端部引き剥がし試験、または単一材料と同様の端部切り欠き曲げ試験が行われてきた。端部引き剥がし試験は、試験片の端部にタブを貼り付け、該タブが上下に引き剥がされる場合の接着面の接着強さを測定する試験方法である。端部切り欠き曲げ試験は、予め試験片の端部中央に亀裂を作成し、初期亀裂長さが略25mmとなるように試験片を曲げ治具に取り付ける試験方法である(非特許文献1参照)。   When testing the sliding strength at the edge of the bonded surface of a composite material, conventionally, a composite material end peeling test using a three-point bending test or an end notch bending test similar to a single material has been performed. I have been. The end peel test is a test method in which a tab is attached to the end of a test piece, and the adhesive strength of the adhesive surface is measured when the tab is peeled up and down. The end notch bending test is a test method in which a crack is created in the center of the end of the test piece in advance and the test piece is attached to a bending jig so that the initial crack length is approximately 25 mm (see Non-Patent Document 1). ).

端部に初期亀裂を設けた試験片を用いる従来の端部切り欠き曲げ試験装置について図面を参照しながら説明する。図7は、端部に初期亀裂を設けた試験片を用いる破壊靱性試験装置の模式図である。図7に示すように、該試験装置は、基準となる水平面に2つの支持台82を互いに平行となるよう設けてあり、梁状の試験片81を2つの支持台82で支持する。支持台82の試験片81の支持部分は、試験片81と接するように、側断面形状が円弧形状である頂部を有する。該頂部と試験片81との接点である支持点間の中点付近に、試験片81に対して曲げ荷重を印加する荷重印加手段83を上方に備えている。   A conventional end notch bending test apparatus using a test piece having an initial crack at the end will be described with reference to the drawings. FIG. 7 is a schematic diagram of a fracture toughness test apparatus using a test piece having an initial crack at the end. As shown in FIG. 7, the test apparatus is provided with two support bases 82 parallel to each other on a reference horizontal plane, and supports the beam-shaped test piece 81 with the two support bases 82. The support portion of the test piece 81 of the support base 82 has a top portion whose side cross-sectional shape is an arc shape so as to contact the test piece 81. A load applying means 83 for applying a bending load to the test piece 81 is provided in the vicinity of the middle point between the support points that are the contact points between the top and the test piece 81.

試験片81は角柱状をなし、試験片81の一端部に、試験片81の接着面と平行な深さaの初期亀裂を、試験片81の長手方向に設ける。初期亀裂を設ける面は、一般に試験片の接着面とは相違する。初期亀裂を設けた試験片81を該試験装置の2つの支持台82に横置きして、破壊靱性試験を実施する。   The test piece 81 has a prismatic shape, and an initial crack having a depth a parallel to the bonding surface of the test piece 81 is provided at one end of the test piece 81 in the longitudinal direction of the test piece 81. The surface on which the initial crack is provided is generally different from the adhesion surface of the test piece. A fracture toughness test is performed by placing the test piece 81 provided with the initial crack horizontally on the two support tables 82 of the test apparatus.

試験時には、試験片81を支持する支持点間距離lの中点付近に、加重印加手段83を用いて曲げ荷重Pを印加する。曲げ荷重Pが印加されることで、試験片81の一端部に事前に設けた初期亀裂が成長し、亀裂が進行する面に働く剪断力により、初期亀裂を有する試験片81の端部での上面と下面との間に相対変位であるCOD(Crack Opening Displacement)が生じる。CODと曲げ荷重Pとの関係に基づいて、試験片の破壊靱性を求める。
リーフ エー、カールソン(Leif A. Carlsson)、 アール バイロン パイプス(R. Byron Pipes)著、福田博、外2名訳、「高機能複合材料の実験的評価」、古今書院、p.134−138
At the time of the test, the bending load P is applied using the weight applying means 83 in the vicinity of the middle point of the distance l between the support points that supports the test piece 81. When the bending load P is applied, an initial crack provided in advance at one end of the test piece 81 grows, and the shear force acting on the surface where the crack progresses causes the end of the test piece 81 having the initial crack. COD (Crack Opening Displacement), which is a relative displacement, occurs between the upper surface and the lower surface. Based on the relationship between the COD and the bending load P, the fracture toughness of the test piece is obtained.
Reef A, Leif A. Carlsson, R. Byron Pipes, Hiroshi Fukuda, two other translations, "Experimental evaluation of high performance composite materials", Kokon Shoin, p. 134-138

しかし、例えば金属材料と合成樹脂材料とからなる二層構造を有する試験片である場合、端部引き剥がし試験では、金属材料表面の凹凸の存在による接着面強度の差は測定することができず、試験片にタブを接着する手間を要し、試験効率が悪いという問題点があった。また、端部切り欠き曲げ試験では、端部に初期亀裂を設ける必要があることから、端部で金属材料層と合成樹脂材料層を接着したままでは、初期亀裂発生強度は原理的に測定できず、また、金属材料層と合成樹脂材料層との接着面端部に既にフィルムが挿入されていることから、金属材料層と合成樹脂材料層との接着面端部の接着強度を直接測定することができないという問題点があった。   However, for example, in the case of a test piece having a two-layer structure composed of a metal material and a synthetic resin material, the difference in the adhesive surface strength due to the presence of irregularities on the surface of the metal material cannot be measured in the edge peeling test. There is a problem that it takes time and effort to bond the tab to the test piece, and the test efficiency is poor. Also, in the end notch bending test, it is necessary to provide an initial crack at the end, so the initial crack initiation strength can be measured in principle with the metal material layer and the synthetic resin material layer adhered at the end. In addition, since the film is already inserted at the end of the adhesive surface between the metal material layer and the synthetic resin material layer, the adhesive strength at the end of the adhesive surface between the metal material layer and the synthetic resin material layer is directly measured. There was a problem that it was not possible.

また、試験片の金属材料と合成樹脂材料との接着面に合わせて端部に水平方向の初期亀裂を設けた場合、二層構造を有さない通常の材料よりも層間剥離が生じやすく、小さな曲げ荷重が印加された場合であっても初期亀裂が成長するおそれがあることから、測定された試験結果が信頼性に欠けるという問題点もあった。   In addition, when an initial crack in the horizontal direction is provided at the end in accordance with the adhesion surface between the metal material and the synthetic resin material of the test piece, delamination occurs more easily than a normal material that does not have a two-layer structure. Even when a bending load is applied, the initial crack may grow, so that there is a problem that the measured test result lacks reliability.

本発明は斯かる事情に鑑みてなされたものであり、初期亀裂を設けることなく二層構造を有する試験片の金属材料と合成樹脂材料との接着面端部での摺り強度を試験することができる摺り強度試験方法及び装置、試験片を提供することを目的とする。さらに、精度よく試験結果を評価することができる摺り強度試験方法及び装置、試験片を提供することを目的とする。   The present invention has been made in view of such circumstances, and it is possible to test the sliding strength at the end of the bonding surface between the metal material and the synthetic resin material of a test piece having a two-layer structure without providing an initial crack. An object of the present invention is to provide a sliding strength test method and apparatus, and a test piece. Furthermore, it aims at providing the sliding strength test method and apparatus which can evaluate a test result accurately, and a test piece.

上記目的を達成するために第1発明に係る摺り強度試験方法は、金属材料と合成樹脂材料とを接着してなる試験片の接着面端部での摺り強度を、3点曲げ試験による接着面端部での亀裂発生荷重を測定することにより試験する摺り強度試験方法において、前記試験片を支持する支持間隔は、前記試験片の金属材料の層に塑性変形が生じない長さとすることを特徴とする。   In order to achieve the above object, the sliding strength test method according to the first invention is characterized in that the sliding strength at the end of the bonding surface of a test piece formed by bonding a metal material and a synthetic resin material is determined by a three-point bending test. In the sliding strength test method for testing by measuring the crack initiation load at the end, the support interval for supporting the test piece is a length that does not cause plastic deformation in the metal material layer of the test piece. And

また、第2発明に係る摺り強度試験方法は、第1発明において、前記試験片の前記支持手段による支持間隔lは、(数4)を満たす間隔であることを特徴とする。   The sliding strength test method according to the second invention is characterized in that, in the first invention, the support interval l of the test piece by the support means is an interval satisfying (Equation 4).

Figure 2005091171
Figure 2005091171

ただし、t1 は前記試験片の金属材料の層の厚さを、σY は塑性応力を、τB int は金属材料と合成樹脂材料との接着面での剪断強度を、夫々示す。 Here, t 1 represents the thickness of the metal material layer of the test piece, σ Y represents plastic stress, and τ B int represents the shear strength at the bonding surface between the metal material and the synthetic resin material.

また、第3発明に係る摺り強度試験方法は、第2発明において、前記試験片の金属材料と合成樹脂材料との接着面での剪断強度τB int は、長手方向の剪断強度分布における剪断強度の最大値であることを特徴とする。 Further, the sliding strength test method according to the third aspect of the present invention is the second aspect of the present invention, wherein the shear strength τ B int at the bonding surface between the metal material and the synthetic resin material of the test piece is the shear strength in the shear strength distribution in the longitudinal direction. It is the maximum value of.

また、第4発明に係る摺り強度試験方法は、第2発明において、前記試験片の金属材料と合成樹脂材料との接着面での剪断強度τB int は、長手方向の剪断強度分布における剪断強度の平均値であることを特徴とする。 Further, in the second aspect of the present invention, the shear strength test method according to the fourth invention is the shear strength τ B int at the bonding surface between the metal material and the synthetic resin material of the test piece is the shear strength in the shear strength distribution in the longitudinal direction. It is the average value of.

また、第5発明に係る摺り強度試験方法は、第1乃至第4発明において、前記試験片の金属材料の表面プロファイルの振幅及び波長を用い、(数5)に基づいて算出した表面性状パラメータRsと、測定した接着面端部での亀裂発生荷重との相関性を演算することを特徴とする。   Further, the sliding strength test method according to the fifth invention is the surface property parameter Rs calculated based on (Equation 5) using the amplitude and wavelength of the surface profile of the metal material of the test piece in the first to fourth inventions. And a correlation between the measured crack initiation load at the edge portion of the adhesion surface and the measured value.

Figure 2005091171
Figure 2005091171

ただし、ai は表面プロファイルのi番目周波数成分の振幅を、λi は表面プロファイルのi番目周波数成分の波長を、iは1からnまでの自然数を、夫々示す。 Here, a i represents the amplitude of the i-th frequency component of the surface profile, λ i represents the wavelength of the i-th frequency component of the surface profile, and i represents a natural number from 1 to n.

また、第6発明に係る試験片は、第1乃至第5発明の摺り強度試験方法に用いる試験片において、角柱状をなし、長手方向の曲げ応力の中性軸が金属材料と合成樹脂材料との接着面上に位置するものであることを特徴とする。   The test piece according to the sixth invention is a test piece used in the sliding strength test method of the first to fifth inventions, and has a prismatic shape, and the neutral axis of the bending stress in the longitudinal direction is a metal material and a synthetic resin material. It is located on the adhesive surface.

また、第7発明に係る試験片は、第6発明において、前記金属材料の層の厚さと前記合成樹脂材料の層の厚さとが、(数6)の関係を満たすものであることを特徴とする。   The test piece according to the seventh invention is characterized in that, in the sixth invention, the thickness of the metal material layer and the synthetic resin material layer satisfy the relationship of (Equation 6). To do.

Figure 2005091171
Figure 2005091171

ただし、t1 は前記金属材料の層の厚さを、t2 は前記合成樹脂材料の層の厚さを、E1 は前記金属材料のヤング率を、E2 は前記合成樹脂材料のヤング率を、夫々示す。 Where t 1 is the thickness of the metal material layer, t 2 is the thickness of the synthetic resin material layer, E 1 is the Young's modulus of the metal material, and E 2 is the Young's modulus of the synthetic resin material. Respectively.

また、第8発明に係る試験片は、第6または第7発明において、前記金属材料は、鋼材であることを特徴とする。   The test piece according to an eighth aspect of the invention is characterized in that, in the sixth or seventh aspect, the metal material is a steel material.

また、第9発明に係る試験片は、第6乃至第8発明において、前記合成樹脂材料は、エポキシ系合成樹脂であることを特徴とする。   The test piece according to a ninth invention is characterized in that, in the sixth to eighth inventions, the synthetic resin material is an epoxy synthetic resin.

また、第10発明に係る摺り強度試験装置は、試験片を2点支持する支持手段と、前記試験片の支持間隔の中程に曲げ荷重を印加する荷重印加手段とを備え、前記試験片は、金属材料と合成樹脂材料とを接着してなり、前記試験片の接着面端部での摺り強度を、3点曲げ試験による接着面端部での亀裂発生荷重を測定することにより試験する摺り強度試験装置において、前記試験片の前記支持手段による支持間隔は、前記試験片の金属材料の層に塑性変形が生じない長さであることを特徴とする。   Further, the sliding strength test apparatus according to the tenth invention comprises a supporting means for supporting the test piece at two points and a load applying means for applying a bending load in the middle of the support interval of the test piece. Slidable by bonding a metal material and a synthetic resin material, and testing the sliding strength at the end of the adhesive surface of the test piece by measuring the crack initiation load at the end of the adhesive surface by a three-point bending test. In the strength test apparatus, the support interval of the test piece by the support means is a length that does not cause plastic deformation in the metal material layer of the test piece.

第1、第2、及び第10発明では、金属材料層と合成樹脂材料層との二層構造を有する試験片に対して3点曲げ試験を実施する場合、3点曲げ試験装置での試験片の支持間隔lは、試験片の金属材料部分に塑性変形が生じない範囲内で定める。これにより、弾性変形の範囲内で試験片端部に生じる初期亀裂の発生曲げ荷重を正確に測定することが可能となる。   In the first, second, and tenth inventions, when a three-point bending test is performed on a test piece having a two-layer structure of a metal material layer and a synthetic resin material layer, the test piece in a three-point bending test apparatus The support interval 1 is determined within a range in which plastic deformation does not occur in the metal material portion of the test piece. As a result, it is possible to accurately measure the generated bending load of the initial crack generated at the end of the test piece within the range of elastic deformation.

また、第3発明では、試験片の金属材料部分に塑性変形が生じない支持間隔lの最大値を、金属材料と合成樹脂材料との接着面での剪断強度の最大値に基づいて求める。これにより、確実に金属材料に塑性変形が生じない範囲で3点曲げ試験を実施することができる。   In the third invention, the maximum value of the support interval 1 at which plastic deformation does not occur in the metal material portion of the test piece is obtained based on the maximum value of the shear strength at the bonding surface between the metal material and the synthetic resin material. As a result, the three-point bending test can be performed within a range in which plastic deformation does not occur in the metal material.

また、第4発明では、試験片の金属材料部分に塑性変形が生じない支持間隔lの最大値を、金属材料と合成樹脂材料との接着面での剪断強度の平均値に基づいて求める。これにより、試験片全体として金属材料に塑性変形が生じない範囲で3点曲げ試験を実施することができる。   In the fourth invention, the maximum value of the support interval l at which plastic deformation does not occur in the metal material portion of the test piece is obtained based on the average value of the shear strength at the bonding surface between the metal material and the synthetic resin material. Thereby, a 3 point | piece bending test can be implemented in the range in which plastic deformation does not arise in a metal material as the whole test piece.

また、第5発明では、3点曲げ試験の測定結果である亀裂発生荷重の相関性を求める手段において、金属材料と合成樹脂材料との接着面での金属材料の表面プロファイルの振幅だけでなく、金属材料の表面プロファイルを周波数分析し、該周波数成分により得られる各周波数成分の振幅と波長との比を用いて相関性を評価する表面性状パラメータを算出する。これにより、金属材料の表面の粗さを、表面における凹凸の高さだけでなく、表面における凹凸の分布についても考慮して、亀裂発生荷重の相関性を求めることができる。   Further, in the fifth invention, in the means for obtaining the correlation of the crack generation load that is the measurement result of the three-point bending test, not only the amplitude of the surface profile of the metal material at the bonding surface between the metal material and the synthetic resin material, The surface profile of the metal material is subjected to frequency analysis, and the surface property parameter for evaluating the correlation is calculated using the ratio between the amplitude and the wavelength of each frequency component obtained from the frequency component. Thereby, the correlation of the crack generation load can be obtained by considering the roughness of the surface of the metal material in addition to the unevenness distribution on the surface as well as the unevenness distribution on the surface.

また、第6及び第7発明では、上述した摺り強度試験方法に用いる試験片が、金属材料と合成樹脂材料とからなる二層構造を有する角柱状の試験片であり、曲げ応力の中性軸が、試験片における金属材料と合成樹脂材料との接着面と一致する。これにより、試験片に初期亀裂を入れる必要がなく、曲げ荷重を印加することにより生じる剪断応力による試験片端部での亀裂発生箇所は、金属材料と合成樹脂材料との接着面となる。   In the sixth and seventh inventions, the test piece used in the above-described sliding strength test method is a prismatic test piece having a two-layer structure made of a metal material and a synthetic resin material, and has a neutral axis of bending stress. However, it coincides with the adhesion surface between the metal material and the synthetic resin material in the test piece. Thereby, it is not necessary to make an initial crack in the test piece, and a crack occurrence portion at the end portion of the test piece due to the shear stress generated by applying a bending load is an adhesion surface between the metal material and the synthetic resin material.

また、第8及び第9発明では、金属材料として、鉄鋼、ステンレス鋼等の鋼材を、合成樹脂材料として、エポキシ系の合成樹脂を用いる。   In the eighth and ninth inventions, a steel material such as steel or stainless steel is used as the metal material, and an epoxy synthetic resin is used as the synthetic resin material.

第1、第2及び第10発明では、金属材料層と合成樹脂材料層との二層構造を有する試験片に対して3点曲げ試験を実施し、該試験片に初期亀裂が生じる曲げ荷重を求める場合、試験片の支持間隔lを、試験片の金属材料部分に塑性変形が生じない範囲で定めることから、金属材料と合成樹脂材料との接着面での剪断力による端部の摺り強度を正確に測定することが可能となる。   In the first, second, and tenth inventions, a three-point bending test is performed on a test piece having a two-layer structure of a metal material layer and a synthetic resin material layer, and a bending load that causes an initial crack in the test piece is applied. When determining, since the support interval l of the test piece is determined within a range in which plastic deformation does not occur in the metal material portion of the test piece, the sliding strength of the end due to the shearing force at the bonding surface between the metal material and the synthetic resin material is determined. It becomes possible to measure accurately.

また、第3発明では、試験片の金属材料部分に塑性変形が生じない範囲を、金属材料と合成樹脂材料との接着面での剪断強度の最大値に基づいて求めことにより、試験片の金属材料部分に確実に塑性変形が生じない範囲で定めることができ、金属材料と合成樹脂材料との接着面での剪断力による端部の摺り強度を正確に測定することが可能となる。   In the third aspect of the invention, the range in which plastic deformation does not occur in the metal material portion of the test piece is obtained on the basis of the maximum value of the shear strength at the bonding surface between the metal material and the synthetic resin material. It can be determined within a range in which plastic deformation does not occur reliably in the material portion, and it is possible to accurately measure the sliding strength of the end due to the shearing force at the bonding surface between the metal material and the synthetic resin material.

また、第4発明では、試験片の金属材料部分に塑性変形が生じない範囲を、金属材料と合成樹脂材料との接着面での剪断強度の平均値に基づいて求めることにより、試験片全体として金属材料部分に塑性変形が生じない範囲で定めることができ、金属材料と合成樹脂材料との接着面での剪断力による端部の摺り強度を正確に測定することが可能となる。   Further, in the fourth invention, the range in which plastic deformation does not occur in the metal material portion of the test piece is obtained based on the average value of the shear strength at the bonding surface between the metal material and the synthetic resin material. It can be determined within a range in which plastic deformation does not occur in the metal material portion, and it is possible to accurately measure the sliding strength of the end due to the shearing force at the bonding surface between the metal material and the synthetic resin material.

また、第5発明では、3点曲げ試験の測定結果である亀裂発生荷重の相関性を求めるために、金属材料と合成樹脂材料との接着面での金属材料表面の凹凸の高さだけでなく、金属材料の長手方向の凹凸分布を周波数分析し、該周波数分析により得られる各周波数成分の振幅と波長との比を用いて相関性を評価する表面性状パラメータを算出することにより、金属材料表面の凹凸の高さの分布を考慮に入れることができ、より正確に亀裂発生荷重の相関性を求めることで、ペーパ研磨した必ずしも全ての表面の凹凸状態について3点曲げ試験を実施することなく、金属材料表面の状態を把握して、亀裂発生荷重を推測することが可能となる。   Further, in the fifth invention, in order to obtain the correlation of the crack generation load, which is the measurement result of the three-point bending test, not only the height of the unevenness on the surface of the metal material at the bonding surface between the metal material and the synthetic resin material. The surface of the metal material is calculated by frequency analysis of the uneven distribution in the longitudinal direction of the metal material and calculating the surface property parameter for evaluating the correlation using the ratio between the amplitude and the wavelength of each frequency component obtained by the frequency analysis. By taking into account the distribution of the height of the unevenness of the surface, more accurately determining the correlation of cracking load, without carrying out a three-point bending test on the unevenness state of all the surfaces polished with paper, It is possible to estimate the crack generation load by grasping the state of the metal material surface.

第6及び第7発明によれば、摺り強度試験方法に用いる試験片が、金属材料と合成樹脂材料とからなる二層構造を有する角柱状の試験片であっても、金属材料と合成樹脂材料との接着面に初期亀裂を入れることなく、曲げにより生じる接着面の剪断応力による試験片端部での初期亀裂の発生荷重を正確に測定することが可能となる。   According to the sixth and seventh inventions, even if the test piece used in the sliding strength test method is a prismatic test piece having a two-layer structure composed of a metal material and a synthetic resin material, the metal material and the synthetic resin material are used. It is possible to accurately measure the initial crack generation load at the end portion of the test piece due to the shear stress of the bonding surface caused by bending without causing an initial crack on the bonding surface.

また、第8及び第9発明では、金属材料として、鉄鋼、ステンレス鋼等の鋼材を、また合成樹脂材料として、エポキシ系の合成樹脂を用いることにより、摺り強度を確実に測定することが可能となる。   In the eighth and ninth inventions, it is possible to reliably measure the sliding strength by using a steel material such as steel or stainless steel as the metal material and using an epoxy synthetic resin as the synthetic resin material. Become.

(実施の形態1)
図1は本発明の実施の形態1に係る摺り強度試験方法で用いる試験装置の構成を示す模式図である。図1に示すように、水平な平板を有する基礎台4に角柱状の試験片1を支持する2つの支持台2、2を据付けてある。支持台2、2は、側断面形状が略三角形状である角柱部材であり、試験片1を支持するように、側断面形状が円弧形状である頂部を有する。試験装置は、2つの支持台2、2の中点付近上方に、曲げ荷重を印加する荷重印加装置(荷重印加手段)3を設けてある。荷重印加装置3は、試験実施時に横置きされる試験片1の幅方向に接するようにクロスヘッドに装着され、該クロスヘッドを一定のスピードで試験片1に対して押し付けることによって荷重を印加する。
(Embodiment 1)
FIG. 1 is a schematic diagram showing the configuration of a test apparatus used in the sliding strength test method according to Embodiment 1 of the present invention. As shown in FIG. 1, two support bases 2 and 2 for supporting a prismatic test piece 1 are installed on a base base 4 having a horizontal flat plate. The support bases 2 and 2 are prismatic members whose side cross-sectional shape is substantially triangular, and have a top portion whose side cross-sectional shape is an arc shape so as to support the test piece 1. The test apparatus is provided with a load application device (load application means) 3 for applying a bending load above the middle point of the two support bases 2 and 2. The load application device 3 is attached to the cross head so as to be in contact with the width direction of the test piece 1 placed horizontally during the test, and applies a load by pressing the cross head against the test piece 1 at a constant speed. .

荷重印加装置3により印加される荷重Pの値は、信号線により接続されている演算処理手段13へ送信される。試験片1の金属材料と合成樹脂材料との接着面に亀裂が生じたのを検出すべく、試験片1の一端部には、歪みゲージ10が貼り付けられている。歪みゲージ10で検出された一端部での歪みは、信号線を介してコンピュータ、マイクロプロセッサ等の演算処理手段13へ送信される。歪みゲージでの計測値が所定の比率を超えて急速に変動したことを検知した場合、その時点で印加されている荷重を初期亀裂発生荷重として検出する。   The value of the load P applied by the load applying device 3 is transmitted to the arithmetic processing means 13 connected by the signal line. A strain gauge 10 is affixed to one end of the test piece 1 in order to detect that a crack has occurred on the bonding surface between the metal material and the synthetic resin material of the test piece 1. The strain at one end detected by the strain gauge 10 is transmitted to the arithmetic processing means 13 such as a computer or a microprocessor via a signal line. When it is detected that the measured value at the strain gauge rapidly fluctuates beyond a predetermined ratio, the load applied at that time is detected as the initial crack generation load.

演算処理手段13では、初期亀裂発生荷重Pに基づいて、鋼、ステンレス鋼等の鋼材の表面の凹凸を示す表面性状パラメータとの相関性を演算する。演算内容の詳細は後述する。演算結果は、出力手段14にて、ディスプレイ、LCD等へ表示出力され、またはプリンタ、プロッタ等へ印字出力される。   Based on the initial crack generation load P, the calculation processing means 13 calculates the correlation with the surface property parameter indicating the unevenness of the surface of the steel material such as steel or stainless steel. Details of the calculation contents will be described later. The calculation result is displayed on the display, LCD, etc. by the output means 14, or printed out on a printer, plotter, etc.

図2は、本発明の実施の形態1に係る摺り強度試験方法に用いる試験片の斜視図である。図2に示すように、試験片1は二層構造を有する角柱状の梁部材であり、鋼、ステンレス鋼等の鋼材からなる金属材料層11に、エポキシ系の合成樹脂材料層12が貼り付けられている。そして、歪みゲージ10は、試験片1の一端部に、金属材料層11と合成樹脂材料層12とに跨るよう、図2の破線で示す位置に配置する。   FIG. 2 is a perspective view of a test piece used in the sliding strength test method according to Embodiment 1 of the present invention. As shown in FIG. 2, the test piece 1 is a prismatic beam member having a two-layer structure, and an epoxy-based synthetic resin material layer 12 is attached to a metal material layer 11 made of steel such as steel or stainless steel. It has been. And the strain gauge 10 is arrange | positioned in the position shown with the broken line of FIG. 2 so that it may straddle the metal material layer 11 and the synthetic resin material layer 12 in the one end part of the test piece 1. FIG.

実施の形態1に係る摺り強度試験方法では、試験片1の金属材料層11と合成樹脂層12との間に初期亀裂を入れずに3点曲げ試験を実施する。具体的には、試験片1を2つの支持台2で支持されるように横置きし、上方から荷重印加装置3により曲げ荷重を印加し、金属材料層11と合成樹脂層12との接着面で初期亀裂を生じさせる。初期亀裂が生じた時点の印加荷重を初期亀裂発生荷重として測定する。   In the sliding strength test method according to the first embodiment, a three-point bending test is performed without making an initial crack between the metal material layer 11 and the synthetic resin layer 12 of the test piece 1. Specifically, the test piece 1 is placed horizontally so as to be supported by the two support bases 2, a bending load is applied from above by the load applying device 3, and the adhesive surface between the metal material layer 11 and the synthetic resin layer 12 is applied. Causes initial cracks. The applied load at the time when the initial crack occurs is measured as the initial crack generation load.

3点曲げ試験の実施時に金属材料層11と合成樹脂層12との接着面で初期亀裂が生じるためには、曲げ応力の中性軸の存在する面が、金属材料層11と合成樹脂層12との接着面と一致する必要がある。そこで、金属材料層11の厚さと合成樹脂層12の厚さとの間で(数7)の関係を具備することで、曲げ応力の中性軸の存在する面が、金属材料層11と合成樹脂層12との接着面となる。   In order to cause an initial crack at the bonding surface between the metal material layer 11 and the synthetic resin layer 12 when the three-point bending test is performed, the surface where the neutral axis of the bending stress exists is the metal material layer 11 and the synthetic resin layer 12. It is necessary to match with the adhesive surface. Therefore, by providing the relationship of (Equation 7) between the thickness of the metal material layer 11 and the thickness of the synthetic resin layer 12, the surface where the neutral axis of the bending stress exists is the metal material layer 11 and the synthetic resin. It becomes an adhesive surface with the layer 12.

Figure 2005091171
Figure 2005091171

ただし、t1 は金属材料層11の厚さを、t2 は合成樹脂層12の厚さを、E1 は金属材料層11のヤング率を、E2 は合成樹脂層12のヤング率を、夫々示す。 However, the thickness of t 1 is a metal material layer 11, the thickness of t 2 is the synthetic resin layer 12, E 1 is the Young's modulus of the metallic material layer 11, E 2 is the Young's modulus of the synthetic resin layer 12, Each one is shown.

また、3点曲げ試験を実施する場合、支持台2の配置間隔によっては、金属材料層11の曲げ応力による弾性変形が塑性変形へと移行することも想定できる。塑性変形に移行した場合、試験片端部での剪断強度を正確に求めることはできない。   Further, when the three-point bending test is performed, it can be assumed that the elastic deformation due to the bending stress of the metal material layer 11 shifts to plastic deformation depending on the arrangement interval of the support base 2. When shifting to plastic deformation, the shear strength at the end of the specimen cannot be accurately determined.

したがって、支持台2による試験片1の支持間隔lは、曲げ応力による弾性変形が塑性変形へと移行する限界長さよりも小さい間隔である必要がある。支持台2による試験片1の支持間隔lは、(数8)を満たす場合、試験片1の金属材料層11で塑性変形が生じることはない。   Therefore, the support interval 1 of the test piece 1 by the support base 2 needs to be an interval smaller than the limit length at which the elastic deformation due to the bending stress shifts to the plastic deformation. When the support interval 1 of the test piece 1 by the support base 2 satisfies (Equation 8), plastic deformation does not occur in the metal material layer 11 of the test piece 1.

Figure 2005091171
Figure 2005091171

ただし、t1 は金属材料層11の厚さを、σY は金属材料の塑性応力を、τB int は金属材料と合成樹脂材料との接着面での剪断強度を、夫々示す。 Here, t 1 indicates the thickness of the metal material layer 11, σ Y indicates the plastic stress of the metal material, and τ B int indicates the shear strength at the bonding surface between the metal material and the synthetic resin material.

金属材料と合成樹脂材料との接着面での剪断強度τB int は、金属材料表面の凹凸の度合いによって変化する。したがって、試験片1の長手方向での金属材料と合成樹脂材料との接着面での剪断強度τB int 分布を求め、必要に応じて支持間隔lの制約条件を変更する。すなわち、通常は、剪断強度τB int の分布平均値を用いて支持間隔lの制約条件を求める。試験片1の性質上、塑性変形の蓋然性の高い材料である場合には、剪断強度τB int の最大値を用いて支持間隔lの制約条件を求める。これにより、金属材料層11で塑性変形が生じることなく、試験片1の接着面端部で初期亀裂が生じた時点の荷重Pを、高い信頼性で求めることが可能となる。 The shear strength τ B int at the bonding surface between the metal material and the synthetic resin material varies depending on the degree of unevenness on the surface of the metal material. Therefore, the shear strength τ B int distribution at the bonding surface between the metal material and the synthetic resin material in the longitudinal direction of the test piece 1 is obtained, and the constraint condition of the support interval l is changed as necessary. That is, usually, the constraint condition of the support interval l is obtained using the distribution average value of the shear strength τ B int . In the case of a material having a high probability of plastic deformation due to the properties of the test piece 1, the constraint condition of the support interval l is obtained using the maximum value of the shear strength τ B int . Thereby, without causing plastic deformation in the metal material layer 11, it becomes possible to obtain the load P at the time when the initial crack is generated at the end of the bonding surface of the test piece 1 with high reliability.

なお、剪断強度τB int の分布平均値は、例えば5本の試験片につき、それぞれ金属材料と合成樹脂材料との接着面での剪断強度を求め、これらの和を5で除して得られる値を用いる。剪断強度τB int の最大値は、例えば5〜10本の試験片の金属材料と合成樹脂材料との接着面での剪断強度を求め、これらの最大値を用いる。 The distribution average value of the shear strength τ B int is obtained, for example, by obtaining the shear strength at the bonding surface between the metal material and the synthetic resin material for each of five test pieces and dividing the sum by five. Use the value. As the maximum value of the shear strength τ B int , for example, the shear strength at the bonding surface between the metal material and the synthetic resin material of 5 to 10 test pieces is obtained, and these maximum values are used.

以上のように本実施の形態1によれば、摺り強度試験方法に用いる試験片が、金属材料と合成樹脂材料からなる二層構造を有する角柱状の試験片である場合でも、金属材料と合成樹脂材料との接着面に初期亀裂を入れることなく、曲げにより生じる接着面の剪断応力による試験片端部での初期亀裂の発生荷重を正確に測定することが可能となる。   As described above, according to the first embodiment, even when the test piece used in the sliding strength test method is a prismatic test piece having a two-layer structure made of a metal material and a synthetic resin material, it is synthesized with the metal material. It is possible to accurately measure the initial crack generation load at the end portion of the test piece due to the shear stress of the bonding surface caused by bending without causing an initial crack on the bonding surface with the resin material.

また、試験片の支持間隔lは、試験片の金属材料層に塑性変形が生じない範囲で定めることから、金属材料と合成樹脂材料との接着面での剪断力による端部の摺り強度を高い信頼性で求めることが可能となる。   Further, since the support interval l of the test piece is determined within a range in which plastic deformation does not occur in the metal material layer of the test piece, the edge sliding strength due to the shearing force at the bonding surface between the metal material and the synthetic resin material is high. It can be obtained with reliability.

(実施の形態2)
本実施の形態2では、金属材料として鋼材を、合成樹脂材料としてエポキシ系合成樹脂を用いる場合の接着面端部での剪断強度について、鋼材の表面性状を表すパラメータに基づいた相関性を求める手段について説明する。
(Embodiment 2)
In the second embodiment, the means for obtaining the correlation based on the parameter representing the surface property of the steel material with respect to the shear strength at the edge of the bonding surface when using the steel material as the metal material and the epoxy-based synthetic resin as the synthetic resin material. Will be described.

試験片1は角柱状であり、鋼材とエポキシ系合成樹脂とで構成される二層複合梁である。試験片1は、鋼材平板上に、エメリペーパで所定の方向に研磨を施し、エポキシ系合成樹脂を流し入れて硬化させた原板より切り出して生成した。試験片1の平均主要寸法は、高さ15mm、幅16mm、長さ51mmであり、鋼材部の平均厚さt1は2mmであった。 The test piece 1 has a prismatic shape and is a two-layer composite beam composed of a steel material and an epoxy-based synthetic resin. The test piece 1 was produced by cutting a steel plate in a predetermined direction with emery paper and cutting it out from an original plate which was poured and cured with an epoxy synthetic resin. The average main dimension of the test piece 1 was 15 mm in height, 16 mm in width, and 51 mm in length, and the average thickness t 1 of the steel material part was 2 mm.

荷重印加手段3としては、テンシロン静荷重試験機を用い、クロスヘッドスピードを1mm/分として、試験片1のエポキシ合成樹脂側上面に印加した。試験片1の支持間隔lは20mmとした。図3は、斯かる条件で初期亀裂が発生した時点の荷重を求めた結果を示す図である。   As the load application means 3, a Tensilon static load tester was used, and the crosshead speed was set to 1 mm / min and applied to the upper surface of the test piece 1 on the epoxy synthetic resin side. The support interval l of the test piece 1 was 20 mm. FIG. 3 is a diagram showing the results of obtaining the load at the time when the initial crack occurred under such conditions.

図3で、ペーパ番号は、鋼材表面を研磨したエメリペーパの番号であり、番号が大きいほど凹凸が小さくなる。エメリペーパの番号が小さいほど、すなわち鋼材表面の研磨が粗いほど、初期亀裂が発生した時点の荷重は大きくなる傾向にある。   In FIG. 3, the paper number is the number of the emery paper obtained by polishing the steel surface. The larger the number, the smaller the unevenness. The smaller the emery paper number, that is, the rougher the surface of the steel material, the larger the load when the initial crack occurs.

次に、試験片1である鋼材の表面プロファイルを計測する。具体的な計測方法は、エメリペーパによる研磨方向を0度として、試験片1の中心点を原点とする直径5mmの円内の0、90、135度方向につき、公称精度1μmで、直線的に表面の凹凸高さを計測する。各計測された凹凸高さに対して傾き補正を施してスムージングした後、周波数分析を行う。表面性状パラメータRsは、斯かる表面プロファイルの周波数分析成分を用いて(数9)により算定される。   Next, the surface profile of the steel material that is the test piece 1 is measured. The specific measurement method is that the polishing direction by the emery paper is 0 degree, and the surface is linearly with a nominal accuracy of 1 μm in directions of 0, 90, and 135 degrees within a circle of 5 mm in diameter with the center point of the test piece 1 as the origin. Measure the height of unevenness. After performing smoothing by applying inclination correction to each measured unevenness height, frequency analysis is performed. The surface property parameter Rs is calculated by (Equation 9) using the frequency analysis component of the surface profile.

Figure 2005091171
Figure 2005091171

ただし、ai は表面プロファイルのi番目周波数成分の振幅を、λi は表面プロファイルのi番目周波数成分の波長を、夫々示す。 Here, a i represents the amplitude of the i-th frequency component of the surface profile, and λ i represents the wavelength of the i-th frequency component of the surface profile.

図4は、図3に示す初期亀裂発生荷重を、(数9)で求めた表面性状パラメータRsに対してプロットした結果を示す図である。比較対照として、図5は、図3に示す初期亀裂発生荷重を、表面プロファイルの凹凸高さの算術平均値Raに対してプロットした結果を示す図である。図6は、図3に示す初期亀裂発生荷重を、平均的な表面からの自乗平均平方根偏差RMSQに対してプロットした結果を示す図である。   FIG. 4 is a diagram showing a result of plotting the initial crack generation load shown in FIG. 3 against the surface property parameter Rs obtained by (Equation 9). As a comparison, FIG. 5 is a diagram showing a result of plotting the initial crack generation load shown in FIG. 3 against the arithmetic average value Ra of the unevenness height of the surface profile. FIG. 6 is a diagram showing a result of plotting the initial crack generation load shown in FIG. 3 against the root mean square deviation RMSQ from the average surface.

図4を図5及び図6と比較する。プロットの回帰直線51、61、71に基づいて、偏差の自乗平均値を求めると、それぞれ83.2、76.3、67.5となっており、表面性状パラメータRsに対してプロットした結果が、最も良い直線性を示していることがわかる。また、ペーパ番号1000と400とにおける初期亀裂発生荷重に着目した場合、図5及び図6では、ペーパ番号1000の方がペーパ番号400よりも研磨表面が粗いと評価されており、研磨表面の粗さが逆転して評価されている。それに対して、図4ではペーパ番号による評価の逆転現象は生じていない。したがって、表面性状パラメータRsに基づいて相関性を評価する方法の方が、より高い精度で、初期亀裂発生荷重との相関性を求めることができる。   FIG. 4 is compared with FIG. 5 and FIG. Based on the regression lines 51, 61, and 71 of the plot, the root mean square values of the deviations are 83.2, 76.3, and 67.5, respectively. The results plotted against the surface property parameter Rs are as follows. It can be seen that the best linearity is shown. Further, when attention is paid to the initial crack generation load in the paper numbers 1000 and 400, in FIG. 5 and FIG. 6, the paper number 1000 is evaluated to be rougher than the paper number 400, and the roughness of the polished surface is increased. Has been evaluated in reverse. On the other hand, in FIG. 4, the evaluation reversal phenomenon by the paper number does not occur. Therefore, the method of evaluating the correlation based on the surface property parameter Rs can obtain the correlation with the initial crack generation load with higher accuracy.

以上のように本実施の形態2によれば、二層構造を有する試験片の接着面端部で初期亀裂の発生した時点の曲げ荷重Pについて、金属材料表面の凹凸分布を的確に反映した相関性を求めることができ、表面性状パラメータRsを算出することで、試験片1に対する初期亀裂発生荷重を高い精度で推測することが可能となる。   As described above, according to the second embodiment, a correlation that accurately reflects the uneven distribution on the surface of the metal material with respect to the bending load P at the time when the initial crack occurs at the end of the adhesion surface of the test piece having a two-layer structure. Thus, by calculating the surface property parameter Rs, it is possible to estimate the initial crack generation load on the test piece 1 with high accuracy.

本発明の実施の形態1に係る摺り強度試験装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the sliding strength test apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る摺り強度試験方法に用いる試験片の斜視図である。It is a perspective view of the test piece used for the sliding strength test method which concerns on Embodiment 1 of this invention. 初期亀裂が発生した時点の荷重を求めた結果を示す図である。It is a figure which shows the result of having calculated | required the load at the time of an initial stage crack generating. 初期亀裂発生荷重を、表面性状パラメータRsに対してプロットした結果を示す図である。It is a figure which shows the result of having plotted the initial stage crack generation load with respect to the surface property parameter Rs. 初期亀裂発生荷重を、表面プロファイルの凹凸高さの算術平均値Raに対してプロットした結果を示す図である。It is a figure which shows the result of having plotted the initial crack generation load with respect to arithmetic mean value Ra of the uneven | corrugated height of a surface profile. 初期亀裂発生荷重を、平均的な表面からの自乗平均平方根偏差RMSQに対してプロットした結果を示す図である。It is a figure which shows the result of having plotted the initial crack generation load with respect to the root mean square deviation RMSQ from the average surface. 端部に初期亀裂を設けた試験片を用いる破壊靱性試験装置の模式図である。It is a schematic diagram of the fracture toughness test apparatus using the test piece which provided the initial stage crack in the edge part.

符号の説明Explanation of symbols

1 試験片
2 支持台(支持手段)
3 荷重印加装置(荷重印加手段)
4 基礎台
10 歪みゲージ
11 金属材料層
12 合成樹脂材料層
13 演算処理手段
14 出力手段
1 Test piece 2 Support base (support means)
3 Load application device (load application means)
4 Foundation table 10 Strain gauge 11 Metal material layer 12 Synthetic resin material layer 13 Arithmetic processing means 14 Output means

Claims (10)

金属材料と合成樹脂材料とを接着してなる試験片の接着面端部での摺り強度を、3点曲げ試験による接着面端部での亀裂発生荷重を測定することにより試験する摺り強度試験方法において、
前記試験片を支持する支持間隔は、前記試験片の金属材料の層に塑性変形が生じない長さとすることを特徴とする摺り強度試験方法。
A sliding strength test method for testing the sliding strength at the bonding surface end of a test piece formed by bonding a metal material and a synthetic resin material by measuring the crack initiation load at the bonding surface end by a three-point bending test In
The sliding strength test method according to claim 1, wherein the support interval for supporting the test piece is set to a length that does not cause plastic deformation in the metal material layer of the test piece.
前記試験片の前記支持手段による支持間隔lは、(数1)を満たす間隔であることを特徴とする請求項1記載の摺り強度試験方法。
Figure 2005091171
ただし、
1 :前記試験片の金属材料の層の厚さ
σY :塑性応力
τB int :金属材料と合成樹脂材料との接着面での剪断強度
The sliding strength test method according to claim 1, wherein the support interval l of the test piece by the support means is an interval satisfying (Equation 1).
Figure 2005091171
However,
t 1 : thickness of the metal material layer of the test piece σ Y : plastic stress τ B int : shear strength at the bonding surface between the metal material and the synthetic resin material
前記試験片の金属材料と合成樹脂材料との接着面での剪断強度τB int は、長手方向の剪断強度分布における剪断強度の最大値であることを特徴とする請求項2記載の摺り強度試験方法。 The shear strength test according to claim 2, wherein the shear strength τ B int at the bonding surface between the metal material and the synthetic resin material of the test piece is the maximum value of the shear strength in the shear strength distribution in the longitudinal direction. Method. 前記試験片の金属材料と合成樹脂材料との接着面での剪断強度τB int は、長手方向の剪断強度分布における剪断強度の平均値であることを特徴とする請求項2記載の摺り強度試験方法。 The shear strength test according to claim 2, wherein the shear strength τ B int at the bonding surface between the metal material and the synthetic resin material of the test piece is an average value of the shear strength in the shear strength distribution in the longitudinal direction. Method. 前記試験片の金属材料の表面プロファイルの振幅及び波長を用い、(数2)に基づいて算出した表面性状パラメータRsと、測定した接着面端部での亀裂発生荷重との相関性を演算することを特徴とする請求項1乃至4のいずれか一項に記載の摺り強度試験方法。
Figure 2005091171
ただし、
i :表面プロファイルのi番目周波数成分の振幅
λi :表面プロファイルのi番目周波数成分の波長
i:1からnまでの自然数
Using the amplitude and wavelength of the surface profile of the metal material of the test piece, calculating the correlation between the surface property parameter Rs calculated based on (Equation 2) and the crack initiation load at the end of the adhesion surface. The sliding strength test method according to any one of claims 1 to 4, wherein:
Figure 2005091171
However,
a i : amplitude of i-th frequency component of surface profile λ i : wavelength of i-th frequency component of surface profile i: natural number from 1 to n
請求項1乃至5のいずれか一項に記載の摺り強度試験方法に用いる試験片において、
角柱状をなし、長手方向の曲げ応力の中性軸が金属材料と合成樹脂材料との接着面上に位置するものであることを特徴とする試験片。
In the test piece used for the sliding strength test method according to any one of claims 1 to 5,
A test piece having a prismatic shape, wherein a neutral axis of a bending stress in a longitudinal direction is located on an adhesive surface between a metal material and a synthetic resin material.
前記金属材料の層の厚さと前記合成樹脂材料の層の厚さとが、(数3)の関係を満たすものであることを特徴とする請求項6記載の試験片。
Figure 2005091171
ただし、
1 :前記金属材料の層の厚さ
2 :前記合成樹脂材料の層の厚さ
1 :前記金属材料のヤング率
2 :前記合成樹脂材料のヤング率
The test piece according to claim 6, wherein the thickness of the metal material layer and the thickness of the synthetic resin material satisfy the relationship of (Equation 3).
Figure 2005091171
However,
t 1 : layer thickness of the metal material t 2 : layer thickness of the synthetic resin material E 1 : Young's modulus of the metal material E 2 : Young's modulus of the synthetic resin material
前記金属材料は、鋼材であることを特徴とする請求項6または7記載の試験片。   The test piece according to claim 6 or 7, wherein the metal material is a steel material. 前記合成樹脂材料は、エポキシ系合成樹脂であることを特徴とする請求項6乃至8のいずれか一項に記載の試験片。   The test piece according to claim 6, wherein the synthetic resin material is an epoxy-based synthetic resin. 試験片を2点支持する支持手段と、前記試験片の支持間隔の中程に曲げ荷重を印加する荷重印加手段とを備え、
前記試験片は、金属材料と合成樹脂材料とを接着してなり、前記試験片の接着面端部での摺り強度を、3点曲げ試験による接着面端部での亀裂発生荷重を測定することにより試験する摺り強度試験装置において、
前記試験片の前記支持手段による支持間隔は、前記試験片の金属材料の層に塑性変形が生じない長さであることを特徴とする摺り強度試験装置。
A supporting means for supporting the test piece at two points, and a load applying means for applying a bending load in the middle of the support interval of the test piece,
The test piece is formed by bonding a metal material and a synthetic resin material, and the sliding strength at the end of the adhesive surface of the test piece is measured for the crack initiation load at the end of the adhesive surface by a three-point bending test. In the sliding strength test equipment to be tested by
The sliding strength test apparatus according to claim 1, wherein the support interval of the test piece by the support means is a length that does not cause plastic deformation in the metal material layer of the test piece.
JP2003325224A 2003-09-17 2003-09-17 Method and device for testing rubbing strength, and test piece therefor Pending JP2005091171A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003325224A JP2005091171A (en) 2003-09-17 2003-09-17 Method and device for testing rubbing strength, and test piece therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003325224A JP2005091171A (en) 2003-09-17 2003-09-17 Method and device for testing rubbing strength, and test piece therefor

Publications (1)

Publication Number Publication Date
JP2005091171A true JP2005091171A (en) 2005-04-07

Family

ID=34455738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003325224A Pending JP2005091171A (en) 2003-09-17 2003-09-17 Method and device for testing rubbing strength, and test piece therefor

Country Status (1)

Country Link
JP (1) JP2005091171A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100359317C (en) * 2005-08-26 2008-01-02 中国科学院金属研究所 Method and device for three-point bending mechanical property test of small-sized sheet sample
CN100387965C (en) * 2005-04-25 2008-05-14 中国建筑第八工程局有限公司 Method for testing flexual property of warming plate made from extruded plastic foam of polystyrene
JP2013104849A (en) * 2011-11-16 2013-05-30 Mitsubishi Electric Corp Crack inspection device
CN105588764A (en) * 2016-01-26 2016-05-18 贵州大学 Method and device for simply and conveniently detecting strength of building steel
CN110031330A (en) * 2019-03-07 2019-07-19 航天科工防御技术研究试验中心 A kind of test sample, preparation method and the test method of ceramic coating bond strength
CN112649308A (en) * 2020-12-30 2021-04-13 安徽大昌科技股份有限公司 General tool for detecting bending resistance of automobile anti-collision beam
CN114323906A (en) * 2021-12-23 2022-04-12 河北工业大学 Fracture toughness solving method considering internal crack propagation of concrete material

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100387965C (en) * 2005-04-25 2008-05-14 中国建筑第八工程局有限公司 Method for testing flexual property of warming plate made from extruded plastic foam of polystyrene
CN100359317C (en) * 2005-08-26 2008-01-02 中国科学院金属研究所 Method and device for three-point bending mechanical property test of small-sized sheet sample
JP2013104849A (en) * 2011-11-16 2013-05-30 Mitsubishi Electric Corp Crack inspection device
CN105588764A (en) * 2016-01-26 2016-05-18 贵州大学 Method and device for simply and conveniently detecting strength of building steel
CN110031330A (en) * 2019-03-07 2019-07-19 航天科工防御技术研究试验中心 A kind of test sample, preparation method and the test method of ceramic coating bond strength
CN112649308A (en) * 2020-12-30 2021-04-13 安徽大昌科技股份有限公司 General tool for detecting bending resistance of automobile anti-collision beam
CN114323906A (en) * 2021-12-23 2022-04-12 河北工业大学 Fracture toughness solving method considering internal crack propagation of concrete material
CN114323906B (en) * 2021-12-23 2024-01-30 河北工业大学 Fracture toughness solving method considering internal crack expansion of concrete material

Similar Documents

Publication Publication Date Title
Crocombe et al. Investigating fatigue damage evolution in adhesively bonded structures using backface strain measurement
Hoffmann An introduction to stress analysis and transducer design using strain gauges
Hassan et al. The variation of ice adhesion strength with substrate surface roughness
JP4320018B2 (en) Micro hardness measurement method and micro hardness tester
CN102323170B (en) Method for testing mechanical property of superhard diamond film
CN110987791B (en) Test method for determining normal bonding parameters of steel plate and concrete
JP2005091171A (en) Method and device for testing rubbing strength, and test piece therefor
Crecraft Ultrasonic measurement of stresses
Marur et al. Dynamic response of bimaterial and graded interface cracks under impact loading
KR102046372B1 (en) Marking Device for Concrete Ultrasonic test of Structural Safety Diagnosis
JP6061767B2 (en) Method and apparatus for exploring delamination inside concrete
JP3857032B2 (en) Method and apparatus for diagnosing crack risk using piezoelectric material
CN104913876B (en) The producing device and method of aluminum alloy bodywork residual stress measurement zero stress test block based on supercritical ultrasonics technology
Objois et al. Theoretical and experimental analysis of the scarf joint bonded structure: Influence of the adhesive thickness on the micro-mechanical behavior
CN110530706B (en) Loading device and test method for double-material interface under normal stress constraint
KR20070066522A (en) Fatigue load level detecting gauge
JP2006053095A (en) Method of measuring opening variation amount of surface crack in structure, method of measuring surface crack depth, and database used therefor
JP3920689B2 (en) Measuring gauge and its usage
CN214622091U (en) Cylindric solid concrete compressive strength detection device
Kraus et al. Characterization of cohesive laws for foam-metal interfaces
JP2007315810A (en) Repeated stress sensor
JPH08285761A (en) Method for measuring bonding strength of coating
Wang et al. Dynamic testing and analysis of Poisson’s ratio constants of timber
JP2001281121A (en) Fretting fatigue test device and fretting fatigue estimation method
Wang et al. Measurement of the mechanical properties of nickel film based on the full-field deformation: An improved blister method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070227