JP2005089849A - Spangle size control system - Google Patents

Spangle size control system Download PDF

Info

Publication number
JP2005089849A
JP2005089849A JP2003328052A JP2003328052A JP2005089849A JP 2005089849 A JP2005089849 A JP 2005089849A JP 2003328052 A JP2003328052 A JP 2003328052A JP 2003328052 A JP2003328052 A JP 2003328052A JP 2005089849 A JP2005089849 A JP 2005089849A
Authority
JP
Japan
Prior art keywords
spangle size
spangle
steel strip
cooling
plated steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003328052A
Other languages
Japanese (ja)
Other versions
JP4299619B2 (en
Inventor
Kozo Hirose
幸三 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2003328052A priority Critical patent/JP4299619B2/en
Publication of JP2005089849A publication Critical patent/JP2005089849A/en
Application granted granted Critical
Publication of JP4299619B2 publication Critical patent/JP4299619B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a spangle size control system capable of manufacturing a plated steel strip 6 with spangle pattern to meet the needs with excellent yield by controlling the cooling condition on the basis of the on-line measured spangle size formed on the surface of the plated steel strip 6. <P>SOLUTION: A spangle size controller 30 is disposed between a cooling zone 10c and a temper-rolling mill 9. By synchronously processing image information on the plated steel strip observed by a CCD camera 22 with a line speed, the spangle size is measured under a condition that the unit area of an object to be measured is constant. The measured value of spangle size s<SB>1</SB>is outputted to the spangle size controller 30, deviation from the set value of the spangle size s<SB>0</SB>is calculated, cooling air flow rate changing commands f<SB>a</SB>, f<SB>b</SB>and f<SB>c</SB>corresponding to the deviation are outputted to flow regulating valves 11a, 11b and 11c of the cooling zones 10a, 10b and 10c, and the opening is adjusted. Thus, the plated steel strip 6 pulled up from a hot-dip coating bath 4 is cooled at the cooling speed corresponding to the target spangle size. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、スパングルサイズが一定した溶融めっき鋼板を製造するため、連続溶融めっきラインに組み込まれたスパングルサイズ制御システムに関する。   The present invention relates to a spangle size control system incorporated in a continuous hot dipping line in order to produce a hot dipped steel sheet having a constant spangle size.

めっき鋼板の製造には、生産性の高い連続溶融めっきラインが採用されている。
連続溶融めっきラインは、被めっき鋼帯1を加熱炉2で還元焼鈍した後、スナウト3を介して溶融めっき浴4に送り込み、シンクロール5を周回させて溶融めっき浴4から引き上げている(図1)。被めっき鋼帯1に随伴して溶融めっき浴4から持ち上げられた過剰の溶融めっき金属をガスワイピング等のめっき付着量調整装置(図示せず)で除去した後、単数又は複数段に配置されている冷却帯10a,10b,10cにめっき鋼帯6を通板し、デフレクタロール7で偏向させて下工程に向けて搬送する。
A high-productivity continuous hot dipping line is used for the production of plated steel sheets.
In the continuous hot dipping line, the steel strip 1 is subjected to reduction annealing in the heating furnace 2, and then sent to the hot dipping bath 4 through the snout 3, and the sink roll 5 is circulated and pulled up from the hot dipping bath 4 (FIG. 1). After removing the excessive hot dip plating metal lifted from the hot dip plating bath 4 along with the steel strip 1 to be plated by a plating adhesion amount adjusting device (not shown) such as gas wiping, it is arranged in one or more stages. The plated steel strip 6 is passed through the cooling zones 10a, 10b, and 10c, and is deflected by the deflector roll 7 and conveyed toward the lower process.

冷却帯10aは、流量調整弁11aで流量が調整された冷風をブロア12aで表面用冷却ボックス13a,裏面用冷却ボックス14aに送り込み、冷却ボックス13a,14aのノズルから冷風をめっき鋼帯6の表裏両面に吹き付けている。後段の冷却帯10b,10cも初段冷却帯10aと同一構成にしても良いが、表裏両面の冷却速度を個別に制御する方式も採用される。個別制御する場合、ブロア12b,12cから送り込まれた冷風を表面用,裏面用に分流した後で、表面用流量調整弁11bf,11cf及び裏面用流量調整弁11bb,11cbで流量を調節して表面用冷却ボックス13b,13c及び裏面用冷却ボックス14b,14cに送り込み、めっき鋼帯6の表裏両面をそれぞれ所定流量の冷風で冷却する。   In the cooling zone 10a, the cool air whose flow rate is adjusted by the flow rate adjusting valve 11a is sent to the front surface cooling box 13a and the back surface cooling box 14a by the blower 12a, and the cool air is supplied from the nozzles of the cooling boxes 13a, 14a to the front and back of the plated steel strip 6. Sprayed on both sides. The rear cooling zones 10b and 10c may have the same configuration as the first cooling zone 10a, but a method of individually controlling the cooling rates on both the front and back surfaces is also employed. In the case of individual control, after the cold air sent from the blowers 12b and 12c is diverted to the front side and the rear side, the flow rate is adjusted by the front side flow rate adjustment valves 11bf and 11cf and the rear side flow rate adjustment valves 11bb and 11cb It is sent to the cooling boxes 13b, 13c and the cooling boxes 14b, 14c for the back surface, and both the front and back surfaces of the plated steel strip 6 are cooled with cold air of a predetermined flow rate.

下工程に送られためっき鋼帯6は、冷却水槽8に浸漬・通板された後に調質圧延機9で軽圧下することにより表面調整される。調質圧延されためっき鋼帯6の表面にスパングル模様が観察される。スパングル模様は、溶融めっき浴4から引き上げた被めっき鋼帯1に付着している溶融めっき金属が凝固・冷却して溶融めっき層となるまでの冷却条件に応じて変わり、一般的には急冷却でスパングルサイズが小さく、緩冷却でスパングルサイズが大きくなる。溶融めっき鋼板の用途に応じて異なるスパングルサイズが要求されるため、冷却条件の制御によって必要サイズのスパングル模様を発現させている。   The plated steel strip 6 sent to the lower process is surface-adjusted by being lightly reduced by the temper rolling mill 9 after being immersed in and passed through the cooling water tank 8. A spangle pattern is observed on the surface of the temper-rolled plated steel strip 6. The spangle pattern changes according to the cooling conditions until the hot-dip plated metal adhering to the steel strip 1 to be plated pulled up from the hot-dip plating bath 4 is solidified and cooled to become a hot-dip plated layer, and is generally rapidly cooled. The spangle size is small with, and the spangle size increases with slow cooling. Since different spangle sizes are required depending on the use of the hot-dip steel sheet, a spangle pattern of the required size is expressed by controlling the cooling conditions.

冷却条件の制御は、調質圧延機9を通過しためっき鋼帯6の表面に発現したスパングルを観察し、観察結果のスパングルサイズを基準値と比較し、比較結果に基づいてブロア12a,12b,12cから送り込む冷風の流量を調節する方法が一般的である。しかし、この方法では、スパングルが軽圧下の影響を受けており、溶融めっきで生じたスパングルのサイズを正確に表すものとはいい難く、結果として制御精度も低い。そこで、めっき鋼帯6の表面に生じているスパングルをオンラインで直接観察し、観察結果をスパングルサイズの制御に利用する方法が提案されている(特許文献1,2)。
特開平10-237611号公報 特開平11-310862号公報
The cooling conditions are controlled by observing spangles developed on the surface of the plated steel strip 6 that has passed through the temper rolling mill 9, comparing the spangle size of the observation results with a reference value, and using the blowers 12a, 12b, A method of adjusting the flow rate of the cool air sent from 12c is common. However, in this method, spangles are affected by light pressure, and it is difficult to accurately represent the size of spangles generated by hot dipping, resulting in low control accuracy. Therefore, a method has been proposed in which spangles generated on the surface of the plated steel strip 6 are directly observed online and the observation results are used for controlling the spangle size (Patent Documents 1 and 2).
Japanese Patent Laid-Open No. 10-237611 Japanese Patent Laid-Open No. 11-310862

スパングルのオンライン観察には反射光の強弱を検出する測定器が使用されているが、連続溶融めっきラインを走行するめっき鋼帯6は、目標めっき付着量等に応じてラインスピードが80〜200m/分と大きく変動する。一つのコイルから送り出された被めっき鋼帯1を連続的に溶融めっきしている中間段階でラインスピードを設定変更する場合もある。
単位時間当りに検出されたCCDカメラの画像信号の強弱からスパングルサイズを割り出す従来の測定器では、CCDカメラで捕捉した鋼帯の画像面積がラインスピードの影響を受け、スパングルサイズの高精度検出が困難である。具体的には、ラインスピードが遅いとき鋼帯画像面積が小さいのでスパングルサイズが実際値より大きく算出され、ラインスピードの上昇に伴って鋼帯画像面積が増加しスパングルサイズが小さく算出される傾向にある。このような測定結果に基づいて冷却条件を制御しても、目標とするスパングルサイズをもつめっき鋼帯6が得られがたい。
A measuring instrument that detects the intensity of reflected light is used for on-line observation of spangles, but the plated steel strip 6 running on a continuous hot dipping line has a line speed of 80 to 200 m / s depending on the target plating adhesion amount and the like. Fluctuates significantly with minutes. In some cases, the line speed may be set and changed at an intermediate stage in which the steel strip 1 to be plated fed from one coil is continuously hot-plated.
With conventional measuring instruments that determine the spangle size from the strength of the image signal of the CCD camera detected per unit time, the image area of the steel strip captured by the CCD camera is affected by the line speed, so the spangle size can be detected with high accuracy. Have difficulty. Specifically, when the line speed is slow, the steel strip image area is small, so the spangle size is calculated to be larger than the actual value, and as the line speed increases, the steel strip image area increases and the spangle size tends to be calculated small. is there. Even if the cooling conditions are controlled based on such measurement results, it is difficult to obtain the plated steel strip 6 having the target spangle size.

本発明は、このような問題を解消すべく案出されたものであり、ラインスピードに同期した画像処理で得られるスパングルサイズを制御要因に使用することにより、精度良くスパングルサイズを制御し、ニーズに合ったスパングル模様をもつ溶融めっき鋼帯を製造することを目的とする。   The present invention has been devised to solve such a problem, and by using the spangle size obtained by image processing synchronized with the line speed as a control factor, the spangle size can be controlled with high accuracy and needs. The purpose is to produce hot-dip galvanized steel strips with spangled patterns that match the requirements.

本発明のスパングルサイズ制御システムは、連続溶融めっきラインを走行するめっき鋼帯が送り込まれる冷却帯と調質圧延機との間にスパングルサイズ測定装置を配置している。スパングルサイズ測定装置では、CCDカメラで観察しためっき鋼帯の画像情報をラインスピードに同期して画像処理することにより、測定対象の単位面積を一定にした条件下でスパングルサイズを測定する。
スパングルサイズ測定装置からスパングルサイズコントローラにスパングルサイズ測定値を出力し、スパングルサイズ設定値とスパングルサイズ測定値の偏差を演算し、偏差に対応する冷風流量変更指令を溶融めっき浴の上方にある冷却帯の流量調整弁に出力する。冷風流量変更指令で流量調節弁が開度調節されるため、溶融めっき浴から引き上げられためっき鋼帯が目標スパングルサイズに対応する冷却速度で冷却される。
In the spangle size control system of the present invention, a spangle size measuring device is arranged between a cooling zone into which a plated steel strip traveling on a continuous hot dipping line is fed and a temper rolling mill. The spangle size measuring device measures the spangle size under the condition that the unit area of the measurement target is constant by processing the image information of the plated steel strip observed with the CCD camera in synchronization with the line speed.
The spangle size measurement value is output from the spangle size measurement device to the spangle size controller, the deviation between the spangle size setting value and the spangle size measurement value is calculated, and the cold air flow rate change command corresponding to the deviation is sent to the cooling zone above the hot dipping bath. Output to the flow adjustment valve. Since the opening of the flow rate control valve is adjusted by the cold air flow rate change command, the plated steel strip pulled up from the hot dipping bath is cooled at a cooling rate corresponding to the target spangle size.

連続走行しているめっき鋼帯6の表面をCCDカメラで観察するとき、CCDカメラで捕らえられる一定面積をS,ラインスピードをVとすると、単位時間TにS×V×tの面積が鋼帯観察対象になる。面積S×V×tを鋼帯観察視野Aで観察し、鋼帯観察視野Aに現れている面積S×V×tを画像処理し反射光の強弱からスパングルサイズを演算しようとすると、演算結果は当然にラインスピードVの影響を受ける。
本発明では、面積S×V×tの画像処理に際し速度成分Vが除去されるように、画像処理をラインスピードVに同期させている。すなわち、鋼帯観察視野面積S×V×tをラインスピードVで除することにより、スパングルサイズの演算結果に及ぼすラインスピードVの影響を排除している。
速度成分Vを除去した画像処理結果は、めっき鋼帯6の長手方向に沿った一定面積が観察対象であることを示す。一定面積に現れている反射光の強弱はスパングルサイズを正確に表す指標であり、結果としてスパングルサイズを高精度でオンライン測定できる。この測定結果を冷却条件の制御に使用すると、目標サイズに対応するスパングル模様をもつ溶融めっき鋼帯が製造される。
When observing the surface of the continuously running steel strip 6 with a CCD camera, if the constant area captured by the CCD camera is S and the line speed is V, the area of S × V × t per unit time T is steel strip. Become an observation target. When the area S × V × t is observed in the steel strip observation visual field A, the area S × V × t appearing in the steel strip observation visual field A is image-processed, and the spangle size is calculated from the intensity of the reflected light. Is naturally affected by the line speed V.
In the present invention, the image processing is synchronized with the line speed V so that the velocity component V is removed during the image processing of the area S × V × t. That is, by dividing the steel strip observation visual field area S × V × t by the line speed V, the influence of the line speed V on the spangle size calculation result is eliminated.
The image processing result from which the velocity component V is removed indicates that a certain area along the longitudinal direction of the plated steel strip 6 is an observation target. The intensity of the reflected light that appears in a certain area is an index that accurately represents the spangle size, and as a result, the spangle size can be measured online with high accuracy. When this measurement result is used to control cooling conditions, a hot-dip steel strip having a spangle pattern corresponding to the target size is manufactured.

連続溶融めっきラインを走行しているめっき鋼帯6の表面を観察し、スパングルのサイズを測定する装置20を冷却水槽8と調質圧延機9との間のパスラインに配置している。スパングルサイズ測定装置20の配置個所は冷却水槽8と調質圧延機9との間に限らず、冷却帯10cから調質圧延機9までの何れの位置にスパングルサイズ測定装置20を配置しても良い。スパングルサイズ測定装置20自体は、本発明者等が連続溶融めっきライン用に開発したものであり、別途出願している(特願2003-327679号)
スパングルサイズ測定装置20は、めっき鋼帯6の表面を照射する光源21を備えている。光源21としては、めっき鋼帯6の幅以上の長さをもつ長尺の高周波蛍光灯が好ましい。光源21から出射された光は、めっき鋼帯6の表面で反射し、CCDカメラ22で受光される。CCDカメラ22は、めっき鋼帯6の幅方向全域を観察できるようにめっき鋼帯6の幅方向に沿って複数個配置することが好ましい。
A device 20 for observing the surface of the plated steel strip 6 running on the continuous hot dipping line and measuring the size of the spangle is disposed in the pass line between the cooling water tank 8 and the temper rolling mill 9. The arrangement location of the spangle size measuring device 20 is not limited to between the cooling water tank 8 and the temper rolling mill 9, and the spangle size measuring device 20 can be arranged at any position from the cooling zone 10 c to the temper rolling mill 9. good. The spangle size measuring device 20 itself was developed for the continuous hot dipping line by the present inventors and has been filed separately (Japanese Patent Application No. 2003-327679).
The spangle size measuring device 20 includes a light source 21 that irradiates the surface of the plated steel strip 6. The light source 21 is preferably a long high-frequency fluorescent lamp having a length equal to or greater than the width of the plated steel strip 6. The light emitted from the light source 21 is reflected by the surface of the plated steel strip 6 and received by the CCD camera 22. It is preferable to arrange a plurality of CCD cameras 22 along the width direction of the plated steel strip 6 so that the entire width direction of the plated steel strip 6 can be observed.

CCDカメラ22の観察結果は、制御盤23を経て画像情報として演算器24に出力される。制御盤23には、速度計25で測定しためっき鋼帯6のラインスピードも入力され、CCDカメラ22からの画像情報と共に演算器24に出力される。演算器24では、速度計25から送られてきたラインスピード測定値を参照しながら、CCDカメラ22からの画像情報をラインスピードVと同期させて画像処理する。
CCDカメラ22は、一定周期Tで一定面積Sを画像信号として捕らえることができる。連続的に走行しているめっき鋼帯6の画像をCCDカメラ22で捕らえると、鋼帯観察視野Aの面積がS×V×tとなりラインスピードVの影響を受ける。しかし、周期TをラインスピードVと同期させると、ラインスピードVの信号が除去され、一定面積の鋼帯観察視野Aが捕捉される。
The observation result of the CCD camera 22 is output to the calculator 24 as image information through the control panel 23. The line speed of the plated steel strip 6 measured by the speedometer 25 is also input to the control panel 23 and is output to the calculator 24 together with image information from the CCD camera 22. The computing unit 24 processes the image information from the CCD camera 22 in synchronization with the line speed V while referring to the line speed measurement value sent from the speedometer 25.
The CCD camera 22 can capture a constant area S as an image signal with a constant period T. When an image of the continuously running steel strip 6 is captured by the CCD camera 22, the area of the steel strip observation field A becomes S × V × t and is affected by the line speed V. However, when the period T is synchronized with the line speed V, the signal of the line speed V is removed and the steel strip observation visual field A having a constant area is captured.

画像処理された画像情報を標準サンプルと比較し、ラインを走行しているめっき鋼帯6のスパングルサイズを算出する。ラインスピードVと同期してCCDカメラ22で捕捉した鋼帯観察視野Aは常に一定の面積であるので、該一定面積内のスパングルを画像処理することによってスパングルサイズが算出される。具体的には、スパングルサイズ演算器24に保存されたデータを解析用演算器26に出力し、一定面積内のスパングル画像の明暗を強調し、明度を垂直軸として単位面積当りの三次元マップ(図2)を作成する。明度レベルの中間ポイントで三次元マップをカットし、明暗画像(図3)として解析用演算器26に取り込み、切断面積を積算する。積算値をスパングルサイズに相関させる(図4)ことにより、スパングルサイズを測定する。   The image information subjected to image processing is compared with a standard sample, and the spangle size of the plated steel strip 6 traveling on the line is calculated. Since the steel strip observation visual field A captured by the CCD camera 22 in synchronization with the line speed V is always a constant area, the spangle size is calculated by performing image processing on the spangle within the constant area. Specifically, the data stored in the spangle size calculator 24 is output to the analysis calculator 26 to emphasize the brightness of the spangle image within a certain area, and the brightness per unit area is a three-dimensional map per unit area ( Figure 2) is created. The three-dimensional map is cut at an intermediate point of the lightness level, and is taken into the analysis computing unit 26 as a light and dark image (FIG. 3), and the cut area is integrated. The spangle size is measured by correlating the integrated value with the spangle size (FIG. 4).

以上の方法で測定されたスパングルサイズは、ラインスピードの影響が排除され、しかも調質圧延機9で軽圧下される前の値である。そのため、連続溶融めっきラインを走行しているめっき鋼帯表面に生成したスパングルを正確に表す指標である。
該スパングルサイズ測定値s1を演算器24からスパングルサイズコントローラ30に出力し、予め入力されているスパングルサイズ設定値s0と比較する。比較結果を目標スパングルサイズに対応する冷却条件に換算し、制御信号sa,sb,scとして各冷却帯10a,10b,10c用の冷却条件設定器31a,31b,31cに出力する。
冷却条件設定器31a,31b,31cには、溶融めっき浴4に侵入する直前の被めっき鋼帯1の板温T0,各冷却帯10a,10b,10cの出側に配置された温度計15a,15b,15cで測定された板温T1,T2,T3及び速度計25で測定されたラインスピードVも入力される。板温T0は、初段冷却帯10aの入側温度として代用されるが、めっきポット直上にスペースが取れる設計では初段冷却帯10a入側に配置した温度計で測定しためっき鋼帯6の板温を板温T0に使用しても良い。
The spangle size measured by the above method is a value before the influence of the line speed is eliminated and before being lightly reduced by the temper rolling mill 9. Therefore, it is an index that accurately represents spangles generated on the surface of the plated steel strip traveling on the continuous hot dipping line.
The spangle size measurement value s 1 is output from the computing unit 24 to the spangle size controller 30 and compared with a preset spangle size setting value s 0 . The comparison result is converted into a cooling condition corresponding to the target spangle size, and is output to the cooling condition setting devices 31a, 31b, 31c for the respective cooling zones 10a, 10b, 10c as control signals s a , s b , s c .
The cooling condition setting devices 31a, 31b and 31c include a plate temperature T 0 of the steel strip 1 just before entering the hot dipping bath 4 and a thermometer 15a arranged on the outlet side of the cooling zones 10a, 10b and 10c. , 15b, sheet temperature T 1 measured at 15c, T 2, T 3 and the speedometer 25 line speed V measured by also input. The plate temperature T 0 is substituted as the inlet side temperature of the first stage cooling zone 10a. However, in the design in which a space can be taken immediately above the plating pot, the plate temperature of the plated steel strip 6 measured with a thermometer arranged on the inlet side of the first stage cooling zone 10a. May be used for the plate temperature T 0 .

板温T0のめっき鋼帯6が初段冷却帯10aを出たとき板温T1まで降温しているので、初段冷却帯10aにおける冷却速度CVaは、溶融めっき浴4の浴面から温度計15aまでの距離をLaとすると、CVa=(T0−T1)・V/Laで表される。同様に第二段冷却帯10bにおける冷却速度CVbは、温度計15aから温度計15bまでの距離をLbとするとCVa=(T1−T2)・V/Lbで表され、第三段冷却帯10cにおける冷却速度CVcは、温度計15bから温度計15cまでの距離をLcとするとCVc=(T2−T3)・V/Lcで表される。 When the plated steel strip 6 with the plate temperature T 0 exits the first stage cooling zone 10 a, the temperature drops to the plate temperature T 1, so the cooling rate CV a in the first stage cooling zone 10 a is measured from the bath surface of the hot dipping bath 4. When the distance to 15a and L a, is expressed by CV a = (T 0 -T 1 ) · V / L a. Cooling rate CV b of the second-stage cooling zone 10b similarly is expressed by CV a = (T 1 -T 2 ) · V / L b and the distance from the thermometer 15a until thermometer 15b and L b, second The cooling rate CV c in the three-stage cooling zone 10c is represented by CV c = (T 2 −T 3 ) · V / L c where L c is the distance from the thermometer 15b to the thermometer 15c.

各冷却条件設定器31a,31b,31cは、制御信号sa,sb,scに従って冷却条件を演算し、演算結果を冷却速度CVa,CVb,CVcとスパングルサイズ設定値s0〜スパングルサイズ測定値s1のズレを補完する冷風流量変更量を算出する。算出結果は、冷風流量変更指令fa,fb,fcとして各冷却条件設定器31a,31b,31cから初段の流量調整弁11,第二段の流量調整弁11bf,11bb,第三段の流量調整弁11cf,11cbに出力される。 Each cooling condition setting unit 31a, 31b, 31c, the control signal s a, calculates the cooling conditions in accordance with s b, s c, the operation result the cooling rate CV a, CV b, CV c and spangle size setting value s 0 ~ A cold air flow rate change amount that compensates for the deviation of the spangle size measurement value s 1 is calculated. The calculation result, the cold air flow rate change command f a, f b, the cooling condition setting unit 31a as f c, 31b, the first stage of the flow control valve 11 from 31c, the flow control valve of the second stage 11Bf, 11bb, of the third stage It is output to the flow control valves 11cf and 11cb.

冷風流量変更指令fa,fb,fcに従って初段流量調整弁11a,第二段流量調整弁11bf,11bb,第三段流量調整弁11cf,11cbの開度が変更され、スパングルサイズが設定値s0に近づくようにめっき鋼帯6に吹き付けられる冷風の流量が変わり、スパングルサイズ設定値s0に対応した冷却条件に補正される。その結果、スパングルサイズが一定化し、目標スパングル模様をもつめっき鋼帯6が製造される。 Cold air flow change command f a, f b, the first stage flow control valve according to f c 11a, second stage flow control valve 11Bf, 11bb, third stage flow control valve 11cf, the opening of the 11cb is changed, spangle size setting value The flow rate of the cold air blown to the plated steel strip 6 changes so as to approach s 0 and is corrected to the cooling condition corresponding to the spangle size set value s 0 . As a result, the spangle size is made constant, and the plated steel strip 6 having the target spangle pattern is manufactured.

このようにして、オンライン測定されたスパングルサイズ測定値s1をスパングルサイズ設定値s0と対比しながら冷却条件が制御されるため、目標スパングル模様をもつめっき鋼帯6の製造歩留が高くなる。しかも、スパングルサイズ測定値s1は、ラインスピードVによる影響を排除した値として求められるため、ラインスピードVの変動又は設定変更に拘らずスパングル模様が安定化する。 In this way, since the cooling conditions are controlled while comparing the spangle size measurement value s 1 measured online with the spangle size setting value s 0 , the production yield of the plated steel strip 6 having the target spangle pattern is increased. . In addition, since the spangle size measurement value s 1 is obtained as a value excluding the influence of the line speed V, the spangle pattern is stabilized regardless of the fluctuation of the line speed V or the setting change.

以上に説明したように、本発明によるとき、オンライン測定されたスパングルサイズ測定値を基にして各冷却帯における冷却条件を制御しているので、ニーズに合ったスパングル模様をもつ溶融めっき鋼帯が歩留良く製造される。   As described above, according to the present invention, the cooling conditions in each cooling zone are controlled based on the measured spangle size measured online, so that a hot-dip steel strip having a spangle pattern that meets the needs can be obtained. Manufactured with good yield.

スパングルサイズ制御装置を備えた連続溶融めっきラインの概略図Schematic of continuous hot dipping line with spangle size control device スパングル画像の明暗を強調して作成した三次元マップThree-dimensional map created by emphasizing the contrast of spangled images スパングルの三次元マップを明暗レベルの中間ポイントでカットして得られる明暗画像A light-dark image obtained by cutting a 3D map of spangle at an intermediate point of light-dark level 切断面積の積算値からスパングルサイズを求めるときに使用する相関図の一例Example of correlation diagram used when obtaining spangle size from integrated value of cut area

符号の説明Explanation of symbols

1:被めっき鋼帯 2:加熱炉 3:スナウト 4:溶融めっき浴 5:シンクロール 6:めっき鋼帯 7:デフレクタロール 8:水槽 9:調質圧延機
10a,10b,10c:冷却帯 11a,11bf,11bb,11cf,11cb:流量調整弁 12a,12b,12c:ブロア 13a,13b,13c:表面用冷却ボックス 14a,14b,14c:裏面用冷却ボックス 15a,15b,15c:温度計
20:スパングルサイズ測定装置 21:光源 22:CCDカメラ 23:制御盤 24:スパングルサイズ演算器 25:速度計 26:解析用演算器
30:スパングルサイズコントローラ 31a,31b,31c:冷却条件設定器
0:スパングルサイズ設定値 s1:スパングルサイズ測定値
a,sb,sc:制御信号 fa,fb,fc:冷風流量変更指令
冷却速度CVa,CVb,CVc: T0〜T3:板温 V:ラインスピード
1: Steel strip 2: Heating furnace 3: Snout 4: Hot dipping bath 5: Sink roll 6: Plated steel strip 7: Deflector roll 8: Water tank 9: Temper rolling mills 10a, 10b, 10c: Cooling zone 11a, 11bf, 11bb, 11cf, 11cb: Flow rate adjusting valves 12a, 12b, 12c: Blowers 13a, 13b, 13c: Front side cooling boxes 14a, 14b, 14c: Back side cooling boxes 15a, 15b, 15c: Thermometer 20: Spangle size Measuring device 21: Light source 22: CCD camera 23: Control panel 24: Spangle size calculator 25: Speedometer 26: Calculator for analysis 30: Spangle size controller 31a, 31b, 31c: Cooling condition setting device s 0 : Spangle size setting values s 1: spangle size measurements s a, s b, s c : control signals f a, f b, f c : cold air flow change instruction cooling rate CV a, CV b CV c: T 0 ~T 3: sheet temperature V: line speed

Claims (1)

連続溶融めっきラインを走行するめっき鋼帯が送り込まれる冷却帯と調質圧延機との間にスパングルサイズ測定装置を配置し、スパングルサイズ測定装置のCCDカメラで観察しためっき鋼帯の画像情報をラインスピードに同期して画像処理することにより、測定対象の単位面積を一定にした条件下でスパングルサイズを測定し、
該スパングルサイズ測定値をスパングルサイズコントローラに出力し、スパングルサイズコントローラでスパングルサイズ設定値とスパングルサイズ測定値の偏差を演算し、偏差に対応する冷風流量変更指令を溶融めっき浴の上方にある冷却帯の流量調整弁に出力し、
溶融めっき浴から引き上げられためっき鋼帯を目標スパングルサイズに対応する冷却速度で冷却することを特徴とするスパングルサイズ制御システム。
A spangle size measuring device is placed between the cooling zone to which the plated steel strip running on the continuous hot dipping line is fed and the temper rolling mill, and the image information of the plated steel strip observed with the CCD camera of the spangle size measuring device is lined up. By processing the image in synchronization with the speed, the spangle size is measured under the condition that the unit area of the measurement target is constant.
The spangle size measurement value is output to the spangle size controller, the spangle size controller calculates the deviation between the spangle size setting value and the spangle size measurement value, and the cold air flow rate change command corresponding to the deviation is sent to the cooling zone above the hot dipping bath. Output to the flow adjustment valve
A spangle size control system characterized by cooling a plated steel strip pulled up from a hot dipping bath at a cooling rate corresponding to a target spangle size.
JP2003328052A 2003-09-19 2003-09-19 Spangle size control system Expired - Fee Related JP4299619B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003328052A JP4299619B2 (en) 2003-09-19 2003-09-19 Spangle size control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003328052A JP4299619B2 (en) 2003-09-19 2003-09-19 Spangle size control system

Publications (2)

Publication Number Publication Date
JP2005089849A true JP2005089849A (en) 2005-04-07
JP4299619B2 JP4299619B2 (en) 2009-07-22

Family

ID=34457751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003328052A Expired - Fee Related JP4299619B2 (en) 2003-09-19 2003-09-19 Spangle size control system

Country Status (1)

Country Link
JP (1) JP4299619B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101008169B1 (en) * 2008-09-03 2011-01-13 주식회사 포스코 Method for manufacturing galvanized dipping strip through monitoring
JP2011195848A (en) * 2010-03-17 2011-10-06 Nisshin Steel Co Ltd Hot-dip plating apparatus
KR101138136B1 (en) * 2009-12-01 2012-04-23 동부제철 주식회사 Control Apparatus and Method of Spangle Size at Continuous Hot-Dip Galvanizing Line That Easy Spray Position Control
CN102607504A (en) * 2012-03-01 2012-07-25 首钢总公司 Method for detecting spangle sizes on surfaces of hot-dipped galvanized sheets on line

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101008169B1 (en) * 2008-09-03 2011-01-13 주식회사 포스코 Method for manufacturing galvanized dipping strip through monitoring
KR101138136B1 (en) * 2009-12-01 2012-04-23 동부제철 주식회사 Control Apparatus and Method of Spangle Size at Continuous Hot-Dip Galvanizing Line That Easy Spray Position Control
JP2011195848A (en) * 2010-03-17 2011-10-06 Nisshin Steel Co Ltd Hot-dip plating apparatus
CN102607504A (en) * 2012-03-01 2012-07-25 首钢总公司 Method for detecting spangle sizes on surfaces of hot-dipped galvanized sheets on line

Also Published As

Publication number Publication date
JP4299619B2 (en) 2009-07-22

Similar Documents

Publication Publication Date Title
JP6778258B2 (en) Hot-dip galvanized layer thickness control systems and methods for continuously varying thickness strip materials
US20200407832A1 (en) Dross removal device, dross removal method, dross detection device, and dross detection method
AU2016252193B2 (en) Apparatus and method for producing hot-dip metal coated steel strip
JP4299619B2 (en) Spangle size control system
CN107541737B (en) The method for improving belt steel surface pickling quality
CN107303601A (en) The cooling monitoring system and method for strand
CN115836140A (en) Dross defect prediction method, dross defect reduction method, method for manufacturing hot-dip galvanized steel sheet, method for manufacturing alloyed hot-dip galvanized steel sheet, dross defect prediction model generation method, dross defect prediction device, and dross defect prediction terminal system
JP2005091266A (en) Spangle size measuring device
JP2005029890A (en) Method for controlling temperature of plating bath for hot dip galvanized steel sheet, and hot dip galvanized steel sheet
RU2752518C1 (en) Method for operating the annealing furnace
JP2022504838A (en) How to control coating weight uniformity in industrial galvanized lines
JP2003105515A (en) Device and method for correcting steel plate shape
JPH0770727A (en) Process and apparatus for producing zero spangle galvanized steel sheet
JP2011173153A (en) Cooling controller for thick steel plate, cooling control method, and manufacturing method
JP4468718B2 (en) Surface appearance adjustment method and surface appearance adjustment device for hot dip plated steel sheet
JP7123014B2 (en) Dross detection system
JP2015188897A (en) Cooling method of steel plate
JP2019167574A (en) Method of correcting slab temperature model in reheating furnace, slab extraction temperature control method and control apparatus
JP2005279655A (en) Steel extraction temperature prediction method for continuous heating furnace
CN109563559B (en) Method for operating an annealing furnace for annealing metal strips
TWI695089B (en) System and method for hot-dip galvanization
JP7323809B2 (en) METHOD FOR MEASURING WARP OF METAL STRIP AND METHOD FOR MANUFACTURING METAL STRIP
JP2003293030A (en) Method for cooling steel plate
JP2005213549A (en) Method for controlling sheet temperature of metallic strip which enters into hot-dipping bath
KR20030054499A (en) In-line feed backward cooling control method of hot strip

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060808

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070417

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090417

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140424

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees